
Cribl Stream Documentation Manual

Version: v3.5

Generated: 2022-10-13 13:45:40

1. Introduction 11

1.1. About Cribl Stream 11

1.2. Basic Concepts 13

1.3. QuickConnect 18

1.4. Getting Started Guide 26

1.5. Distributed Quick Start 48

2. Launch Guide 79

2.1. Launch Guide 102

3. Deploying Cribl Stream Software 125

3.1. Deployment Planning 125

3.2. Sizing and Scaling 129

3.3. Manual Deployment 138

3.3.1. Deployment Types 138

3.3.2. Single-Instance Deployment 140

3.3.3. Distributed Deployment 148

3.3.4. Splunk App Deployment 170

3.3.5. Bootstrap Workers from Leader 175

3.3.6. Leader High Availability/Failover 186

3.3.7. Converting a Single Instance to Distributed Deployment 192

3.4. Orchestrated Deployment 194

3.4.1. Kubernetes/Helm Deployment 194

3.4.2. K8s Leader Deployment 196

3.4.3. K8s Worker Deployment 213

3.4.4. (Deprecated:) K8s Master Deployment 224

3.5. Docker Deployment 242

4. Administering 246

4.1. Licensing 246

4.2. Version Control 252

4.3. GitOps 269

4.3.1. GitOps/GitHub Tutorial 277

4.4. Persistent Queues 284

4.5. Access Management 291

4.5.1. Authentication 292

4.5.2. Local Users 300

4.5.3. Roles 303

4.6. Securing 311

4.6.1. Securing Cribl Stream 311

4.6.2. Securing Communications 321

4.6.3. Securing Data 329

4.6.4. Encryption 330

4.6.5. Decryption 335

4.7. Monitoring 339

4.7.1. Internal Metrics 354

4.7.2. Internal Logs 360

4.8. Notifications 364

4.8.1. Configuring Targets 374

4.9. Scripts 377

4.10. Upgrading 379

4.11. Uninstalling 389

5. Working With Data 390

5.1. Event Model 390

5.2. Event Processing Order 392

5.3. Routes 394

5.4. Pipelines 403

5.5. Packs 410

5.5.1. Packs Publication Standards 435

5.6. Using Datagens 443

5.7. Data Preview 449

5.8. Data Onboarding 462

6. Functions 466

6.1. Auto Timestamp 471

6.2. Aggregations 476

6.3. CEF Serializer 484

6.4. Chain 486

6.5. Clone 488

6.6. Code 490

6.7. Comment 492

6.8. DNS Lookup 494

6.9. Drop 497

6.10. Dynamic Sampling 499

6.11. Eval 502

6.12. Event Breaker 505

6.13. Flatten 508

6.14. GeoIP 510

6.15. Grok 513

6.16. JSON Unroll 515

6.17. Lookup 517

6.18. Mask 522

6.19. Numerify 529

6.20. Parser 531

6.21. Publish Metrics 539

6.22. Redis 546

6.23. Regex Extract 552

6.24. Regex Filter 557

6.25. Rename 558

6.26. Rollup Metrics 561

6.27. Sampling 563

6.28. Serialize 565

6.29. Suppress 567

6.30. Tee 570

6.31. Trim Timestamp 573

6.32. Unroll 576

6.33. XML Unroll 578

6.34. Prometheus Publisher (Deprecated) 581

6.35. Reverse DNS (deprecated) 584

7. Sources 586

7.1. Collector Sources 591

7.1.1. Azure Blob Storage 595

7.1.2. Filesystem/NFS 600

7.1.3. Google Cloud Storage 604

7.1.4. REST / API Endpoint 611

7.1.5. S3 625

7.1.6. Script 631

7.1.7. Splunk Search 636

7.1.8. Scheduling and Running 641

7.1.9. Job Limits 649

7.2. Amazon 653

7.2.1. Amazon Kinesis Firehose 653

7.2.2. Amazon Kinesis Streams 658

7.2.3. Amazon S3 663

7.2.4. Amazon SQS 671

7.3. Azure 676

7.3.1. Azure Blob Storage 676

7.3.2. Azure Event Hubs 688

7.4. Google Cloud 693

7.4.1. Google Cloud Pub/Sub 693

7.5. Kafka 697

7.5.1. Kafka 697

7.5.2. Confluent Cloud 703

7.6. Office 365 709

7.6.1. Office 365 Activity 709

7.6.2. Office 365 Message Trace 716

7.6.3. Office 365 Services 721

7.7. Prometheus 726

7.7.1. Prometheus Scraper 726

7.7.2. Prometheus Remote Write 733

7.7.3. Grafana 739

7.7.4. Loki 745

7.8. Splunk 750

7.8.1. Splunk HEC 750

7.8.2. Splunk Search 758

7.8.3. Splunk TCP 762

7.9. Internal 767

7.9.1. Datagen 767

7.9.2. Cribl Internal 770

7.9.3. Cribl HTTP 776

7.9.4. Cribl TCP 783

7.9.5. Cribl Stream (Deprecated) 789

7.10. System 795

7.10.1. Exec 795

7.10.2. File Monitor 798

7.10.3. System Metrics 804

7.11. AppScope 809

7.12. CrowdStrike 815

7.13. Datadog Agent 820

7.14. Elasticsearch API 829

7.15. HTTP/S (Bulk API) 837

7.16. Raw HTTP/S 845

7.17. Metrics 850

7.18. OpenTelemetry (OTel) 856

7.19. SNMP Trap 862

7.20. Syslog 866

7.21. TCP JSON 871

7.22. TCP (Raw) 877

7.23. Windows Event Forwarder 883

8. Destinations 892

8.1. Amazon 897

8.1.1. Amazon CloudWatch Logs 897

8.1.2. Amazon Kinesis Streams 901

8.1.3. Amazon S3 Compatible Stores 906

8.1.4. Amazon SQS 912

8.2. Azure 917

8.2.1. Azure Blob Storage 917

8.2.2. Azure Event Hubs 922

8.2.3. Azure Monitor Logs 926

8.3. Google Cloud 930

8.3.1. Google Chronicle 930

8.3.2. Google Cloud Storage 934

8.3.3. Google Cloud Pub/Sub 939

8.4. Kafka 943

8.4.1. Kafka 943

8.4.2. Confluent Cloud 949

8.5. Metrics 955

8.5.1. Graphite 955

8.5.2. StatsD 958

8.5.3. StatsD Extended 961

8.6. New Relic Ingest 964

8.6.1. New Relic Events 964

8.6.2. New Relic Logs & Metrics 968

8.7. Prometheus 973

8.7.1. Prometheus 973

8.7.2. Grafana Cloud 978

8.7.3. Loki 985

8.8. Splunk 989

8.8.1. Splunk HEC 989

8.8.2. Splunk Single Instance 996

8.8.3. Splunk Load Balanced 1001

8.9. Internal 1011

8.9.1. Cribl HTTP 1011

8.9.2. Cribl TCP 1017

8.9.3. Cribl Stream (Deprecated) 1023

8.9.4. Default 1027

8.9.5. DevNull 1028

8.9.6. Output Router 1029

8.10. Datadog 1032

8.11. DataSet 1037

8.12. Elasticsearch 1042

8.13. Filesystem/NFS 1049

8.14. Honeycomb 1053

8.15. Humio HEC 1057

8.16. InfluxDB 1062

8.17. MinIO 1066

8.18. OpenTelemetry (OTel) 1072

8.19. SignalFx 1076

8.20. SNMP Trap 1080

8.21. Sumo Logic 1082

8.22. Syslog 1086

8.23. TCP JSON 1102

8.24. Wavefront 1109

8.25. Webhook 1113

9. Knowledge 1118

9.1. Lookups Library 1118

9.2. Event Breakers 1122

9.3. Parsers Library 1135

9.4. Global Variables Library 1137

9.5. Regex Library 1139

9.6. Grok Patterns Library 1142

9.7. Schemas Library 1144

10. Reference 1150

10.1. API Docs 1150

10.2. Cribl Expression Syntax 1156

10.3. Cribl Expressions 1159

10.4. CLI Reference 1172

10.5. Environment Variables 1189

10.6. Config Files 1194

10.6.1. cribl.yml 1197

10.6.2. breakers.yml 1203

10.6.3. certificates.yml 1204

10.6.4. groups.yml 1205

10.6.5. inputs.yml 1206

10.6.6. instance.yml 1284

10.6.7. jobs.yml 1285

10.6.8. job-limits.yml 1306

10.6.9. licenses.yml 1307

10.6.10. limits.yml 1308

10.6.11. logger.yml 1309

10.6.12. mappings.yml 1310

10.6.13. messages.yml 1311

10.6.14. outputs.yml 1312

10.6.15. parsers.yml 1383

10.6.16. policies.yml 1384

10.6.17. regexes.yml 1387

10.6.18. roles.yml 1388

10.6.19. samples.yml 1389

10.6.20. schemas.yml 1390

10.6.21. scripts.yml 1391

10.6.22. vars.yml 1392

11. Techniques & Tips 1393

11.1. Tips and Tricks 1393

11.2. Integrating with Other Services 1397

11.2.1. Amazon S3 Better Practices 1397

11.2.2. BigPanda/Webhook Integration 1425

11.2.3. Moogsoft/Webhook Integration 1430

11.2.4. Nightfall Integration 1437

11.2.5. Managing QRadar Licenses 1443

11.2.6. Splunk to Elasticsearch 1448

11.2.7. Splunk to Exabeam 1456

11.2.8. Splunk Stream to Cribl Stream 1465

11.2.9. Syslog Best Practices 1469

11.2.10. Sumo Logic/Webhook Integration 1483

11.2.11. Tanium to Cribl Stream 1488

11.3. Lookup Applications 1495

11.3.1. Ingest-Time Lookups 1495

11.3.2. Managing Large Lookups 1500

11.3.3. Lookups as Filters for Masks 1504

11.3.4. Lookups and Regex Magic 1507

11.4. Sampling Applications 1519

11.4.1. Sampling 1519

11.4.2. Sample Logs 1522

11.4.3. Access Logs: Apache, ELB, CDN, S3, etc. 1528

11.4.4. Firewall Logs: VPC Flow Logs, Cisco ASA, Etc. 1531

11.5. Using Other Functions 1534

11.5.1. Code Function Examples 1534

11.5.2. Ingest-time Fields 1546

11.5.3. Masking and Obfuscation 1550

11.5.4. Reducing Windows XML Events 1554

11.5.5. Regex Filtering 1569

11.6. Using Collectors 1571

11.6.1. Using S3 Storage and Replay 1571

11.6.2. Using REST/API Collectors 1579

11.6.3. Lacework API Collection 1601

11.6.4. Microsoft Graph API Collection 1609

11.6.5. ServiceNow API Collection 1615

11.6.6. Creating a Custom Collector 1622

11.7. Securing Cribl Stream 1648

11.7.1. AWS Cross-Account Data Collection 1648

11.7.2. Encrypting Sensitive Data 1654

11.7.3. SELinux Configuration 1660

11.7.4. System Proxy Configuration 1664

11.7.5. SSO/Okta Configuration 1669

12. Setup Guides 1680

12.1. Cribl Edge to Cribl Stream 1681

12.2. Configuring Upstream Logging Agents 1687

12.3. Azure AD + OpenID Configuration 1697

12.4. Azure Event Hubs Integrations 1705

12.5. Splunk Cloud and BYOL Integrations 1710

12.6. Configuring WEF for Cribl Stream 1725

12.7. Zscaler NSS Integration 1740

13. Troubleshooting 1747

13.1. Known Issues 1747

13.2. Working with Cribl Support 1799

13.3. Diagnosing Issues 1806

13.4. Common Errors and Warnings 1814

13.5. Git Push Errors 1825

13.6. Git Remote Repos & Trusted CAs 1827

13.7. Sample Logs for Login Scenarios 1830

14. Third-Party Software 1833

14.1. Credits 1833

1. INTRODUCTION

All the docs to     goat you started with Cribl Stream

Download all docs as a PDF – v.3.5.3 | Download Cribl Stream | Get Cribl Cloud

Questions not answered here? We'd love to help you. Meet us in #Cribl Community Slack – sign up here.

Cribl Stream helps you process machine data – logs, instrumentation data, application data, metrics, etc. – in
real time, and deliver them to your analysis platform of choice. It allows you to:

Add context to your data, by enriching it with information from external data sources.

Help secure your data, by redacting, obfuscating, or encrypting sensitive fields.

Optimize your data, per your performance and cost requirements.

Sources, Cribl Stream, Destinations

Cribl Stream ships in a single, no-dependencies package. It provides a refreshing and modern interface for
working with and transforming your data. It scales with – and works inline with – your existing infrastructure,
and is transparent to your applications.

1.1. About Cribl Stream

What Is Cribl Stream?

Page 11 of 1835

Cribl Stream is built for administrators, managers, and users of operational/DevOps and security intelligence
products and services.

;

Who Is Cribl Stream For?

Page 12 of 1835

Notable features and concepts to get a fundamental understanding of Cribl Stream

As we describe features and concepts, it helps to have a mental model of Cribl Stream as a system that
receives events from various sources, processes them, and then sends them to one or more destinations.

Sources, Cribl Stream, Destinations

Let's zoom in on the center of the above diagram, to take a closer look at the processing and transformation
options that Cribl Stream provides internally. The basic interface concepts to work with are Sources, which
collect data; and Routes, which manage data flowing through Pipelines, which consist of Functions.

1.2. Basic Concepts

Page 13 of 1835

Routes, Pipelines, Functions

Sources are configurations that enable Cribl Stream to receive data from remote senders (Splunk, TCP,
Syslog, etc.), or to collect data from remote file stores or the local machine.

QuickConnect is a graphical interface for setting up data flow through your Cribl Stream deployment. You can
quickly drag and drop connections between Sources and Destinations, optionally including – or excluding –
Pipelines or Packs.

The only major constraint is that QuickConnect completely bypasses Routes. So QuickConnect
configurations have no Routing table, and no conditional cloning, cascading, or routing of data – every
QuickConnect connection is parallel and independent.

You use the top nav's Routing menu to toggle between the Data Routes and QuickConnect interfaces.

Sources

QuickConnect

Page 14 of 1835

Select Data Routes to use the Routing table, or QuickConnect to bypass Routes

Routes evaluate incoming events against filter expressions to find the appropriate Pipeline to send them to.
Routes are evaluated in order. Each Route can be associated with only one Pipeline and one output
(configured as a Cribl Stream Destination).

By default, each Route is created with its Final flag set to Yes . With this setting, a Route-Pipeline-
Destination set will consume events that match its filter, and that's that.

However, if you disable the Route's Final flag, one or more event clones will be sent down the associated
Pipeline, while the original event continues down Cribl Stream's Routing table to be evaluated against other
configured Routes. This is very useful in cases where the same set of events needs to be processed in
multiple ways, and delivered to di�erent destinations. For more details, see Routes.

A series of Functions is called a Pipeline, and the order in which you specify the Functions determines their
execution order. Events are delivered to the beginning of a Pipeline by a Route, and as they're processed by a
Function, the events are passed to the next Function down the line.

Pipelines attached to Routes are called processing Pipelines. You can optionally attach pre-processing
Pipelines to individual Cribl Stream Sources, and attach post-processing Pipelines to Cribl Stream
Destinations. All Pipelines are configured through the same UI – these three designations are determined
only by a Pipeline's placement in Cribl Stream's data flow.

Routes

Pipelines

Page 15 of 1835

Pipelines categorized by position

Events only move forward – toward the end of a Pipeline, and eventually out of the system. For more details,
see Pipelines.

At its core, a Function is a piece of code that executes on an event, and that encapsulates the smallest
amount of processing that can happen to that event. For instance, a very simple Function can be one that
replaces the term foo with bar on each event. Another one can hash or encrypt bar . Yet another function
can add a field – say, dc=jfk-42 – to any event with source=*us-nyc-application.log .

Functions

Page 16 of 1835

Functions stacked in a Pipeline

Functions process each event that passes through them. To help improve performance, Functions can
optionally be configured with filters, to limit their processing scope to matching events only. For more
details, see Functions.

You can scale Cribl Stream up to meet enterprise needs in a distributed deployment. Here, multiple
Cribl Stream Workers (instances) share the processing load. But as you can see in the preview schematic
below, even complex deployments follow the same basic model outlined above.

Distributed deployment architecture

;

A Scalable Model

Page 17 of 1835

Cribl Stream 3.2 introduces the QuickConnect visual rapid-development UI. Here, you can visually connect
Cribl Stream inputs (Sources) to outputs (Destinations) through simple drag-and-drop.

You can insert Pipelines or Packs into the connections, to take advantage of Cribl Stream's full range of data-
transformation Functions. Or you can omit these processing stages entirely, to send incoming data directly to
Destinations – with minimal configuration fuss.

QuickConnect was designed as a simple, quick way to prototype, test, and send data flowing through
Cribl Stream. But it's also entirely suitable for configuring a production deployment, if your needs are
restricted to sending data through parallel paths, and you don't need to use Routes.
(See QuickConnect Versus Routes to help you clarify that choice.)

QuickConnect UI

1.3. QuickConnect

You also have the option to start with simple direct connections, and later add Pipelines' and/or
Packs' processing power at up to three stages of each connection.

Page 18 of 1835

When you display the home page of a Cribl Stream (LogStream) 3.2+ single instance or Worker Group, you'll
see tiles that prompt you to choose between the QuickConnect versus Route configuration UIs. Click the le�
tile to start using QuickConnect.

QuickConnect versus Routing UIs

To display the above landing page in a distributed deployment, you must first select a Group. Click the le�
nav's Configure or Groups link to select the default or a di�erent Group; or click a Group's tile on the
distributed landing page, as shown below.

Selecting a Group

Initiating QuickConnect

You can switch to Cribl Stream's Routes UI at any time from the top nav by selecting
Routing > Data Routes. To toggle back, select Routing > QuickConnect.

Page 19 of 1835

QuickConnect provides access to most of Cribl Stream's configuration options, with a few restrictions (in
exchange for the simplified visual interface):

QuickConnect completely bypasses Routes – which is why every QuickConnect path is independent and
parallel. There is no Route-level data filtering, and you forego the Cribl Stream Routing table's options to
clone and cascade data across Pipelines.

Most Sources are available to fully configure. However, you'll need to use Routing > Data Routes to
configure Collector Sources.

Each supported Source's config can be created in either QuickConnect or Routes, and will reside only in
that context. But you can switch a config between the two contexts, or you can create an identical config
on the opposite side.

All Destinations are available to fully configure.

Everything you configure in QuickConnect exists separately from everything you configure in
Data Routes. (But remember that you can use the Routing menu to toggle between contexts, and then
replicate a QuickConnect configuration on the Data Routes side, or vice versa.)

QuickConnect is designed to be nearly self-documenting, with Introduction help text available at the top of
the UI. Here's a little extra help on help, keyed to the orange, numbered callouts in the screenshot below:

QuickConnect Introduction/help carousel

1. Use the Show introduction check box at the upper right to toggle the help text on and o�.

QuickConnect Versus Routes

Using QuickConnect

Page 20 of 1835

2. Use the dashed buttons to advance or rewind the help text's carousel (whose position is independent of
your connection state).

3. Once you've added at least one Source, the + New Source button (mentioned in the help text) becomes
an + Add Source button beside the Sources header.

When you click to add Sources and Destinations, their configuration options will open in a drawer. Fill in a
unique Input ID, and any other required fields marked by an asterisk (*). Then click Save.

If you switch an existing Source to QuickConnect – for example, one of the preconfigured Sources that ship
with Cribl Stream – you'll see the dialog shown below. This is due to QuickConnect's independence from the
Routes interface – you need to confirm your choice to move the existing configuration from the Data Routes
world to the QuickConnect world.

Switching a Source/Destination between worlds

You can also go the opposite way: move a Source originally configured in QuickConnect to the Routing
interface. In the Source's drawer or config modal, select the Connected Destinations le� tab, and then click
the resulting tab's Send to Routes button. Here again, you'll need to confirm your choice before proceeding.

Enabling Sources and Destinations

Switching Contexts

If you switch an existing Source config to QuickConnect, its data will no longer flow through its
configured Route.

Page 21 of 1835

Switching a Source/Destination between worlds

When you add or modify a connection line, the Connection Configuration modal will prompt you to select a
Passthru, Pipeline, or Pack connection. Selecting either Pipeline or Pack will open an Add... modal like
this:

Adding a Pipeline

Here, you're using the radio buttons at le� to select among already-configured Pipelines or Packs. Resist the
temptation to click on a bold blue Pipeline or Pack name. (Doing so will open the Pipeline's or Pack's
config in a new modal, which might o�er more configuration than you bargained for.)

Selecting a Pipeline or Pack

Page 22 of 1835

Instead, click the radio button to the le� of the Pipeline or Pack you want to select. (Or click on some black
text around the center of your desired Pipeline's/Pack's row, which will fill in its radio button.) Then click
Save to confirm your choice and close the modal.

If you've attached Tags to your Pipelines or Packs, you can use the filter field to search against them. Use the
format: TAGS/tag_name.

If you want to modify a Pipeline, this is where you do want to click its blue link in the
Add Pipeline to Connection modal. For the options available here, see Pipelines.

Editing a Pipeline

You can drag multiple connection lines between a given Source/Destination pair. (You might do this, for
example, to configure parallel Pipelines to handle di�erent data types.)

Also, you can connect one Source to multiple Destinations, or multiple Sources to one Destination. Let's
isolate examples of both, from the screen capture we started with:

Editing a Pipeline

Multiple Connections

Page 23 of 1835

Multiple connections out, multiple connections in

Once you've configured a Source or Destination, hovering over its tile will display options like these:

Signed, sealed, delivered: tiles' on-hover options

The le�most button is an indicator of the Source's/Destination's state. Live means healthy; disabled, error, or
warning states will also appear here. Note that a Source will appear as Disabled until you connect it to a
Destination.

This Source is not misconfigured – it's just lonely

Source/Destination Tiles' Hover Options

Page 24 of 1835

Clicking the middle Configure button reopens the Source's Destination's configuration drawer, where you
can address any problems or simply update the configuration.

The right Capture button captures a sample of data flowing through the Source or Destination, in a drawered
version of the Source's/Destinations's config modal > Live tab. (Not to be confused with a healthy tile's le�
Live indicator.)

Once you've configured two or more copies of the same Source or Destination type – for example, to support
di�erent configurations of one integration or protocol – QuickConnect stacks their tiles together to keep the
display clean.

4 similar Destinations, stacked

Hovering over a stack doesn't change its options...until you click on it. This will expand all the tiles in the
group, so each tile can now reveal the on-hover options described above.

You can drag multiple connection lines from, or to, the same stack. If you drag or modify a connection from
or to a stacked group, the UI will prompt you whether to similarly expand the group to access individual tiles.

;

Group Connections

The number at the stack's upper right shows how many tiles it contains.

Page 25 of 1835

This guide walks you through planning, (optionally) installing, and configuring a basic deployment of
Cribl Stream. You'll capture some realistic sample log data, and then use Cribl Stream's built-in Functions to
redact, parse, refine, and shrink the data.

By the end of this guide, you'll have assembled all of Cribl Stream's basic building blocks: a Source, Route,
Pipeline, several Functions, and a Destination. You can complete this tutorial using Cribl Stream's included
sample data, without connections to – or licenses on – any inbound or outbound services.

Assuming a cold start (from first-time setup of a Cribl.Cloud or self-hosted instance), this guide might take
about an hour. But you can work through it in chunks, and Cribl Stream will persist your work between
sessions.

To quote Robert Frost and Robert Plant (of Led Zeppelin), there are two paths that you can go by:

Do this tutorial with a free Cribl.Cloud instance, hosted by Cribl. Follow the registration instructions in
the section just below. This skips you past all the requirements and installation sections below – you'll
have nothing to install or host. Because Cribl.Cloud always runs in distributed mode, this will require a
few extra clicks (all clearly labeled) later in the tutorial's body. But it will give you immediate experience
with Cribl Stream's typical production mode.

Do this tutorial by downloading and installing Cribl Stream so�ware on your own hardware or virtual
machine. Follow the Requirements and Download and Install instructions below. You'll need to provide
your own infrastructure. But if you're planning to use self-hosted/on-prem Cribl Stream in production,
this will walk you through its realistic setup.

1.4. Getting Started Guide

If you've already launched a Cribl Stream instance (either Cloud or self-hosted), skip ahead to
Get Data Flowing.

Once you've mastered all the techniques in this tutorial, check out its Distributed Quick Start
successor.

Cloud or Self-Hosted?

To fully experience a real-world, self-hosted production setup, you can switch your Cribl Stream
installation to distributed mode. And then chase this tutorial with our Distributed Quick Start,

Page 26 of 1835

As indicated just above, you can skip installing Cribl Stream so�ware – and skip this tutorial's next several
sections – by registering a free Cribl.Cloud instance. Cribl will quickly spin up a fully functioning copy of
Cribl Stream for you, and manage it on your behalf. To use this fastest option:

1. In the Cribl.Cloud Launch Guide, follow the four steps listed in Registering a Cribl.Cloud Portal.

2. In the same Cribl.Cloud Launch Guide, jump ahead to follow the four steps listed in
Managing Cribl.Cloud.

3. That's it! Come right back to this tutorial, and skip ahead to Get Data Flowing.

The minimum requirements for running this tutorial are the same as for a Cribl Stream production single-
instance deployment.

Linux 64-bit kernel >= 3.10 and glibc >= 2.17

Examples: Ubuntu 16.04, Debian 9, RHEL 7, CentOS 7, SUSE Linux Enterprise Server 12+, Amazon Linux
2014.03+

Linux 64-bit

Tested so far on Ubuntu (14.04, 16.04, 18.04, and 20.04), CentOS 7.9, and Amazon Linux 2

+4 physical cores, +8GB RAM – all beyond your basic OS/VM requirements

which fully exercises distributed mode's multiple Workers and Worker Groups.

Quick Start with a Cloud Instance

Really, skip all the other sections of the linked Cloud Guide, and all this tutorial's sections between
here and Get Data Flowing. We told you this was a quick start!

Requirements for Self-Hosted Cribl Stream

OS (Intel Processors)

OS (ARM64 Processors)

System

Page 27 of 1835

5GB free disk space (more if persistent queuing is enabled)

Firefox 65+, Chrome 70+, Safari 12+, Microso� Edge

By default, Cribl Stream listens on the following ports:

COMPONENT DEFAULT PORT

UI default 9000

HTTP Inbound, default 10080

User options + Other data ports as required.

You can override these defaults as needed.

For higher processing volumes, users typically enable Cribl Stream's Distributed Deployment option. While
beyond the scope of this tutorial, that option has a few additional requirements, which we list here for
planning purposes:

Port 4200 must be available on the Leader Node for Workers' communications.

Git (1.8.3.1 or higher) must be installed on the Leader Node, to manage configuration changes.

See Sizing and Scaling for further details about configuring Cribl Stream to handle large data streams.

To avoid permissions errors, you should both install and run (next section) Cribl Stream as the same Linux
user. For details on creating a new user (addressing both systemd and initd distro's), see

We assume that 1 physical core is equivalent to 2 virtual/ hyperthreaded CPUs (vCPUs) on Intel/Xeon
or AMD processors; and to 1 (higher-throughput) vCPU on Graviton2/ARM64 processors.

Browser Support

Network Ports

Plan for Production

Download and Install Cribl Stream

Page 28 of 1835

Enabling Start on Boot.

Download the latest version of Cribl Stream at https://cribl.io/download/.

Un-tar the resulting .tgz file in a directory of your choice (e.g., /opt/). Here's general syntax, then a
specific example:

You'll now have Cribl Stream installed in a cribl subdirectory, by default: /opt/cribl/ . We'll refer to this
cribl subdirectory throughout this documentation as $CRIBL_HOME .

In your terminal, switch to the $CRIBL_HOME/bin directory (e.g,: /opt/cribl/bin). Here, you can start,
stop, and verify the Cribl Stream server using these basic ./cribl CLI commands:

Start: ./cribl start

Stop: ./cribl stop

Get status: ./cribl status

Next, in your browser, open http://<hostname>:9000 (e.g., http://localhost:9000) and log in with
default credentials (admin , admin).

Register your copy of Cribl Stream when prompted.

A�er registering, you'll be prompted to change the default password.

That's it!

With Cribl Stream now running – either in Cribl.Cloud or in your self-hosted copy – you're ready to configure a
working Cribl Stream deployment. You'll set up a Source, Destination, Pipeline, and Route, and will assemble
several built-in Functions to refine sample log data.

tar xvzf cribl-<version>-<build>-<arch>.tgz
tar xvzf cribl-3.5.0-fa5eb040-linux-x64.tgz

Run Cribl Stream

For other available commands, see CLI Reference.

Get Data Flowing

Page 29 of 1835

Each Cribl Stream Source represents a data input. Options include Splunk, Elastic Beats, Kinesis, Kafka,
syslog, HTTP, TCP JSON, and others.

For this tutorial, we'll enable a Cribl Stream built-in datagen (i.e., data generator) that generates a stream of
realistic sample log data.

Adding a datagen Source

1. From Cribl Stream's top menu, select Data > Sources.

2. From the Data Sources page's tiles or le� menu, select Datagen.

(You can use the search box to jump to the Datagen tile.)

3. Click + Add New to open the New Datagen source pane.

4. In the Input ID field, name this Source businessevent .

5. In the Data Generator File drop-down, select businessevent.log .

This generates...log events for a business scenario. We'll look at their structure shortly, in Capture and
Filter Sample Data.

6. Click Save.

Add a Source

If you're on Cribl.Cloud or any other distributed mode, first click the le� nav's Configure or Groups
link to select the default (or another) Worker Group.

If you're on Cribl.Cloud or any other distributed mode, click Commit & Deploy at Cribl Stream's
upper right before proceeding. Then, in the resulting dialog box, click Commit & Deploy to confirm.

Page 30 of 1835

The Yes slider in the Enabled column indicates that your Datagen Source has started generating sample data.

Configuring a datagen Source

Each Cribl Stream Destination represents a data output. Options include Splunk, Kafka, Kinesis, InfluxDB,
Snowflake, Databricks, TCP JSON, and others.

For this tutorial, we'll use Cribl Stream's built-in DevNull Destination. This simply discards events – not very
exciting! But it simulates a real output, so it provides a configuration-free quick start for testing Cribl Stream
setups. It's ideal for our purposes.

To verify that DevNull is enabled, let's walk through setting up a Destination, then setting it up as
Cribl Stream's default output:

1. From Cribl Stream's top menu, select Data > Destinations.

You'll see a Commit successful message.

Add a Destination

On Cribl.Cloud or any other distributed mode, first click the le� nav's Configure or Groups link to
select the default (or another) Worker Group.

Page 31 of 1835

2. From the Data Destinations page's tiles or le� menu, select DevNull.

(You can use the search box to jump to the DevNull tile.)

3. On the resulting devnull row, look for the Live indicator under Status. This confirms that the DevNull
Destination is ready to accept events.

4. From the Data Destinations page's le� nav, select the Default Destination at the top.

5. On the resulting Manage Default Destination page, verify that the Default Output ID drop-down points
to the devnull Destination we just examined.

We've now set up data flow on both sides. Is data flowing? Let's check.

On a single-instance deployment, click the top nav's Monitoring link. (On very narrow displays, you might
need to select it from the ••• overflow menu.) On Cribl.Cloud or any other distributed mode, click the le�
nav's Monitoring link.

This opens a summary dashboard, where you should see a steady flow of data in and out of Cribl Stream. The
le� graph shows events in/out. The right graph shows bytes in/out.

If you're on Cribl.Cloud or any other distributed mode, click Commit & Deploy at Cribl Stream's
upper right (if available) before proceeding. Then, in the resulting dialog box, click Commit & Deploy
to confirm. You'll see a Commit successful message.

Monitor Data Throughput

Page 32 of 1835

Monitoring dashboard

Monitoring displays data from the preceding 24 hours. You can use the Monitoring submenu to open
detailed displays of Cribl Stream components, collection jobs and tasks, and Cribl Stream's own internal
logs. Click Sources on the lower submenu to switch to this view:

Monitoring Sources

This is a compact display of each Source's inbound events and bytes as a sparkline. You can click each
Source's Expand button (highlighted at right) to zoom up detailed graphs.

Click Destinations on the lower submenu. This displays a similar sparklines view, where you can confirm
data flow out to the devnull Destination:

Page 33 of 1835

Monitoring Destinations

With confidence that we've got data flowing, let's send it through a Cribl Stream Pipeline, where we can add
Functions to refine the raw data.

A Pipeline is a stack of Cribl Stream Functions that process data. Pipelines are central to refining your data,
and also provide a central Cribl Stream workspace – so let's get one going.

1. From the top menu, select Processing > Pipelines.

You now have a two-pane view, with business on the le� and party on the right a Pipelines list on the
le� and Sample Data controls on the right. (We'll capture some sample data momentarily.)

2. At the Pipelines pane's upper right, click + Pipeline, then select Create Pipeline.

3. In the new Pipeline's ID field, enter a unique identifier. (For this tutorial, you might use slicendice .)

4. Optionally, enter a Description of this Pipeline's purpose.

5. Click Save.

Now scroll through the right Preview pane. Depending on your data sample, you should now see multiple
events struck out and faded – indicating that Cribl Stream will drop them before forwarding the data.

Your empty Pipeline now prompts you to preview data, add Functions, and attach a Route. So let's capture
some data to preview.

Create a Pipeline

On Cribl.Cloud or any other distributed mode, first click the le� nav's Configure or Groups link to
select the default (or another) Worker Group.

If you're on Cribl.Cloud or any other distributed mode, click Commit & Deploy at Cribl Stream's
upper right before proceeding. Then, in the resulting dialog box, click Commit & Deploy to confirm.
You'll see a Commit successful message.

Page 34 of 1835

Pipeline prompt to add Functions

The right Sample Data pane provides multiple tools for grabbing data from multiple places (inbound
streams, copy/paste, and uploaded files); for previewing and testing data transformations as you build them;
and for saving and reloading sample files.

Since we've already got live (simulated) data flowing in from the datagen Source we built, let's grab some of
that data.

1. In the right pane, click Capture New.

2. Click Capture, then accept the drop-down's defaults – click Start.

3. When the modal finishes populating with events, click Save as Sample File.

4. In the SAMPLE FILE SETTINGS fly-out, change the generated File Name to a name you'll recognize, like
be_raw.log .

5. Click Save. This saves to the File Name you entered above, and closes the modal. You're now
previewing the captured events in the right pane. (Note that this pane's Preview Simple tab now has
focus.)

6. Click the Show more link to expand one or more events.

Capture and Filter Sample Data

Capture New Data

Page 35 of 1835

By skimming the key-value pairs within the data's _raw fields, you'll notice the scenario underlying this
preview data (provided by the businessevents.log datagen): these are business logs from a mobile-phone
provider.

To set up our next step, find at least one marketState K=V pair. Having captured and examined this raw
data, let's use this K=V pair to crack open Cribl Stream's most basic data-transformation tool, Filtering.

1. Click the right pane's Sample Data tab.

2. Again click Capture New.

3. In the Capture Sample Data modal, replace the Filter Expression field's default true value with this
simple regex: _raw.match(/marketState=TX/)

We're going to Texas! If you type this in, rather than pasting it, notice how Cribl Stream provides
typeahead assist to complete a well-formed JavaScript expression.

You can also click the Expand button at the Filter Expression field's right edge to open a modal to
validate your expression. The adjacent drop-down enables you to restore previously used expressions.

Expand button and history drop-down

4. Click Capture, then Start.

Using the Capture drop-down's default limits of 10 seconds and 10 events, you'll notice that with this
filter applied, it takes much longer for Cribl Stream to capture 10 matching events.

5. Click Cancel to discard this filtered data and close the modal.

6. On the right pane's Sample Data tab, click Simple beside be_raw.log .

This restores our preview of our original, unfiltered capture. We're ready to transform this sample data in
more interesting ways, by building out our Pipeline's Functions.

Filter Data and Manage Sample Files

Refine Data with Functions

Page 36 of 1835

Functions are pieces of JavaScript code that Cribl Stream invokes on each event that passes through them.
By default, this means all events – each Function has a Filter field whose value defaults to true . As we just
saw with data capture, you can replace this value with an expression that scopes the Function down to
particular matching events.

In this Pipeline, we'll use some of Cribl Stream's core Functions to:

Redact (mask) sensitive data

Extract (parse) the _raw field's key-value pairs as separate fields.

Add a new field.

Delete the original _raw field, now that we've extracted its contents.

Rename a field for better legibility.

In the right Preview pane, notice each that event includes a social key, whose value is a (fictitious) raw Social
Security number. Before this data goes any further through our Pipeline, let's use Cribl Stream's Mask
Function to swap in an md5 hash of each SSN.

1. In the le� Pipelines pane, click + Function.

2. Search for Mask , then click it.

3. In the new Function's Masking Rules, click the into Match Regex field.

Now we want to build the Match Regex/Replace Expression row shown just below.

4. Enter or paste this regex, which simply looks for the string social= , followed by any digits: (social=)
(\d+)

5. In Replace Expression, paste the following hash function. The backticks are literal:
`${g1}${C.Mask.md5(g2)}`

6. Note that Apply to Fields defaults to _raw . This is what we want to target, so we'll accept this default.

7. Click Save.

Mask: Redact Sensitive Data

Page 37 of 1835

Entering a Masking Rule to hash Social Security numbers

You'll immediately notice some obvious changes:

The Preview pane has switched from its IN to its OUT tab, to show you the outbound e�ect of the
Pipeline you just saved.

Each event's _raw field has changed color, to indicate that it's undergone some redactions.

Now locate at least one event's Show more link, and click to expand it. You can verify that the social
values have now been hashed.

Mask Function and hashed result

Having redacted sensitive data, we'll next use a Parser function to li� up all the _raw field's key-value pairs
as fields:

1. In the le� Pipelines pane, click + Function.

2. Search for Parser , then click it.

3. Leave the Operation Mode set to its Extract default.

4. Set the Type to Key=Value Pairs .

5. Leave the Source Field set to its _raw default.

6. Click Save.

Parser: Extract Events

Page 38 of 1835

Parser configured to extract K=V pairs from _raw

You should see the Preview pane instantly light up with a lot more fields, parsed from _raw . You now have
rich structured data, but not all of this data is particularly interesting: Note how many fields have NA
("Not Applicable") values. We can enhance the Parser Function to ignore fields with NA values.

1. In the Function's Fields Filter Expression field (near the bottom), enter this negation expression:
value!='NA' .

Note the single-quoted value. If you type (rather than paste) this expression, watch how typeahead
matches the first quote you type.

2. Click Save, and watch the Preview pane.

Filtering the Parser Function to ignore fields with 'NA' values

Several fields should disappear – such as credits , EventConversationID , and ReplyTo . The remaining
fields should display meaningful values. Congratulations! Your log data is already starting to look better-
organized and less bloated.

Missed It?

If you didn't see the fields change, slide the Parser Function O�, click Save below, and watch the
Preview pane change. Using these toggles, you can preserve structure as you test and troubleshoot

Page 39 of 1835

Toggling a Function o� and on

Next, let's add an extra field, and conditionally infer its value from existing values. We'll also remove the
_raw field, now that it's redundant. To add and remove fields, the Eval Function is our pal.

Let's assume we want to enrich our data by identifying the manufacturer of a certain popular phone handset.
We can infer this from the existing phoneType field that we've li�ed up for each event.

1. In the le� Pipelines pane, click + Function.

2. Search for Eval , then click it.

3. Click + Add Fields to open the Evaluate Fields table.

Here you add new fields to events, defining each field as a key-value pair. If we needed more key-value
pairs, we could click + Add Field for more rows.

4. In the table's first row, click into the Name field and enter: phoneCompany .

5. In the adjacent Value Expression field, enter this JS ternary expression that tests phoneType 's value:
phoneType.startsWith('iPhone') ? 'Apple' : 'Other' (Note the ? and : operators, and the
single-quoted values.)

each Function's e�ect.

Note that each Function also has a Final toggle, defaulting to O�. Enabling Final anywhere in the
Functions stack will prevent data from flowing to any Functions lower in the UI.

Be sure to toggle the Function back On, and click Save again, before you proceed!

Eval: Add and Remove Fields

Add Field (Enrich)

Page 40 of 1835

6. Click Save. Examine some events in the Preview pane, and each should now contain a phoneCompany
field that matches its phoneType .

Adding a field to enrich data

Now that we've parsed out all of the _raw field's data – it can go. Deleting a (large) redundant field will give
us cleaner events, and reduced load on downstream resources.

1. Still in the Eval Function, click into Remove Fields.

2. Type: _raw and press Tab or Enter.

3. Click Save.

The Preview pane's di� view should now show each event's _raw field stripped out.

Removing a field to streamline data

Our log data has now been cleansed, structured, enriched, and slimmed-down. Let's next look at how to
make it more legible, by giving fields simpler names.

Remove Field (Shrink Data)

Rename: Refine Field Names

Page 41 of 1835

1. In the le� Pipelines pane, click + Function .

This rhythm should now be familiar to you.

2. Search for Rename , then click it.

3. Click + Add fields to open the Rename fields table.

4. Click into the new Function's Rename fields table.

This has the same structure you saw above in Eval: Each row defines a key-value pair.

5. In Current name, enter the longhaired existing field name: conversationId .

6. In New name, enter the simplified field name: ID .

7. Watch any event's conversationId field in the Preview pane as you click Save at le�. This field should
change to ID in all events.

We've already refined our data substantially. To further slim it down, a Pipeline can entirely remove events
that aren't of interest for a particular downstream service.

Here, let's drop all events for customers who use prepaid monthly phone service (i.e., not postpaid):

1. In the le� Pipelines pane, click + Function.

2. Search for Drop , then click it.

3. Click into the new Function's Filter field.

4. Replace the default true value with this JS negation expression: accountType!='PostPaid'

5. Click Save.

Now scroll through the right Preview pane. Depending on your data sample, you should now see multiple
events struck out and faded – indicating that Cribl Stream will drop them before forwarding the data.

Drop: Remove Unneeded Events

As the "Pipeline" name implies, your Cribl Stream installation can have multiple Pipelines, each
configured to send out a data stream tailored to a particular Destination. This helps you get the right
data in the right places most e�iciently.

Page 42 of 1835

Torture the data enough, and it will confess. By what factor have our transformations refined our data's
volume? Let's check.

In the right Preview pane, click the Basic Statistics button:

Displaying Basic Statistics

Even without the removal of the _raw field (back in Eval) and the dropped events, you should see a
substantial % reduction in the Full Event Length.

Data reduction quantified

Woo hoo! Before we wrap up our configuration: If you're curious about individual Functions' independent
contribution to the data reduction shown here, you can test it now. Use the toggle O� > Save >
Basic Statistics sequence to check various changes.

We've now built a complete, functional Pipeline. But so far, we've tested its e�ects only on the static data
sample we captured earlier. To get dynamic data flowing through a Pipeline, we need to filter that data in, by
defining a Cribl Stream Route.

1. At the Pipelines page's top le�, click Attach to Route.

A Second Look at Our Data

Add and Attach a Route

Page 43 of 1835

This displays the Routes page. It's structured very similarly to the Pipelines page, so the rhythm here
should feel familiar.

2. Click + Route .

3. Enter a unique, meaningful Route Name, like demo .

4. Leave the Filter field set to its true default, allowing it to deliver all events.

Because a Route delivers events to a Pipeline, it o�ers a first stage of filtering. In production, you'd
typically configure each Route to filter events by appropriate source , sourcetype , index , host ,
_time , or other characteristics. The Filter field accepts JavaScript expressions, including AND (&&) and
OR (||) operators.

5. Set the Pipeline drop-down to our configured slicendice Pipeline.

6. Leave the Enable Expression field set to its No default. Toggling this field to Yes changes the Output
field to an Output Expression field where you can enter a JavaScript expression for your Destination
name.

7. Set the Output drop-down to either devnull or default .

This doesn't matter, because we've set default as a pointer to devnull . In production, you'd set this
carefully.

8. You can leave the Description empty, and leave Final set to Yes.

9. Grab the new Route by its le� handle, and drag it above the default Route, so that our new Route will
process events first. You should see something like the screenshot below.

10. Click Save to save the new Route to the Routing table.

If you're on Cribl.Cloud or any other distributed mode, click Commit & Deploy at Cribl Stream's
upper right before proceeding. Then, in the resulting dialog box, click Commit & Deploy to confirm.
You'll see a Commit successful message.

Page 44 of 1835

Configuring and adding a Route

The sparklines should immediately confirm that data is flowing through your new Route:

Live Routes

To confirm data flow through the whole system we've built, select Monitoring > Data > Routes and examine
demo .

Monitoring data flow through Routes

Also select Monitoring > Data > Pipelines and examine slicendice .

Page 45 of 1835

Monitoring data flow through Pipelines

Look at you! Give yourself a pat on the back! In this short, scenic tour – with no hit to your cloud-services
charges – you've built a simple but complete Cribl Stream system, exercising all of its basic components:

Downloaded, installed, and run Cribl Stream.

Configured a Source to hook up an input.

Configured a Destination to feed an output.

Monitored data throughput, and checked it twice.

Built a Pipeline.

Configured Cribl Stream Functions to redact, parse, enrich, trim, rename, and drop event data.

Added and attached a Route to get data flowing through our Pipeline.

Interested in guided walk-throughs of more-advanced Cribl Stream features? We suggest that you next check
out these further resources.

Cribl Stream Sandboxes: Work through general and specific scenarios in a free, hosted environment,
with terminal access and real data inputs and outputs.

Distributed Quick Start: Building on this tutorial that you've just completed, launch and configure a
Cribl Stream distributed deployment. You'll work with a small but realistic model of a fully scaleable
production deployment.

Use Cases documentation: Bring your own services to build solutions to specific challenges.

Cribl Concept: Pipelines – Video showing how to build and use Pipelines at multiple Cribl Stream stages.

Cribl Concept: Routing – Video about using Routes to send di�erent data through di�erent paths.

What Have We Done?

Next Steps

Page 46 of 1835

Oh yeah, you've still got the Cribl Stream server running, with its businessevent.log datagen still firing
events. If you'd like to shut these down for now, in reverse order:

1. Go to Data > Sources > Datagen.

2. Slide businessevent to O�, and click Save. (Refer back to the screenshot above.)

3. In your terminal's $CRIBL_HOME/bin directory, shut down the server with: ./cribl stop

That's it! Enjoy using Cribl Stream.

;

Cleaning Up

Page 47 of 1835

This tutorial builds on our Getting Started Guide by walking you through a distributed deployment –
Cribl Stream's typical deployment type for production.

To exercise these distributed features, you'll need the following prerequisites.

This tutorial is tiered to accommodate di�erent Cribl Stream license types:

With a Cribl Stream Free, One, or Standard license, you'll install three Cribl Stream instances on one or
multiple physical or virtual machines – one Leader Node, and two Worker Nodes.

To do the optional section on adding and managing multiple Worker Groups, you'll need an Enterprise
or Sales Trial license.

Basic building blocks are identical to the Getting Started Guide. Please refer to the following sections of that
tutorial for details, as needed:

(System) Requirements

Download and Install Cribl Stream

Run Cribl Stream

To set up the multiple instances you'll need, choose among the options below in Three Instances, Pick Any
Medium. But first, let's lay out the division of labor in a single Worker Group.

1.5. Distributed Quick Start

For concepts and deeper details underlying the techniques presented here, see
Distributed Deployment.

Requirements

Licenses and Instances

Basic Setup

Distributed Deployment (Identical Workers)

Page 48 of 1835

A distributed deployment enables Cribl Stream to scale out to handle higher data volumes, load-balancing
with failover, and parallel data processing based on conditional mapping and routing.

A single Leader Node manages multiple Worker Nodes. The Leader distributes and updates configuration on
the Workers, handles version control, and monitors the Workers' health and activity metrics. The Workers do
all the data processing.

Here, we'll show how this works by configuring a Leader and two Workers. This configuration is compact, and
can be demonstrated without an Enterprise (or other paid) license. But you can extrapolate the same
technique to setting up enterprise-scale deployments of hundreds of Workers, to handle petabytes of data.

You'll need to deploy three Cribl Stream instances – with SSH access – on one or more physical machines,
virtual machines, or containers. If you haven't already provisioned this infrastructure, you have several
alternatives, listed in the following subsections:

Docker Containers

Curl

Amazon Lightsail

AWS/EC2 (CloudFormation Optional)

Kubernetes/Helm

Pick whichever approach will make it easiest for you to get the infrastructure launched – based on familiarity,
preference, or availability.

Cribl Stream Free, One, and Standard licenses support only a single Worker Group (named default),
so in this example, all Workers share identical configuration. With an Enterprise license, you can
organize Workers into multiple Groups, with varying configurations to handle scenarios like on-
premises versus cloud tech stacks, or data centers in di�erent geographic locations. For details, see
Worker Groups – What Are They and Why You Should Care.

Three Instances, Pick Any Medium

We Don't Need No Stinkin' Permissions Errors!

Cribl's Docker containers come with Cribl Stream preinstalled. If you select any other option, be sure
to both install and run Cribl Stream as the same Linux user. (For details on creating a new user –
addressing both systemd and initd distro's – see Enabling Start on Boot.)

Docker Containers

Page 49 of 1835

You can use this docker-compose.yml to easily stand up a Cribl Stream distributed deployment of a Leader
and multiple Workers on one machine:

This uses a local directory, ~/cribl-config , as the configuration store for Cribl Stream. You must create
this directory (it can be empty) before you run the docker‐compose command.

If you prefer to use ephemeral storage, you can delete line 8 (the CRIBL_VOLUME_DIR definition) and lines
11–12 (the volumes configuration) before running the docker‐compose command. But this will make it
hard to stop and restart the same infrastructure, if you want to do the tutorial in chunks.

To deploy a Leader Node, plus (e.g.) two Workers already configured and wired up to the Leader, use this
command:

To deploy a di�erent number of Workers, just change the workers=2 value. By default, the above command
pulls the freshest stable image (tagged cribl/cribl:latest) from Cribl's Docker Hub. It defaults to the
following URLs and ports:

Leader URL: http://localhost:19000

Worker URLs: http://localhost:<automatically-assigned-host-ports>

If you're running the container itself on a virtual machine, replace localhost with the VM's IP address.
The automatic assignment of available host-OS ports to the Workers prevents port collisions. Within the

version: '3.5'
services:
 master:
 image: ${CRIBL_IMAGE:-cribl/cribl:latest}
 environment:
 - CRIBL_DIST_MODE=master
 - CRIBL_DIST_MASTER_URL=tcp://criblmaster@0.0.0.0:4200
 - CRIBL_VOLUME_DIR=/opt/cribl/config-volume
 ports:
 - "19000:9000"
 volumes:
 - "~/cribl-config:/opt/cribl/config-volume"
 workers:
 image: ${CRIBL_IMAGE:-cribl/cribl:latest}
 depends_on:
 - master
 environment:
 - CRIBL_DIST_MODE=worker
 - CRIBL_DIST_MASTER_URL=tcp://criblmaster@master:4200
 ports:
 - 9000

docker-compose up -d --scale workers=2

Page 50 of 1835

Docker container, these ports will forward over TCP to port 9000. To see the ports assigned on the OS, enter:

docker ps

You should see results like these:

The PORTS column shows the host-OS ports on the le�, forwarding to the container-internal ports on the
right. You can use the docker_workers_N ports if you want to log directly into Workers. In the above
example:

Worker1 URL: http://localhost:63411

Worker2 URL: http://localhost:63410

If your Leader is crashing with two Workers, make sure you are allocating enough memory to Docker.

Use our Download page's curl command to directly install Cribl Stream onto your chosen infrastructure.

For x64 processors, use: curl -Lso - $(curl https://cdn.cribl.io/dl/latest-x64) | tar zxvf -

For ARM64 processors: curl -Lso - $(curl https://cdn.cribl.io/dl/latest-arm64) | tar zxvf -

Once you've configured the first Cribl Stream instance as a Leader, you can bootstrap Workers from the
Leader. Or you can create Workers (with tags) from the Leader, using a curl command of this form:

curl 'http://<leader-ip-or-hostname>:9000/init/install-worker.sh?token=criblmaster&tag=

<tag1>&tag=<tag2>'

E.g.: curl 'http://localhost:9000/init/install-worker.sh?
token=criblmaster&tag=dev&tag=test''

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
a3de9ea8f46f cribl/cribl:latest "/sbin/entrypoint.sh…" 12 seconds ago Up 10
seconds 0.0.0.0:63411->9000/tcp docker_workers_1
40aa687baefc cribl/cribl:latest "/sbin/entrypoint.sh…" 12 seconds ago Up 10
seconds 0.0.0.0:63410->9000/tcp docker_workers_2
df362a65f7d1 cribl/cribl:latest "/sbin/entrypoint.sh…" 13 seconds ago Up 11
seconds 0.0.0.0:19000->9000/tcp, :::19000->9000/tcp docker_master_1

Once your three instances are running, proceed to Configure Leader Instance.

Curl

Page 51 of 1835

Amazon Lightsail provides a quick, simple way to deploy Cribl Stream to AWS instances. Amazon's
Get Started with Linux/Unix-based Instances in Amazon Lightsail tutorial walks you through setting up your
instances and connecting via SSH.

The free (first month) tier is all you need for this tutorial.

As the "platform," Cribl recommends selecting Amazon Linux 2 (default CentOS).

Lightsail doesn't support IAM roles assigned to instances, or advanced load balancing, but it's adequate
for this tutorial, which is not a production deployment.

You can deploy Cribl Stream's AWS EC2 instances using Cribl's CloudFormation template, see our AWS/EC2
Quick Start Guide on GitHub. Follow the Cribl Stream Distributed instructions. (You'll be responsible for the
costs of your AWS infrastructure.)

If you prefer to deploy your own EC2 instances, the free tier is fine for this tutorial. Cribl recommends
selecting Amazon Linux 2 (default CentOS) AMIs. Relevant instructions are linked below.

1. See any of these for EC2 deployment:

Tutorial: Getting started with Amazon EC2 Linux instances

Launching an instance using the Launch Instance Wizard

How can I create and connect to an Amazon Linux EC2 instance?

2. See these instructions for SSH access:

Connect to your Linux instance using an SSH client

Once your three instances are running, proceed to Configure Leader Instance.

Amazon Lightsail

Once your three instances are running, proceed to Configure Leader Instance.

AWS/EC2 (CloudFormation Optional)

Once your three instances are running, proceed to Configure Leader Instance.

Kubernetes/Helm

Page 52 of 1835

Use Cribl's Helm charts to deploy Kubernetes pods, then proceed to the next section:

Kubernetes Leader Deployment

Kubernetes Worker Deployment

Once you've set up your Leader and Worker instances via your chosen approach above, you're ready to
configure these instances and their communication.

Configure the first instance in Leader mode, and open port 4200.

1. Log into the Leader. Depending on the deployment method you chose, this will be at
http://<localhost‐or‐IP‐address>:9000 or http://<localhost‐or‐IP‐address>:19000 . Use
the default admin / admin credentials.

2. Complete the registration form.

3. From the UI's global ⚙ Settings (lower le�) > Distributed Settings > Distributed Management >
General Settings, select Mode: Leader .

4. Click the Leader Settings le� tab, and make sure the Port is set to 4200 .
(This port must be open for Workers to communicate with the Leader.)

5. Optional but recommended: Enable the nearby Remote UI access slider. This way, you will be able to
click through from the Leader's Manage Workers page to view and manage each Worker's UI
(distinguished by an orange header). This option handles authentication for you, so you don't need to
manage or enter the Workers' credentials.

6. Click Save to restart.

Keep the Leader's tab open, so that we can verify connectivity with the Workers a�er configuring them
(next).

Configure Leader Instance

If you used an installation option like Docker Containers above, it has already preconfigured all three
instances for you. This section and the next Configure Workers section will show you how to verify,
and/or modify, these preset configurations.

If you want to jump ahead, your next required configuration step is Add a Source, further down.

Page 53 of 1835

Distributed > Leader Settings – the whole enchilada

Next, configure the two other instances as Workers that report to the Leader to receive processing
instructions. We'll configure one instance through the UI, and (optionally) bootstrap the other from the
Leader.

1. Log into the first Worker instance. Depending on the deployment method you chose, this will be at
http://<localhost-or-IP-address>:9000 or at: http://<localhost-or-IP-address>:
<automatically-assigned-host-port> . Use the default admin / admin credentials.

2. Complete the registration form, if displayed.

3. From the UI's global ⚙ Settings (lower le�) > Distributed Settings > Distributed Management >
General Settings, select Mode: Stream: Managed Worker (managed by Leader) .

4. Leave other settings on this tab unchanged, including Default Group: default .
(This is the literal name of the single Worker Group available with free licenses.)

5. On the Leader Settings tab, make sure the Address matches the domain of the Leader you
previously configured.

6. On the same Leader Settings tab, display the Auth token value.
(Optionally, you can change this from the default criblmaster .)

7. Leave other settings unchanged, and click Save to restart this instance as a managed Worker.

Configure Workers

Configure Worker via UI

Page 54 of 1835

You can (if you choose) configure the second Worker instance using exactly the same procedure you used just
above. But here, we'll o�er you a simplified version of Cribl Stream's Bootstrapping Workers from Leader
procedure for downloading the config from the Leader to the second Worker:

First, switch to the terminal/console of the instance you've reserved for this second Worker.

Next, if you didn't change the default Auth token value when you previously configured the Leader, run this
command as root user:

If you cannot run as root, insert sudo as you pipe to the shell:

To instead pipe to a bash shell:

If you substituted a custom Auth token value on the Leader, enter:

Or, for bash:

With both Workers configured, next make sure they're visible to the Leader.

Bootstrap Worker from Leader

curl http://<leader-hostname-or-IP>:9000/init/install-worker.sh | sh -

curl http://<leader-hostname-or-IP>:9000/init/install-worker.sh | sudo sh -

curl http://<leader-hostname-or-IP>:9000/init/install-worker.sh | [sudo] bash -

curl http://<leader-hostname-or-IP>:9000/init/install-worker.sh?token=<your-custom-
token> | [sudo] sh -

curl http://<leader-hostname-or-IP>:9000/init/install-worker.sh?token=<your-custom-
token> | [sudo] bash -

The bootstrap script will install Cribl Stream into /opt/cribl on the target instance.

Verify Workers' Communication with the Leader

Page 55 of 1835

1. Switch back to Cribl Stream's UI on the Leader instance you previously configured.

2. From Cribl Stream's le� nav, click Manage.

3. From the resulting fly-out or Manage Groups page, click the Workers tab.

4. On the resulting Manage Workers page, you should now see both Workers, mapped to the default
Group.

If one or both Workers are missing, repeat the preceding Configure Worker via UI and/or Bootstrap Worker
from Leader procedures until the Workers show up.

Otherwise, if both Workers are present, we can now configure a few more resources to get data flowing
through this distributed setup.

To minimize dependencies, this section walks you through enabling a Cribl Stream built-in Datagen Source to
get some (fake) events flowing into your Workers. (This is the same approach used in our single-instance
Getting Started Guide tutorial, but using a di�erent datagen.)

If you prefer to configure Cribl Stream to receive events from a real data input that you've already set up, see
our Sources topic for a link to the appropriate instructions.

1. In the Leader UI's le� nav, click Manage.

2. From the resulting fly-out or Manage Groups page, click the Group name.
(Working with a free license, we're implicitly configuring this Source on the default Group.)

3. From the top nav, select Data > Sources.

If you're interested in details about the communication among Cribl Stream instances, see How Do
Workers and Leader Work Together.

Once you've configured a Worker to point to the Leader Node, the Leader will assign the Worker a
new, random admin password. This secures each Worker from unintended access. If you need to
reconfigure the Worker later, you can either:

Enable the Leader's Remote UI access option, as recommended above; or

Reset the password on the Worker Group – see Set Worker Passwords.

Add a Source

Page 56 of 1835

4. From the Data Sources page's tiles or le� menu, select Datagen.
(You can use the search box to jump to the Datagen tile.)

5. Click + Add New to open the New Datagen source pane.

6. In the Input ID field, name this Source weblog (or any unique name).

7. In the Data Generator File drop-down, select weblog.log .
This generates...simulated log events for a website.

8. Keep the Events per Second per Worker Node at the default 10 EPS for now.

9. Click Save.

The On slider in the Enabled column indicates that your Datagen Source has started generating sample
data.

10. Click Commit at the upper right, enter a commit message, and confirm the commit.
This uses Cribl Stream's git integration to record the default Group's new configuration.

11. Click Deploy at the upper right to deploy this new configuration to your Workers.

Source (Datagen) configuration

On the output side, choose any of these options:

If you'd like to verify that the Datagen is sending events, wait about a minute for them to start
accumulating. Then, on the Manage Datagen Sources page, click the Live button beside your
configured Source. On the resulting Live Data tab, you should see events arrive within the default 10-
second capture.

Add a Destination

Page 57 of 1835

To configure a realistic output, but with no real dependencies and no license requirement, follow the
Simulated Splunk Destination instructions just below.

For a simpler option, jump to the Internal Destination instructions further down.

To send data to a real receiver that you've already set up, see our Destinations topic for a link to the
appropriate instructions.

Here, you'll go through the steps of configuring a typical Splunk Destination, but you'll use netcat to spoof
the receiver on port 9997.

1. In the Cribl Stream Leader's UI, configure a Splunk Single Instance Destination, following
these instructions. For this simulated output:

Set the Address to 127.0.0.1 (i.e., localhost).

Do not precede this IP address with any http:// or https://

Leave the Port at the default 9997 .

Set the Backpressure behavior to Drop Events .

A glorious spoofed Splunk Destination config

2. Click Commit at the upper right, enter a commit message, and confirm the commit.

3. Click Deploy at the upper right to deploy this new configuration to your Workers.

4. In the first Worker instance's terminal/console, shell in, then enter cd /opt/cribl/bin to access
Cribl Stream's CLI.

5. Enter nc -h to check whether netcat is installed on this Linux instance.

Simulated Splunk Destination

Page 58 of 1835

If the command fails, follow your Linux distro's steps for installing netcat. (E.g., for Ubuntu instructions,
see Docker Notes below.)

6. Enter ./cribl nc -l -p 9997 to have netcat listen on port 9997, but simply discard data.

The data you'll now see displayed in the terminal will be gibberish, because of Splunk's proprietary data
format.

If data isn't flowing, you might need to restart Workers. You can do this through Cribl Stream's UI. With
Docker containers, use docker-compose down , followed by docker-compose up .

As an alternative to the Splunk instructions above, you can configure Cribl Stream's built-in DevNull
Destination to capture events and discard them. (This is the same Destination used in our single-instance
Getting Started Guide tutorial.)

1. In the Leader UI's le� nav, click Manage.

2. From the resulting fly-out or Manage Groups page, click the Group name.
(Working with a free license, we're implicitly configuring this Source on the default Group.)

3. From the top nav, select Data > Destinations.

Docker Notes

If you're using a container like Docker, before shelling in at step 4 above, you'll need to first open a
shell inside that container: docker exec -it <CONTAINER ID> /bin/bash

In the above Docker Containers deployment example, you'd want to open the shell on the
docker_workers_1 container, whose <CONTAINER ID> was a3de9ea8f46f .

Cribl's Docker containers currently run Ubuntu 20.04. You can install netcat with this sequence of
commands:

apt update
apt install netcat

You can streamline future Commit and Deploy steps by entering a Default Commit Message, and by
collapsing actions to a combined Commit and Deploy button. Both options are available at global
⚙ Settings (lower le�) > System > Git Settings > General.

Internal Destination

Page 59 of 1835

4. Select DevNull from the Data Destinations page's tiles or le� menu.
(You can use the search box to jump to the DevNull tile.)

5. On the resulting devnull row, look for the Live indicator under Enabled. This confirms that the DevNull
Destination is ready to accept events.

6. From the Data Destinations page's le� nav, select the Default Destination at the top.

7. On the resulting Manage Default Destination page, verify that the Default Output ID drop-down points
to the devnull Destination we just examined.

8. Click Commit at the upper right, enter a commit message, and confirm the commit.

9. Click Deploy at the upper right to deploy this new configuration to your Workers.

To complete this distributed deployment with realistic infrastructure, let's set up a Pipeline and Route.

If you've already done the Getting Started Guide, you've already created a slicendice Pipeline. In the
following steps, skip ahead to adding an Eval Function.

1. From the Leader's top menu, select Processing > Pipelines.

2. At the Pipelines pane's upper right, click + Pipeline, then select Create Pipeline.

3. In the new Pipeline's ID field, enter a unique identifier (e.g., slicendice).

4. Optionally, enter a Description of this Pipeline's purpose.

5. Click Save.

Add a Pipeline

Page 60 of 1835

Pipeline saved

Now add an Eval Function to the Pipeline:

1. At the Pipelines pane's upper right, click + Function.

2. Search for the Eval Function, and click its link to add it.

3. In the new Function's Evaluate Fields section, click + Add Field.

4. In the new row's Name column, name the field origin .

5. In the new row's Value Expression column, enter: host+" "+source

This new origin field will concatenate the host and source fields from incoming events.

Adding Eval Function to Pipeline

6. Click Save to store the Function's configuration.

7. Commit and Deploy the new Pipeline configuration.

8. Optionally, click Capture New in the right pane, and capture some data to verify throughput.

Add an Eval Function

Add a Route

Page 61 of 1835

If you've already done the Getting Started Guide, you've already created a demo Route, attached to the
slicendice Pipeline. In the following steps, just modify the Route to send data to the new Destination you
configured above.

1. At the Pipelines page's top le�, click Attach to Route.
This displays the Routes page.

2. Click + Route .

3. Enter a unique Route Name, like demo .

4. Leave the Filter field set to its true default, allowing it to deliver all events.

5. Set the Pipeline drop-down to our configured slicendice Pipeline.

6. Set the Output drop-down to the Destination you configured above. If you boldly chose the
Simulated Splunk Destination, this will be named something like splunk:splunk9997 .

7. You can leave the Description empty, and leave Final set to Yes.

8. Grab the new Route by its le� handle, and drag it to the top of the Routing table, so that our new Route
will process events first. You should see something like the screenshot below.

9. Click Save to save the new Route configuration.

10. Commit and Deploy your changes.

11. Still assuming you configured a simulated Splunk output, look at the terminal where you're running
netcat. You should now see events arriving.

Page 62 of 1835

Route attached to Pipeline and Destination

With all our infrastructure in place, let's look at how a Cribl Stream distributed deployment scales up to
balance the incoming event load among multiple Workers.

1. In the Leader UI's le� nav, click Manage.

2. From the resulting fly-out or Manage Groups page, click the Group name.
(Working with a free license, we're implicitly configuring this Source on the default Group.)

3. From the top nav, select Data > Sources, and find the Datagen Source you configured earlier.

4. Click this Datagen's row to reopen its config modal.

Managing Workers (Scaling)

Page 63 of 1835

5. Reset the Events per Second per Worker Node from the default 10 EPS to a high number, like
200 EPS.

Flooding events into Cribl Stream

5. Click Save, then Commit and Deploy this higher event load.

6. From the le� nav, also select Changes > Commit to commit the Leader's newest config version. In the
resulting modal, click Commit again to confirm.

This uses Cribl Stream's git integration to save a global configuration point for your whole
deployment, which you can roll back to.

Committing Leader's config

7. From the le� nav, click Monitoring.

Page 64 of 1835

Monitoring tab

8. On the resulting Monitoring page, watch as the following changes unspool over the next few minutes:

The CPU Load Average (1 min) will spike as the higher event volume floods the system.

The Workers indicator at upper le� will drop to 0 as the Workers restart with the new configuration
you've deployed to them, and then rebound to 2 .

If you use the All Workers drop-down at upper right to toggle between your two individual Workers, you
should see that Cribl Stream is balancing roughly equal event loads among them.

9. To confirm both Workers' alive status: Click Manage, then click the Workers tab.

Workers tab

Page 65 of 1835

10. To wrap up, repeat this procedure's first six steps to set the Datagen's rate back down to 10 EPS, and
then save, commit, and deploy all changes.

This completes your setup of a basic distributed deployment, using a free license, and configuring a single
Worker Group of two identically configured Worker Processes. (You can extrapolate these same techniques
you've just mastered to spin up virtually any number of Workers in the same way.)

To see how you can set up multiple Worker Groups – with separate configurations optimized for separate
data flows – continue to the next section, noting its licensing prerequisites.

If you're deferring or skipping that option, jump ahead to Cleaning Up.

To add and manage more than one Worker Group – everything in this optional section – you'll need a
Cribl Stream Enterprise or Sales Trial license.

Here, we'll build on the infrastructure we've created so far to:

Configure Mapping Rules.

Verify how Cribl Stream balances large data volumes among Worker Processes.

Add a second Worker Group, data Source, and Destination.

Add a second Pipeline and attach it to its own Route.

Reconfigure Mapping Rules to send each Source's data through a separate Group.

To keep this Quick Start tutorial focused on techniques, rather than on configuring lots of infrastructure, we'll
assign just one Worker to each Worker Group – one of the two Workers we launched above. But in
production, you'll be able to apply the same principles to setting up any number of Worker Groups, with any
number of Workers.

What Have We Done?

Add and Manage Multiple Worker Groups (Optional)

See Licensing for how to acquire and install one of the above license types. Install the license on your
Leader instance, and then commit this as a Leader config change (le� nav), before you proceed.

Multiple-Group Setup

Page 66 of 1835

With an Enterprise or Sales Trial license, Cribl Stream's UI adds some extra features, shown here.

UI for multiple Worker Groups

Note that:

The top header now shows you the number of configured Groups (1), along with other statistics.

The le� nav's Groups option is renamed Manage.

Clicking that option opens a submenu of Worker Groups. It currently o�ers Cribl Stream's single default
Group, literally named default .

If you've enabled Worker UI access, you can use the second-level submenu to click directly through to
each of your Workers. (A purple header indicates that you're viewing a Worker's UI. – we might use this
feature just below. To return to the Leader's UI, just click the le� nav's Manage option.)

For the remaining steps, we want to make sure both our Workers (configured earlier) are up. Cribl Stream's
top header should indicate 2 WORKERS . You can verify that they're alive by clicking the le� nav's Workers
tab, as shown earlier. If so, proceed to Map Groups by Config.

If either or both Workers are down, restart them:

1. Make sure you've enabled Worker UI access. (It's time!)

2. To click through to a dormant Worker's UI, use either of the le�-nav options covered just above: either
the Workers page, or the Groups > default submenu of individual Worker IDs.

3. When you see that Worker's UI (purple header), click Restart at the upper right.

4. Confirm your choice, and wait for a Server has been restarted message to appear for a few seconds.

Check/Restart Workers

Page 67 of 1835

5. Click the le� nav's Groups option to return to the Leader's UI.

6. If the other Worker is down, repeat the above steps to restart it as well.

With both Workers confirmed up, let's look at how Cribl Stream has automatically mapped all these existing
workers to the default Group.

1. From the Leader's le� nav, click Manage. On the Manage Groups page, click the Mappings tab.

2. You now see a default Mapping Ruleset, also literally named default . Click it.

3. This default Ruleset contains one initial Rule, literally named Default Mappings . Expand its
accordion as shown below.

(The default Ruleset and Rule naming are separate from the default Group's naming. All of these
out-of-the-box starting configurations have been named...literally.)

Default Mapping Rule

Below the Rule Name, a Mapping Rule has two functional fields:

Filter: !cribl.group – this value expression specifies "Not already assigned to a Worker Group."

Group: default – this value specifies "Assign to the default Group."

Map Groups by Config

A Cribl Stream Leader can have multiple Mapping Rulesets configured, but only one can be
active at a time.

Page 68 of 1835

So this is a catch-all rule. By following it, the Leader has assigned all (both) registered Workers to the
default Group.

Let's make a more-specific rule, mapping a specific Worker (by hostname) to this Group, which receives
events from our weblog Datagen Source.

1. Click + Rule at the upper right. Then configure the new Rule as shown below:

Rule Name: weblog – for simplicity.

Filter: platform=="<this‐worker's‐platform>" – get this value from the right Preview pane.
Look for the platform field's value. In the example shown below, we got "darwin" .

Group: default – this is the only option available.

A specific Mapping Rule by Filter condition

2. Click Save to add this Rule.

3. Confirm the warning that changes will take e�ect immediately.

4. From the le� nav, select Changes > Commit to commit the Leader's new config.

Next, we'll add a second Worker Group; add a second Source (relaying Cribl Stream's internal metrics); and
then add another Mapping Rule, to map our second Worker to the new Group.

Add Mapping Rules

For more Mapping Rules/Rulesets details and examples, see Distributed Deployment.

Page 69 of 1835

1. From the Leader's le� nav, click Manage.

2. On the resulting Manage Groups page, click + Add New.

3. Name the new Group CriblMetrics to match its purpose.

4. Set the slider for UI access? to Yes .

Creating a new Group

4. Save the Group.

5. Click Deploy on the new Group's row, and confirm your choice. The new Group should deploy
immediately.

Second Groups saved, ready to Deploy

6. From the le� nav, select Changes > Commit to commit the new config on the Leader.

On the new Group, we'll now enable a Cribl Internal: Metrics Source, representing a second data type.

Add Another Worker Group

Add Another Source

Page 70 of 1835

1. From the Leader's le� nav, click Manage > CriblMetrics .

2. From the resulting top menu, click Data > Sources,.

3. From the Data Sources page's tiles or le� menu, select Cribl Internal.

4. On the Manage Cribl Internal Sources page, slide the CriblMetrics slider to On.

5. Confirm that you want to enable CriblMetrics.

CriblMetrics Source enabled

6. From the le� nav, select Changes > Commit to commit the new config on the Leader and Group.

7. Click Deploy at the upper right to deploy this new configuration to your Workers.

Now let's map this new group to the CriblMetrics Source's incoming events:

1. From the Leader's le� nav, click Manage.

2. From the Manage Groups page, click the Mappings tab.

3. Click the default Mapping Ruleset to open it.

4. Click + Rule at the upper right. Then configure the new Rule as shown below:

Rule Name: CriblMetrics – for simplicity.

Filter: hostname=="<this‐worker's‐hostname>" – get this value from the right Preview pane. In the
second Worker down, look for the hostname field's value. In the example shown below, we got
"2ca68fec7de0" .

Group: CriblMetrics – this is the Group we want to map.

5. Move the Default Mappings rule to the bottom of the Ruleset, reflecting its catch-all function.

Map Workers to Groups

Page 71 of 1835

6. Click Save to store the new configuration.

7. Confirm the warning that changes will take e�ect immediately.

Adding a Rule to map the CriblMetrics Worker to its own Group

8. From the le� nav, select Changes > Commit to commit the Leader's new config.

We now have two data Sources and two Worker Groups – one each for (Web) logs versus (Cribl Internal)
metrics – along with two Mapping Rules to map data accordingly. To confirm the Workers' assignment to the
two Groups, click the le� nav's Manage tab:

Manage Groups page confirms Workers' mapping and assignment

To confirm further details about the Workers, click the Workers tab, and on the Manage Workers page click
anywhere on the Worker Node's row to reveal more details:

Page 72 of 1835

Worker Node Details

With incoming metrics now mapped to our second Worker Group, we next need to configure this Group's
output. Here, we'll rely on a metrics-oriented Pipeline and a Destination that ship with Cribl Stream, and
create a new Route to connect everything up.

1. From the Leader's le� nav, click Groups > CriblMetrics .

2. From the resulting top menu, select Pipelines.

3. On the Pipelines page, find the cribl_metrics_rollup Pipeline, and click it to expand it.

4. Expand this Pipeline's Functions (including Comments) to see its configuration. It's preconfigured with a
Rollup Metrics Function to aggregate metrics to a 30-second time window. Next is an Eval Function that
filters for Cribl (Cribl Stream) internal metrics and tags them on outgoing events with a new field.

Configure Metrics Output

Examine the Metrics Pipeline

Page 73 of 1835

cribl_metrics_rollup Pipeline, shipped with Cribl Stream

We'll connect this existing Pipeline to a new Route:

1. At the Pipelines page's top le�, click Attach to Route.
This displays the Routes page.

2. Click + Route .

3. Enter a unique Route Name, like metrics .

Add Another Route

Page 74 of 1835

4. Leave the Filter field set to its true default, allowing it to deliver all events.

5. Make sure the Pipeline drop-down is set to cribl_metrics_rollup .

6. As the Output (Destination), select our old friend devnull:devnull .

This is Cribl Stream's preconfigured Destination that simulates a downstream service while simply
dropping events.

7. You can leave the Description empty, and leave Final set to Yes.

8. Grab the new Route by its le� handle, and drag it to the top of the Routing table, so that our new Route
will process events first. You should see something like the screenshot below.

9. Click Save to save the new Route configuration.

10. Commit and Deploy your changes.

Cribl metrics Route, Pipeline, and Destination wired up

Verify the Multi-Group Deployment

Page 75 of 1835

From the sparkline on the Route you just configured (see the screenshot above), you can already see that
metrics data is flowing all the way "out" of Cribl Stream – simulated here by the DevNull Destination.

To verify the whole configuration you've created, click the le� nav's Monitoring link. On the Monitoring
page, toggle the All Groups drop-down (upper right), toggle between the two Worker Groups to see the
division of labor:

Group default (the out-of-the-box Group we configured first) handles the weblog.log data.

Group CriblMetrics handles the metrics data.

Monitoring individual Worker Groups' throughput

Before a final section where you can tear down your infrastructure, here's a recap of the simple (but
expandable) distributed model we've created, with some ideas for expanding it:

A distributed deployment enables Cribl Stream to scale out to higher data volumes. This load-balancing
occurs even with a single Worker Group, in which all Workers share the same configuration.

By adding multiple Worker Groups, you can partition Worker Nodes (and their data flows) by di�erent
configurations. In this demonstration, we simply mapped Workers to Groups by the Workers' hostname .
But you can map by a range of arbitrary criteria to meet your production needs.

All the Distributed Things – Review

Page 76 of 1835

E.g.: Di�erent Groups can be managed by di�erent teams. You can filter on DNS rules to send relevant
data to the relevant team's Group.

Di�erent Groups can also maintain configurations for di�erent regions' data privacy or data retention
requirements.

You can also Map workers arbitrarily using Tags and other options.

Setting arbitrary Tags on a managed Worker

Cribl Stream refers to "Workers" at several levels. Now that you've been initiated into building distributed
deployments, here's a guide to the fine points of distinguishing these levels:

A Worker Group holds one or multiple Worker Nodes.

Each Worker Node functions like an independent Cribl Stream single-instance deployment.
Worker Nodes don't coordinate directly with each other – they're coordinated only through
communication to/from the Leader Node.

Each Worker Node contains a configured number of Worker Processes. Unlike the above grouping
abstractions, this is the level that actually processes data. To load-balance among Worker Processes,
Cribl Stream's API Process round-robins incoming connections to them.

More About Worker Groups, Nodes, and Processes –
Definitions

When deploying on AWS/EKS, Worker Groups should not span Availability Zones. If you have EBS
persistent volumes, and a node fails, its replacement won't be able to access the peer volume across
AZs.

Page 77 of 1835

If and when you choose to shut down the infrastructure you've configured for this demonstration:

Navigate to Cribl Stream's default Group > Sources > Datagens, and switch o� the slider beside
weblog.log .

If you configured a second Worker Group: Navigate to Cribl Stream's CriblMetrics Group > Sources >
Cribl Internal, and switch o� the slider beside CriblMetrics.

If you have netcat running on a Worker's terminal/console, ^C it.

There's no need (or way) to switch o� the DevNull Destination – it just is.

If desired, Commit and Deploy these changes.

If you're running the Cribl Stream server(s) on cloud instances that will (ultimately) incur charges, you're
now free to shut down those cloud resources.

Interested in guided walk-throughs of more-advanced Cribl Stream features? We suggest that you next check
out these further resources.

Distributed Deployment: All the details behind the deployment approach you just mastered in this
tutorial.

Cribl Stream Sandboxes: Work through general and specific scenarios in a free, hosted environment,
with terminal access and real data inputs and outputs.

Use Cases documentation: Bring your own services to build solutions to specific challenges.

Cribl Concept: Pipelines – Video showing how to build and use Pipelines at multiple Cribl Stream stages.

Cribl Concept: Routing – Video about using Routes to send di�erent data through di�erent paths.

;

Cleaning Up

Next Steps

Page 78 of 1835

The fast alternative to downloading and self-hosting Cribl Stream so�ware is to launch Cribl.Cloud. This SaaS
version, whether free or paid, places the Leader and the Worker Node in Cribl.Cloud, where Cribl assumes
responsibility for managing the infrastructure.

By upgrading to an Enterprise plan, you can expand this to a hybrid deployment of any desired complexity.
Here, the Leader (the control plane) resides in Cribl.Cloud, while the Workers that process the data (the data
plane) can be variously in Cribl.Cloud, in cloud instances that you manage, and/or in your data centers.

Standard/free versus Enterprise/hybrid deployment

Cribl.Cloud is designed to simplify deployment, and to provide certain advantages over using your own
infrastructure, in exchange for some current restrictions (because Cribl will manage some configuration on
your behalf):

2. Launch Guide

For an overview of additional features available on Enterprise plans, see Pricing.

Why Use Cloud Deployment? (Advantages)

Page 79 of 1835

Tap Cribl Streamʼs power, with no responsibility to install or manage so�ware. Cribl.Cloud is fully hosted
and managed by Cribl. so you can launch a configured instance within minutes.

Automated delivery of upgrades and new features.

Encrypted data at rest (configuration, sample files, etc.) at the disk level for Leader and Cribl-managed
Worker instances.

Free, up to 1 TB/day of data throughput (data ingress + egress) for all new accounts.

Quickly expand your Cribl.Cloud deployment beyond the free tier's limits by purchasing credits toward
metered billing. Pay only for what you use.

Your first step is to sign up on the Cribl.Cloud portal (see Registering a Cribl.Cloud Portal below), to create
your Cribl.Cloud Organization.

Your Organization will display a dedicated Portal, a network and access boundary that isolates your Cribl
resources from all other users. Each Cribl.Cloud account provisions a separate AWS account. Your
Cribl Stream instance is deployed inside a virtual private cloud (VPC) in this account.

The Portal will initially contain a free Cribl Stream instance. Certain throughput and administration limits
apply to a free account. When you need more capacity and/or options, it's easy to upgrade to a paid or
Enterprise plan – just click the Go Enterprise button at the top of your Portal.

If you're new to Cribl Stream, please see our Basic Concepts page and Getting Started Guide for orientation.
The current page focuses on a Cloud deployment's di�erences from other deployment options – referred to
below as "Cribl Stream binaries" or "customer-managed deployments."

Ready to take the red pill? The next few sections explain how to register and manage a Cribl.Cloud instance.

First, if you haven't already signed up on Cribl.Cloud:

Getting Started

About Cribl Stream (and This Document)

Cribl.Cloud always runs in distributed mode – see Simplified Distributed Architecture below for
details.

Registering a Cribl.Cloud Portal

Page 80 of 1835

1. Start at: https://cribl.cloud/signup/

2. Select the New User? Free signup option, and register with your work email address.

3. Use the verification code from Cribl's email to confirm your registration.

4. On the Create Organization page, optionally enter an Organization Name (a friendly alias for the
randomly generated ID that Cribl will assign to your Organization).

5. Select an AWS Region to host your Cribl.Cloud Leader and Cribl-managed Workers. Cribl currently
supports either the US West (Oregon) or US East (Virginia) Region.

6. Bookmark your Cribl.Cloud portal page, for all that follows.

Create Organization page – selecting a host Region

When you own or are a member of multiple Cribl.Cloud Organizations, the Select Organization splash page
– displayed a�er you sign in – enables you to select which Organization you want to work with.

Select Organization Page

Page 81 of 1835

Select Organization interstitial page

Click any tile's \/ accordion to reveal a detailed description, if provided. Click the appropriate tile (or its
open accordion's Dashboard button) to configure that Organization.

Page 82 of 1835

Organization tile's details and controls

You can click Leave if you want to remove yourself as a member of another owner's Organization. This option
requires confirmation – proceed only if you're sure! (You won't see this button on Organizations that you
own.)

Now that you're here – explore the furniture. The Cribl.Cloud portal's top navigation allows you to navigate
among the following pages/links:

Portal (Cribl.Cloud logo)

Messages

Learning

So�ware

Account (including Organization details)

When you log into the Cribl.Cloud portal, you'll land here. The main events here are the Manage Stream and
Manage Edge buttons. Click either to launch (respectively) Cribl Stream or Cribl Edge in a new tab.

Exploring the Cribl.Cloud Portal

Portal Page (Cribl.Cloud Logo)

Page 83 of 1835

Cribl.Cloud portal

However, the surrounding page o�ers lots more useful information:

On the page body, you'll find links to multiple Cribl resources – documentation, support (Community
Slack and bug reporting), free Sandbox training, and blog posts.

In the Overview strip just below the top black menu, you'll find detailed configuration information about
your Cloud Organization.

By clicking the top nav's ⚙ Network Settings link, you can check and manage connectivity details –
data Sources, access control, and trust relationships – for your Cribl-managed Cloud Workers.

From le� to right, this upper strip displays the following config details:

Org ID: Domain at which you access the associated Cribl.Cloud Organization.

Last Updated: Date on which Cribl last pushed an infrastructure change (notably including changes to the
above Egress Address).

Version: Your deployed Cribl Stream version.

Overview Strip

Page 84 of 1835

Region: The AWS Region where you're running Cribl applications. (Cribl.Cloud currently supports either the
us‑west‑2 or us‑east‑1 Region.)

Egress IPs: Your Cribl.Cloud instance's current public IP address. This address is dynamic; Cribl will
occasionally update it when we need to rescale core infrastructure.

Ingress Address: Your Cribl.Cloud instance's global domain for inbound data (before specifying ports per
data type).

Clicking the top nav's ⚙ Network Settings link opens a page with connectivity details, spread across three
upper tabs: Data Sources, ACL, and Trust.

The Data Sources tab lists ports, protocols, and data ingestion inputs that are open and available to use.
Return to this tab to copy Ingest Addresses (endpoints) as needed. For details, see Available Ports and
TLS Configurations.

The default 0.0.0.0/0 rule (modifiable) imposes no limits. Click + to add more rules, or click X to remove
rules. End a rule with /32 to specify a single IP address, or with /24 to enable a whole CIDR block from
x.x.x.0 to x.x.x.255 .

Click Save a�er adding, modifying, or removing rules. Each change takes up to 5 minutes to propagate.
Cribl.Cloud will display an ACL update in progress... banner, notifying you that rules edits are
temporarily disabled to prevent conflicts. A successful update proceeds silently – you will not see a
confirmation message.

The Trust tab provides a Worker ARN (Amazon Resource Name) that you can copy and paste to attach a
Trust Relationship to an AWS account's IAM role. Doing so enables the AssumeRole action, providing cross-
account access. For usage details, see the AWS Cross-Account Data Collection topic's Account B
Configuration section.

Network Settings Page

Data Sources Tab

ACL Tab

The ACL options apply only to your Cribl-managed Workers. You cannot use this technique to set
access rules on hybrid Workers running in customer-managed Cribl Stream instances.

Trust Tab

Page 85 of 1835

Clicking the Manage Stream or Manage Edge button opens (respectively) your Stream or Edge Leader in a
new browser tab. All of the application's Cloud-supported features are available from this landing page.

Clicking the top nav's Messages link opens the Message Center right drawer. Here, you will find Cribl.Cloud
status and update notifications from Cribl, with Unread messages above the Read group.

Clicking the top nav's Learning link opens the Learning page, which provides links to everything you need to
learn about Cribl Stream in order to goat forth and do great things:

Sandboxes (free, interactive tutorials on fully hosted integrations).

Documentation.

Product and plans overview (pricing comparison).

Cribl events (including future and archived Webinars).

Concept/demo videos.

If you prefer to take the blue pill, this page o�ers download links for Cribl Stream, Cribl Edge, and AppScope
so�ware. You can download either binaries or Docker containers (hosting Ubuntu 20.04), to install and
manage on your own hardware or virtual machines.

This menu o�ers a self-explanatory Sign Out link, and an Organization Selection submenu (fly-out) that
works like the Select Organization page: click its links to traverse to other Organizations. For an
Organization's owner only, it also includes a link to the Organization page.

This option applies only to your Cribl-managed Workers. You cannot use this technique to enable
access to hybrid Workers on customer-managed Cribl Stream instances.

Cribl Stream UI Access

Messages Drawer

Learning Page

So�ware Page

Account Menu

Page 86 of 1835

Account tab

Displayed only to an Organization's owner, this page o�ers Details Members, and (where applicable) Billing
tabs along its top.

The Organization > Details tab o�ers these controls to make your Cribl.Cloud deployment more
recognizable than its randomly generated Organization ID (displayed at the top):

Alias: Optionally, enter a "friendly" name for your Organization. Upon signing in, members will see this alias
above the Organization ID on the Select Organization page.

Description: Optionally, use this field to add further details about your Organization. On the
Select Organization page, members can view these details by expanding the Organization's tile.

License: This drop-down displays one or multiple licenses that you've currently applied to your Organization.

Opt in to beta features: If displayed, this toggle enables access to new options that Cribl has not yet made
generally available. As with all beta features, expect some instability in exchange for advancing to the cutting
edge of your Cloud.

Click Save to immediately apply your changes.

Organization Page

Details Tab

Page 87 of 1835

Organization Details tab

The Organization > Members upper tab provides access to inviting and managing other users.

The Organization > Billing upper tab is displayed only to owners of an Organization on a paid license plan.
It provides Plan and Metrics le� tabs.

The Plan le� tab displays a mercury bar of available Credits on your account, an expandable Plan details
accordion, and expandable Monthly Usage History rows o�ering details about your data throughput volume
in current and prior months.

Billing > Plan tab

Members Tab

Billing Tab

Plan Tab

Credits carry over across billing periods, as long as you renew your Cribl.Cloud plan.

Metrics Tab

Page 88 of 1835

The Metrics le� tab provides bar graphs showing Raw GB In and Raw GB Out for each day over the last
month.

Billing > Metrics tab

Once you've registered on the portal, here's how to access Cribl.Cloud:

1. Sign in to your Cribl.Cloud portal page.

2. Select the Organization to work with.

3. From the portal page, select either Manage Stream or Manage Edge.

4. The selected application's UI will open in a new tab or window – ready to goat!

Note the Cribl.Cloud link at the Cribl.Cloud home page's upper le�, under the Welcome! message. You can
click this link to reopen the Cribl.Cloud portal page and all its resources.

Managing Cribl.Cloud

Page 89 of 1835

Cribl.Cloud link takes you back to the portal

From the Organization > Members tab, an Organization's owner can invite new users to join the
Organization, assign access roles to new and existing members, and remove pending invites and/or existing
members.

Organization > Members tab: Managing Invites and Members

Click + Invite Member to open the modal shown below. Enter the Email address of the new user you want to
invite, assign them a Role (explained just below), and then click Invite to send the invitation.

Invite User modal

Inviting and Managing Other Users

Inviting Members

Page 90 of 1835

Each Role that you can assign to members confers a default Role within the Organization's Cribl.Cloud
instance. Here are the Roles, their corresponding permissions, and who can assign each:

MEMBER ROLE CRIBL STREAM ROLE OPTIONS/RESTRICTIONS

Admin admin Any Organization owner can assign

Editor editor_all Assignable only with Enterprise plan

Read-Only reader_all Assignable only with Enterprise plan

Owner admin Can't be assigned, but can manage Organization details

Note that:

Owners of non-Enterprise Cribl.Cloud Organizations can assign only the Admin Role in the Invite User
modal shown above.

Expanded role-based access control – i.e., the ability to manage the Editor and Read‐Only Roles
shown above – is available only with an Enterprise plan. (For all available Enterprise features, see
Pricing.)

The one Member Role that you cannot assign or transfer is your own Owner Role. A user can acquire this
superuser Role only by signing up as the owner of their own Cribl.Cloud Organization.

Only an Organization's Owner can manage the Organization's details.

You assign Roles per individual user, when you invite them to your Organzation. Cribl.Cloud does not
currently support globally predefining or assigning group Roles, as with on-premises Cribl Stream.
However, Admins can change users' Roles a�er those users join their Organization.

Member Roles

Cribl.Cloud Roles Rule Cribl Stream Access

When you assign a Cribl.Cloud Member Role, it is mapped to a Cribl Stream Role as described above.
However, these users will not be visible as local users within the UI of Cribl Stream Cloud instances
managed by Cribl.

Also, within these instances' UI: modifying Roles not mapped above will have no e�ect; and adding
local users wil have no e�ect.

Page 91 of 1835

At the address you entered, the new member receives an email with an Accept Invitation link to either sign
into their existing Cribl.Cloud account, or else sign up to create an account and its credentials.

A�er signing in, they'll have access to your Organization and Cribl Stream instance at the Role level you've
specified.

While an invite is pending, the Organization > Members tab o�ers you these options to deal with commonly
encountered issues:

Reinvite: If your invited member didn't receive your invitation email, you can click this button to resend
it.

Copy Link: If emails aren't getting through at all, click this button to copy and share a URL that will take
the invitee directly to the signup page. This target page encapsulates the same identity, Organization,
and Role you specified in the original email invite.

Remove: This is for scenarios where you need to revoke a pending invite. (You sent someone a duplicate
invite, your invitee is spending too much time in space to be a productive collaborator, etc.) A�er
clicking this button, you'll see a confirmation dialog.

A�er 7 days, if an invite has been neither accepted nor revoked, it expires. In this case, it is removed from the
Members tab.

Managing Invites

Once a user has accepted an invite, the Organization > Members tab o�ers you these options to modify their
membership in your Organization:

Edit: Switch this member to a di�erent Role. (The Edit option is displayed only if you have an Enterprise
plan.)

Responding to Invites

Managing Invites

Managing Members

Page 92 of 1835

Remove: Remove this member from your Organization. A�er clicking this button, you'll see a
confirmation dialog. (Proceeding will not a�ect this user's access to any other Cribl.Cloud Organizations
they might own or be members of.)

Beyond the free tier, an optional paid Cribl.Cloud account – whether Standard or Enterprise – o�ers direct
support, plus expanded daily data throughput according to your needs. At the top of your Cribl.Cloud portal,
select Go Enterprise to submit an inquiry about upgrading your free account, and Cribl will respond.

You'll pay only for what you use – the data you send to Cribl Stream, and the data sent to external
destinations. However, data sent to your AWS S3 storage is always free. For details, see Pricing.

A Cribl.Cloud deployment can di�er from an on-premises/customer-managed Cribl Stream deployment in
the following ways. Keep in mind all these di�erences as you navigate Cribl Stream's current UI, in-app help
(including tooltips), and documentation.

Cribl.Cloud has been designed with options to accommodate everyone – from first-time evaluators, to
Enterprise customers managing a worldwide network of private-cloud, public-cloud, and/or data-center
deployments.

Cribl.Cloud's free o�ering is designed to help you launch Cribl Stream – and to start processing data – as
quickly and easily as possible. Cribl manages many features on your behalf, allowing for a streamlined le�
nav and Settings page.

Cloud Pricing

Di�erences from Self-Hosted Cribl Stream

Simplified Administration

Page 93 of 1835

Cribl.Cloud's Settings le� nav

Below are the key options streamlined out of the free Cloud o�ering. Bear in mind that upgrading to an
Enterprise plan will make many of these options configurable:

Cribl.Cloud is preconfigured as a distributed deployment. With a Free or Standard plan, there is a single
Worker button and Worker.

Compared to self-hosted Cribl Stream, the Settings > Worker Processes and Settings >
Distributed Settings links are omitted, and the le� nav contains no Worker Groups or Mappings links.

With an Enterprise plan, Cribl always provides at least two Workers, and will scale up further Workers as
needed to meet your peak load. With an Enterprise plan, you also have the option to configure additional
hybrid Workers and Worker Groups.

Without an Enterprise plan, the Settings > System > Git Settings section is omitted. A local git client is
preconfigured in your Cribl.Cloud portal. On Cribl.Cloud's le� nav, use the Changes link to commit/push
changes to git . Select Deploy at the UI's top right to deploy your committed changes. Cribl.Cloud does not
support Git remote repos.

Without an Enterprise plan, the Settings > Controls and Settings > Upgrade links are omitted. Cribl handles
restarts and version upgrades automatically on your behalf.

Simplified Distributed Architecture

Git Preconfigured

Automatic Restarts and Upgrades

Page 94 of 1835

Without an Enterprise plan, the Settings > Access Management section is omitted. All users of a given
Cribl.Cloud instance share a single admin login.

Without an Enterprise plan, the Settings > Security > KMS section is omitted. The free version does not
support KMS secrets stores.

If you add an Enterprise Plan, Cloud and hybrid Leaders support Local and Google SSO authentication.
However, they do not currently support other OpenID Connect authentication schemes, nor LDAP, nor the
SAML protocol.

Role-based access control (RBAC) is simplified in Cribl.Cloud. For details, see Member Roles.

The le� nav's Settings > Licensing link is omitted. Your license is managed by your parent Cribl.Cloud portal,
where you can check credits and usage history on the Billing tab.

Cribl is gradually narrowing the limitations listed in this section, as Cribl.Cloud gains feature parity with on-
prem deployments:

The Script Collector, and custom Functions, are available only on hybrid, customer-managed Workers.
(These features are currently not available on Cribl-managed Workers.)

The le� nav's Settings > Scripts link is omitted from Cribl.Cloud, which currently does not support
configuring or running shell scripts on hybrid or Cribl-managed Workers.

The Filesystem Collector and Filesystem Destination are available only on hybrid Workers. (Cribl-
managed Workers have no local filesystem to read from or write to.)

Persistent Queues can be configured only on hybrid (not Cribl-managed) Workers' Sources and
Destinations.

File-based Destinations support staging directories only on hybrid (not Cribl-managed) Workers.

The Tee Function is available only on hybrid (not Cribl-managed) Workers.

The Settings > Diagnostics link is omitted. For help with any troubleshooting needs:

Click the Intercom link at Cribl Stream's lower right.

Join Cribl's Community Slack #cribl-cloud channel.

Simplified Access Management and Security

Transparent Licensing

Other Simplified Settings

Support Options

Page 95 of 1835

If you have a paid account, contact Cribl Support.

To get data into Cribl.Cloud, your Cribl.Cloud portal provides several data sources and ports already enabled
for you, plus 11 additional ports (20000 - 20010) that you can use to add and configure more Cribl Stream
Sources.

The Cribl.Cloud portal's Data Sources tab displays the pre‑enabled Sources, their endpoints, the reserved
and available ports, and protocol details. For the existing Sources listed here, Cribl recommends using the
preconfigured endpoint and port to send data into Cribl Stream.

Available ports and TLS certificates

Available Ports and TLS Configurations

Page 96 of 1835

TLS encryption is pre-enabled for you on several Sources, also indicated on the Cribl.Cloud portal's
Data Sources tab. All TLS is terminated by individual Nodes.

To enable TLS settings for additional Sources, use these configuration settings:

Private key path: /opt/criblcerts/criblcloud.key

CA certificate path: /opt/criblcerts/criblcloud.crt

Minimum TLS version: TLSv1.2

Currently, Cribl.Cloud does not enable you to import your own certificates for mutual TLS authentication.
Cribl.Cloud uses TLS to provide encryption in the wire, but leaves authentication at the protocol layer – e.g.,
Splunk HEC or S2S tokens, Kafka authorization, etc.

Several commonly used Sources are preconfigured for you within Cribl.Cloud's UI, and are ready to use.

The Cribl Internal Source is omitted from Cribl.Cloud instances, because Cribl manages these instances'
uptime and diagnostics on your behalf. Also, the Exec Source, available in self-hosted v.3.3 and above, is
unavailable in Cribl.Cloud instances.

TLS Details

Cribl HTTP and Cribl TCP Sources/Destinations

Use the Cribl HTTP Destination and Source, and/or the Cribl TCP Destination and Source, to relay data
between Worker Nodes connected to the same Leader. This tra�ic does not count against your
ingestion quota, so this routing double-billing. (For related details, see Exemptions from
License Quotas.)

Simplified Source, Collector, and Destination Configuration

In a preconfigured Source's configuration, never change the Address field, even though the UI shows
an editable field. If you change these fields' value, the Source will not work as expected.

A�er you create a Source and deploy the changes, it can take a few minutes for the Source to become
available in Cribl.Cloud's load balancer. However, Cribl Stream will open the port, and will be able to
receive data, immediately.

Enterprise Cloud

Page 97 of 1835

With an Enterprise plan, Cribl.Cloud o�ers the same options and flexibility as a customer-managed
Cribl Stream distributed deployment with an Enterprise license – and more.

These options include configuring and managing multiple Worker Groups or Fleets,maintaining
version control with remote repos, Notifications, Google SSO authentication, and Role-based access control
to Cribl Stream resources.

Cribl.Cloud Enterprise also adds:

Full control of Member Roles on your Cribl.Cloud Organization.

The hybrid deployment option, described just below.

The Leader resides in Cribl.Cloud, with access to diverse Worker deployments. Cribl manages the
Leader's availability.

The diagrams below show the comparative flexibility of a Cribl.Cloud hybrid deployment. The Leader
(control plane) resides in Cribl.Cloud, while the Workers that process the data can be in any combination of
the following environments:

In Cribl.Cloud, managed by Cribl.

In public or private cloud instances that you manage.

On-premises in your data centers.

For other Enterprise features, see Pricing.

Hybrid Deployment

Page 98 of 1835

Enterprise hybrid deployment, with control plane and Cribl-managed Workers in Cribl.Cloud

Enterprise hybrid deployment, with only control plane in Cribl.Cloud

As the footprint of your operations grows or changes, this flexibility makes it easy to reconfigure Cribl Stream
in tandem. You can rapidly expand Cribl Stream observability into new cloud regions – and replace
monitored hardware data centers with cloud instances – all while maintaining one centralized point of
control.

You can also add Workers, and reassign them to di�erent Worker Groups, by easily auto-generating
command-line scripts within Cribl Stream's UI.

Page 99 of 1835

A hybrid deployment imposes these configuration requirements:

Hybrid Workers (meaning, Workers that you deploy on-premises, or in cloud instances that you yourself
manage) must be assigned to a di�erent Worker Group than the Cribl-managed default Group – which
can contain its own Workers.

On all Workers' hosts, port 4200 must be open for management by the Leader.

On all Workers' hosts, firewalls must allow outbound communication on port 443 to the Cribl.Cloud
Leader, and on port 443 to https://cdn.cribl.io.

If this tra�ic must go through a proxy, see System Proxy Configuration for configuration details.

Note that you are responsible for data encryption and other security measures on Worker instances that you
manage.

To add Workers to your Cloud hybrid deployment, Cribl recommends that you use the script outlined in
Bootstrap Workers from Leader. Hosts for the new Workers must open the same ports (4200 and 443) listed in
Hybrid Requirements.

You have three options for generating the script, outlined in these subsections of the Bootstrap topic linked
above:

Auto-generate it from the Leader's UI.

Make a GET API request to the Leader.

curl the same API request.

If you use the Cribl HTTP Destination and Source pair, or the Cribl TCP Destination and Source pair, to relay
data between Worker Nodes connected to the same Leader, configuring hybrid Workers demands particular
care:

The Worker Nodes that host each pair's Destination and Source must specify exactly the same
Leader Address. Otherwise, token verification will fail – breaking the connection, and preventing data

Hybrid Requirements

Adding (Bootstrapping) Workers

In Cribl Edge, you access all these bootstrap options via the Manage Edge Nodes page's
Add/Update Edge Node control.

Hybrid Cribl HTTP/ Cribl TCP Configuration

Page 100 of 1835

flow.

Configure hybrid Workers by logging directly into their UI, then selecting global ⚙ Settings (lower le�) >
Distributed Settings. Make sure the Mode is set to Managed Worker or Managed Edge (which might
require a restart).

Then select the Leader Settings le� tab, and ensure a consistent entry in the Address field.

In Cloud hybrid deployments, the Leader's Address format is main‐<your‐Org‐ID>.cribl.cloud .
When configuring a hybrid Worker, use that format in the Address field.

;

Page 101 of 1835

The fast alternative to downloading and self-hosting Cribl Stream so�ware is to launch Cribl.Cloud. This SaaS
version, whether free or paid, places the Leader and the Worker Node in Cribl.Cloud, where Cribl assumes
responsibility for managing the infrastructure.

By upgrading to an Enterprise plan, you can expand this to a hybrid deployment of any desired complexity.
Here, the Leader (the control plane) resides in Cribl.Cloud, while the Workers that process the data (the data
plane) can be variously in Cribl.Cloud, in cloud instances that you manage, and/or in your data centers.

Standard/free versus Enterprise/hybrid deployment

Cribl.Cloud is designed to simplify deployment, and to provide certain advantages over using your own
infrastructure, in exchange for some current restrictions (because Cribl will manage some configuration on
your behalf):

2.1. Launch Guide

For an overview of additional features available on Enterprise plans, see Pricing.

Why Use Cloud Deployment? (Advantages)

Page 102 of 1835

Tap Cribl Streamʼs power, with no responsibility to install or manage so�ware. Cribl.Cloud is fully hosted
and managed by Cribl. so you can launch a configured instance within minutes.

Automated delivery of upgrades and new features.

Encrypted data at rest (configuration, sample files, etc.) at the disk level for Leader and Cribl-managed
Worker instances.

Free, up to 1 TB/day of data throughput (data ingress + egress) for all new accounts.

Quickly expand your Cribl.Cloud deployment beyond the free tier's limits by purchasing credits toward
metered billing. Pay only for what you use.

Your first step is to sign up on the Cribl.Cloud portal (see Registering a Cribl.Cloud Portal below), to create
your Cribl.Cloud Organization.

Your Organization will display a dedicated Portal, a network and access boundary that isolates your Cribl
resources from all other users. Each Cribl.Cloud account provisions a separate AWS account. Your
Cribl Stream instance is deployed inside a virtual private cloud (VPC) in this account.

The Portal will initially contain a free Cribl Stream instance. Certain throughput and administration limits
apply to a free account. When you need more capacity and/or options, it's easy to upgrade to a paid or
Enterprise plan – just click the Go Enterprise button at the top of your Portal.

If you're new to Cribl Stream, please see our Basic Concepts page and Getting Started Guide for orientation.
The current page focuses on a Cloud deployment's di�erences from other deployment options – referred to
below as "Cribl Stream binaries" or "customer-managed deployments."

Ready to take the red pill? The next few sections explain how to register and manage a Cribl.Cloud instance.

First, if you haven't already signed up on Cribl.Cloud:

Getting Started

About Cribl Stream (and This Document)

Cribl.Cloud always runs in distributed mode – see Simplified Distributed Architecture below for
details.

Registering a Cribl.Cloud Portal

Page 103 of 1835

1. Start at: https://cribl.cloud/signup/

2. Select the New User? Free signup option, and register with your work email address.

3. Use the verification code from Cribl's email to confirm your registration.

4. On the Create Organization page, optionally enter an Organization Name (a friendly alias for the
randomly generated ID that Cribl will assign to your Organization).

5. Select an AWS Region to host your Cribl.Cloud Leader and Cribl-managed Workers. Cribl currently
supports either the US West (Oregon) or US East (Virginia) Region.

6. Bookmark your Cribl.Cloud portal page, for all that follows.

Create Organization page – selecting a host Region

When you own or are a member of multiple Cribl.Cloud Organizations, the Select Organization splash page
– displayed a�er you sign in – enables you to select which Organization you want to work with.

Select Organization Page

Page 104 of 1835

Select Organization interstitial page

Click any tile's \/ accordion to reveal a detailed description, if provided. Click the appropriate tile (or its
open accordion's Dashboard button) to configure that Organization.

Page 105 of 1835

Organization tile's details and controls

You can click Leave if you want to remove yourself as a member of another owner's Organization. This option
requires confirmation – proceed only if you're sure! (You won't see this button on Organizations that you
own.)

Now that you're here – explore the furniture. The Cribl.Cloud portal's top navigation allows you to navigate
among the following pages/links:

Portal (Cribl.Cloud logo)

Messages

Learning

So�ware

Account (including Organization details)

When you log into the Cribl.Cloud portal, you'll land here. The main events here are the Manage Stream and
Manage Edge buttons. Click either to launch (respectively) Cribl Stream or Cribl Edge in a new tab.

Exploring the Cribl.Cloud Portal

Portal Page (Cribl.Cloud Logo)

Page 106 of 1835

Cribl.Cloud portal

However, the surrounding page o�ers lots more useful information:

On the page body, you'll find links to multiple Cribl resources – documentation, support (Community
Slack and bug reporting), free Sandbox training, and blog posts.

In the Overview strip just below the top black menu, you'll find detailed configuration information about
your Cloud Organization.

By clicking the top nav's ⚙ Network Settings link, you can check and manage connectivity details –
data Sources, access control, and trust relationships – for your Cribl-managed Cloud Workers.

From le� to right, this upper strip displays the following config details:

Org ID: Domain at which you access the associated Cribl.Cloud Organization.

Last Updated: Date on which Cribl last pushed an infrastructure change (notably including changes to the
above Egress Address).

Version: Your deployed Cribl Stream version.

Overview Strip

Page 107 of 1835

Region: The AWS Region where you're running Cribl applications. (Cribl.Cloud currently supports either the
us‑west‑2 or us‑east‑1 Region.)

Egress IPs: Your Cribl.Cloud instance's current public IP address. This address is dynamic; Cribl will
occasionally update it when we need to rescale core infrastructure.

Ingress Address: Your Cribl.Cloud instance's global domain for inbound data (before specifying ports per
data type).

Clicking the top nav's ⚙ Network Settings link opens a page with connectivity details, spread across three
upper tabs: Data Sources, ACL, and Trust.

The Data Sources tab lists ports, protocols, and data ingestion inputs that are open and available to use.
Return to this tab to copy Ingest Addresses (endpoints) as needed. For details, see Available Ports and
TLS Configurations.

The default 0.0.0.0/0 rule (modifiable) imposes no limits. Click + to add more rules, or click X to remove
rules. End a rule with /32 to specify a single IP address, or with /24 to enable a whole CIDR block from
x.x.x.0 to x.x.x.255 .

Click Save a�er adding, modifying, or removing rules. Each change takes up to 5 minutes to propagate.
Cribl.Cloud will display an ACL update in progress... banner, notifying you that rules edits are
temporarily disabled to prevent conflicts. A successful update proceeds silently – you will not see a
confirmation message.

The Trust tab provides a Worker ARN (Amazon Resource Name) that you can copy and paste to attach a
Trust Relationship to an AWS account's IAM role. Doing so enables the AssumeRole action, providing cross-
account access. For usage details, see the AWS Cross-Account Data Collection topic's Account B
Configuration section.

Network Settings Page

Data Sources Tab

ACL Tab

The ACL options apply only to your Cribl-managed Workers. You cannot use this technique to set
access rules on hybrid Workers running in customer-managed Cribl Stream instances.

Trust Tab

Page 108 of 1835

Clicking the Manage Stream or Manage Edge button opens (respectively) your Stream or Edge Leader in a
new browser tab. All of the application's Cloud-supported features are available from this landing page.

Clicking the top nav's Messages link opens the Message Center right drawer. Here, you will find Cribl.Cloud
status and update notifications from Cribl, with Unread messages above the Read group.

Clicking the top nav's Learning link opens the Learning page, which provides links to everything you need to
learn about Cribl Stream in order to goat forth and do great things:

Sandboxes (free, interactive tutorials on fully hosted integrations).

Documentation.

Product and plans overview (pricing comparison).

Cribl events (including future and archived Webinars).

Concept/demo videos.

If you prefer to take the blue pill, this page o�ers download links for Cribl Stream, Cribl Edge, and AppScope
so�ware. You can download either binaries or Docker containers (hosting Ubuntu 20.04), to install and
manage on your own hardware or virtual machines.

This menu o�ers a self-explanatory Sign Out link, and an Organization Selection submenu (fly-out) that
works like the Select Organization page: click its links to traverse to other Organizations. For an
Organization's owner only, it also includes a link to the Organization page.

This option applies only to your Cribl-managed Workers. You cannot use this technique to enable
access to hybrid Workers on customer-managed Cribl Stream instances.

Cribl Stream UI Access

Messages Drawer

Learning Page

So�ware Page

Account Menu

Page 109 of 1835

Account tab

Displayed only to an Organization's owner, this page o�ers Details Members, and (where applicable) Billing
tabs along its top.

The Organization > Details tab o�ers these controls to make your Cribl.Cloud deployment more
recognizable than its randomly generated Organization ID (displayed at the top):

Alias: Optionally, enter a "friendly" name for your Organization. Upon signing in, members will see this alias
above the Organization ID on the Select Organization page.

Description: Optionally, use this field to add further details about your Organization. On the
Select Organization page, members can view these details by expanding the Organization's tile.

License: This drop-down displays one or multiple licenses that you've currently applied to your Organization.

Opt in to beta features: If displayed, this toggle enables access to new options that Cribl has not yet made
generally available. As with all beta features, expect some instability in exchange for advancing to the cutting
edge of your Cloud.

Click Save to immediately apply your changes.

Organization Page

Details Tab

Page 110 of 1835

Organization Details tab

The Organization > Members upper tab provides access to inviting and managing other users.

The Organization > Billing upper tab is displayed only to owners of an Organization on a paid license plan.
It provides Plan and Metrics le� tabs.

The Plan le� tab displays a mercury bar of available Credits on your account, an expandable Plan details
accordion, and expandable Monthly Usage History rows o�ering details about your data throughput volume
in current and prior months.

Billing > Plan tab

Members Tab

Billing Tab

Plan Tab

Credits carry over across billing periods, as long as you renew your Cribl.Cloud plan.

Metrics Tab

Page 111 of 1835

The Metrics le� tab provides bar graphs showing Raw GB In and Raw GB Out for each day over the last
month.

Billing > Metrics tab

Once you've registered on the portal, here's how to access Cribl.Cloud:

1. Sign in to your Cribl.Cloud portal page.

2. Select the Organization to work with.

3. From the portal page, select either Manage Stream or Manage Edge.

4. The selected application's UI will open in a new tab or window – ready to goat!

Note the Cribl.Cloud link at the Cribl.Cloud home page's upper le�, under the Welcome! message. You can
click this link to reopen the Cribl.Cloud portal page and all its resources.

Managing Cribl.Cloud

Page 112 of 1835

Cribl.Cloud link takes you back to the portal

From the Organization > Members tab, an Organization's owner can invite new users to join the
Organization, assign access roles to new and existing members, and remove pending invites and/or existing
members.

Organization > Members tab: Managing Invites and Members

Click + Invite Member to open the modal shown below. Enter the Email address of the new user you want to
invite, assign them a Role (explained just below), and then click Invite to send the invitation.

Invite User modal

Inviting and Managing Other Users

Inviting Members

Page 113 of 1835

Each Role that you can assign to members confers a default Role within the Organization's Cribl.Cloud
instance. Here are the Roles, their corresponding permissions, and who can assign each:

MEMBER ROLE CRIBL STREAM ROLE OPTIONS/RESTRICTIONS

Admin admin Any Organization owner can assign

Editor editor_all Assignable only with Enterprise plan

Read-Only reader_all Assignable only with Enterprise plan

Owner admin Can't be assigned, but can manage Organization details

Note that:

Owners of non-Enterprise Cribl.Cloud Organizations can assign only the Admin Role in the Invite User
modal shown above.

Expanded role-based access control – i.e., the ability to manage the Editor and Read‐Only Roles
shown above – is available only with an Enterprise plan. (For all available Enterprise features, see
Pricing.)

The one Member Role that you cannot assign or transfer is your own Owner Role. A user can acquire this
superuser Role only by signing up as the owner of their own Cribl.Cloud Organization.

Only an Organization's Owner can manage the Organization's details.

You assign Roles per individual user, when you invite them to your Organzation. Cribl.Cloud does not
currently support globally predefining or assigning group Roles, as with on-premises Cribl Stream.
However, Admins can change users' Roles a�er those users join their Organization.

Member Roles

Cribl.Cloud Roles Rule Cribl Stream Access

When you assign a Cribl.Cloud Member Role, it is mapped to a Cribl Stream Role as described above.
However, these users will not be visible as local users within the UI of Cribl Stream Cloud instances
managed by Cribl.

Also, within these instances' UI: modifying Roles not mapped above will have no e�ect; and adding
local users wil have no e�ect.

Page 114 of 1835

At the address you entered, the new member receives an email with an Accept Invitation link to either sign
into their existing Cribl.Cloud account, or else sign up to create an account and its credentials.

A�er signing in, they'll have access to your Organization and Cribl Stream instance at the Role level you've
specified.

While an invite is pending, the Organization > Members tab o�ers you these options to deal with commonly
encountered issues:

Reinvite: If your invited member didn't receive your invitation email, you can click this button to resend
it.

Copy Link: If emails aren't getting through at all, click this button to copy and share a URL that will take
the invitee directly to the signup page. This target page encapsulates the same identity, Organization,
and Role you specified in the original email invite.

Remove: This is for scenarios where you need to revoke a pending invite. (You sent someone a duplicate
invite, your invitee is spending too much time in space to be a productive collaborator, etc.) A�er
clicking this button, you'll see a confirmation dialog.

A�er 7 days, if an invite has been neither accepted nor revoked, it expires. In this case, it is removed from the
Members tab.

Managing Invites

Once a user has accepted an invite, the Organization > Members tab o�ers you these options to modify their
membership in your Organization:

Edit: Switch this member to a di�erent Role. (The Edit option is displayed only if you have an Enterprise
plan.)

Responding to Invites

Managing Invites

Managing Members

Page 115 of 1835

Remove: Remove this member from your Organization. A�er clicking this button, you'll see a
confirmation dialog. (Proceeding will not a�ect this user's access to any other Cribl.Cloud Organizations
they might own or be members of.)

Beyond the free tier, an optional paid Cribl.Cloud account – whether Standard or Enterprise – o�ers direct
support, plus expanded daily data throughput according to your needs. At the top of your Cribl.Cloud portal,
select Go Enterprise to submit an inquiry about upgrading your free account, and Cribl will respond.

You'll pay only for what you use – the data you send to Cribl Stream, and the data sent to external
destinations. However, data sent to your AWS S3 storage is always free. For details, see Pricing.

A Cribl.Cloud deployment can di�er from an on-premises/customer-managed Cribl Stream deployment in
the following ways. Keep in mind all these di�erences as you navigate Cribl Stream's current UI, in-app help
(including tooltips), and documentation.

Cribl.Cloud has been designed with options to accommodate everyone – from first-time evaluators, to
Enterprise customers managing a worldwide network of private-cloud, public-cloud, and/or data-center
deployments.

Cribl.Cloud's free o�ering is designed to help you launch Cribl Stream – and to start processing data – as
quickly and easily as possible. Cribl manages many features on your behalf, allowing for a streamlined le�
nav and Settings page.

Cloud Pricing

Di�erences from Self-Hosted Cribl Stream

Simplified Administration

Page 116 of 1835

Cribl.Cloud's Settings le� nav

Below are the key options streamlined out of the free Cloud o�ering. Bear in mind that upgrading to an
Enterprise plan will make many of these options configurable:

Cribl.Cloud is preconfigured as a distributed deployment. With a Free or Standard plan, there is a single
Worker button and Worker.

Compared to self-hosted Cribl Stream, the Settings > Worker Processes and Settings >
Distributed Settings links are omitted, and the le� nav contains no Worker Groups or Mappings links.

With an Enterprise plan, Cribl always provides at least two Workers, and will scale up further Workers as
needed to meet your peak load. With an Enterprise plan, you also have the option to configure additional
hybrid Workers and Worker Groups.

Without an Enterprise plan, the Settings > System > Git Settings section is omitted. A local git client is
preconfigured in your Cribl.Cloud portal. On Cribl.Cloud's le� nav, use the Changes link to commit/push
changes to git . Select Deploy at the UI's top right to deploy your committed changes. Cribl.Cloud does not
support Git remote repos.

Without an Enterprise plan, the Settings > Controls and Settings > Upgrade links are omitted. Cribl handles
restarts and version upgrades automatically on your behalf.

Simplified Distributed Architecture

Git Preconfigured

Automatic Restarts and Upgrades

Page 117 of 1835

Without an Enterprise plan, the Settings > Access Management section is omitted. All users of a given
Cribl.Cloud instance share a single admin login.

Without an Enterprise plan, the Settings > Security > KMS section is omitted. The free version does not
support KMS secrets stores.

If you add an Enterprise Plan, Cloud and hybrid Leaders support Local and Google SSO authentication.
However, they do not currently support other OpenID Connect authentication schemes, nor LDAP, nor the
SAML protocol.

Role-based access control (RBAC) is simplified in Cribl.Cloud. For details, see Member Roles.

The le� nav's Settings > Licensing link is omitted. Your license is managed by your parent Cribl.Cloud portal,
where you can check credits and usage history on the Billing tab.

Cribl is gradually narrowing the limitations listed in this section, as Cribl.Cloud gains feature parity with on-
prem deployments:

The Script Collector, and custom Functions, are available only on hybrid, customer-managed Workers.
(These features are currently not available on Cribl-managed Workers.)

The le� nav's Settings > Scripts link is omitted from Cribl.Cloud, which currently does not support
configuring or running shell scripts on hybrid or Cribl-managed Workers.

The Filesystem Collector and Filesystem Destination are available only on hybrid Workers. (Cribl-
managed Workers have no local filesystem to read from or write to.)

Persistent Queues can be configured only on hybrid (not Cribl-managed) Workers' Sources and
Destinations.

File-based Destinations support staging directories only on hybrid (not Cribl-managed) Workers.

The Tee Function is available only on hybrid (not Cribl-managed) Workers.

The Settings > Diagnostics link is omitted. For help with any troubleshooting needs:

Click the Intercom link at Cribl Stream's lower right.

Join Cribl's Community Slack #cribl-cloud channel.

Simplified Access Management and Security

Transparent Licensing

Other Simplified Settings

Support Options

Page 118 of 1835

If you have a paid account, contact Cribl Support.

To get data into Cribl.Cloud, your Cribl.Cloud portal provides several data sources and ports already enabled
for you, plus 11 additional ports (20000 - 20010) that you can use to add and configure more Cribl Stream
Sources.

The Cribl.Cloud portal's Data Sources tab displays the pre‑enabled Sources, their endpoints, the reserved
and available ports, and protocol details. For the existing Sources listed here, Cribl recommends using the
preconfigured endpoint and port to send data into Cribl Stream.

Available ports and TLS certificates

Available Ports and TLS Configurations

Page 119 of 1835

TLS encryption is pre-enabled for you on several Sources, also indicated on the Cribl.Cloud portal's
Data Sources tab. All TLS is terminated by individual Nodes.

To enable TLS settings for additional Sources, use these configuration settings:

Private key path: /opt/criblcerts/criblcloud.key

CA certificate path: /opt/criblcerts/criblcloud.crt

Minimum TLS version: TLSv1.2

Currently, Cribl.Cloud does not enable you to import your own certificates for mutual TLS authentication.
Cribl.Cloud uses TLS to provide encryption in the wire, but leaves authentication at the protocol layer – e.g.,
Splunk HEC or S2S tokens, Kafka authorization, etc.

Several commonly used Sources are preconfigured for you within Cribl.Cloud's UI, and are ready to use.

The Cribl Internal Source is omitted from Cribl.Cloud instances, because Cribl manages these instances'
uptime and diagnostics on your behalf. Also, the Exec Source, available in self-hosted v.3.3 and above, is
unavailable in Cribl.Cloud instances.

TLS Details

Cribl HTTP and Cribl TCP Sources/Destinations

Use the Cribl HTTP Destination and Source, and/or the Cribl TCP Destination and Source, to relay data
between Worker Nodes connected to the same Leader. This tra�ic does not count against your
ingestion quota, so this routing double-billing. (For related details, see Exemptions from
License Quotas.)

Simplified Source, Collector, and Destination Configuration

In a preconfigured Source's configuration, never change the Address field, even though the UI shows
an editable field. If you change these fields' value, the Source will not work as expected.

A�er you create a Source and deploy the changes, it can take a few minutes for the Source to become
available in Cribl.Cloud's load balancer. However, Cribl Stream will open the port, and will be able to
receive data, immediately.

Enterprise Cloud

Page 120 of 1835

With an Enterprise plan, Cribl.Cloud o�ers the same options and flexibility as a customer-managed
Cribl Stream distributed deployment with an Enterprise license – and more.

These options include configuring and managing multiple Worker Groups or Fleets,maintaining
version control with remote repos, Notifications, Google SSO authentication, and Role-based access control
to Cribl Stream resources.

Cribl.Cloud Enterprise also adds:

Full control of Member Roles on your Cribl.Cloud Organization.

The hybrid deployment option, described just below.

The Leader resides in Cribl.Cloud, with access to diverse Worker deployments. Cribl manages the
Leader's availability.

The diagrams below show the comparative flexibility of a Cribl.Cloud hybrid deployment. The Leader
(control plane) resides in Cribl.Cloud, while the Workers that process the data can be in any combination of
the following environments:

In Cribl.Cloud, managed by Cribl.

In public or private cloud instances that you manage.

On-premises in your data centers.

For other Enterprise features, see Pricing.

Hybrid Deployment

Page 121 of 1835

Enterprise hybrid deployment, with control plane and Cribl-managed Workers in Cribl.Cloud

Enterprise hybrid deployment, with only control plane in Cribl.Cloud

As the footprint of your operations grows or changes, this flexibility makes it easy to reconfigure Cribl Stream
in tandem. You can rapidly expand Cribl Stream observability into new cloud regions – and replace
monitored hardware data centers with cloud instances – all while maintaining one centralized point of
control.

You can also add Workers, and reassign them to di�erent Worker Groups, by easily auto-generating
command-line scripts within Cribl Stream's UI.

Page 122 of 1835

A hybrid deployment imposes these configuration requirements:

Hybrid Workers (meaning, Workers that you deploy on-premises, or in cloud instances that you yourself
manage) must be assigned to a di�erent Worker Group than the Cribl-managed default Group – which
can contain its own Workers.

On all Workers' hosts, port 4200 must be open for management by the Leader.

On all Workers' hosts, firewalls must allow outbound communication on port 443 to the Cribl.Cloud
Leader, and on port 443 to https://cdn.cribl.io.

If this tra�ic must go through a proxy, see System Proxy Configuration for configuration details.

Note that you are responsible for data encryption and other security measures on Worker instances that you
manage.

To add Workers to your Cloud hybrid deployment, Cribl recommends that you use the script outlined in
Bootstrap Workers from Leader. Hosts for the new Workers must open the same ports (4200 and 443) listed in
Hybrid Requirements.

You have three options for generating the script, outlined in these subsections of the Bootstrap topic linked
above:

Auto-generate it from the Leader's UI.

Make a GET API request to the Leader.

curl the same API request.

If you use the Cribl HTTP Destination and Source pair, or the Cribl TCP Destination and Source pair, to relay
data between Worker Nodes connected to the same Leader, configuring hybrid Workers demands particular
care:

The Worker Nodes that host each pair's Destination and Source must specify exactly the same
Leader Address. Otherwise, token verification will fail – breaking the connection, and preventing data

Hybrid Requirements

Adding (Bootstrapping) Workers

In Cribl Edge, you access all these bootstrap options via the Manage Edge Nodes page's
Add/Update Edge Node control.

Hybrid Cribl HTTP/ Cribl TCP Configuration

Page 123 of 1835

flow.

Configure hybrid Workers by logging directly into their UI, then selecting global ⚙ Settings (lower le�) >
Distributed Settings. Make sure the Mode is set to Managed Worker or Managed Edge (which might
require a restart).

Then select the Leader Settings le� tab, and ensure a consistent entry in the Address field.

In Cloud hybrid deployments, the Leader's Address format is main‐<your‐Org‐ID>.cribl.cloud .
When configuring a hybrid Worker, use that format in the Address field.

;

Page 124 of 1835

3. DEPLOYING CRIBL STREAM SOFTWARE

There are at least three key factors that will determine the type of Cribl Stream deployment in your
environment:

Amount of Incoming Data: This is defined as the amount of data planned to be ingested per unit of time.
E.g. How many MB/s or GB/day?

Amount of Data Processing: This is defined as the amount of processing that will happen on incoming
data. E.g., are there a lot of transformations, regex extractions, parsing functions, field obfuscations,
etc.?

Routing and/or Cloning: Is most data going to a single destination, or is it being cloned and routed to
multiple places? This is important because destination-specific serialization tends to be relatively
expensive.

Use Cribl Cloud to quickly launch a Cribl-hosted Cribl Stream instance, with all infrastructure and
management responsibility delegated to Cribl.

Use Single-Instance Deployment when incoming data volume is low and/or amount of processing is
light.

Use Distributed Deployment to accommodate increased load. See Sizing and Scaling for detailed
guidance.

Leader and Worker Nodes should have su�icient CPU, RAM, network, and storage capacity to handle your
specific workload. It's very important to test this before deploying to production.

3.1. Deployment Planning

Type of Deployment

OS and System Requirements

In the table below, we assume that 1 physical core is equivalent to 2 virtual/hyperthreaded CPUs
(vCPUs). This corresponds to Intel/Xeon or AMD processors. On Graviton2/ARM64 processors, where

Page 125 of 1835

REQUIREMENT TYPE REQUIREMENTS DETAILS

Minimum

Leader and Worker
Nodes.

OS:
Linux: RedHat, CentOS, Ubuntu, AWS Linux, Suse (64bit)
System:
+4 physical cores, +8GB RAM, 5GB free disk space (more if persistent queuing is enabled on
Workers)

Recommended
Leader Node

OS:
Linux: RedHat, CentOS, Ubuntu, AWS Linux, Suse (64bit)
System:
+4 physical cores, +8GB RAM, 5GB free disk space

Recommended
Worker Nodes

OS:
Linux: RedHat, CentOS, Ubuntu, AWS Linux, Suse (64bit)
System:
+8 physical cores, +32GB RAM, 5GB free disk space.

Most modern browsers will work, but here are the minimum supported versions as of this publication date:
Firefox 65+, Chrome 70+, Safari 12+, Microso� Edge.

This section compiles basic checkpoints for successfully launching a distributed cluster.

1 Leader Node (see specs/requirements in OS and System Requirements above).

4 Worker Nodes (see specs/requirements in OS and System Requirements above).

Acquire an evaluation (Sales Trial) License from the Cribl Sales Team.

Install git if not present (e.g., yum install git).

1 core is equivalent to 1 vCPU – but with higher capacity – sizing can be slightly di�erent. For details,
see Sizing and Scaling and Requirements.

Browser Requirements

Cluster Installation/Configuration Checklist

1. Provision Hardware

2. Configure Leader Node

Page 126 of 1835

Open the initial ports listed below:

DEFAULT PORT PURPOSE

TCP:4200 or TCP:9000 Heartbeat/Metrics

TCP:9000 Cribl UI

Download, Install, and Launch Cribl.

Enable Start at Boot.

Configure as a Leader.

Confirm Worker Processes Settings at -2 (via global ⚙ Settings (lower le�) > System >
Manage Processes).

Install License.

Enable GUI Access. Administrators will need to connect to the following port on each node:

DEFAULT PORT PURPOSE

TCP:9000 Cribl UI

Download, Install, and Launch Cribl.

Enable Start at Boot.

Configure as a Worker.
Give each Worker the (arbitrary) tag POV .

Confirm Worker Processes Settings at -2 (via global ⚙ Settings (lower le�) > System >
Manage Processes).

Install License.

On the Leader Node, create a Worker Group.
Name the Worker Group (arbitrarily) POV .

3. Configure Worker Nodes

4. Map Workers to Groups

Page 127 of 1835

On the Leader Node, confirm that workers are connecting.
From the Leader Node's top menu, select Workers.

Map Workers to dev Worker Groups.
Use the Filter: cribl.tags.includes('POV') .

If you will be using Cribl Stream's GeoIP enrichment feature, install the MaxMind database onto the
Cribl Stream Leader and all Worker Nodes.

;

5. Other

Page 128 of 1835

A Cribl Stream installation can be scaled up within a single instance and/or scaled out across multiple
instances. Scaling allows for:

Increased data volumes of any size.

Increased processing complexity.

Increased deployment availability.

Increased number of destinations.

A Cribl Stream installation can be configured to scale up and utilize as many resources on the host as
required. In a single-instance deployment, you govern resource allocation through the global ⚙ Settings
(lower le�) > System > Worker Processes section.

In a distributed deployment, you allocate resources per Worker Group. Navigate to Groups > group-name >
Settings (upper right) > Worker Processes.

Either way, these controls are available:

Process count: Indicates the number of Worker Processes to spawn. Positive numbers specify an
absolute number of Workers. Negative numbers specify a number of Workers relative to the number of
CPUs in the system. like this: { <number of CPUs available> minus <this setting> }. The default is
-2 .

Cribl Stream will correct for an excessive + or - o�set, or a 0 entry, or an empty field. Here, it will
guarantee at least the Minimum process count set below, but no more than the host's number of CPUs
available.

Minimum process count: Indicates the minimum number of Worker Processes to spawn. Overrides the
Process count's lowest result. A 0 entry is interpreted as "default," which here yields 2 Processes.

Memory (MB): Amount of memory available to each Worker Process, in MB. Defaults to 2048 .
(See Estimating Memory Requirements below.)

For changes in any of the above controls to take e�ect, you must click the Manage Processes page's Save
button, and then restart the Cribl Stream server via global ⚙ Settings (lower le�) > System > Controls >
Restart. In a distributed deployment, also deploy your changes to the Groups.

3.2. Sizing and Scaling

Scale Up

Page 129 of 1835

For example, assuming a Cribl Stream system running on Intel or AMD processors with 6 physical cores
hyperthreaded (12 vCPUs):

If Process count is set to 4 , then the system will spawn exactly 4 processes.

If Process count is set to -2 , then the system will spawn 10 processes (12-2).

When data volume, processing needs, or other requirements exceed what a single instance can sustain, a
Cribl Stream deployment can span multiple Nodes. This is known as a distributed deployment. Here, you can
centrally configure and manage Nodes' operation using one administrator instance, called the Leader.

It's important to understand that Worker Processes operate in parallel, i.e., independently of each other.
This means that:

1. Data coming in on a single connection will be handled by a single Worker Process. To get the full
benefits of multiple Worker Processes, data should come in over multiple connections.
E.g., it's better to have 5 connections to TCP 514, each bringing in 200GB/day, than one at 1TB/day.

2. Each Worker Process will maintain and manage its own outputs. E.g., if an instance with 2
Worker Processes is configured with a Splunk output, then the Splunk destination will see 2 inbound
connections.
For further details, see Shared-Nothing Architecture.

As with most data processing applications, Cribl Stream's expected resource utilization will be proportional
to the type of processing that is occurring. For instance, a Function that adds a static field on an event will
likely perform faster than one that applies a regex to find and replace a string. Currently:

A Worker Process will utilize up to 1 physical core (encompassing either 1 or 2 vCPUs, depending on the
processor type.

Processing performance is proportional to CPU clock speed.

All processing happens in-memory.

Processing does not require significant disk allocation.

Throughout these guidelines, we assume that 1 physical core is equivalent to:

2 virtual/hyperthreaded CPUs (vCPUs) on Intel/Xeon or AMD processors.

Scale Out

Capacity and Performance Considerations

Page 130 of 1835

1 vCPU on Graviton2/ARM64 processors.

In estimating core requirements – per processor type, it's important to distinguish among vCPUs versus
physical cores.

To estimate the number of cores needed: Sum your expected input and output volume, then divide by 400GB
per day per physical core.

Example 1: 100GB IN ‑> 100GB out to each of 3 destinations = 400GB total = 1 physical core (or 2 vCPUs).

Example 2: 3TB IN ‑> 1TB out = 4TB total = 10 physical cores (or 20 VCPUs).

Example 3: 4 TB IN ‑> full 4TB to Destination A, plus 2 TB to Destination B = 10TB total = 25 physical cores
(or 50 vCPUs).

Here, 1 physical core = 1 vCPU, but overall throughput is ~20% higher than a corresponding Intel or AMD
vCPU. So, to estimate the number of cores needed: Sum your expected input and output volume, then divide
by 480GB per day per vCPU.

Example 1: 100GB IN -> 100GB OUT to each of 3 destinations = 400GB total = 1 physical core.

Example 2: 3TB IN -> 1TB OUT = 4TB total = 8 physical cores.

Example 3: 4 TB IN -> full 4TB OUT to Destination A, plus 2 TB OUT to Destination B = 10TB total = 21
physical cores.

Remember to also account for an additional core per Worker Node for OS/system overhead.

When sizing the number of Stream Worker Nodes, there are two other factors to consider:

Overall guideline: Allocate 1 physical core for each 400GB/day of IN+OUT throughput.

Examples

Estimating Number of Cores

Intel/Xeon/AMD Processors with Hyperthreading Enabled

Graviton2/ARM64 Processors

Estimating Number of Nodes

Page 131 of 1835

Number of Nodes sized for peak workloads;

Number of Nodes o�line.

This will allow you to create a robust Cribl Stream environment that can handle peak workloads even during
rolling restarts and maintenance downtime.

General guidance includes:

Per Node, Cribl recommends at least 4 ARM vCPUs, or at least 8 x86 vCPUs (i.e., 4 cores with
hyperthreading). Below this theshold, the OS overhead from reserved threads claims an excessive
percentage of your capacity.

Per Node, Cribl recommends no more than 48 ARM vCPUs, or 48 x86 vCPUs (i.e., 24 cores with
hyperthreading). This upper limit simply avoids wasting vCPU capacity due to running out of available
sockets. It also handles disk I/O requirements when persistent queueing engages.

Plan to successfully handle peak workloads even when 20% of your Worker Nodes are down. This allows
for OS patching, and for conducting rolling Stream upgrades and restarts.

For customers in the 5–20 TB range, size for 4‑8 Worker Nodes per Worker Group.

Step 1: Calculate the total inbound + outbound volume for a given deployment.

In this example, your deployment has 6TB/day streaming into Worker Nodes for a given site, and this data is
being routed to both cheap mass storage (S3) and to your system of analysis – 10 TB/day going out.

Stream Workers must have enough CPUs to handle a total of 16 TB per day IN+OUT.

Step 2: From the available server configurations, size the correct number of Nodes for your environment.

You are considering an AWS Compute-optimized Graviton EC2 instance, with either 16-vCPU or 8-vCPU
options. We'll walk you through how to calculate based on each option.

Using Graviton 16-vCPU instances

Each Node would have 15 vCPUs available to Cribl Stream, each at 480 GB per day per vCPU.

15 vCPUs per Node at 480 GB per day per CPU = 7200 GB/day per Node.

7200 GB/day divided by 1024 GB/TB = 7 TB/day.

To handle the workload of 16 TB/day, you need 3 Nodes. Make sure you always round up.

20% of 3 Nodes ≈ 1 Node. Make sure you always round up. To provide for redundancy during patching,
maintenance, or restarts, you need one additional server.

Sizing Example for a Deployment

Page 132 of 1835

With 4x 16-vCPU Nodes, you have 28 TB/day capacity, and can support 21 TB/day with one Node down.

Using Graviton 8-vCPU instances

Each Node would have 7 vCPUs available to Stream, each at 480 GB per day per vCPU.

7 vCPUs per Node at 480 GB per day per CPU = 3360 GB/day per Node.

3360 GB/day divided by 1024 GB/TB = 3.3 TB/day.

To handle the workload of 16 TB/day, you need 5 Nodes. Make sure you always round up.

20% of 5 Nodes = 1 Node. To provide for redundancy during patching, maintenance, or restarts, you
need one additional server.

With 6x8‑vCPU Nodes, you have 19.8 TB/day capacity, and can support 16.5 TB/day with one Node down.

If you are optimizing for price, AWS pricing is linear based on the total number of cores. So six 8‑vCPU
systems are roughly 75% the cost of four 16-vCPU systems.

If you are optimizing for potential future expansion, the 4x16-vCPU systems would o�er ideal additional
capacity.

The general guideline for memory allocation is to start with the default 2048 MB (2 GB) per Worker Process,
and then add more memory as you find that you're hitting limits.

Memory use is consumed per component, per Worker Process, as follows:

1. Lookups are loaded into memory.
(Large lookups require extra memory allocation – see Memory Sizing for Large Lookups.)

2. Memory is allocated to in-memory bu�ers to hold data to be delivered to downstream services.

3. Stateful Functions (Aggregations and Suppress) consume memory proportional to the rate of data
throughput.

4. The Aggregations Function's memory consumption further increases with the number of Group by's.

5. The Suppress Function's memory use further increases with the cardinality of events matching the
Key expression. A higher rate of distinct event values will consume more memory.

You could meet the requirement above with multiples of the following instances:

AWS – Intel processors, Compute Optimized Instances. For other options, see here.

Estimating Memory Requirements

Recommended AWS, Azure, and GCP Instance Types

Page 133 of 1835

MINIMUM RECOMMENDED

c5d.2xlarge (4 physical cores, 8vCPUs)
c5.2xlarge (4 physical cores, 8vCPUs)

c5d.4xlarge or higher (8 physical cores, 16vCPUs)
c5.4xlarge or higher (8 physical cores, 16vCPUs)

AWS – Graviton2/ARM64 processors, Compute Optimized Instances. For other options, see here.

MINIMUM RECOMMENDED

c6g.2xlarge (8 physical cores, 8vCPUs)
c6gd.2xlarge (8 physical cores, 8vCPUs)

c6g.4xlarge or higher (16 physical cores, 16vCPUs)
c6gd.4xlarge or higher (16 physical cores, 16vCPUs)

Azure – Compute Optimized Instances

MINIMUM RECOMMENDED

Standard_F8s_v2 (4 physical cores, 8vCPUs) Standard_F16s_v2 or higher (8 physical cores, 16vCPUs)

GCP – Compute Optimized Instances

MINIMUM RECOMMENDED

c2-standard-8 (4 physical cores, 8vCPUs)
n2-standard-8 (4 physical cores, 8vCPUs)

c2-standard-16 or higher (8 physical cores, 16vCPUs)
n2-standard-16 or higher (8 physical cores, 16vCPUs)

In all cases, reserve at least 5GB disk storage per instance, and more if persistent queuing is enabled.

You can profile CPU usage on individual Worker Processes.

Go to global ⚙ Settings (lower le�) > System > Worker Processes, and click Profile on the desired row.

Measuring CPU Load

Single-Instance Deployment

Page 134 of 1835

Worker CPU profiling (single-instance)

This requires a few more steps:

1. Enable Worker UI Access if you haven't already.

2. Select Manage in the le� nav.

3. On the resulting Manage Groups page, click the Workers tab.

4. Click on the GUID link of the Worker Node you want to profile. (You will now see that GUID in a Worker
drop-down at the top le�, above a purple header that confirms that you've tunneled through to the
Worker Node's UI.)

5. Select Settings from that Worker Node's top nav.

6. Select System > Worker Processes from the resulting side nav.

7. Click Profile on the desired Worker Process.

Distributed Deployment

Page 135 of 1835

Worker CPU profiling (distributed)

In either a single-instance or distributed deployment, you will now see a Worker Process Profiler modal.

The default Duration (sec) of 10 seconds is typically enough to profile continuous issues, but you might
need to adjust this – up to several minutes – to profile intermittent issues. (Longer durations can dramatically
increase the lag before Cribl Stream formats and displays the profile data.)

Click Start to begin profiling. A�er the duration you've chosen (watch the progress bar), plus a lag to
generate the display, you'll see a profile something like this:

Generating a CPU Profile

Page 136 of 1835

Worker CPU profile

Below the graph, tabs enable you to select among Summary, Bottom‑Up, Call Tree, and Event Log table
views.

To save the profile to a JSON file, click the very small tiny minuscule Save profile (⬇) button we've
highlighted at the modal's upper le�.

Whether you've saved or not, when you close the modal, you'll be prompted to confirm discarding the in-
memory profile data.

See also: Diagnosing Issues > Including CPU Profiles.

;

Page 137 of 1835

3.3. Manual Deployment

Deployment guide to get you started with self-hosted Cribl Stream

There are at least two key factors that will determine the type of Cribl Stream deployment in your
environment:

Amount of Incoming Data: This is defined as the amount of data planned to be ingested per unit of time.
E.g. How many MB/s or GB/day?

Amount of Data Processing: This is defined as the amount of processing that will happen on incoming
data. E.g., is most data passing through and just being routed? Or are there a lot of transformations,
regex extractions, field encryptions? Is there a need for heavy re-serialization?

When volume is low and/or amount of processing is light, you can get started with a single instance
deployment.

To accommodate increased load, we recommend scaling up and perhaps out with multiple instances.

If you have an existing Splunk Heavy Forwarder infrastructure that you want to use, you can deploy Cribl App
for Splunk. See the note below before you plan.

3.3.1. Deployment Types

Single-Instance Deployment

Distributed Deployment

Splunk App Deployment

Cribl App for Splunk Deprecation Notice

Please see details here.

Page 138 of 1835

You can deploy Cribl Stream Leader Nodes (or single instances) and Worker Nodes via Cribl's Helm charts.

You can deploy Cribl Stream instances using images from Cribl's public Docker Hub.

All Cribl Stream deployments are based on a shared-nothing architecture pattern, where instances/Nodes
and their Worker Processes operate separately, serving all inputs, outputs, and event processing
independently of each other.

This allows the overall system to continue to operate even if individual Processes or Nodes fail. It also allows
individual Nodes to upgrade without system-wide downtime.

;

Kubernetes/Helm Deployment

Docker Deployment

Shared-Nothing Architecture

Page 139 of 1835

Getting started with Cribl Stream on a single instance

For small-volume or light processing environments – or for test or evaluation use cases – a single instance of
Cribl Stream might be su�icient to serve all inputs, event processing, and outputs. This page outlines how to
implement a single-instance deployment.

OS (Intel Processors):

Linux 64-bit kernel >= 3.10 and glibc >= 2.17

Examples: Ubuntu 16.04+, Debian 9+, RHEL 7+, CentOS 7+, SUSE Linux Enterprise Server 12+,
Amazon Linux 2014.03+

OS (ARM64 Processors):

Linux 64-bit

Tested so far on Ubuntu (14.04, 16.04, 18.04, and 20.04), CentOS 7.9, and Amazon Linux 2

3.3.2. Single-Instance Deployment

Architecture

Requirements

Page 140 of 1835

System:
+4 physical cores, +8GB RAM

5GB free disk space (more if persistent queuing is enabled)

Browser Support: Firefox 65+, Chrome 70+, Safari 12+, Microso� Edge

SELinux Support: enforcing mode is supported, but not required

All quantities listed above are minimum requirements. To fulfill these requirements using cloud-based virtual
machines, see Recommended AWS, Azure, and GCP Instance Types.

By default, Cribl Stream listens on the following ports:

COMPONENT DEFAULT PORT

UI 9000

HTTP In 10080

Splunk to Cribl Stream data port localhost:10000 (Cribl App for Splunk)

| criblstream Splunk search command to Cribl Stream localhost:10420 (Cribl App for Splunk)

User options + Other data ports as required.

The above ports can be overridden in the following configuration files:

Cribl UI port (9000): Default definitions for host , port , and other settings are set in
$CRIBL_HOME/default/cribl/cribl.yml , and can be overridden by defining alternatives in
$CRIBL_HOME/local/cribl/cribl.yml .

Data Ports: HTTP In (10080), TCPJSON in (10420) Splunk to Cribl (10000) : Default definitions for
host , port and other settings are set in $CRIBL_HOME/default/cribl/inputs.yml , and can be
overridden by defining alternatives in $CRIBL_HOME/local/cribl/inputs.yml .

We assume that 1 physical core is equivalent to 2 virtual/ hyperthreaded CPUs (vCPUs) on Intel/Xeon
or AMD processors; and to 1 (higher-throughput) vCPU on Graviton2/ARM64 processors.

Network Ports

Overriding Default Ports

Page 141 of 1835

Install the package on your instance of choice. Download it here.

Ensure that required ports are available (see Network Ports).

Un-tar in a directory of choice, e.g., in /opt/ :
tar xvzf cribl-<version>-<build>-<arch>.tgz

You can run an Edge Node on a Cribl Stream Leader Node, or an Edge Node and a Worker Node on the same
host. For details, see Installing Cribl Edge and Cribl Stream on the Same Host.

Go to the $CRIBL_HOME/bin directory, where the package was extracted (e.g.: /opt/cribl/bin). Here, you
can use ./cribl to:

Start: ./cribl start

Stop: ./cribl stop

Reload: ./cribl reload

Restart: ./cribl restart

Get status: ./cribl status

Switch a distributed deployment to single-instance mode: ./cribl mode-single (uses the default
address:port 0.0.0.0:9000)

Setting the CRIBL_HOME Environment Variable

The CRIBL_HOME env is available in the Cribl Stream application, but not on your terminal. If you
want to use $CRIBL_HOME , you can:

Assign it once, using the export command: export CRIBL_HOME=/opt/cribl

Set it as a default, by adding it to your to your terminal profile file.

Installing on Linux

Installing Cribl Stream and Cribl Edge on the Same Host

Running

Executing the restart or stop command cancels any currently running collection jobs. For other
available commands, see CLI Reference.

Page 142 of 1835

Next, go to http://<hostname>:9000 and log in with default credentials (admin:admin). You can now start
configuring Cribl Stream with Sources and Destinations, or start creating Routes and Pipelines.

When a Worker Process receives an explicit shutdown command, it follows this sequence:

1. Shuts down internal system communications: stops receiving any commands from the API Process or
distributed Leader.

2. Shuts down the input Sources.

3. When the input stream ends, receives a signal event from Cribl Stream's event processor to flush out any
stateful Pipeline Functions (such as Aggregations, Sampling, Dynamic Sampling, and Suppress).

4. Waits for 10 seconds, to allow data to finish flowing through the streams processing engine. This wait is
designed to allow all Destinations to flush out remaining data. However, any data not flushed within this
interval – e.g., because of an error on downstream receivers – will be lost.

5. Exits.

Enabling Persistent Queues, on Destinations that support it, generally helps ensure data delivery to your
downstream systems. However, note that when a Worker Process restarts, there is a potential for duplicate
events to be sent through such Destinations.

This is because PQ doesnʼt mark events as safe to discard until they've been handed them o� to the host OS
to send out. So if the Worker Process exits at the final step above before all events have flushed, the final
handful of events will not have been marked as committed and re moved. Upon restart, Cribl Stream will still
see them, and will resend them.

Cribl Stream ships with a CLI utility that can update your system's configuration to start Cribl Stream at
system boot time. The basic format to invoke this utility is:

In the case of an API port conflict, the process will retry binding for 10 minutes before exiting.

Shutdown and Restart Sequence

Shutdown/Restart with PQ

Enabling Start on Boot

[sudo] $CRIBL_HOME/bin/cribl boot-start [enable|disable] [options] [args]

Page 143 of 1835

Most, if not all, popular Linux distributions use systemd now to start processes at boot, while older or more
obscure distributions may still use initd . Verify with your Linux distribution vendor if you aren't sure which
method your systems use in order to know which procedure listed below to follow.

To enable Cribl Stream to start at boot time with systemd, you need to run the boot‐start command.
Make sure you first create any user you want to specify to run Cribl Stream. E.g., to run Cribl Stream on boot
as existing user cribl , you'd use:

sudo $CRIBL_HOME/bin/cribl boot-start enable -m systemd -u cribl

This will install a unit file (as shown below) named cribl.service , and will start Cribl Stream at boot time
as user cribl . A ‐configDir option can be used to specify where to install the unit file. If not specified, this
location defaults to /etc/systemd/system/ .

If necessary, change ownership for the Cribl Stream installation:

[sudo] chown -R cribl $CRIBL_HOME

Next, use the enable command to ensure that the service starts on system boot:

[sudo] systemctl enable cribl

To disable starting at boot time, run the following command:

sudo $CRIBL_HOME/bin/cribl boot-start disable

Other available systemctl commands are:

systemctl [start|stop|restart|status] cribl

Note the file's default 65536 hard limit on maximum open file descriptors (known as a ulimit). The
minimum recommended value is 65536 . Linux tracks this per user account. You can view the current so�
ulimit for max open file descriptors with $ ulimit -n while logged in as the same user running the
cribl binary.

You will need to run this command as root, or with sudo . For options and arguments, see the
CLI Reference.

Using systemd

Page 144 of 1835

By default, disabling and re-enabling boot start will regenerate the cribl.service file. To persist any
overrides – such as proxy or privileged port usage – use this command:

systemctl edit cribl

This opens a text editor that prompts you to enter overrides, then saves them to a persistent file at:

/etc/systemd/system/cribl.service.d/override.conf

To enable Cribl Stream to start at boot time with initd, you need to run the boot‐start command. If the
user that you want to run Cribl Streams does not exist, create it prior to executing. E.g., running Cribl Stream
as user cribl on boot:

sudo $CRIBL_HOME/bin/cribl boot-start enable -m initd -u cribl

[Unit]
Description=Systemd service file for Cribl Stream.
After=network.target

[Service]
Type=forking
User=cribl
Restart=always
RestartSec=5
LimitNOFILE=65536
PIDFile=/install/path/to/cribl/pid/cribl.pid
ExecStart=/install/path/to/cribl/bin/cribl start
ExecStop=/install/path/to/cribl/bin/cribl stop
ExecReload=/install/path/to/cribl/bin/cribl reload
TimeoutSec=60

[Install]
WantedBy=multi-user.target

Persisting Overrides on systemd

Do NOT Run Cribl Stream as Root!

If Cribl Stream is required to listen on ports 1–1024, it will need privileged access. You can enable this
on systemd by adding this configuration key to your override.conf file:

[Service]
AmbientCapabilities=CAP_NET_BIND_SERVICE

Using initd

Page 145 of 1835

This will install an init.d script in /etc/init.d/cribl.init.d , and will start Cribl Stream at boot time as
user cribl . A ‐configDir option can be used to specify where to install the script. If not specified, this
location defaults to /etc/init.d .

If necessary, change ownership for the Cribl Stream installation:

[sudo] chown -R cribl $CRIBL_HOME

To disable starting at boot time, run the following command:

sudo $CRIBL_HOME/bin/cribl boot-start disable

To control Cribl Stream, you can use the following initd commands:

service cribl [start|stop|restart|status]

Notes on preserving required permissions across restarts and upgrades:

For details on configuring Cribl Stream to send and receive data through proxy servers, see our
System Proxy Configuration topic.

Persisting Overrides on initd

Do NOT Run Cribl Stream as Root!

If Cribl Stream is required to listen on ports 1–1024, it will need privileged access. On a Linux system
with POSIX capabilities, you can achieve this by adding the CAP_NET_BIND_SERVICE capability.
For example: # setcap cap_net_bind_service=+ep $CRIBL_HOME/bin/cribl

On some OS versions (such as CentOS), you must add an -i switch to the setcap command.
For example: # setcap -i cap_net_bind_service=+ep $CRIBL_HOME/bin/cribl

Important: Upgrading Cribl Stream will remove the CAP_NET_BIND_SERVICE capability from the
cribl executable, so you'll need to re‑run the appropriate setcap command again a�er each
upgrade.

Upon starting the Cribl Stream server, a bind EACCES 0.0.0.0:<port> error in the API or Worker
logs (depending on the service) might indicate that setcap did not successfully execute.

System Proxy Configuration

Page 146 of 1835

A single-instance installation can be configured to scale up and utilize as many resources on the host as
required. See Sizing and Scaling for details.

If you are running anti-virus so�ware on a Cribl Stream instance's host OS, here are general guidelines for
minimizing accidental blockage of Cribl Stream's normal operation.

Your overall goals are to prevent the anti-virus so�ware from locking any files while Cribl Stream needs to
write to them, and from triggering any changes that Cribl Stream would detect as needing to be committed.

First, if Persistent Queues are enabled on any Destinations, exclude any directories that these Destinations
write to. This is especially relevant if you're writing queues to any custom locations outside of $CRIBL_HOME .

Next, for any non-streaming Destinations that you've configured, exclude their staging paths.

Next, exclude these subdirectories of $CRIBL_HOME :

state/

log/

.git/ (usually only exists on Leader Nodes)

groups/ (on Leader Nodes)

local/ (on Workers or Leader)

Finally, avoid scanning any processes. Except for the queueing/staging directories already listed above,
Cribl Stream runs everything in memory, so scanning process memory will slow down Cribl Stream's
processing and reduce throughput.

;

Scaling Up

Anti-Virus Exceptions

Page 147 of 1835

Getting started with a distributed Cribl Stream deployment

To sustain higher incoming data volumes, and/or increased processing, you can scale from a single instance
up to a multi-instance, distributed deployment. The Worker instances are centrally managed by a single
Leader Node, which is responsible for keeping configurations in sync, and for tracking and monitoring the
instances' activity metrics.

To sustain high availability, failover to an alternate Leader is available in Cribl Stream 3.5 and above.

Single Instance – a single Cribl Stream instance, running as a standalone (not distributed) installation on one
server.

Leader Node – a Cribl Stream instance running in Leader mode, used to centrally author configurations and
monitor Worker Nodes in a distributed deployment.

Worker Node – a Cribl Stream instance running as a managed Worker, whose configuration is fully managed
by a Leader Node. (By default, will poll the Leader for configuration changes every 10 seconds.)

Worker Group – a collection of Worker Nodes that share the same configuration. You map Nodes to a
Worker Group using a Mapping Ruleset.

Worker Process – a Linux process within a Single Instance, or within Worker Nodes, that handles data inputs,
processing, and output. The process count is constrained by the number of physical or virtual CPUs available;
for details, see Sizing and Scaling.

Mapping Ruleset – an ordered list of filters, used to map Workers Nodes into Worker Groups.

3.3.3. Distributed Deployment

See common distributed deployment use cases in Worker Groups – What Are They and Why You
Should Care.

As of version 3.0, Cribl Stream's former "master" application components are renamed "leader."
While some legacy terminology remains within CLI commands/ options, configuration keys/values,
and environment variables, this document will reflect that.

Concepts

Page 148 of 1835

To clarify how the above concepts add up hierarchically, let's use a military metaphor involving toy soldiers:

Worker Process = soldier.

Worker Node = multiple Worker Processes = squad.

Worker Group = multiple Worker Nodes = platoon.

Multiple Worker Groups are very useful in making your configuration reflect organizational or geographic
constraints. E.g., you might have a U.S. Worker Group with certain TLS certificates and output settings, versus
an APAC Worker Group and an EMEA Worker Group, each with their own distinct certs and settings.

This is an overview of a distributed Cribl Stream deployment's components.

Distributed deployment architecture

Options and Constraints

A Worker Node's local running config can be manually overridden/changed, but changes won't
persist on the filesystem. To permanently modify a Worker Node's config: Save, commit, and deploy it
from the Leader. See Deploying Configurations below.

With an Enterprise license, you can configure role-based access control at the Worker Group level.
Non-administrator users will then be able to access Workers only within those Worker Groups on
which they're authorized.

Aggregating Workers

Architecture

Page 149 of 1835

Here is the division of labor among components of the Leader Node and Worker Node.

API Process – Handles all the API interactions.

N Config Helpers – One process per Worker Group. Helps with maintaining configs, previews, etc.

API Process – Handles communication with the Leader Node (i.e., with its API Process) and handles
other API requests.

N Worker Processes – Handle all the data processing.

For comparison, here's the simpler division of labor on a single-instance deployment, where the separate
Leader versus Worker Nodes are essentially condensed into one stack:

API Process – Handles all the API interactions.

N Worker Processes – Handle all data processing,

One of the Worker Processes is called the leader Worker Process. (Not to be confused with the Leader
Node.) This is responsible for writing configs to disk, in addition to data processing.

So here, the API Process handles the same responsibilities as a Leader Node's API Process, while the
Worker Processes correspond to the Worker Nodes' Worker Processes. The exception is that one
Worker Process does double duty, also filling in for one of the Leader Node's Config Helpers.

OS:

Linux: RedHat, CentOS, Ubuntu, AWS Linux (64bit).

System:

+4 physical cores, +8GB RAM.

5GB free disk space.

Leader Node

Worker Node

Single-Instance Architecture

Leader Node Requirements

Page 150 of 1835

Git: git must be available on the Leader Node. See details below.

Browser Support: Firefox 65+, Chrome 70+, Safari 12+, Microso� Edge

See Single-Instance Deployment for requirements. (That page also covers options for enabling a Leader
and Workers to automatically start on boot – including how to persist privileged port access on systemd
and initd.)

See Sizing and Scaling for capacity planning details.

During installation of any Leader or Worker instance, firewalls on that instance's host must enable outbound
communication to https://cdn.cribl.io on port 443.

Other ports must remain open continuously for a distributed deployment to function. The subsections below
list these separately for the Leader versus Workers.

If any of this tra�ic must go through a proxy – except for cluster communication, which can't be proxied – see
System Proxy Configuration for configuration details.

In a distributed deployment, Workers communicate with the Leader Node on these ports. Ensure that the
Leader is reachable on those ports from all Workers.

COMPONENT DEFAULT PORT PROTOCOL

Cluster communications 4200 TCP (Raw)

Config deployment 4200 HTTP/S

We assume that 1 physical core is equivalent to 2 virtual/hyperthreaded CPUs (vCPUs). All quantities
listed above are minimum requirements.

We recommend deploying the Leader on stable, highly available infrastructure, because of its role in
coordinating all Worker instances.

Worker Node Requirements

Port Requirements

Network Ports – Leader Node

Page 151 of 1835

COMPONENT DEFAULT PORT PROTOCOL

Bootstrap (optional) 9000 HTTP/S

In addition to the existing cluster connection, which is persistent, a separate HTTP connection is established
for config deployments from Workers to the Leader on TCP:4200 . This lasts connection only until the config
is downloaded.

By default, all Cribl Stream Worker instances listen on the following ports:

COMPONENT DEFAULT PORT

UI 9000

User options + Other data ports as required.

See Single-Instance Deployment, as the installation procedures are identical.

Cribl Stream requires git (version 1.8.3.1 or higher) to be available locally on the host where the
Leader Node will run. Configuration changes must be committed to git before they're deployed.

If you don't have git installed, check here for details on how to get started.

The Leader node uses git to:

Manage configuration versions across Worker Groups.

Provide users with an audit trail of all configuration changes.

Allow users to display di�s between current and previous config versions.

Cluster communication cannot go through proxies because this communication is not HTTP-based.

Network Ports – Worker Nodes

Installing on Linux

Version Control with git

Page 152 of 1835

This section covers:

1. Configuring a Leader Node.

2. Configuring a Worker Node.

You can configure a Leader Node through the UI, through the instance.yml config file, or through the
command line.

In global ⚙ Settings (lower le�) > Distributed Settings > General Settings, select Mode: Leader.

Next, on the Leader Settings le� tab, confirm or enter the required Leader settings (Address and Port).
Customize the optional settings if desired. Then click Save to restart.

This useful option enables you to click through from the Leader's Manage Worker Nodes page to an
authenticated view of each Worker's UI. The instructions below correspond to enabling the groups.yml
file's workerRemoteAccess configuration key.

To enable Remote UI access to Workers from the Leader's UI:

1. From Cribl Stream's le� nav, click Manage.

2. On the Manage Groups page: For each desired Worker Group, toggle Remote UI Access to On .

Setting up Leader and Worker Nodes

Configuring a Leader Node

Using the UI

Remote UI Access

Page 153 of 1835

Worker UI access setting

3. Select the Workers tab.

4. On the Manage Workers page: Click the link for any Worker you want to inspect.

To confirm that you are remotely viewing a Worker's UI, Stream will add a purple border, with a badge
labeled Viewing host: <host/GUID> .

At the upper right, you can click Restart to restart the Worker, or click the close box to return to the
Manage Workers page. Note that any changes you make here will not be propagated to the Leader.

Authenticated view of a Worker

In $CRIBL_HOME/local/_system/instance.yml , under the distributed section, set mode to master :

$CRIBL_HOME/local/_system/instance.yml

Any changes that you make here will not be propagated to the Leader.

Prior to Cribl Stream 3.4, Worker UI access was a global setting per deployment. If you upgrade from
a pre-3.4. version to v.3.4 or higher, regardless of your prior configuration, Remote UI access will
initially be set to No for all Worker Groups. Re-enable access for each desired Group, as shown above.

Using YAML Config File

Page 154 of 1835

You can configure a Leader Node using a CLI command of this form:

./cribl mode-master [options] [args]

For all options, see the CLI Reference.

On each Cribl Stream instance you designate as a Worker Node, you can configure the Worker through the UI,
the instance.yml config file, environment variables, or the command line.

In global ⚙ Settings (lower le�) > Distributed Settings > General Settings, select Mode: Managed Worker
(managed by Leader).

Next, on the Leader Settings le� tab, confirm or enter the required Address (e.g.,
criblleader.mycompany.com). Customize the optional settings if desired. Then click Save to restart.

In $CRIBL_HOME/local/_system/instance.yml , under the distributed section, set mode to worker :

$CRIBL_HOME/local/_system/instance.yml

distributed:
mode: master
master:
host: <IP or 0.0.0.0>
port: 4200
tls:
disabled: true

ipWhitelistRegex: /.*/
authToken: <auth token>
enabledWorkerRemoteAccess: false
compression: none
connectionTimeout: 5000
writeTimeout: 10000

Using the Command Line

Configuring a Worker Node

Using the UI

If you need to customize the Leader's port (from its default 4200), you can do so via the CLI's
mode‑worker command.

Using YAML Config File

Page 155 of 1835

You can configure Worker Nodes via environment variables, as in this example:

CRIBL_DIST_MASTER_URL=tcp://criblmaster@masterHostname:4203 ./cribl start

See the Environment Variables section for more details.

You can configure a Worker Node using CLI commands of this form:

The -H and -p parameters are required. For other options, see the CLI Reference. Here is an example
command:

Cribl Stream will need to restart a�er this command is issued.

Compared to a single-instance deployment, deploying in distributed mode changes Cribl Stream's menu
structure in a few ways. The le� nav adds Leader Mode, and Manage tabs – all to manage Workers and their

distributed:
mode: worker
envRegex: /^CRIBL_/
master:
host: <master address>
port: 4200
authToken: <token here>
compression: none
tls:
disabled: true

connectionTimeout: 5000
writeTimeout: 10000

tags:
- tag1
- tag2
- tag42

group: teamsters

Using Environment Variables

Using the Command Line

./cribl mode-worker -H <master-hostname-or-IP> -p <port> [options] [args]

./cribl mode-worker -H 192.0.2.1 -p 4200 -u myAuthToken

Menu Changes in Distributed Mode

Page 156 of 1835

assignments. Also, the global Monitoring link moves from the top to the le� nav.

Distributed deployment: menu structure

To access the Group-specific top nav shown above, click Manage, then click the Workers tab. On the
Manage Workers page click into your desired Worker Group. This contextual top nav also adds a Settings
tab, through which you can manage configuration per Worker Group.

For comparison, here is a single-instance deployment's consolidated top-menu structure:

Single-instance deployment: anchored top menu

Page 157 of 1835

Distributed mode adds a second set of Commit and Deploy buttons at the upper right. The division of labor
between these version-control buttons versus the global Commit button (in the le� nav's flyout) is:

The upper-right buttons commit and deploy configurations for the currently selected
Worker Group/Fleet.

The le� nav's Commit button commits configurations for all Groups/Fleets, and for the Leader itself –
but does not deploy the new configs to Groups/Fleets.

These controls will appear slightly di�erently depending on whether you have changes committed but not
yet deployed, and on whether you've enabled the Collapse actions setting.

Commit and Deploy controls – global at le�, Group/Fleet at right

Commit and Deploy Controls

Distributed mode's repositioning of navigation/menu links also applies to several instructions and
screenshots that you'll see throughout this documentation.

Where procedures are written around a single-instance scenario, just click into your appropriate
Group to access the corresponding navigation links.

Managing Worker Nodes

Page 158 of 1835

Click the le� nav's Manage tab to open the Manage Groups page with three upper tabs: Groups, Workers,
and Mappings.

The Workers tab provides status information for each Worker Node in the selected Worker Group.

Worker Nodes status/controls

Click anywhere on the row to reveal more details:

Worker Node Details

Workers Tab

Page 159 of 1835

If you see unexpected results here, keep in mind that:

Workers that miss 5 heartbeats, or whose connections have closed for more than 30 seconds, will be
removed from the list.

For a newly created Worker Group, the Config Version column can show an indefinitely spinning
progress spinner for that Group's Workers. This happens because the Workers are polling for a config
bundle that has not yet been deployed. To resolve this, click the Deploy option to force a deploy.

Click the Mappings tab to display status and controls for the active Mapping Ruleset:

Mappings status/controls

Click into a Ruleset to manage and preview its contained Rules:

Managing Ruleset Page

The Leader Node has two primary roles:

Mappings Tab

How Do Workers and Leader Work Together

Page 160 of 1835

1. Serves as a central location for Workers' operational metrics. The Leader ships with a monitoring
console that has a number of dashboards, covering almost every operational aspect of the deployment.

2. Serves as a central location for authoring, validating, deploying, and synchronizing configurations
across Worker Groups.

Leader Node/Worker Nodes relationship

UI access to Leader Node: TCP 9000.

Worker Node to Leader Node: TCP 4200 (Heartbeat/Metrics/other).

Workers will periodically (every 10 seconds) send a heartbeat to the Leader. This heartbeat includes
information about themselves, and a set of current system metrics. The heartbeat payload includes facts –
such as hostname, IP address, GUID, tags, environment variables, current so�ware/configuration version,
etc. – that the Leader tracks with the connection.

A Worker Node's failure to successfully send two consecutive heartbeat messages to the Leader will cause the
respective Worker to be removed from the Workers page in the Leader's UI, until the Leader again receives a
heartbeat message from the a�ected Worker.

Network Port Requirements (Defaults)

Leader/Worker Node Communication

Page 161 of 1835

When a Worker Node checks in with the Leader:

The Worker sends heartbeat to Leader.

The Leader uses the Worker's configuration, tags (if any), and Mapping Rules to map it to a
Worker Group.

The Worker Node pulls its Group's updated configuration bundle, if necessary.

If a Worker Node goes down, it loses any data that it's actively processing. With streaming senders
(Push Sources), Cribl Stream normally handles that data only in-memory. So, to minimize the chance of data
loss, configure persistent queues on Sources and/or Destinations that support it.

If the Leader goes down, Worker Groups can continue autonomously receiving and processing incoming data
from most Sources. They can also continue executing Collection tasks already in process.

However, if the Leader fails, future scheduled Collection jobs will also fail. So will data collection on the
Amazon Kinesis Streams, Prometheus Scraper, and all O�ice 365 Sources – which function as Collectors
under the hood.

Config bundles are compressed archives of all config files and associated data that a Worker needs to
operate. The Leader creates bundles upon Deploy, and manages them as follows:

Bundles are wiped clean on startup.

While running, at most 5 bundles per group are kept.

Bundle cleanup is invoked when a new bundle is created.

The Worker pulls bundles from the Leader and manages them as follows:

Last 5 bundles and backup files are kept.

At any point in time, all files created in the last 10 minutes are kept.

Bundle cleanup is invoked a�er a reconfigure.

Safeguarding In-Flight Data When a Worker Node Fails

Leader/Worker Dependency

Config Bundle Management

Worker Groups

Page 162 of 1835

Worker Groups facilitate authoring and management of configuration settings for a particular set of Workers.
To create a new Worker Group, click Groups from the le� nav and, from the resulting Manage Groups page,
click + Add New.

Click on newly created Group's Configure button to display an interface for authoring and validating its
configuration. You can configure everything for this Group as if it were a Cribl Stream single instance – using a
similar visual interface for Routes, Pipelines, Sources, Destinations, and Group-specific Settings.

On the Manage Groups page's right side, beside each Worker Group's Configure and Commit and Deploy
buttons, an ••• (Options) menu provides selections to clone Worker Groups' configurations to new Groups, or
to delete Groups.

The Clone option copies everything configured on the original Group: Sources, Pipelines, Packs, Routes,
and Destinations.

Manage Groups page: controls

Configuring multiple Worker Groups, or configuring more than 10 Worker Processes, requires a
Cribl Stream Enterprise or Standard license.

Configuring a Worker Group

Managing Worker Groups

Can't Log into the Worker Node as Admin User?

To explicitly set passwords for Worker Groups, see User Authentication.

Mapping Workers to Worker Groups

Page 163 of 1835

Mapping Rulesets are used to map Workers to Worker Groups. Within a ruleset, a list of rules evaluate Filter
expressions on the information that Workers send to the Leader.

Only one Mapping Ruleset can be active at any one time, although a ruleset can contain multiple rules.
At least one Worker Group should be defined and present in the system.

The ruleset behavior is similar to Routes, where the order matters, and the Filter section supports full
JavaScript expressions. The ruleset matching strategy is first-match, and one Worker can belong to only one
Worker Group.

To create a Mapping Ruleset, click the le� nav's Workers tab to open the Manage Worker Nodes page, and
then click the Mappings upper tab. Click + Add New, give the resulting New Ruleset a unique ID, and click
Save.

On the resulting Manage Mapping Rulesets page, click your new ruleset's Configure button, and start
adding rules by clicking on + Rule. While you build and refine rules, the Preview in the right pane will show
which currently reporting and tracked workers map to which Worker Groups.

A ruleset must be activated before it can be used by the Leader. To activate it, go to Mappings and click
Activate on the required ruleset. The Activate button will then change to an Active toggle. Using the
adjacent buttons, you can also Configure or Delete a ruleset, or Clone a ruleset if you'd like to work on it
o�line, test di�erent filters, etc.

Although not required, Workers can be configured to send a Group with their payload. See below how this
ranks in mapping priority.

Within a Mapping Ruleset, click + Add Rule to define a new rule. Assume that you want to define a rule for all
hosts that satisfy this set of conditions:

IP address starts with 10.10.42 , AND:

More than 6 CPUs OR CRIBL_HOME environment variable contains w0 , AND:

Belongs to Group420 .

Creating a Mapping Ruleset

The Mappings le�-nav link appears only when you have started Cribl Stream with global ⚙ Settings
(lower le�) > Distributed Settings > Mode set to Leader.

Add a Mapping Rule – Example

Rule Configuration

Page 164 of 1835

Rule Name: myFirstRule

Filter: (conn_ip.startsWith('10.10.42.') && cpus > 6) || env.CRIBL_HOME.match('w0')

Group: Group420

When a Cribl Stream instance runs as Leader, the following are created automatically:

A default Worker Group.

A default Mapping Ruleset,
with a default Rule matching all (true).

Priority for mapping to a group is as follows: Mapping Rules > Group sent by Worker > default Group.

If a Filter matches, use that Group.

Else, if a Worker has a Group defined, use that.

Else, map to the default Group.

Your typical workflow for deploying Cribl Stream configurations is the following:

1. Work on configs.

2. Save your changes.

3. Commit (and optionally push).

4. Deploy.

Deployment is the last step a�er configuration changes have been saved and committed. Deploying here
means propagating updated configs to Workers. You deploy new configurations at the Group level: Locate
your desired Group and click on Deploy. Workers that belong to the group will start pulling updated
configurations on their next check-in with the Leader.

Default Worker Group and Mapping

Mapping Order of Priority

Deploying Configurations

Can't Log into the Worker Node as Admin User?

When a Worker Node pulls its first configs, the admin password will be randomized, unless
specifically changed. This means that users won't be able to log in on the Worker Node with default
credentials. For details, see User Authentication.

Page 165 of 1835

On the Leader, a Worker Group's configuration lives under:
$CRIBL_HOME/groups/<groupName>/local/cribl/ .

On the managed Worker, a�er configs have been pulled, they're extracted under:
$CRIBL_HOME/local/cribl/ .

On the Leader, a Group's lookup files live under: $CRIBL_HOME/groups/<groupName>/data/lookups .

On the managed Worker, a�er configs have been pulled, lookups are extracted under:
$CRIBL_HOME/data/lookups . When deployed via the Leader, lookup files are distributed to Workers as part
of a configuration deployment.

If you want your lookup files to be part of the Cribl Stream configuration's version control process, we
recommended deploying using the Leader Node. Otherwise, you can update your lookup file out-of-band on
the individual Workers. The latter is especially useful for larger lookup files (> 10 MB, for example), or for
lookup files maintained using some other mechanism, or for lookup files that are updated frequently.

For other options, see Managing Large Lookups.

During a restart, to minimize ingestion disruption and increase availability of network ports,
Worker Processes on a Worker Node are restarted in a rolling fashion. 20% of running processes – with a
minimum of one process – are restarted at a time. A Worker Process must come up and report as started
before the next one is restarted. This rolling restart continues until all processes have restarted. If a Worker
Process fails to restart, configurations will be rolled back.

Configuration Files

Lookup Files

Some configuration changes will require restarts, while many others require only reloads. See here
for details.

Restarts/reloads of each Worker Process are handled automatically by the Worker. Note that
individual Worker Nodes might temporarily disappear from the Leader's Workers tab while
restarting.

Worker Process Rolling Restart

Page 166 of 1835

If data flows in via Load Balancers, make sure to register all instances. Each Cribl Stream node exposes a
health endpoint that your Load Balancer can check to make a data/connection routing decision.

HEALTH CHECK ENDPOINT HEALTHY RESPONSE

curl http://<host>:<port>/api/v1/health {"status":"healthy"}

CRIBL_DIST_MASTER_URL – URL of the Leader Node.
Format: <tls|tcp>://<authToken>@host:port?group=defaultGroup&tag=tag1&tag=tag2&tls.
<tls-settings below> .

Example: CRIBL_DIST_MASTER_URL=tls://<authToken>@leader:4200

group – The preferred Worker Group assignment.

resiliency – The preferred Leader failover mode.

volume – The location of the NFS directory to support Leader failover.

tag – A list of tags that you can use to assign the Worker to a Worker Group.

tls.privKeyPath – Private Key Path.

tls.passphrase – Key Passphrase.

tls.caPath – CA Certificate Path.

tls.certPath – Certificate Path.

tls.rejectUnauthorized – Validate Client Certs. Boolean, defaults to false .

tls.requestCert – Authenticate Client (mutual auth). Boolean, defaults to false .

tls.commonNameRegex – Regex matching peer certificate > subject > common names allowed to
connect. Used only if tls.requestCert is set to true .

CRIBL_DIST_MODE – worker | master . Defaults to worker i� CRIBL_DIST_MASTER_URL is present.

CRIBL_HOME – Auto setup on startup. Defaults to parent of bin directory.

CRIBL_CONF_DIR – Auto setup on startup. Defaults to parent of bin directory.

CRIBL_NOAUTH – Disables authentication. Careful here!!

Auto-Scaling Workers and Load-Balancing Incoming
Data

Environment Variables

Page 167 of 1835

CRIBL_TMP_DIR – Defines the root of a temporary directory.

Sources use this variable to construct temporary directories in which to stage downloaded Parquet data.
If CRIBL_TMP_DIR is not set (the default), Cribl applications create subdirectories within your operating
system's default temporary directory:

For Cribl Stream: <OS_default_temporary_directory>/stream/ .

For Cribl Edge: <OS_default_temporary_directory>/edge/ .

For example, on Linux, Stream's default staging directory would be /tmp/stream/ .

If you explicitly set this CRIBL_TMP_DIR environment variable, its value replaces this OS-specific default
parent directory.

CRIBL_VOLUME_DIR – Sets a directory that persists modified data between di�erent containers or
ephemeral instances.

CRIBL_DIST_WORKER_PROXY - Communicate to the Leader Node via a SOCKS proxy. Format:
<socks4|socks5>://<username>:<password>@<host>:<port> . Only <host>:<port> are required.

The default protocol is socks5:// , but you can specify socks4://proxyhost:port if needed.

To authenticate on a SOCKS4 proxy with username and password, use this format:
username:password@proxyhost:port . The proxyhost can be a hostname , ip4 , or ip6 .

These were removed as of LogStream 3.0:

CRIBL_CONFIG_LOCATION .

CRIBL_SCRIPTS_LOCATION .

When you install and first run the so�ware, Cribl Stream generates a GUID which it stores in a .dat file
located in CRIBL_HOME/local/cribl/auth , e.g.:

See GitOps for a separate list of GitOps-oriented environment variables.

Deprecated Variables

Workers GUID

Page 168 of 1835

When deploying Cribl Stream as part of a host image or VM, be sure to remove this file, so that you don't end
up with duplicate GUIDs. Cribl Stream will regenerate the file on the next run.

;

$ cat /opt/cribl/local/cribl/auth/676f6174733432.dat
{"it":1647910738,"phf":0,"guid":"e0e48340-f961-4f50-956a-5153224b34e3","lics":
["license-free-3.4.0-XYZ98765"]}

Page 169 of 1835

Getting started with Cribl App for Splunk

In a Splunk environment, you can install and configure Cribl Stream as a Splunk app (Cribl App for Splunk).
Depending on your requirements and architecture, it can run either on a Search Head or on a
Heavy Forwarder. You can use Cribl App for Splunk cannot in a Cribl Stream distributed deployment as a
Leader, or as a managed Worker.

Regardless of where you run Cribl App for Splunk, if you want to send data from Cribl Stream to a set of
Splunk indexers: In the Cribl Stream UI, select Data > Destinations > Splunk Load Balanced, then enter the
required information.

When running on an SH, Cribl Stream is set to mode-searchhead, the default mode for the app. It listens for
localhost tra�ic generated by a custom command: | criblstream . The command is used to forward
search results to the Cribl Stream instance's TCP JSON input on port 10420 , but it's also capable of sending
to any other Cribl Stream instance listening for TCP JSON.

Once received, data can be processed and forwarded to any of the supported Destinations. In addition,
several out-of-the box saved searches are ready to run and send their results to Cribl with a single click.

Select an instance on which to install.

3.3.4. Splunk App Deployment

Cribl App for Splunk for HFs Is Deprecated as of Cribl LogStream v.2.1

Cribl will continue to support this package, but customers are advised to begin planning now for
the eventual removal of support.

See Single-Instance Deployment and Distributed Deployment for alternatives.

Deploying Cribl App for Splunk

Running on a Search Head (SH)

Installing the Cribl App for Splunk on an SH

Page 170 of 1835

Ensure that ports 10000 , 10420 , and 9000 are available. See the Requirements section for more info.

Get the bits here, and install as a regular Splunk app.

Restart the Splunk instance.

Go to https://<instance>/en-US/app/cribl or https://<instance>:9000 , and log in with
Splunk admin role credentials.

Working with search results in a Cribl Stream pipeline.

Sending search results to any Destination supported by Cribl Stream.

When running on an HF, Cribl Stream is set to mode-hwf. It receives events from the local Splunk process per
routing configurations in props.conf and transforms.conf . Data is parsed and processed first by Splunk
pipelines, and then by Cribl Stream. By default, all data except internal indexes is routed out right a�er the
Typing pipeline.

Cribl Stream is capable of accepting data streams (unbroken events) or events from other sources. In this
case, the HF will deliver events locally to Cribl Stream, which processes them and sends them to one or more

Typical Use Cases for Search Head Mode

Running on a Heavy Forwarder (HF)

Page 171 of 1835

destinations downstream. When receivers are Splunk indexers, Cribl Stream can also load-balance across
them.

Select an instance on which to install.

Ensure that ports 10000 , 10420 , and 9000 are available. See here.

Get the bits here, and install as a regular Splunk app.

Set Cribl to mode-hwf: $SPLUNK_HOME/etc/apps/cribl/bin/cribl mode-hwf .

Restart the Splunk instance.

Go to https://<instance>:9000 and log in with Splunk admin role credentials.

Installing the Cribl App for Splunk on an HF

The SPLUNK_HOME environment variable must be defined.

Note About Splunk Warnings

If you come across messages similar to the following example, on startup or in logs, please
ignore them. They are benign warnings.

Invalid value in stanza [route2criblQueue]/[hecCriblQueue] in
/opt/splunk/etc/apps/cribl/default/transforms.conf, line 11: (key:
DEST_KEY, value: criblQueue) / line 24: (key: DEST_KEY, value: $1)

Page 172 of 1835

When Cribl App for Splunk is installed on an HF (in mode-hwf), below are the relevant sections in
configuration files that enable Splunk to send data to Cribl Stream:

apps/cribl/default/outputs.conf

apps/cribl/default/inputs.conf

apps/cribl/default/transforms.conf

apps/cribl/default/props.conf

Relevant configurations in Cribl App for Splunk on an HF

[tcpout]
disabled = false
defaultGroup = cribl

[tcpout:cribl]
server=127.0.0.1:10000
sendCookedData=true
useACK = false
negotiateNewProtocol = false
negotiateProtocolLevel = 0

[splunktcp]
route=has_key:_replicationBucketUUID:replicationQueue;has_key:_dstrx:typingQueue;has_ke

[route2cribl]
SOURCE_KEY = _MetaData:Index
REGEX = ^[^_]
DEST_KEY = _TCP_ROUTING
FORMAT = cribl

[route2criblQueue]
SOURCE_KEY = _MetaData:Index
REGEX = ^[^_]
DEST_KEY = queue`
FORMAT = criblQueue

[default]
TRANSFORMS-cribl = route2criblQueue, route2cribl

Configuring Cribl Stream with a Subset of Your Data

Page 173 of 1835

The props.conf stanza above will apply its transforms to everything. Depending on your requirements,
you might want to target only a subset of your sources, sourcetypes, or hosts. For example, the diagram
below shows the e�ective configurations of outputs.conf , props.conf , and transforms.conf to send
<bluedata> events through Cribl Stream.

;

Page 174 of 1835

Boot fully provisioned Workers

Cribl Stream Workers can completely provision themselves, directly from the Leader, upon initial boot. This
means that a fleet of any number of Nodes can launch and be fully functional within the cluster, in seconds.

A Cribl Stream Leader Node provides a bootstrap API endpoint, at /init/install-worker.sh , which
returns a shell script. You can run this shell script on any supported machine (see Restrictions below),
without Cribl Stream installed. This fully provisions the machine as a Worker Node.

Although you can specify the download URL when you execute the initial curl command, the Cribl Stream
package is not downloaded until you generate the script via the API, and then execute it.

All Worker Nodes' hosts must keep port 4200 open for ongoing management by the Leader. While the
bootstrap script runs, firewalls on each Worker's host must also allow outbound communication on the
following ports:

Port 443 to https://cdn.cribl.io.

Port 443 to a Cribl.Cloud Leader.

Port 9000 to an on-premises Leader.

If any of this tra�ic must go through a proxy, see System Proxy Configuration for configuration details.
To anticipate and resolve edge cases not mentioned here, see Restrictions below.

3.3.5. Bootstrap Workers from Leader

How Does It Work?

Requirements

Troubleshooting Root Access or SSL Errors

The script will install Cribl Stream into /opt/cribl , and will make system-level changes. For systems
like Ubuntu, which don't allow direct root access, you'll need to use the sudo prefix when executing
the script.

The script will create a user named cribl to install, own, and run Cribl Stream/Edge.

Page 175 of 1835

Cribl Stream admins can use the UI to concatenate and copy/paste the bootstrap script, automating several
steps below. You can use an adjacent option to grab a script that updates a Worker's Group assignment.

1. From Cribl Stream's le� nav, select Workers.

2. On the resulting Manage Worker Nodes page, click + Add/Update Worker at the upper right.

3. Select Bootstrap new from the menu, as shown in the composite screenshot below.

4. In the resulting Add Worker modal, the Cribl Stream package location defaults to Cribl CDN .
If desired, change this to Download URL . (For details about this option, see Adding Download URL.)

5. As needed, correct the target Group, as well as the Leader hostname/IP (URI).

6. Copy the resulting script to your clipboard.

7. Click either OK or Cancel to close the modal.

8. Paste the script onto your Worker Node's command line and execute it, to add the Worker.

As needed (see the note above), prepend sudo to the generated Script field's contents, and/or
append the -k flag.

If you encounter errors of this form:
ssl certificate problem: self signed certificate in certificate chain
...add the -k flag to disable certificate validation.

UI Access

To use these options, you must have the admin Role on a distributed deployment's Leader Node,
with an Enterprise license. You must also create the Worker Groups before using the following
instructions to add or reassign Workers to them.

Add/Bootstrap New Worker

Page 176 of 1835

Add/Bootstrap Worker UI option (composite)

You can also auto-generate a script that will update an existing Worker's Group assignment, and/or assign
the Worker to a di�erent Leader:

1. Follow steps 1–2 in Add/Bootstrap New Worker above.

2. From the + Add/Update Worker menu, select Update existing.

3. In the resulting Update Worker modal, select the new target Group for this Worker.

4. As needed, correct or change the Leader hostname/IP and/or Leader port number.

5. The Script type drop-down defaults to the Environment variable option for generating the script's
command. If you're not relying on environment variables, change this to CLI .

6. Copy the resulting script to your clipboard.

7. Click either OK or Cancel to close the modal.

Update Existing Worker

Page 177 of 1835

8. Paste the script onto your Worker Node's command line and execute it, to update the Worker's
assignment.

As needed (see the note above), prepend sudo to the generated Script field's contents, and/or
append the -k flag.

Update Worker UI option (composite)

GET http://<leader hostname or IP>:9000/init/install-worker.sh

STRING REQUIRED? DESCRIPTION

token optional
Leader Nodeʼs shared secret (authToken). By default, this is set to criblmaster .
You can find this secret in the Leader Node's Distributed Settings section.

API Spec

Request Format

Query Strings

Page 178 of 1835

STRING REQUIRED? DESCRIPTION

group optional Name of the clusterʼs Worker Group. If not specified, falls back to default .

download_url optional
Provide the complete URL to a Cribl Stream installation binary. This is especially useful
if the Worker Nodes donʼt have access to the Internet to download from cribl.io.

tag optional
When used in conjunction with Mapping Rules, enables you to specify the Worker Group
you want the bootstrapped Worker to join. Multiple tags should be in the form
&tag=tag1&tag=tag2 .

Example HTTP Request

GET http://<leader hostname or IP>:9000/init/install-worker.sh?token=79364d6e-dead-
beef-4c6e-554445664867

As of version 3.0, Cribl Stream's former "master" application components are renamed "leader."
While some legacy terminology remains within CLI commands/ options, configuration keys/values,
and environment variables, this document will reflect that.

Example Response

Page 179 of 1835

#!/bin/sh

START CRIBL LEADER TEMPLATE SETTINGS

CRIBL_MASTER_HOST="<Master FQDN/IP>"
CRIBL_AUTH_TOKEN="<Auth token string>"
CRIBL_VERSION="<Version>"
CRIBL_GROUP="<Default group preference>"
CRIBL_MASTER_PORT="<Master heartbeat port>"
CRIBL_DOWNLOAD_URL="<download url>"

END CRIBL MASTER TEMPLATE SETTINGS

Set defaults

checkrun() { $1 --help >/dev/null 2>/dev/null; }
faildep() { [$? -eq 127] && echo "$1 not found" && exit 1; }
[-z "${CRIBL_MASTER_HOST}"] && echo "CRIBL_MASTER_HOST not set" && exit 1
CRIBL_INSTALL_DIR="${CRIBL_INSTALL_DIR:-/opt/cribl}"
CRIBL_MASTER_PORT="${CRIBL_MASTER_PORT:-4200}"
CRIBL_AUTH_TOKEN="${CRIBL_AUTH_TOKEN:-criblmaster}"
CRIBL_GROUP="${CRIBL_GROUP:-default}"
if [-z "${CRIBL_DOWNLOAD_URL}"]; then

FILE="cribl-${CRIBL_VERSION}-linux-x64.tgz"
CRIBL_DOWNLOAD_URL="https://cdn.cribl.io/dl/$(echo ${CRIBL_VERSION} | cut -d '-'

-f 1)/${FILE}"
fi

UBUNTU=0
CENTOS=0
AMAZON=0

echo "Checking dependencies"
checkrun curl && faildep curl
checkrun adduser && faildep adduser
checkrun usermod && faildep usermod
BOOTSTART=1
SYSTEMCTL=1
checkrun systemctl && [$? -eq 127] && BOOTSTART=0
checkrun update-rc.d && [$? -eq 127] && BOOTSTART=0

echo "Checking OS version"
lsb_release -d 2>/dev/null | grep -i ubuntu && [$? -eq 0] && UBUNTU=1
cat /etc/system-release 2>/dev/null | grep -i amazon && [$? -eq 0] && AMAZON=1

echo "Creating cribl user"
if [$UBUNTU -eq 1]; then

 adduser cribl --home /home/cribl --gecos "Cribl Stream User" --disabled-password
fi

if [$CENTOS -eq 1] || [$AMAZON -eq 1]; then

 adduser cribl -d /home/cribl -c "Cribl Stream User" -m
usermod -aG wheel cribl

fi

echo "Installing Cribl Stream"
mkdir -p ${CRIBL_INSTALL_DIR}
curl -Lso ./cribl.tar.gz "${CRIBL_DOWNLOAD_URL}"
tar xzf ./cribl.tar.gz -C ${CRIBL_INSTALL_DIR} --strip-components=1
rm -f ./cribl.tar.gz
chown -R cribl:cribl ${CRIBL_INSTALL_DIR}

Page 180 of 1835

An easy way of wrapping HTTP methods is to use the curl command. Here is an example, which uses a GET
operation by default, with the same URL used in the above HTTP example:

The GET and curl procedures above will only output the contents of the script that needs executing – the
script will still need to be manually executed.

However, you can automate that part, too, using a command like the one shown below. This passes the
script's contents to the bash shell to immediately execute.

if [$BOOTSTART -eq 1]; then

echo "Setting Cribl Stream to start on boot"
${CRIBL_INSTALL_DIR}/bin/cribl boot-start enable -u cribl

fi

mkdir -p ${CRIBL_INSTALL_DIR}/local/_system
cat <<-EOF > ${CRIBL_INSTALL_DIR}/local/_system/instance.yml
distributed:
 mode: worker
 master:
 host: ${CRIBL_MASTER_HOST}
 port: ${CRIBL_MASTER_PORT}
 authToken: ${CRIBL_AUTH_TOKEN}
 tls:
 disabled: true
 group: ${CRIBL_GROUP}
EOF

chown -R cribl:cribl ${CRIBL_INSTALL_DIR}
if [$BOOTSTART -eq 1]; then

service cribl start
else

${CRIBL_INSTALL_DIR}/bin/cribl start
fi

curl Option

curl http://<leader hostname or IP>:9000/init/install-worker.sh?token=79364d6e-dead-
beef-4c6e-554445664867

Check Requirements above to avoid/resolve port or ownership issues.

Chaining Script Execution

curl http://<leader hostname or IP>:9000/init/install-worker.sh?token=79364d6e-dead-
beef-4c6e-554445664867 | bash -

Page 181 of 1835

As noted above, on Ubuntu and similar systems, you might need to insert sudo before the bash . If you
don't have a bash shell available, you can pipe the command to | sh - instead.

By default, the script gets configured to download the Cribl Stream package from the public Cribl repository.
If you want to specify a di�erent download location in the script, you'll use the download_url parameter.

To successfully execute the curl command while also specifying the download URL, you must enclose the
URL in double quotes. The reason for this is that the & character that joins multiple HTTP parameters is
interpreted by the shell as the operator to run commands in the background. Double-quoting the URL, as
shown in this example, prevents this.

To bootstrap Workers in an internet-disconnected (e.g., airgapped) environment, you can separate
downloading the installation package from Cribl's repository versus running the curl command. Here's an
example:

1. Download the installation package from Cribl's download page.

2. Rename the resulting file from cribl-x.x.x-xxxxxxxx-linux-x64.tgz to cribl.tar.gz .

3. Bootstrap the Worker from the file's current directory, by running a command of this form:

Cribl Stream uses Mapping Rulesets to map Workers to Worker Groups. When you create a Worker from a
bootstrap script, you can take advantage of Mapping Rulesets to specify which Worker Group you want the
newly-created Worker to join. This is done by adding tags to the download URL, in the form
&tag=tag1&tag=tag2 .

Adding Download URL

curl "http://<leader hostname or IP>:9000/init/install-worker.sh?token=79364d6e-
dead-beef-4c6e-554445664867&download_url=https://<your_internal_webserver>/cribl-
2.2.0-4589617e-linux-x64.tgz" | sh -

curl O�line Option

curl "https://<mycriblleader.mydomain.ext>:9000/init/install-worker.sh?
group=default&token=JOINTOKEN&download_url=/root/&user=cribl&install_dir=/opt/cribl
| bash -

Tagging to Assign Workers to Worker Groups

Page 182 of 1835

Basic Example

Suppose you have a Worker Group, Group420 , that you want bootstrapped Workers to join.

In the active Mapping Ruleset for Group420 , create a new rule that maps any Worker with the tag awseast1
to the Group420 Worker Group. You can do this with a filter:

Then, in the bootstrap script, add a download URL with a tag that matches the filter you just created. For
example:

When you use the script to bootstrap a new Worker, the Worker will be assigned to Group420 .

Advanced Example

Suppose you have four Worker Groups distributed between two regions and two platforms:

 AWS AZURE

Region 1 Group01 Group02

Region 2 Group03 Group04

Using two tags (one for region and one for platform) you can represent all four possible combinations, and
thus all four Worker Groups:

tag=aws&tag=region1 maps to Group01 .

tag=azure&tag=region1 maps to Group02 .

tag=aws&tag=region2 maps to Group03 .

tag=azure&tag=region2 maps to Group04 .

For each Worker Group, you'll create a Mapping Rule with a filter for the appropriate tag combination to
match. For example, this filter would match Group04 :

cribl.tags.include('awseast1')

curl "http://<logstream_leader>:9000/init/install-worker.sh?
tag=awseast1&token=criblmaster" | bash -

cribl.tags.includes('azure') && cribl.tags.includes('region2')

Page 183 of 1835

Then you can use the tag combination in the download URL of a bootstrap script. For example, the tags in
this download URL map to Group04 :

Any Worker created by the script with the above download URL will be assigned to Group04 .

STATUS CODE REASON

200 – OK All is well. You should have received the script as a response.

403 – Forbidden Either the node is not configured as a Leader, or the token provided is invalid.

Keep the following in mind when using this feature:

Each Worker must normally have access to the internet in order to download the Cribl Stream
installation binary from cribl.io. Where this isnʼt feasible, you can use the download_url switch to point
to a binary in a restricted location.

TLS is not enabled by default. If enabled and configured, access to this feature will be over https
instead of http .

Red Hat, Ubuntu, CentOS, and Amazon Linux are the only supported Worker platforms.

For public-cloud customers, an easy way to use this feature is in an instanceʼs user data. First, be sure to set
the Leader Node to mode = 'leader' . Then use the following script (changing the command as needed.
based on the information above). Upon launch, the Worker Node will reach out to the Leader, download the
script, download the Cribl Stream package from the specified location, and then install and configure
Cribl Stream:

http://<logstream_leader>:9000/init/install-worker.sh?
tag=azure&tag=region2&token=criblmaster

Status Codes

Restrictions

User Data

#!/bin/bash
curl http://<leader-node-ip/host-address>:9000/init/install-worker.sh?token=<auth-
token> | sh -

Page 184 of 1835

;

Page 185 of 1835

To handle unexpected outages in your on-premises distributed deployment, Cribl Stream 3.5 and above
supports configuring a second Leader for failover. This way, if the primary Leader goes down, Collectors and
Collector-based Sources can continue ingesting data without interruption.

When you configure a second Leader, there will be only one active Leader Node at a time. The second
Leader Node will be used only for failover. For this architecture to work, you must configure all failover
Leaders' volumes to point at same the Network File System (NFS) volume/shared drive.

If the primary Leader Node goes down:

Cribl Stream will recover by switching to the standby Leader Node.

The new Leader Node will have the same configs, state, and metrics as the previous Leader Node.

The Worker Nodes connect to the new Leader.

3.3.6. Leader High Availability/Failover

Configuring a backup Leader requires a Cribl Stream Enterprise or Standard license.

How It Works

Page 186 of 1835

Leader High Availability/Failover Design

Before adding a Second Leader, ensure that you have the following configuration:

Make sure that both Leaders have matching auth tokens. If you configure a custom Auth token, match its
value on the opposite Leader.

In the UI, check and match these values at each Leader's global ⚙ Settings (lower le�) >
Distributed Settings > Leader Settings> > Auth token.

Required Configuration

Auth Tokens

Page 187 of 1835

Or, from the filesystem, check and match all Leaders' instance.yml > master section > authToken
values.

(If tokens don't match, Worker Nodes will fail to authenticate to the alternate Leader when it becomes
active.)

On all Leader Nodes, use the latest version of the NFS client. NFSv4 is required.

Ensure that the NFS volume has at least 100 GB available disk space.

Ensure that the NFS volume's IOPS (Input/Output Operations per Second) is ≥ 200. (Lower IOPS values
can cause excessive latency.)

Ensure that ping/latency between the Leader Nodes and NFS is < 50 ms.

Configure all Leaders behind a load balancer.

Expose ports 9000 and 4200 via the load balancer.

Load balancers must support health checks via /api/v1/health endpoint .

The following load balancers support health checks:

Amazon Web Services (AWS) Network Load Balancer (NLB).

HAProxy.

NGINX Premium.

Use the latest NFS client across all Leaders. If you are on AWS, we recommend using Amazon's Elastic File
System (AWS EFS) for your NFS storage. Ensure that the user running Cribl Stream has read/write access to

NFS

You can validate the NFS latency using a tool like ioping . Navigate to the NFS mount, and enter the
following command:

For details on this particular option, see the ioping docs.

ioping .

Load Balancers

Recommended Configuration

Page 188 of 1835

the mount point.

For best performance, place your Leader Nodes in the same geographic region as the NFS storage. If the
Leader and NFS are distant from each other, you might run into the following issues:

Latency in UI and/or API access.

Missing metrics between Leader restarts.

Slower performance on data Collectors.

You can configure your second Leader Node in the following ways. These configuration options are similar to
configuring the primary Leader Node:

Using the UI

Updating the YAML config file

Using the Command Line

Using Environment Variables

1. In global ⚙ Settings (lower le�) > Distributed Settings > General Settings, select Mode: Leader .

2. Next, on the Leader Settings le� tab, select Resiliency: Failover . This exposes several additional
fields.

3. In the Failover volume field, enter the location of the NFS directory to support Leader failover (e.g.,
(/mnt/cribl)).

4. Optionally, adjust the Lease refresh period from its default 5s This setting determines how o�en the
primary Leader refreshes its hold on the Lease file.

5. Optionally, adjust the Missed refresh limit from its default 3 . This setting determines how many Lease
refresh periods elapse before standby Nodes attempt to promote themselves to primary.

6. Click Save to restart.

In $CRIBL_HOME/local/_system/instance.yml , under the distributed section:

Configuring a Second Leader Node

Using the UI

Using the YAML Config File

Page 189 of 1835

1. Set resiliency to failover .

2. Specify a volume for the NFS disk to automatically add to the Leader Failover cluster.

$CRIBL_HOME/local/_system/instance.yml

You can configure a second Leader Node using a CLI command of this form:

./cribl mode-master -r failover -v /tmp/shared

For all options, see the CLI Reference.

You can configure a second Leader Node via the following environment variables:

CRIBL_DIST_MASTER_RESILIENCY=failover : Sets the Leader's Resiliency to Failover mode.

CRIBL_DIST_MASTER_FAILOVER_VOLUME=/tmp/shared : Sets the location of the NFS directory to
support Leader failover.

CRIBL_DIST_MASTER_FAILOVER_MISSED_HB_LIMIT : Determines how many Lease refresh periods
elapse before the standby Nodes attempt to promote themselves to primary. Cribl recommends setting
this to 3 .

CRIBL_DIST_MASTER_FAILOVER_PERIOD : Determines how o�en the primary Leader refreshes its hold
on the Lease file. Cribl recommends setting this to 5s .

For further variables, see Environment Variables.

distributed:
mode: master
master:
host: <IP or 0.0.0.0>
port: 4200
resiliency: failover
failover:
volume: /path/to/nfs

Note that instance.yml configs are local, not on the shared NFS volume.

Using the Command Line

Using Environment Variables

Page 190 of 1835

To view the status of your Leader Nodes, select Monitoring (side or top nav) > System > Leaders.

Monitoring Leader Nodes

When upgrading:

Stop both Leaders.

Upgrade (Stream, Edge) the Primary Leader, Second Leader, and then each Worker Node, respectively.

;

Monitoring the Leader Nodes

Upgrading

Page 191 of 1835

If you've configured a Cribl Stream single-instance deployment and now want to promote it to distributed,
here are a couple of approaches to doing so, while retaining the configuration you've already created.

We'll start with the simplest scenario, in which you plan to set up distributed mode with a single
Worker Group. By default, this group will literally be named default . (We'll also explain how to extend this
scenario.)

1. If you haven't already installed git (required for the Leader), do so as outlined here.

2. Stop the Cribl Stream server (./cribl stop).

3. Your single instance's configs are under Cribl Stream's local/ subdirectory. So, copy
$CRIBL_HOME/local/cribl/* to $CRIBL_HOME/groups/default/local/cribl/ .

This stages your configs for the default Worker Group.

4. Restart Cribl Stream, selecting Distributed Mode: Leader .

5. At this point, the Leader should have inherited your previous single-instance settings. Commit and
deploy these settings to the default group, which should resume the same data processing that your
single instance was executing.

6. If you want to replicate the same configs to additional Worker Groups, add those groups now via the
Groups UI. Then repeat the preceding four steps, targeting the new subdirectories that have been
created on the filesystem for the new groups.

This alternative approach uses rsync to replicate your single-instance configs.

3.3.7. Converting a Single Instance to Distributed
Deployment

Simple Copy

Creating multiple Worker Groups requires an Enterprise or Standard license.

rsync

Page 192 of 1835

1. Use this command to rsync your single-instance configuration to each of your distributed Groups
(replacing the <group‐name> placeholder here):

2. Restart Cribl Stream, selecting Distributed Mode: Leader .

3. Commit and deploy the new configuration.

;

rsync -a $cribl/local/cribl newmaster:$cribl/groups/<group‐name>/local/

Page 193 of 1835

3.4. Orchestrated Deployment

Cribl's leader and workergroup Helm charts provide a fast way to deploy a distributed Cribl Stream
environment to a Kubernetes cluster.

Helm version 3 is required to use these charts.

To install Helm on (e.g.) a Mac, using Homebrew:

Find instructions for other operation systems in Helm's installation documentation.

If you haven't done so already, create a namespace. Our documentation example uses logstream .

Add the Cribl Helm repo.

The following example creates a distributed deployment with two autoscaled Worker Groups/Fleets,
pcilogs and system-metrics . It uses an auth token of ABCDEF01-1234-5678-ABCD-ABCDEF012345 , sets
an admin password, and installs our license:

3.4.1. Kubernetes/Helm Deployment

Prerequisites

brew install helm

Deploying

kubectl create namespace logstream

helm repo add cribl https://criblio.github.io/helm-charts/

Page 194 of 1835

If you do not specify a license in your install with config.license , and you want to run distributed, you'll
need to go to Cribl Stream's Settings > Licensing UI page and accept the Free license. (The Free license
allows one Worker Group/Fleet.) If your Helm configuration includes the config.groups option, the
Cribl Stream Leader Node will be configured as a distributed Leader. If you omit that option, it will be
configured as a single instance. (You can later use Cribl Stream's Settings > Distributed page to select Mode:
Leader .)

Upgrading Cribl Stream to new bits via Helm is easy. Sync up your repo to the origin, and then upgrade each
chart version. The example below updates to the current version, but you can append --version X.Y.Z if
you want to specify a particular version.

;

helm install ls-leader cribl/logstream-leader \
 --set "config.groups={pcilogs,system-metrics}" \
 --set config.token="ABCDEF01-1234-5678-ABCD-ABCDEF012345" \
 --set config.adminPassword="<admin password>" \
 --set config.license="<license key>" \
 -n logstream

helm install ls-wg-pci cribl/logstream-workergroup \
 --set config.host="ls-leader-internal" \
 --set config.tag="pcilogs" \
 --set config.token="ABCDEF01-1234-5678-ABCD-ABCDEF012345" \
 -n logstream

helm install ls-wg-system-metrics cribl/logstream-workergroup \
 --set config.host="ls-leader-internal" \
 --set config.tag="system-metrics" \
 --set config.token="ABCDEF01-1234-5678-ABCD-ABCDEF012345" \
 -n logstream

Running Distributed on a Free License

Upgrading

helm repo update
helm upgrade ls-leader cribl/logstream-leader -n logstream
helm upgrade ls-wg-pci cribl/logstream-workergroup -n logstream
helm upgrade ls-wg-system-metrics cribl/logstream-workergroup -n logstream

Page 195 of 1835

Boot a fully provisioned Leader Node via Helm

This page outlines how to deploy a Cribl Stream Leader Node (or single instance) to AWS via Kubernetes,
using a Cribl-provided Helm chart.

This chart replaces the logstream‑master chart, which was deprecated as of v.2.9.9. See Migration below for
instructions on migrating to this new chart to access features newly provided in this and future versions.

Supports Cribl Stream v.3.5.2 (default version).

Supports the nodeSelector configuration option for managing pod scheduling.

Supports using a fixed IP address for LoadBalancer s in both created services, via the
service.internalLoadBalancerIP and service.externalLoadBalancerIP options. (A fixed IP
address is not universally supported across K8s implementations; check your implementation before
configuring this option.)

As built, Cribl's chart will deploy a Cribl Stream Leader server for Cribl Stream, consisting of a deployment,
two services, and a number of persistent volumes.

3.4.2. K8s Leader Deployment

This chart is a work in progress, provided as-is. Cribl expects to further develop and refine it.

Cribl recommends deploying the Leader on stable, highly available infrastructure, because of its role
in coordinating all Worker instances.

Deprecation Notice

New Capabilities

Deployment

Page 196 of 1835

Deployment schematic

Note that this chart creates two load-balanced services:

The main one (named a�er the Helm release), which is intended as the primary service interface for
users.

The "internal" one (named <helm-release>‐internal), which is intended for the worker-group-to-
leader communication.

This section covers both general and specific prerequisites, with a bias toward the EKS‑oriented approach
that Cribl uses for its own deployments.

By default, this chart installs only a Cribl Stream Leader Node. To also deploy Cribl Stream
Worker Groups/Fleets via Helm, you can use the Set Up Worker Groups/M appings override described
below.

You can also use Cribl's separate logstream-workergroup chart. For details, see Kubernetes
Deployment: Worker Group/Fleet in this documentation.

AWS and Kubernetes Prerequisites

Page 197 of 1835

Install the AWS CLI, version 2, following AWS' instructions.

Next, create or modify your ~/.aws/config file to include (at least) a [profile] section with the following
SSO (single-sign-on) details:

You will, of course, need kubectl set up on your local machine or VM. Follow Kubernetes' installation
instructions.

You must modify your ~/.kube/config file to instruct kubectl what cluster (context) to work with.

1. Run a command of this form: aws --profile <profile‐name> eks update-kubeconfig --name
<cluster‐name>
This should return a response like this: Added new context arn:aws:eks:us-west-
2:424242424242:cluster/<cluster‐name> to /Users/<username>/.kube/config

2. In the resulting ~/.kube/config file's args section, as the new first child, insert the profile argument
that you provided to the aws command. For example:

3. Also change the command: aws pair to include the full path to the aws executable. This is usually in
/usr/local/bin , in which case you'd insert: command: /usr/local/bin/aws .

This section of ~/.kube/config should now look something like this:

Set Up AWS CLI

[profile <your-profile-name>]
sso_start_url = https://<your-domain>/start#/
sso_region = <your-AWS-SSO-region>
sso_account_id = <your-AWS-SSO-account-ID>
sso_role_name = <your-AWS-role-name>
region = <your-AWS-deployment-region>

Set Up kubectl

Add a Cluster to Your kubeconfig File

args:
- --profile=<profile‐name>
- --region
[...]

Page 198 of 1835

With these AWS and Kubernetes prerequisites completed, you're now set up to run kubectl commands
against your cluster, as long as you have an active aws SSO login session.

Next, do the Helm setup.

1. You'll need Helm (preferably v.3.x) installed. Follow the instructions here.

2. Add Cribl's repo to Helm, using this command: helm repo add cribl
https://criblio.github.io/helm-charts/

The chart requires persistent storage. It will use your default StorageClass, or (if you prefer) you can override
config.scName with the name of a specific StorageClass to use.

Cribl has tested this chart primarily using AWS EBS storage, via the CSI EBS driver. The volumes are created as
ReadWriteOnce claims. For details about storage classes, see Kubernetes' Storage Classes documentation.

If you're running on EKS, Cribl highly recommends that you use Availability Zone–specific node groups. For
details, see eksctl.io's Autoscaling documentation.

 args:
 - --profile=<profile‐name>
 - --region
 - us-west-2
 - eks
 - get-token
 - --cluster-name
 - lab
 command: /usr/local/bin/aws
 env:
 - name: AWS_PROFILE
 value: <profile-name>

Install Helm and Cribl Repo

Persistent Storage

AWS-Specific Notes

Do not allow a single node group to spans AZs. This can lead to trouble in mounting volumes,
because EBS volumes are AZ-specific.

Page 199 of 1835

See other EKS-Specific Issues on our GitHub repo.

You'll want to override some of the chart's default values. The easiest way is to copy this chart's default
values.yaml file from our repo. save it locally, modify it, and install it in Helm:

1. Copy the raw contents of: https://github.com/criblio/helm-charts/blob/master/helm-chart-
sources/logstream-leader/values.yaml

2. Save this as a local file, e.g.: /bar/values.yaml

3. Modify values as necessary (see Values to Override below).

4. Install your updated values to Helm, using this command: helm install -f /bar/values.yaml

This section covers the most likely values to override. To see the full scope of values available, run: helm
show values cribl/logstream-leader

KEY TYPE DEFAULT VALUE DESCRIPTION

config.
adminPassword

String [No default] The password you want to assign to the admin user.

config.token String [No default]

The auth key you want to set up for Worker access. If you
set this value, the Cribl Stream instance will be
configured only as a Leader server for a distributed
deployment. (You can also configure this later via the
Cribl Stream UI, a�er launching the instance in single-
instance mode.)

config.license String [No default]
The license for your Cribl Stream instance. If you do not
set this, it will default to the Free license. You can change
this in the Cribl Stream UI as well.

config.groups List [No default]

Array of Worker Group names to configure for the Leader
instance. This will create a mapping for each Group,
which looks for the tag <groupname> , and will create
the basic structure of each Group's configuration.

Configure the Chart's Values

Values to Override

Page 200 of 1835

KEY TYPE DEFAULT VALUE DESCRIPTION

config.scName String
\<default
StorageClass
name>

The StorageClass name for all of the persistent volumes.

config.
rejectSelfSigned
Certs

Number 0
Either 0 (allow self-signed certificates) or 1 (deny self-
signed certs).

config.healthPort Number 9000 The port to use for health checks (readiness/live).

config.healthScheme String HTTP
The scheme to use for health checks. Supports HTTP or
HTTPS .

service.
internalType

ClusterIP [No default]

The type to use for the <release>-leader-internal
service. In 2.4.5+, this is set to ClusterIP by default.
If you have any Worker Groups/Fleets outside of the
Kubernetes cluster where the Leader lives, you'll need to
change this to NodePort or LoadBalancer to expose it
outside of the cluster.

service.
internal
LoadBalancerIP

IP address [No default]

If the service.internalType is set to LoadBalancer ,
specifies the IP address to use for the load-balancer
service interface. Before configuring, check whether your
K8s implementation supports fixed IP addresses.

service.
externalType

Load
Balancer

[No default]
The type to use for the user-facing <release>‐leader
service. If ingress.enable is set, this will be force-set
to NodePort , to work with the ingress.

service.
external
LoadBalancerIP

IP address [No default]

If the service.externalType is set to LoadBalancer ,
specifies the IP address to use for the load-balancer
service interface. Before configuring, check whether your
K8s implementation supports fixed IP addresses.

Page 201 of 1835

KEY TYPE DEFAULT VALUE DESCRIPTION

service.ports
Array of
Maps

The ports to make available, both in the deployment and
in the service. Each "map" in this list needs the following
values set:

name
A descriptive name, identifying what the port is
being used for.

port
The container port to be made available.

protocol
The protocol in use for this port (UDP or TCP).

external
Set to true to expose the port on the external
service, or false to not expose it.

service.annotations Object [No default]
Annotations for the service component – this is where
you'll want to put load-balancer–specific configuration
directives.

criblImage.tag String 3.5.2

The container image tag to pull from. Cribl will increment
this tag per Cribl Stream version. By default, this will use
a version equivalent to the chart's appVersion value.
You can override this with latest to get the latest
Cribl Stream version, or with a specific Cribl Stream
version number (like "3.5.1").

consolidate_volumes boolean [No default]

If this value exists, and the helm command is upgrade ,
this will use the split volumes that we created in charts
before 2.4 and consolidate them down to one config
volume. This is a one-time event.

nodeSelector Object [No default]
Add nodeSelector values to define the nodes on which
pods are scheduled. For details and allowed values, see
K8s' Assigning Pods to Nodes topic.

The links here point to configuration details on our GitHub repo.

KEY TYPE
DEFAULT

VALUE
DESCRIPTION

- name:
api

 port:
9000

protocol:

TCP

external:
true

- name:
leadercomm
 port:
4200

protocol:
TCP

external:
false

Extra Configuration Options

Page 202 of 1835

KEY TYPE
DEFAULT

VALUE
DESCRIPTION

extraVolumeMounts Object
[No
default]

Additional volumes to mount in the container.

extraSecretMounts Array
[No
default]

Pre-existing Secrets to mount within the container.

extraConfigmapMounts Object
[No
default]

Pre-existing ConfigMaps to mount within the container.

extraContainers Object
[No
default]

Additional containers to run alongside the main Cribl Stream
container. This allows you to implement the standard Sidecar
pattern with the Cribl Stream Helm charts.

extraInitContainers Object
[No
default]

Additional containers to run ahead of the primary container in
the pod.

securityContext.runAsUser Number 0 User ID to run the container processes under.

securityContext.runAsGroup Number 0 Group ID to run the container processes under.

envValueFrom Object
[No
default]

Environment variables to be exposed from the Downward API.

env Array
[No
default]

Additional static environment variables.

ingress.enable boolean false
Enable Ingress in front of the external service. Setting this to
true changes the external service to type NodePort , and

creates an ingress that connects to it.

ingress.annotations Object
[No
default]

If ingress.enable is set to true , this is where annotations to
configure the specific ingress controller. (NOTE: Ingress is
supported only on Kubernetes 1.19 and later clusters).

Cribl recommends that you use the same Cribl Stream version on Worker Nodes/Edge Nodes versus the
Leader Node. So if, for any reason, you're not yet upgrading your Workers to the version in the Leader's
default values.yaml > criblImage.tag , be sure to override that criblImage.tag value to match the
version you're running on all Workers.

Match Versions

EKS-Specific Values

Page 203 of 1835

If you're deploying to EKS, many annotations are available for the load balancer. Set these as values for the
service.annotations key. Internally, we typically use the annotations for logging to S3, like this:

For an exhaustive list of annotations you can use with AWS's Elastic Load Balancers, see the Kubernetes
Service documentation.

With the above prerequisites and configuration completed, you're ready to install our chart to deploy a
Cribl Stream Leader Node. Here are some example commands:

To install the chart with the release name logstream-leader :
helm install logstream-leader cribl/logstream-leader

To install the chart using the storage class ebs-sc :
helm install logstream-leader cribl/logstream-leader --set config.scName='lebs-sc

Cribl Stream will not automatically deploy changes to the Worker Nodes/Edge Nodes. You'll need to commit
and deploy changes to all of your Worker Groups/Fleets.

If you don't override its default values, this Helm chart e�ectively creates a single‑instance deployment of
Cribl Stream, using the standard container image. You can later configure distributed mode, licensing, user
passwords, etc., all from the Cribl Stream UI. However, you also have the option to change these
configuration details upfront, by installing with value overrides. Here are some common examples.

 service.beta.kubernetes.io/aws-load-balancer-access-log-enabled: "true"
 service.beta.kubernetes.io/aws-load-balancer-access-log-emit-interval: "5"
 service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-name: "<bucket
name>"
 service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-prefix: "ELB"

More options are coming here!

Basic Chart Installation

Post-Install/Post-Upgrade

Change the Configuration

Apply a License

Page 204 of 1835

If you have a Standard or Enterprise license, you can use the config.license parameter to add it as an
override to your install:

helm install logstream-leader cribl/logstream-leader --set config.license="<long encoded

license string redacted>"

If you do not specify a license with config.license , and you want to run distributed, you'll need to go to
Cribl Stream's global ⚙ Settings (lower le�) > Licensing UI page and accept the Free license. (The Free
license allows one Worker Group/Fleet.)

If your Helm configuration includes the config.groups option, the Cribl Stream Leader Node will be
configured as a distributed Leader. If you omit that option, it will be configured as a single instance. (You can
later use Cribl Stream's global ⚙ Settings (lower le�) > Distributed page to select Mode: Leader .)

Normally, when you first install Cribl Stream and log into the UI, it prompts you to change the default admin
password. You can skip the password-change challenge by setting your admin password via the
config.adminPassword parameter:

helm install logstream-leader cribl/logstream-leader --set config.adminPassword="<new

password>"

As mentioned above, the chart's default is to install a vanilla deployment of Cribl Stream. If you are deploying
as a Leader, you can use the config.groups parameter to define the Worker Groups/Fleets you want
created and mapped. Each group in the list you provide will be created as a Worker Group/Fleet, with a
Mapping Rule to seek a tag with that Worker Group's name in it:

helm install logstream-leader cribl/logstream-leader --set config.groups=

{group1,group2,group3}

The example above will create three Worker Groups/Fleets/Fleets – group1 , group2 , and group3 – and a
Mapping Rule for each.

Here is how to migrate from the deprecated logstream‑master chart to logstream‐leader .

Run Distributed on a Free License

Set the Admin Password

Set Up Worker Groups/Mappings

Migrating from the logstream-master Chart

Page 205 of 1835

You'll need to "export" your data from the existing logstream-master pod. And first, you'll need to get the
current pod's name, as well as its namespace. The easiest way to do this is to run kubectl get pods -A
and then look pods that start with the release name you used when you ran helm install . For example, if
you installed with the following command:

helm install ls-master cribl/logstream-master

...you'd look for a pod name that started with ls-master .

Once you've identified your pod and namespace, you can export your configuration using a combination of
kubectl and tar :

This command executes the tar based back up of the config-volume, and outputs it to a local tar file
(cribl_backup.tar).

Exploding the tarball onto the new persistent volume is a one-time event. Once the config volume is restored,
you'll make changes to the config via the Cribl Stream UI or API. Either approach will change the config on
disk, which you wouldn't want to overwrite the next time the pod restarts. You can manually re-hydrate the
backup by installing the logstream‑leader chart, and then running the following command:

This will restore the data into the config volume (which is mounted as /opt/cribl/config-volume). If you
want to double-check that, run:

A�er this, you want to delete the active pod, allowing the new one to come up with the restored
configuration. To do this, you'd run the following kubectl command:

Exporting your Configuration

kubectl exec <pod name> -n <namespace> -- bash -c "cd /opt/cribl/config-volume; tar
cf - ." > cribl_backup.tar

"Re-Hydrating" the Backup on the logstream-leader Chart

cat cribl_backup.tar| kubectl -n <namespace> exec --stdin <pod name> -- bash -c "cd
/opt/cribl/config‐volume/; tar xf -"

kubectl -n <namespace> exec <pod name> -- bash -c "ls -alR /opt/cribl/config-volume"

kubectl -n <namespace> delete <pod name>

Page 206 of 1835

This will cause the pod to exit, but the deployment will replace it with a new pod which will use the same
config persistent volume.

Now that you've got a new working leader chart, you need to tell the workers to connect to the new leader
instead of to the old logstream-master instance. This is a simple helm upgrade operation. You'll need to
use the same command string that you used to install, changing the word install to upgrade . But change
the value of config.host to the new service that was created for the logstream‑leader install. (You can
change config.host either via the --set option or in the values.yml file.) For example, if you ran the
logstream-leader install with the release name ls-lead , like this:

helm install ls-lead -f <values file> cribl/logstream-leader

...you'd run kubectl get service -n <namespace> | grep ls-lead to get the two services that it
created, and you'll want the name of the one that ends in -internal . In this case, that name would be
ls‐lead‐leader‐internal .

Assume that for your workergroup install, you used a release name of ls-wg1 , and a values file named
my‐values.yml with the following contents:

...then you'd replace the host value in this file with ls‐lead‐leader‐internal , and then run:

helm upgrade ls-wg1 -f my-values.yml -n <namespace>

The upgrade should replace all the existing workergroup pods with newly reconfigured ones. However, if you
notice any workergroup pods with an AGE value indicating that it was started before the upgrade command,
simply kill those pods, and they will re-spawn with the new configuration.

The extraConfigmapMounts and extraSecretMounts options enable you to preload configuration files
into the leader chart, via ConfigMaps and Secrets that you've created in your Kubernetes environment.
However, because ConfigMaps and Secret mounts are read-only, you can't simply mount them into the
configuration tree.

Reconfiguring the Worker Groups/Fleets

config:
 host: logstream-master-internal
 group: kubernetes
 token: criblmaster
 rejectSelfSignedCerts: 0

Preloading Configuration

Page 207 of 1835

Therefore, you must mount them to a location outside of the /opt/cribl tree, and then copy the files into
the tree at startup. This copying can be accomplished using environment variables, as we'll see below.

The chart creates a single configuration volume claim, config-storage , which gets mounted as
/opt/cribl/config-volume . All Worker Group/Fleet configuration lives under the groups/ subdirectory.
If you have a Worker Group/Fleet named datacenter_a , its configuration will live in /opt/cribl/config-
volume/groups/datacenter_a . See Configuration Files section for details on file locations.

The cribl container's entrypoint.sh file looks for up to 30 environment variables assumed to be shell-script
snippets to execute before Cribl Stream startup (CRIBL_BEFORE_START_CMD_[1-30]). It also looks for up to
30 environment variables to execute a�er Cribl Stream startup (CRIBL_AFTER_START_CMD_[1-30]).

The variables in each set need to be in order, and cannot skip a number. (The entrypoint.sh script breaks
the loop the first time it doesn't find an env var, so if you have CRIBL_BEFORE_START_CMD_1 skipping to
CRIBL_BEFORE_START_CMD_3 , then CRIBL_BEFORE_START_CMD_3 will not be executed.)

The chart uses this capability to inject the license and to set up groups. We'll use this same capability to copy
our config files into place. So if you've provided the config.license and config.groups variables
(occupying the first two slots), you'll need to start with CRIBL_BEFORE_START_CMD_3 . In the examples
below, we'll start with CRIBL_BEFORE_START_CMD_3 , assuming that a config.license and
config.groups have been set.

The easiest way to figure out which environment variable you need to use is to deploy the chart with all the
options you plan to use (i.e., to use the helm install command with options that you plan to use for your
deployment). Then check the pod definition for CRIBL_* environment variables. For example, if you used
the following install command:

You can now get the pod's name:

Both ConfigMaps and Secret mounts can be made writable, but the K8s documentation recommends
against this.

Configuration Locations

Using Environment Variables to Copy Files

Figuring Out Which Variable to Use

% helm install lsms -f ../leader-values.yaml -n logstream-ht cribl/logstream-leader

Page 208 of 1835

And then you can use kubectl describe to get the relevant environment variables:

From that, you can tell that we already have a CRIBL_BEFORE_START_CMD_1 and
CRIBL_BEFORE_START_CMD_2 , so our next logical variable should be CRIBL_BEFORE_START_CMD_3 .

Here's a preload scenario that includes a sample ConfigMap, extraConfigmapMounts , copy command, and
copy-once flag.

Let's say we want to preconfigure a collector job in the group1 Worker Group. The job will be called
InfrastructureLogs , and it will read ELB logs from an S3 bucket. First, we'll need a jobs.yml file, like
this:

% kubectl get pods -n logstream-ht
NAME READY STATUS RESTARTS AGE
lsms-leader-659bfccdd6-xsz67 1/1 Running 0 52m

% kubectl describe pod/lsms-leader-659bfccdd6-xsz67 -n logstream-ht | egrep
"CRIBL_.*START"
CRIBL_BEFORE_START_CMD_1: if [! -e $CRIBL_VOLUME_DIR/local/cribl/licenses.yml
]; then mkdir -p $CRIBL_VOLUME_DIR/local/cribl ; cp
/var/tmp/config_bits/licenses.yml $CRIBL_VOLUME_DIR/local/cribl/licenses.yml; fi
CRIBL_BEFORE_START_CMD_2: if [! -e $CRIBL_VOLUME_DIR/local/cribl/mappings.yml
]; then mkdir -p $CRIBL_VOLUME_DIR/local/cribl; cp /var/tmp/config_bits/groups.yml
$CRIBL_VOLUME_DIR/local/cribl/groups.yml; cp /var/tmp/config_bits/mappings.yml
$CRIBL_VOLUME_DIR/local/cribl/mappings.yml; fi
CRIBL_AFTER_START_CMD_1: [! -f $CRIBL_VOLUME_DIR/users_imported] && sleep 20
&& cp /var/tmp/config_bits/users.json $CRIBL_VOLUME_DIR/local/cribl/auth/users.json
&& touch $CRIBL_VOLUME_DIR/users_imported

Preloading Scenario

The ConfigMap

Page 209 of 1835

We'll need this loaded into a ConfigMap object, so we'd run kubectl to create a ConfigMap from the directory
where our jobs.yml file resides:

kubectl create configmap job-config --from-file <containing directory> -n <deployment

namespace>

So if that file is in a directory called ./config-dir , and we're deploying the leader chart into the
logstream namespace, we'd create it like this:

kubectl create configmap job-config --from-file ./config-dir -n logstream

In our values.yaml file, we need to specify the ConfigMap and where to mount it:

InfrastructureLogs:
 type: collection
 ttl: 4h
 removeFields: []
 resumeOnBoot: false
 schedule: {}
 collector:
 conf:
 signatureVersion: v4
 enableAssumeRole: true
 recurse: true
 maxBatchSize: 10
 bucket: <my infrastructure logs bucket>
 path:
/ELB/AWSLogs/${aws_acct_id}/elasticloadbalancing/${aws_region}/${_time:%Y}/${_time:%m}/
 region: us-west-2
 assumeRoleArn: arn:aws:iam::<accountid>:role/LogReadAssume
 destructive: false
 type: s3
 input:
 type: collection
 staleChannelFlushMs: 10000
 sendToRoutes: false
 preprocess:
 disabled: true
 throttleRatePerSec: "0"
 breakerRulesets:
 - AWS Ruleset
 pipeline: devnull
 output: devnull

extraConfigmapMounts Config

extraConfigmapMounts:
 - name: job-config
 configMap: job-config
 mountPath: /var/tmp/job-config

Page 210 of 1835

This example will mount the files in the ConfigMap into the pod's /var/tmp/job-config directory.

You could simply define, in the values.yaml file (or via --set):

However, there are two potential problems with that:

1. There is no guarantee that the destination directory tree will be there. (The first time a pod spins up, it
won't be.)

2. If the pod has crashed and spun up anew, blindly copying will overwrite any changes previously made.
This is rarely desirable behavior.

Since we might want to copy multiple configuration files in one shot, it makes sense to use some sort of "flag
file" to ensure that we copy the files only once. The script snippet to copy the jobs.yaml file looks like this,
formatted for readability:

This looks to see if the file /opt/cribl/config-volume/job-flag exists, and if it doesn't, creates the
directory tree, copies the config file(s), and then creates the job flag file. However, we need to format it a little
di�erently to easily encompass it in the env variable:

Copying the Config Files

env:
 CRIBL_BEFORE_START_CMD_3: "cp /var/tmp/job-config /opt/cribl/config-
volume/groups/group1/local/cribl/jobs.yml"

File Copying Pattern

FLAG_FILE=/opt/cribl/config-volume/job-flag
if [! -e $FLAG_FILE]; then
 mkdir -p /opt/cribl/config-volume/groups/group1/local/cribl # ensure the directory
tree exists
 cp /var/tmp/job-config/jobs.yml /opt/cribl/config-volume/groups/group1/local/cribl
copy the file
 touch $FLAG_FILE
fi

env:
 CRIBL_BEFORE_START_CMD_3: "FLAG_FILE=/opt/cribl/config-volume/job-flag; if [! -e
$FLAG_FILE]; then mkdir -p /opt/cribl/config-volume/groups/group1/local/cribl; cp
/var/tmp/job-config/jobs.yml /opt/cribl/config-volume/groups/group1/local/cribl;
touch $FLAG_FILE; fi"

Page 211 of 1835

Once you run helm install with this in the values.yaml file, you can do kubectl exec on the pod to
execute a shell:

kubectl exec -it <pod name> -- bash

...and then look at /opt/cribl/config-volume/groups/group1/local/cribl/jobs.yml to verify that it
is in place.

To spin down deployed pods, use the helm uninstall command – where <release‐name> is the namespace
you assigned when you installed the chart:
helm uninstall <release-name>

You can append the --dry-run flag to verify which releases will be uninstalled before actually uninstalling
them:
helm uninstall <release-name> --dry-run

Cribl's current architecture supports only TCP ports in Worker Groups'/Fleets' service > ports
configuration. This restriction might be removed in future versions.

The upgrade process from pre-2.4.0 versions creates an initContainer , which will run prior to any
instance of the Cribl Stream pod. Because the coalescence operation will not overwrite existing data,
this is not a functional problem. But depending on your persistent-volume setup, the initContainer 's
precedence might cause pod restarts to take additional time while waiting for the volume claims to
release. The only upgrade path that will have this issue is 2.3.* -> 2.4.0. In the next iteration, we'll remove
the initContainer from the upgrade path.

The upgrade process leaves the old PersistentVolume s and PersistentVolumeClaim s around. This
is, unfortunately, necessary for this upgrade path. In follow-on versions, we will remove these volumes
from the chart.

See EKS-specific issues on our GitHub repo.

;

Uninstall the Infrastructure

Known Issues

Page 212 of 1835

Boot a fully provisioned Worker Group via Helm

This page outlines how to deploy a Cribl Stream Worker Group to AWS via Kubernetes, using a Cribl-provided
Helm chart.

Supports Cribl Stream v.3.5.2 (default version).

Supports the nodeSelector configuration option for managing pod scheduling.

Supports use of AWS IAM Roles for Worker Group/Fleet RBAC.

Supports using a fixed IP address for LoadBalancer s in the created service, via the
service.loadBalancerIP option. (A fixed IP address is not universally supported across K8s
implementations; check your implementation before configuring this option.)

As built, Cribl's chart will deploy a simple Worker Group for Cribl Stream, consisting of a deployment, a
service, a horizontal pod autoscaler configuration, and a secret used for configuration.

Deployment schematic

3.4.3. K8s Worker Deployment

This chart will deploy only a Cribl Stream Worker Group, whose functioning depends on the presence
of a Cribl Stream Leader Node. To deploy the Leader, see Kubernetes Leader Deployment.

New Capabilities

Deployment

Page 213 of 1835

This section covers both general and specific prerequisites, with a bias toward the EKS‑oriented approach
that Cribl uses for its own deployments.

Install the AWS CLI, version 2, following AWS' instructions.

Next, create or modify your ~/.aws/config file to include (at least) a [profile] section with the following
SSO (single-sign-on) details:

You will, of course, need kubectl set up on your local machine or VM. Follow Kubernetes' installation
instructions.

You must modify your ~/.kube/config file to instruct kubectl what cluster (context) to work with.

1. Run a command of this form: aws --profile <profile‐name> eks update-kubeconfig --name
<cluster‐name>
This should return a response like this: Added new context arn:aws:eks:us-west-
2:424242424242:cluster/<cluster‐name> to /Users/<username>/.kube/config

2. In the resulting ~/.kube/config file's args section, as the new first child, insert the profile argument
that you provided to the aws command. For example:

AWS and Kubernetes Prerequisites

Set Up AWS CLI

[profile <your-profile-name>]
sso_start_url = https://<your-domain>/start#/
sso_region = <your-AWS-SSO-region>
sso_account_id = <your-AWS-SSO-account-ID>
sso_role_name = <your-AWS-role-name>
region = <your-AWS-deployment-region>

Set Up kubectl

Add a Cluster to Your kubeconfig File

args:
- --profile=<profile‐name>
- --region
[...]

Page 214 of 1835

3. Also change the command: aws pair to include the full path to the aws executable. This is usually in
/usr/local/bin , in which case you'd insert: command: /usr/local/bin/aws .

This section of ~/.kube/config should now look something like this:

With these AWS and Kubernetes prerequisites completed, you're now set up to run kubectl commands
against your cluster, as long as you have an active aws SSO login session.

Next, do the Helm setup.

1. You'll need Helm (preferably v.3.x) installed. Follow the instructions here.

2. Add Cribl's repo to Helm, using this command: helm repo add cribl
https://criblio.github.io/helm-charts/

3. Display the default values available to configure Cribl's logstream-workergroup chart: helm show
values cribl/logstream-workergroup

You'll want to override some of the values you've just displayed. The easiest way is to copy this chart's
default values.yaml file from our repo. save it locally, modify it, and install it in Helm:

1. Copy the raw contents of: https://github.com/criblio/helm-charts/blob/master/helm-chart-
sources/logstream-workergroup/values.yaml

2. Save this as a local file, e.g.: /foo/values.yaml

 args:
 - --profile=<profile‐name>
 - --region
 - us-west-2
 - eks
 - get-token
 - --cluster-name
 - lab
 command: /usr/local/bin/aws
 env:
 - name: AWS_PROFILE
 value: <profile-name>

Install Helm and Cribl Repo

Configure the Chart's Values

Page 215 of 1835

3. Modify values as necessary (see Values to Override below).

4. Install your updated values to Helm, using this command: helm install -f /foo/values.yaml

This section covers the most likely values to override. To see the full scope of values available, run: helm
show values cribl/logstream-workergroup .

KEY TYPE DEFAULT VALUE DESCRIPTION

config.group String kubernetes
Tag/group to include in the URL (included as
both a group value and a tag value).

config.tag [Deprecated] [Deprecated]
The tag/group to include in the URL. (This option
is deprecated, but is still supported for backward
compatibility.

config.token String criblleader
The authentication token for your Cribl Stream
Leader.

config.host String
logstream-
leader-
internal

The resolvable hostname of your Cribl Stream
Leader.

config.
rejectSelfSignedCerts

Number 0
One of: 0 – allow self-signed certs, or 1 – deny
self-signed certs.

config.tlsLeader.enable Boolean false
Enable TLS connectivity from the workergroup to
its Leader Node.

config.hostNetwork Object false
Configures the workergroup to use the K8s host
network instead of the container network.

config.probes Boolean true
Enables (true) or disables (false) the liveness and
readiness probes.

service.type String LoadBalancer The type of service to create for the workergroup.

Values to Override

From version 3.0 onward, Cribl Stream's former "master" application components are renamed
"leader."

Page 216 of 1835

KEY TYPE DEFAULT VALUE DESCRIPTION

service.loadBalancerIP IP address [No default]

If service.type is set to LoadBalancer ,
specifies the IP address to use for the load-
balancer service interface. Before configuring,
check whether your K8s implementation
supports fixed IP addresses.

service.ports
Array of
Maps

The ports to make available, both in the
deployment and in the service. Each "map" in
this list needs the following values set:

name
A descriptive name, identifying what the
port is being used for.

port
The container port to make available.

protocol
The protocol in use for this port (UDP or
TCP).

- name:
tcpjson
 port:
10001

protocol:
TCP
- name:
s2s
 port:
9997

protocol:
TCP
- name:
http
 port:
10080

protocol:
TCP
- name:
https
 port:
10081

protocol:
TCP
- name:
syslog
 port:
5140

protocol:
TCP
- name:
metrics
 port:
8125

protocol:
TCP
- name:
elastic
 port:
9200

protocol:
TCP

Page 217 of 1835

KEY TYPE DEFAULT VALUE DESCRIPTION

service.annotations Object [No default]
Annotations for the service component – this is
where you'll want to put load-balancer–specific
configuration directives.

criblImage.tag String 3.5.2

The container image tag to pull from. Cribl will
increment this tag per Cribl Stream version. By
default, this will use a version equivalent to the
chart's appVersion value. You can override this
with latest to get the latest Cribl Stream
version, or with a specific Cribl Stream version
number, such as 3.5.1 .

autoscaling.minReplicas Number 2
The minimum number of Cribl Stream pods to
run.

autoscaling.maxReplicas Number 10
The maximum number of Cribl Stream pods to
scale up to.

autoscaling.target
CPUUtilizationPercentage Number 50

The CPU utilization percentage that triggers
scaling action.

rbac.create Boolean false
Enable Service Account, Cluster Role, and
Role Binding creation.

rbac.resources List ["pods"]
Set the resource boundary for the role being
created (K8s resources).

rbac.verbs List ["get",
"list"]

Set the API verbs allowed the role (default:
read ops).

rbac.annotations Object [No default]

Annotations for the RBAC component of an AWS
EKS environment where you want its pods to use
IAM Roles. First, set rbac.create to true . Then
follow the applicable procedures for EKS and
Cribl Stream, including specifying a value for the
rbac.annotations key.

rbac.apiGroups List ["Core"] Set the apiGroups in roles rules

nodeSelector Object [No default]

Add nodeSelector values to define the nodes
on which pods are scheduled. For details and
allowed values, see K8s' Assigning Pods to Nodes
topic.

Extra Configuration Options

Page 218 of 1835

The links here point to configuration details on our GitHub repo.

KEY TYPE DEFAULT VALUE DESCRIPTION

extraVolumeMounts Object [No default] Additional volumes to mount in the container.

extraSecretMounts Array [No default] Pre-existing Secrets to mount within the container.

extraConfigmapMounts Object [No default] Pre-existing ConfigMaps to mount within the container.

extraContainers Object [No default]
Additional containers to run alongside the main
Cribl Stream container. This allows you to implement the
standard Sidecar pattern with the Logstream Helm charts.

extraInitContainers Object [No default]
Additional containers to run ahead of the primary container
in the pod.

securityContext.runAsUser Number 0 User ID to run the container processes under.

securityContext.runAsGroup Number 0 Group ID to run the container processes under.

envValueFrom Object [No default]
Environment variables to be exposed from the Downward
API.

env Array [No default] Additional static environment variables.

deployment String deployment
One of: deployment to deploy as a Deployment Set; or
daemonset to deploy as a DaemonSet.

rbac.extraRules Object [No default] Additional RBAC rules to put in place.

Cribl recommends that you use the same Cribl Stream version on Leader Nodes versus Worker Group/Fleet
Nodes. So, if you're not yet upgrading your Leader to the version in the current values.yaml >
criblImage.tag , be sure to override that criblImage.tag value to match the version you're running on
the Leader.

With the above prerequisites and configuration completed, you're ready to install our chart to deploy a
Cribl Stream Worker Group/Fleet. Here are some example commands:

Match Versions

Install the Chart

Page 219 of 1835

To install the chart with the release name logstream-wg :
helm install logstream-wg cribl/logstream-workergroup

To install the chart using the Cribl Stream Leader logstream.lab.cribl.io :
helm install logstream-wg cribl/logstream-workergroup --set

config.host='logstream.lab.cribl.io

To install the chart using the Cribl Stream Leadermast logstream.lab.cribl.io in the namespace
cribl‐helm :
helm install logstream-wg cribl/logstream-workergroup --set

config.host='logstream.lab.cribl.io' -n cribl-helm

You upgrade using the helm upgrade command. But it's important to ensure that your Helm repository
cache is up to date, so first issue this command:

A�er this step, invoke:

For the example above, where the release is logstream-wg and is installed in the cribl-helm namespace,
the command would be:

This Helm chart's upgrade is idempotent, so you can use the upgrade mechanism to upgrade the chart, but
you can also use it to change its configuration (as outlined in Change the Configuration).

Versions 2.4.0+ include access mechanisms for Worker Groups to access the Kubernetes API.
The values.yaml file provides three relevant options:

Upgrading

helm repo update

helm upgrade <release> -n <namespace> cribl/logstream-workergroup

helm upgrade logstream-wg -n cribl-helm cribl/logstream-workergroup

Optional: Kubernetes API Access

Page 220 of 1835

rbac.create – Enables the creation of a Service Account, Cluster Role, and Role Binding (which binds
the first two together) for the release.

rbac.resources – Specifies the Kubernetes API resources that will be available to the release.

rbac.verbs – Specifies the API verbs that will be available to the release.

rbac.extraRules – Additional rulesets for the cluster role.

For more information on the verbs and resources available, see Kubernetes' Using RBAC Authorization
documentation.

Once you've installed a release, you can get its values.yaml file by using the helm get values command.
For example, assuming a release name of logstream‐wg , you could use this command:

helm get values logstream-wg -o yaml > values.yaml

This will retrieve a local values.yaml file containing the values in the running release, including any values
that you overrode when you installed the release.

You can now make changes to this local values.yaml file, and then use the helm upgrade operation to
"upgrade" the release with the new configuration.

For example, assume you wanted to add an additional TCP-based syslog port, listening on port 5141, to the
existing logstream-wg release. In the values.yaml file's service > ports section, you'd add the three
key-value pairs shown below:

Then you'd run:

helm upgrade logstream-wg cribl/logstream-workergroup -f values.yaml

Remember, if you installed in a namespace, you need to include the -n <namespace> option to any helm
command. You'll still have to create the source in your Cribl Stream Leader, and commit and deploy it to your
Worker Group/Fleet.

Change the Configuration

service:
 [...]

 ports:
 [...]
 - name: syslog
 port: 5141
 protocol: TCP

Page 221 of 1835

The extraVolumeMounts option makes it feasible to use persistent volumes for Cribl Stream persistent
queueing. However, Cribl does not recommend this combination – there is variability in persistent-storage
implementations, and this variability can lead to problems in scaling Worker Groups/Fleets. However, if you
choose to implement persistent volumes for queueing, please consider these suggestions:

1. Use a shared-storage-volume mechanism. We've worked with the EFS CSI driver for AWS, and it works
fairly well (although it can be tedious to configure).

2. Understand your Kubernetes networking topology, and how that topology interacts with your
persistent-storage driver. (For example, if you're on AWS, ensure that your volumes are available in all
Availability Zones that your nodes might run in.)

3. Monitor the Worker Group/Fleet pods for volume issues. The faster you can see such issues and react,
the more likely that you'll be able to resolve thema.

To spin down deployed pods, use the helm uninstall command – where <release‐name> is the namespace
you assigned when you installed the chart:
helm uninstall <release-name>

You can append the --dry-run flag to verify which releases will be uninstalled before actually uninstalling
them:
helm uninstall <release-name> --dry-run

If you installed in a namespace, you'll need to include the -n <namespace> option in any helm
command.

In the above syslog example, you'd still need to configure a corresponding syslog Source in your
Cribl Stream Leader, and then commit and deploy it to your Worker Group(s)/Fleet(s).

The chart currently supports only TCP ports in service > ports for Worker Groups/Fleets.
This limitation might be removed in future versions.

Using Persistent Storage for Persistent Queueing

Uninstall the Infrastructure

Notes on This Example

Known Issues

Page 222 of 1835

See EKS-specific issues on our GitHub repo.

;

Page 223 of 1835

Boot a fully provisioned Leader Node via Helm

This page outlines how to deploy a Cribl Stream Leader Node (or single instance) to AWS via Kubernetes,
using a Cribl-provided Helm chart.

As built, Cribl's chart will deploy a Master Server for Cribl Stream, consisting of a deployment, two services,
and a number of persistent volumes.

Deployment schematic

Note that this chart creates two load-balanced services:

The main one (named a�er the Helm release), which is intended as the primary service interface for
users.

3.4.4. (Deprecated:) K8s Master Deployment

As of Cribl Stream version 3.0.2, this chart is deprecated. Please instead see the successor K8s Leader
Deployment documentation, which includes instructions for migrating an existing
logstream‐master chart to the new logstream‐leader configuration.

This document preserves legacy naming, in order to match the legacy chart's configuration.

Deployment

Page 224 of 1835

The "internal" one (named <helm-release>-internal), which is intended for the worker-group-to-
master communication.

This section covers both general and specific prerequisites, with a bias toward the EKS‑oriented approach
that Cribl uses for its own deployments.

Install the AWS CLI, version 2, following AWS' instructions.

Next, create or modify your ~/.aws/config file to include (at least) a [profile] section with the following
SSO (single-sign-on) details:

You will, of course, need kubectl set up on your local machine or VM. Follow Kubernetes' installation
instructions.

You must modify your ~/.kube/config file to instruct kubectl what cluster (context) to work with.

1. Run a command of this form: aws --profile <profile‐name> eks update-kubeconfig --name
<cluster‐name>

By default, this chart installs only a Cribl Stream Leader Node. To also deploy Cribl Stream
Worker Groups/Fleets via Helm, you can use the Set Up Worker Group/M appings override described
below.

You can also use Cribl's separate logstream-workergroup chart. For details, see Kubernetes
Deployment: Worker Group in this documentation.

AWS and Kubernetes Prerequisites

Set Up AWS CLI

[profile <your-profile-name>]
sso_start_url = https://<your-domain>/start#/
sso_region = <your-AWS-SSO-region>
sso_account_id = <your-AWS-SSO-account-ID>
sso_role_name = <your-AWS-role-name>
region = <your-AWS-deployment-region>

Set Up kubectl

Add a Cluster to Your kubeconfig File

Page 225 of 1835

This should return a response like this: Added new context arn:aws:eks:us-west-
2:424242424242:cluster/<cluster‐name> to /Users/<username>/.kube/config

2. In the resulting ~/.kube/config file's args section, as the new first child, insert the profile argument
that you provided to the aws command. For example:

3. Also change the command: aws pair to include the full path to the aws executable. This is usually in
/usr/local/bin , in which case you'd insert: command: /usr/local/bin/aws .

This section of ~/.kube/config should now look something like this:

With these AWS and Kubernetes prerequisites completed, you're now set up to run kubectl commands
against your cluster, as long as you have an active aws SSO login session.

Next, do the Helm setup.

1. You'll need Helm (preferably v.3.x) installed. Follow the instructions here.

2. Add Cribl's repo to Helm, using this command: helm repo add cribl
https://criblio.github.io/helm-charts/

args:
- --profile=<profile‐name>
- --region
[...]

 args:
 - --profile=<profile‐name>
 - --region
 - us-west-2
 - eks
 - get-token
 - --cluster-name
 - lab
 command: /usr/local/bin/aws
 env:
 - name: AWS_PROFILE
 value: <profile-name>

Install Helm and Cribl Repo

Persistent Storage

Page 226 of 1835

The chart requires persistent storage. It will use your default StorageClass, or (if you prefer) you can override
config.scName with the name of a specific StorageClass to use.

Cribl has tested this chart primarily using AWS EBS storage, via the CSI EBS driver. The volumes are created as
ReadWriteOnce claims. For details about storage classes, see Kubernetes' Storage Classes documentation.

If you're running on EKS, Cribl highly recommends that you use Availability Zone–specific node groups. For
details, see eksctl.io's Autoscaling documentation.

See other EKS-Specific Issues on our GitHub repo.

You'll want to override some of the chart's default values. The easiest way is to copy this chart's default
values.yaml file from our repo. save it locally, modify it, and install it in Helm:

1. Copy the raw contents of: https://github.com/criblio/helm-charts/blob/master/helm-chart-
sources/logstream-master/values.yaml

2. Save this as a local file, e.g.: /bar/values.yaml

3. Modify values as necessary (see Values to Override below).

4. Install your updated values to Helm, using this command: helm install -f /bar/values.yaml

This section covers the most likely values to override. To see the full scope of values available, run: helm
show values cribl/logstream-master

KEY TYPE DEFAULT VALUE DESCRIPTION

config.adminPassword String [No default] The password you want to assign to the admin user.

AWS-Specific Notes

Do not allow a single node group to spans AZs. This can lead to trouble in mounting volumes,
because EBS volumes are AZ-specific.

Configure the Chart's Values

Values to Override

Page 227 of 1835

KEY TYPE DEFAULT VALUE DESCRIPTION

config.token String [No default]

The auth key you want to set up for Worker access. If
you set this value, the Cribl Stream instance will be
configured only as a Leader server for a distributed
deployment. (You can also configure this later via the
Cribl Stream UI, a�er launching the instance in single-
instance mode.)

config.license String [No default]
The license for your Cribl Stream instance. If you do not
set this, it will default to the Free license. You can
change this in the Cribl Stream UI as well.

config.groups List [No default]

Array of Worker Group/Fleet names to configure for the
Leader instance. This will create a mapping for each
Group, which looks for the tag <groupname> , and will
create the basic structure of each Group's configuration.

config.scName String
<default
StorageClass
name>

The StorageClass name for all of the persistent
volumes.

config.
rejectSelfSignedCerts

Number 0
Either 0 (allow self-signed certificates) or 1 (deny self-
signed certs).

config.healthPort Number 9000 The port to use for health checks (readiness/live).

config.healthScheme String HTTP
The scheme to use for health checks. Supports HTTP or
HTTPS .

service.internalType ClusterIP [No default]

The type to use for the <release>-master-internal
service. In 2.4.5+, this is set to ClusterIP by default. If
you have any Worker Groups/Fleets outside of the
Kubernetes cluster where the Leader lives, you'll need
to change this to NodePort or LoadBalancer to
expose it outside of the cluster.

service.externalType
Load
Balancer

[No default]
The type to use for the user-facing <release>-master
service. If ingress.enable is set, this will be force-set
to NodePort , to work with the ingress.

Page 228 of 1835

KEY TYPE DEFAULT VALUE DESCRIPTION

service.ports
Array of
Maps

The ports to make available, both in the deployment
and in the service. Each "map" in this list needs the
following values set:

name
A descriptive name, identifying what the port is
being used for.

port
The container port to be made available.

protocol
The protocol in use for this port (UDP or TCP).

external
Set to true to expose the port on the external
service, or false to not expose it.

service.annotations String [No default]
Annotations for the service component – this is where
you'll want to put load-balancer–specific configuration
directives.

criblImage.tag String latest

The container image tag to pull from. Cribl will
increment this tag per Cribl Stream version. By default,
this will use a version equivalent to the chart's
appVersion value. You can override this with latest

to get the latest Cribl Stream version, or with a specific
Cribl Stream version number (like "2.3.3").

consolidate_volumes boolean [No default]

If this value exists, and the helm command is upgrade
, this will use the split volumes that we created in charts
before 2.4 and consolidate them down to one config
volume. This is a one-time event.

The links here point to configuration details on our GitHub repo.

KEY TYPE
DEFAULT

VALUE
DESCRIPTION

extraVolumeMounts Object
[No
default]

Additional volumes to mount in the container.

- name:
api

 port:
9000

protocol:

TCP

external:
true

- name:
mastercomm
 port:
4200

protocol:
TCP

external:
false

Extra Configuration Options

Page 229 of 1835

KEY TYPE
DEFAULT

VALUE
DESCRIPTION

extraSecretMounts Array
[No
default]

Pre-existing Secrets to mount within the container.

extraConfigmapMounts Object
[No
default]

Pre-existing ConfigMaps to mount within the container.

extraInitContainers Object
[No
default]

Additional containers to run ahead of the primary container in
the pod.

securityContext.runAsUser Number 0 User ID to run the container processes under.

securityContext.runAsGroup Number 0 Group ID to run the container processes under.

envValueFrom Object
[No
default]

Environment variables to be exposed from the Downward API.

env Array
[No
default]

Additional static environment variables.

ingress.enable boolean false
Enable Ingress in front of the external service. Setting this to
true changes the external service to type NodePort , and

creates an ingress that connects to it.

ingress.annotations Object
[No
default]

If ingress.enable is set to true , this is where annotations to
configure the specific ingress controller. (NOTE: Ingress is
supported only on Kubernetes 1.19 and later clusters).

Cribl recommends that you use the same Cribl Stream version on Worker Nodes/Edge Nodes versus the
Leader Node. So if, for any reason, you're not yet upgrading your Workers to the version in the Leader's
default values.yaml > criblImage.tag , be sure to override that criblImage.tag value to match the
version you're running on all Workers.

If you're deploying to EKS, many annotations are available for the load balancer. Set these as values for the
service.annotations key. Internally, we typically use the annotations for logging to S3, like this:

Match Versions

EKS-Specific Values

Page 230 of 1835

For an exhaustive list of annotations you can use with AWS's Elastic Load Balancers, see the Kubernetes
Service documentation.

With the above prerequisites and configuration completed, you're ready to install our chart to deploy a
Cribl Stream Leader Node. Here are some example commands:

To install the chart with the release name logstream-master :
helm install logstream-master cribl/logstream-master

To install the chart using the storage class ebs-sc :
helm install logstream-master cribl/logstream-master --set config.scName='lebs-sc

Cribl Stream will not automatically deploy changes to the Worker Nodes/Edge Nodes. You'll need to commit
and deploy changes to all of your Worker Groups/Fleets.

If you don't override its default values, this Helm chart e�ectively creates a single-instance deployment of
Cribl Stream, using the standard container image. You can later configure distributed mode, licensing, user
passwords, etc., all from the Cribl Stream UI. However, you also have the option to change these
configuration details upfront, by installing with value overrides. Here are some common examples.

If you have a Standard or Enterprise license, you can use the config.license parameter to add it as an
override to your install:

 service.beta.kubernetes.io/aws-load-balancer-access-log-enabled: "true"
 service.beta.kubernetes.io/aws-load-balancer-access-log-emit-interval: "5"
 service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-name: "<bucket
name>"
 service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-prefix: "ELB"

More options are coming here!

Basic Chart Installation

Post-Install/Post-Upgrade

Change the Configuration

Apply a License

Page 231 of 1835

helm install logstream-master cribl/logstream-master --set config.license="<long encoded

license string redacted>"

If you do not specify a license with config.license , and you want to run distributed, you'll need to go to
Cribl Stream's global ⚙ Settings (lower le�) > Licensing UI page and accept the Free license. (The Free
license allows one Worker Group.)

If your Helm configuration includes the config.groups option, the Cribl Stream Leader Node will be
configured as a distributed Leader. If you omit that option, it will be configured as a single instance. (You can
later use Cribl Stream's global ⚙ Settings (lower le�) > Distributed page to select Mode: Leader .)

Normally, when you first install Cribl Stream and log into the UI, it prompts you to change the default admin
password. You can skip the password-change challenge by setting your admin password via the
config.adminPassword parameter:

helm install logstream-master cribl/logstream-master --set config.adminPassword="<new

password>"

As mentioned above, the chart's default is to install a vanilla deployment of Cribl Stream. If you are deploying
as a Leader, you can use the config.groups parameter to define the Worker Groups/Fleets you want
created and mapped. Each group in the list you provide will be created as a Worker Group/Fleet, with a
Mapping Rule to seek a tag with that Worker Group's name in it:

helm install logstream-master cribl/logstream-master --set config.groups=

{group1,group2,group3}

The example above will create three Worker Groups/Fleets – group1 , group2 , and group3 – and a Mapping
Rule for each.

Cribl Stream 2.4.0 and above support the $CRIBL_VOLUME_DIR environment variable. This variable
simplifies the chart's persistent-storage requirement, by specifying a path where Cribl Stream should store
the persistent data.

Run Distributed on a Free License

Set the Admin Password

Set Up Worker Groups/Mappings

Persistent Volumes

Page 232 of 1835

Instead of maintaining multiple volumes (one each for
$CRIBL_HOME/{.git, data, state, local, groups, log}), you can persist data using a single volume.
$CRIBL_VOLUME_DIR instructs Cribl Stream where to place these persistent directories, by overriding
$CRIBL_HOME .

To use this feature, pass the $CRIBL_VOLUME_DIR variable to your container's environment. Make sure it
points to the same value as the volume's mount point.

To start out simple, here is a minimal working example using Docker:

For Kubernetes, as shown in the example below, youʼll need to create:

A persistent volume claim.

An environment variable definition.

A volume mount definition.

A volume definition.

Using Persistent Volumes

docker volume create example-volume
docker run -e CRIBL_VOLUME_DIR=/mount/point -v example-volume:/mount/point
cribl/cribl

Page 233 of 1835

See your Kubernetes service's documentation for appropriate details on setting up persistent storage
and default storage classes.

If you use $CRIBL_VOLUME_DIR , you must set it on the Leader Node or single instance.

Also set $CRIBL_VOLUME_DIR on Worker Nodes/Edge Nodes if you are using Persistent Queue on any
Destination. Doing so will retain data if the container is shut down while data is still queued.

Setting this variable for existing instances will leave existing data intact in the original directories. (Note
that data loss is still possible if you don't persist the data by other means.)

For more usage details, see the CLI Reference.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: config-claim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 20Gi

apiVersion: apps/v1
kind: Deployment
metadata:
 name: logstream-master
spec:
 replicas: 1
 template:
 spec:
 containers:
 - name: cribl-master
 image: cribl/cribl
 env:
 - name: CRIBL_VOLUME_DIR
 value: /mount/point
 volumeMounts:
 - name: example-volume
 mountPath: /mount/point
 volumes:
 - name: config-storage
 persistentVolumeClaim:
 claimName: config-claim

Notes on Persistent Volumes

Upgrading Pre‑2.4.0 Versions to Use Persistent Volumes

Page 234 of 1835

To enable a persistent volume using the $CRIBL_VOLUME_DIR environment variable, you'll need to upgrade
any pre-2.4.0 version of Cribl Stream. In the Helm chart, we handle this via the helm upgrade command.

If you are upgrading from a pre-2.4 version of the chart, you'll want to set the consolidate_volumes value,
which will create a new, larger volume, and consolidate the data from the original volumes into that volume.
An initContainer handles the logistics. When this process completes, the logstream‐master pod will
come back up with a single consolidated volume.

Helm makes upgrades easy. You simply need to run helm repo update to ensure you have the latest repo
updates available, followed by helm upgrade to actually upgrade the containers.

For example, if you've installed the Helm charts in the logstream namespace, named your release ls-
master , and set up your Helm repo according to the prerequisites section above (i.e., named it cribl), run
the following:

While there should be no major problems running a 2.4.0 master and 2.3.4 workers, Cribl does not
recommend this. Instead, upgrade the master Helm chart to 2.4.0 first, and then upgrade the workers. (For
details, see Kubernetes Worker Deployment.)

Back Up Your Data First

While we've tested this upgrade repeatedly, di�erences in environments can always cause problems.
Therefore, we recommend that you back up your data before running the upgrade command. This is
best done with a combination of kubectl and tar :

This command executes the tar -based backup of all four volumes, and outputs it to a local .tar
file (cribl_backup.tar).

kubectl exec <pod name> -n <namespace> -- bash -c "cd /opt/cribl; tar cf -
{state,data,local,groups}" > cribl_backup.tar

Running the Upgrade

helm repo update
helm upgrade ls-master --set consolidate_volumes=true -n logstream cribl/logstream-
master

Upgrade Order of Operations

Idempotency of Upgrade

Page 235 of 1835

The upgrade operation performs a potentially destructive action in coalescing the 4 volumes to a single
volume. But that operation proceeds only if the single volume has no data on it. Once the upgrade is
performed the first time, any further upgrade operations will e�ectively skip that coalescence operation,
without causing any additional issues.

If the upgrade fails, the suggested recovery path is to remov the Helm chart, reinstall it, and then run this
command to restore the data from the backup:

This will restore the data into the "new" volume (which is mounted as /opt/cribl/config-volume). If you
want to double-check that:

The extraConfigmapMounts and extraSecretMounts options enable you to preload configuration files
into the master chart, via ConfigMaps and Secrets that you've created in your Kubernetes environment.
However, because ConfigMaps and Secret mounts are read-only, you can't simply mount them into the
configuration tree.

Therefore, you must mount them to a location outside of the /opt/cribl tree, and then copy the files into
the tree at startup. This copying can be accomplished using environment variables, as we'll see below.

The chart creates a single configuration volume claim, config-storage , which gets mounted as
/opt/cribl/config-volume . All Worker Group configuration lives under the groups/ subdirectory. If you
have a Worker Group/Fleet named datacenter_a , its configuration will live in /opt/cribl/config-
volume/groups/datacenter_a . See Configuration Files section for details on file locations.

Recovering from a Failed Upgrade

cat cribl_backup.tar| kubectl -n <namespace> exec --stdin <pod name> -- bash -c "cd
/opt/cribl/config-volume/; tar xf -"

kubectl -n <namespace> exec <pod name> -- bash -c "ls -alR /opt/cribl/config-volume"

Preloading Configuration

Both ConfigMaps and Secret mounts can be made writable, but the K8s documentation recommends
against this.

Configuration Locations

Page 236 of 1835

The cribl container's entrypoint.sh file looks for up to 30 environment variables assumed to be shell-script
snippets to execute before Cribl Stream startup (CRIBL_BEFORE_START_CMD_[1-30]). It also looks for up to
30 environment variables to execute a�er Cribl Stream startup (CRIBL_AFTER_START_CMD_[1-30]).

The variables in each set need to be in order, and cannot skip a number. (The entrypoint.sh script breaks
the loop the first time it doesn't find an env var, so if you have CRIBL_BEFORE_START_CMD_1 skipping to
CRIBL_BEFORE_START_CMD_3 , then CRIBL_BEFORE_START_CMD_3 will not be executed.)

The chart uses this capability to inject the license and to set up groups. We'll use this same capability to copy
our config files into place. So if you've provided the config.license and config.groups variables
(occupying the first two slots), you'll need to start with CRIBL_BEFORE_START_CMD_3 . In the examples
below, we'll start with CRIBL_BEFORE_START_CMD_3 , assuming that a config.license and
config.groups have been set.

The easiest way to figure out which environment variable you need to use is to deploy the chart with all the
options you plan to use (i.e., to use the helm install command with options that you plan to use for your
deployment). Then check the pod definition for CRIBL_* environment variables. For example, if you used
the following install command:

You can now get the pod's name:

And then you can use kubectl describe to get the relevant environment variables:

Using Environment Variables to Copy Files

Figuring Out Which Variable to Use

% helm install lsms -f ../master-values.yaml -n logstream-ht cribl/logstream-master

% kubectl get pods -n logstream-ht
NAME READY STATUS RESTARTS AGE
lsms-master-659bfccdd6-xsz67 1/1 Running 0 52m

Page 237 of 1835

From that, you can tell that we already have a CRIBL_BEFORE_START_CMD_1 and
CRIBL_BEFORE_START_CMD_2 , so our next logical variable should be CRIBL_BEFORE_START_CMD_3 .

Here's a preload scenario that includes a sample ConfigMap, extraConfigmapMounts , copy command, and
copy-once flag.

Let's say we want to preconfigure a collector job in the group1 Worker Group/Fleet. The job will be called
InfrastructureLogs , and it will read ELB logs from an S3 bucket. First, we'll need a jobs.yml file, like
this:

% kubectl describe pod/lsms-master-659bfccdd6-xsz67 -n logstream-ht | egrep
"CRIBL_.*START"
CRIBL_BEFORE_START_CMD_1: if [! -e $CRIBL_VOLUME_DIR/local/cribl/licenses.yml
]; then mkdir -p $CRIBL_VOLUME_DIR/local/cribl ; cp
/var/tmp/config_bits/licenses.yml $CRIBL_VOLUME_DIR/local/cribl/licenses.yml; fi
CRIBL_BEFORE_START_CMD_2: if [! -e $CRIBL_VOLUME_DIR/local/cribl/mappings.yml
]; then mkdir -p $CRIBL_VOLUME_DIR/local/cribl; cp /var/tmp/config_bits/groups.yml
$CRIBL_VOLUME_DIR/local/cribl/groups.yml; cp /var/tmp/config_bits/mappings.yml
$CRIBL_VOLUME_DIR/local/cribl/mappings.yml; fi
CRIBL_AFTER_START_CMD_1: [! -f $CRIBL_VOLUME_DIR/users_imported] && sleep 20
&& cp /var/tmp/config_bits/users.json $CRIBL_VOLUME_DIR/local/cribl/auth/users.json
&& touch $CRIBL_VOLUME_DIR/users_imported

Preloading Scenario

The ConfigMap

Page 238 of 1835

We'll need this loaded into a ConfigMap object, so we'd run kubectl to create a ConfigMap from the directory
where our jobs.yml file resides:

kubectl create configmap job-config --from-file <containing directory> -n <deployment

namespace>

So if that file is in a directory called ./config-dir , and we're deploying the master chart into the
logstream namespace, we'd create it like this:

kubectl create configmap job-config --from-file ./config-dir -n logstream

In our values.yaml file, we need to specify the ConfigMap and where to mount it:

InfrastructureLogs:
 type: collection
 ttl: 4h
 removeFields: []
 resumeOnBoot: false
 schedule: {}
 collector:
 conf:
 signatureVersion: v4
 enableAssumeRole: true
 recurse: true
 maxBatchSize: 10
 bucket: <my infrastructure logs bucket>
 path:
/ELB/AWSLogs/${aws_acct_id}/elasticloadbalancing/${aws_region}/${_time:%Y}/${_time:%m}/
 region: us-west-2
 assumeRoleArn: arn:aws:iam::<accountid>:role/LogReadAssume
 destructive: false
 type: s3
 input:
 type: collection
 staleChannelFlushMs: 10000
 sendToRoutes: false
 preprocess:
 disabled: true
 throttleRatePerSec: "0"
 breakerRulesets:
 - AWS Ruleset
 pipeline: devnull
 output: devnull

extraConfigmapMounts Config

extraConfigmapMounts:
 - name: job-config
 configMap: job-config
 mountPath: /var/tmp/job-config

Page 239 of 1835

This example will mount the files in the ConfigMap into the pod's /var/tmp/job-config directory.

You could simply define, in the values.yaml file (or via --set):

However, there are two potential problems with that:

1. There is no guarantee that the destination directory tree will be there. (The first time a pod spins up, it
won't be.)

2. If the pod has crashed and spun up anew, blindly copying will overwrite any changes previously made.
This is rarely desirable behavior.

Since we might want to copy multiple configuration files in one shot, it makes sense to use some sort of "flag
file" to ensure that we copy the files only once. The script snippet to copy the jobs.yaml file looks like this,
formatted for readability:

This looks to see if the file /opt/cribl/config-volume/job-flag exists, and if it doesn't, creates the
directory tree, copies the config file(s), and then creates the job flag file. However, we need to format it a little
di�erently to easily encompass it in the env variable:

Copying the Config Files

env:
 CRIBL_BEFORE_START_CMD_3: "cp /var/tmp/job-config /opt/cribl/config-
volume/groups/group1/local/cribl/jobs.yml"

File Copying Pattern

FLAG_FILE=/opt/cribl/config-volume/job-flag
if [! -e $FLAG_FILE]; then
 mkdir -p /opt/cribl/config-volume/groups/group1/local/cribl # ensure the directory
tree exists
 cp /var/tmp/job-config/jobs.yml /opt/cribl/config-volume/groups/group1/local/cribl
copy the file
 touch $FLAG_FILE
fi

env:
 CRIBL_BEFORE_START_CMD_3: "FLAG_FILE=/opt/cribl/config-volume/job-flag; if [! -e
$FLAG_FILE]; then mkdir -p /opt/cribl/config-volume/groups/group1/local/cribl; cp
/var/tmp/job-config/jobs.yml /opt/cribl/config-volume/groups/group1/local/cribl;
touch $FLAG_FILE; fi"

Page 240 of 1835

Once you run helm install with this in the values.yaml file, you can do kubectl exec on the pod to
execute a shell:

kubectl exec -it <pod name> -- bash

...and then look at /opt/cribl/config-volume/groups/group1/local/cribl/jobs.yml to verify that it
is in place.

To spin down deployed pods, use the helm uninstall command – where <release‐name> is the namespace
you assigned when you installed the chart:
helm uninstall <release-name>

You can append the --dry-run flag to verify which releases will be uninstalled before actually uninstalling
them:
helm uninstall <release-name> --dry-run

Cribl's current architecture supports only TCP ports in Worker Groups'/Fleets' service > ports
configuration. This restriction might be removed in future versions.

The upgrade process from pre-2.4.0 versions creates an initContainer , which will run prior to any
instance of the Cribl Stream pod. Because the coalescence operation will not overwrite existing data,
this is not a functional problem. But depending on your persistent-volume setup, the initContainer 's
precedence might cause pod restarts to take additional time while waiting for the volume claims to
release. The only upgrade path that will have this issue is 2.3.* -> 2.4.0. In the next iteration, we'll remove
the initContainer from the upgrade path.

The upgrade process leaves the old PersistentVolume s and PersistentVolumeClaim s around. This
is, unfortunately, necessary for this upgrade path. In follow-on versions, we will remove these volumes
from the chart.

See EKS-specific issues on our GitHub repo.

;

Uninstall the Infrastructure

Known Issues

Page 241 of 1835

You can use the following docker-compose.yml to stand up a Cribl Stream distributed deployment of a
Leader and one or more Workers:

This uses a local directory, ~/cribl-config , as a persistent configuration store for Cribl Stream. You must
create this directory on your host OS' filesystem before you run the docker-compose command.

With a Leader on Cribl.Cloud, encryption is enabled by default. Set the hybrid Worker's
CRIBL_DIST_MASTER_URL environment variable to begin with the tls:// protocol. For example:

If you prefer to use ephemeral storage, simply delete line 8 (the CRIBL_VOLUME_DIR definition) and lines 11–
12 (the volumes configuration) before running the docker‐compose command.

3.5. Docker Deployment

version: '3.5'
services:
 master:
 image: ${CRIBL_IMAGE:-cribl/cribl:latest}
 environment:
 - CRIBL_DIST_MODE=master
 - CRIBL_DIST_MASTER_URL=tcp://criblmaster@0.0.0.0:4200
 - CRIBL_VOLUME_DIR=/opt/cribl/config-volume
 ports:
 - "19000:9000"
 volumes:
 - "~/cribl-config:/opt/cribl/config-volume"
 workers:
 image: ${CRIBL_IMAGE:-cribl/cribl:latest}
 depends_on:
 - master
 environment:
 - CRIBL_DIST_MODE=worker
 - CRIBL_DIST_MASTER_URL=tcp://criblmaster@master:4200
 ports:
 - 9000

CRIBL_DIST_MASTER_URL:tls://<token>@logstream-<tenant>.cribl.cloud:4200

Cribl recommends deploying the Leader on stable, highly available infrastructure, because of its role
in coordinating all Worker instances.

Selecting the Number of Workers

Page 242 of 1835

To deploy a Leader Node, plus (e.g.) two Workers already configured and wired up to the Leader, use this
command:

To deploy a di�erent number of Workers, just change the workers=2 value.

If you are deploying the Leader and Workers on the same machine or VM, and the Leader is crashing with two
workers, make sure you are allocating enough memory to Docker.

By default, the above command pulls the freshest stable image (tagged cribl/cribl:latest) from
Cribl's Docker Hub. As of Cribl Stream v.3.5, our Docker images are built on Ubuntu 20.04.

Launching Docker containers with the above docker-compose.yml file will default to the following URLs
and ports:

Leader URL: http://localhost:19000

Worker URLs: http://localhost:<automatically-assigned-host-ports>

With virtual machines, the VMs' IP addresses would replace localhost . The automatic assignment of
available host-OS ports to the Workers prevents port collisions. Within the Docker container, these ports will
forward over TCP to port 9000. To see the ports assigned on the OS, enter:

docker ps

You should see results like these:

The host-OS ports are shown on the le�, forwarding to the container-internal ports on the right. You can use
the docker_workers_N ports if you want to log directly into Workers. In the above example:

Worker1 URL: http://localhost:63411

docker-compose up -d --scale workers=2

Default Image, OS, and Port Assignments

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
a3de9ea8f46f cribl/cribl:latest "/sbin/entrypoint.sh…" 12 seconds ago Up 10
seconds 0.0.0.0:63411->9000/tcp docker_workers_1
40aa687baefc cribl/cribl:latest "/sbin/entrypoint.sh…" 12 seconds ago Up 10
seconds 0.0.0.0:63410->9000/tcp docker_workers_2
df362a65f7d1 cribl/cribl:latest "/sbin/entrypoint.sh…" 13 seconds ago Up 11
seconds 0.0.0.0:19000->9000/tcp, :::19000->9000/tcp docker_master_1

Page 243 of 1835

Worker2 URL: http://localhost:63410

To specify additional ports in a distributed deployment, add them to the docker-compose.yml file's
workers > ports section:

You can specify port forwarding, and TCP versus UDP protocol, in the same keys:

Cribl recommends that you always use our latest stable container image wherever possible. This will provide
bug fixes and security patches for any vulnerabilities that Cribl has discovered when scanning the base image
OS, dependencies, and our own so�ware.

Note that the sample docker-compose.yml provided above automatically specifies the latest stable image
at:

You can explicitly pull the latest stable image with this CLI command:

Adding Port, Forwarding, and Protocol Assignments

version: '3.5'
services:
 [...]
 workers:
 image: ${CRIBL_IMAGE:-cribl/cribl:latest}
 depends_on:
 - master
 environment:
 - CRIBL_DIST_MODE=worker
 - CRIBL_DIST_MASTER_URL=tcp://criblmaster@master:4200
 ports:
 - 9000
 - <Additional ports go here>

 ports:
 - 9000
 - "10060:10060/tcp"
 - "10070:10070/tcp"

Updating the Docker Image

image: ${CRIBL_IMAGE:-cribl/cribl:latest}

Page 244 of 1835

If you choose to keep an earlier image in production, Cribl strongly recommends that you monitor and patch
vulnerabilities in the packaged OS.

;

docker pull cribl/cribl:latest

Page 245 of 1835

4. ADMINISTERING

Every Cribl Stream download package ships with a Free license that allows for processing of up to 1 TB/day.
This license requires sending anonymized telemetry metadata to Cribl. (For details, see Telemetry Data
below).

Enterprise, Standard, and Sales Trial licenses do not require sending telemetry metadata, and are entitled to
a defined, per-license daily ingestion volume.

This page summarizes all these license types.

You can add and manage licenses in global ⚙ Settings (lower le�) > Licensing. Click + Add License to paste
in a license key provided to you by Cribl.

This applies to Cribl Stream Standard and Enterprise licenses, which must be renewed annually. Free licenses
are already onboard the download package, need not be added or managed here, and do not expire.

Cribl does not require a separate license for sending data from Cribl Stream to Cribl Stream, such as sending
from one Worker Group/Fleet managed by Leader Node A to a di�erent Worker Group/Fleet managed by
Leader Node B. In such situations, the same license used on Leader Node A can be used on Leader Node B.

Data generated by Cribl Internal Sources normally does not count against your ingestion quota.

If you are connecting Workers/Edge Nodes in a Cribl Stream Cloud hybrid deployment, you are granted
additional exemptions to prevent double billing:

Data transferred between Cribl Stream Workers via the Cribl HTTP, Cribl TCP, and Cribl Stream
(Deprecated) Sources does not count against your ingestion quota.

Data sent from Cribl Edge's Cribl HTTP, Cribl TCP, and Cribl Stream (Deprecated) Destinations to
Cribl Stream is counted against quota only in Cribl Edge.

Data generated by Datagens does not count against your ingestion quota.

4.1. Licensing

Managing Licenses – Adding and Renewing

Exemptions from License Quotas

Page 246 of 1835

Cribl o�ers four Cribl Stream license types, summarized below.

This is a license available for purchase.

Up to unlimited data ingestion.

Up to unlimited Worker Groups and Fleets.

Up to unlimited Worker Processes and Edge Nodes.

Role-based access control.

External authentication (via LDAP, Splunk, and OpenID Connect identity providers).

Git remote backup.

All other Cribl Stream features included.

Contact Cribl Sales at sales@cribl.io for more information.

This is a license available for purchase. Compared to an Enterprise license, it o�ers a cost discount, in
exchange for some limitations (all data volumes below based on uncompressed data size):

Daily ingestion up to 5 TB/day.

Maximum 1 Worker Group and 1 Fleet.

Maximum 50 Worker Processes, and 100 Edge Nodes.

External authentication supported, with undi�erentiated Roles: all users are imported as admin .

Standard licenses, like Enterprise licenses, support Git remote backup. Contact Cribl Sales at sales@cribl.io
for more information.

Free licenses ship in the download package, and are permanent. They impose some limitations:

License Types

License terms are subject to change. For a detailed comparison of what's currently included in each
license type, please see Cribl Pricing.

Enterprise License

Standard License

Free License

Page 247 of 1835

Daily ingestion up to 1 TB/day.

Maximum 10 Worker Processes, and 100 Edge Nodes.

Maximum 1 Worker Group and 1 Fleet.

The Cribl Stream Free license requires sending of anonymized telemetry metadata to Cribl. This license will
block inputs if sending fails, a�er a grace period of 24 hours.

A license type used when preparing a POC (proof of concept), or a pilot, whose requirements go beyond
those a�orded by the Free license. Contact Cribl Sales at sales@cribl.io for more information.

Multiple license types can coexist on an instance. However, only a single type of license can be e�ective at
any one time. When multiple types coexist, the following method of resolution is used:

If there are any unexpired Enterprise or Standard licenses – use only these licenses to compute the
e�ective license.

Else, if there are any Sales Trial licenses – use only Sales Trial licenses to compute the e�ective license.

Else, if there exists a Free license – use only the Free license to compute the e�ective license.

When an Enterprise or Standard license expires, Cribl Stream will fall back to the Sales Trial or Free type.
However, an expired Sales Trial license cannot fall back to a Free license.

"One" License

As of February 1, 2022, Cribl simplified Free licensing by retiring the former "LogStream One" license.
This license type, which carried a slightly di�erent mix of limitations and privileges, will no longer be
issued to new licensees.

However, if you have a current LogStream One license, you can continue to use it, and renew it, for as
long as you like. Contact your Cribl sales rep, or sales@cribl.io, to arrange your annual renewal.

Sales Trial License

Combining License Types

When Licenses Expire

Upon expiration of a paid license, if there is no fallback license, Cribl Stream will backpressure and
block all incoming data.

Page 248 of 1835

With licenses that limit the number of Worker/Edge Node Processes, Cribl Stream will attempt to balance (or
rebalance) Worker/Edge Node (threads) as evenly as possible across all licensed Worker/Edge Nodes.

On Cribl Stream (LogStream) 2.3 or later, and Cribl Edge, you need to configure licensing only on the
Leader Node. (See Managing Licenses – Adding and Renewing.) The Leader will push license information
down to Worker Groups/Fleets as part of the heartbeat (Edge, Stream).

A Free license or Cribl.Cloud plan requires sharing of telemetry metadata with Cribl. Cribl uses this metadata
to help us understand how to improve the product and prioritize new features.

Telemetry payloads are sent from all Cribl Stream nodes (Leader and Workers), to an endpoint located on
https://cdn.cribl.io/telemetry/ .

To manually test connectivity to the telemetry endpoint, especially if you are needing to configure a proxy,
you can use the following command:

$ curl https://cdn.cribl.io/telemetry/

Expected response:

cribl /// living the stream!

If you get a 302 response code, check whether you've omitted the URL's trailing / .

With an Enterprise or Standard license, you have the option to disable telemetry sharing from on-prem
Cribl Stream. (This option does not work on any Cribl.Cloud plan.) With a Free license, disabling telemetry
will cause Cribl Stream to block inbound tra�ic within 24 hours.

If you would like an exception to disable telemetry in order to deploy in your environment, please contact
Cribl Sales at sales@cribl.io, and we will work with you to issue licenses on a case-by-case basis.

Licensing in Distributed Deployments

Telemetry Data

Testing the Telemetry Endpoint's Connectivity

Disabling Telemetry and Live Help

Page 249 of 1835

Once you have received a license that removes the telemetry requirement, you can disable telemetry in
Cribl Stream's UI at global ⚙ Settings (lower le�) > System > General > Upgrade & Share Settings >
Sharing and Live Help. Toggle the slider to No.

Sharing and Live Help toggle

Your Cribl Stream instance shares the following metadata with Cribl per interval (roughly, every minute):

Version

Instance's GUID

License ID

Earliest, Latest Time

Number of Events In and Out, overall and by Source type and Destination type

Number of Bytes In and Out, overall and by Source type and Destination type

Number of Open, Closed, Active Connections

Number of Routes

Number of Pipelines

How do I check my license type, restrictions, and/or expiration date?

Open Cribl Stream's global ⚙ Settings (lower le�) > Licensing page to see these details.

How can I track my actual data ingestion volume over the last 30 days?

Disabling this setting also removes Cribl Stream's Intercom or Salesforce (live help) widget at lower
right. Therefore, you will need to submit help requests, screenshots, and diag bundles through other
support channels.

Metadata Shared Through Telemetry

Licensing FAQ

Page 250 of 1835

Forward Cribl Internal metrics to your Metrics Destination of choice, and run a report on
cribl.total.in_bytes .

How does Cribl enforce license limits?

If your data throughput exceeds your license quota, Chuck Norris will track you down and make your life a
living hell.

However, that will happen only in your nightmares. In the product itself:

Free, and Standard licenses enforce data ingestion quotas through limits on the number of
Worker Groups/Fleets and Worker/Edge Node Processes.

Enterprise license keys turn o� all enforcement.

When an Enterprise or Standard license expires, Cribl Stream will attempt to fall back to a trial or free
license, or – only if that fails – will block incoming data. For details, see Combining License Types.

I'm using LogStream 2.3.0 or higher, with its "permanent, Free" license. Why is LogStream claiming an
expired license, and blocking inputs?

This can happen if you've upgraded from a LogStream version below 2.3.0, in which you previously entered
this earlier version's Free (time-limited) license key. To remedy this, go to global ⚙ Settings (lower le�) >
Licensing, click to select and expand your expired Free license, and then click Delete license. Cribl Stream
will fall back to the new, permanent Free license behavior, and will restore throughput.

If I pull data from compressed S3 buckets, is my license quota applied to the compressed or the
uncompressed size of the file objects?

To measure license consumption, Cribl Stream uses the uncompressed size.

;

Page 251 of 1835

Tracking, backing up, and restoring configuration changes for single-instance and distributed deployments

Cribl Stream integrates with Git clients and remote repositories to provide version control of Cribl Stream's
configuration. This integration o�ers backup and rollback for single-instance and distributed deployments.

These options are separate from the Git repo responsible for version control of Worker configurations,
located on the Leader Node in distributed deployments. We cover all these options and requirements below.

To verify that git is available, run:

git --version

The minimum version that Cribl Stream requires is: 1.8.3.1. If you don't have git installed, see the
installation links here.

Git is a hard requirement for certain Cribl Stream features.

For distributed deployments, git must be installed and available locally on the host running the
Leader Node.

All configuration changes must be committed before they are deployed. The Leader notifies Workers that
a new configuration is available, and Workers pull the new configuration from the Leader Node.

4.2. Version Control

Cribl.Cloud deployments do not currently support integration with external Git clients or remote
repos.

Git Installation (Local or Standalone/Single-Instance)

Git Required for Some Features

Distributed Deployments

Licensing Dashboard

Page 252 of 1835

Even on single-instance deployments, the Monitoring > Licensing dashboard will display configuration
change markers only if you have git installed.

Once Git is installed, you can commit configuration changes using the git CLI. You can also commit changes
interactively, using Cribl Stream's UI.

Pending commits have a red dot indicator, as shown below. Click Commit to proceed.

Changes pending commit

Next, in the resulting Commit Changes modal, you can verify the di�'ed configuration changes. Other
options here include clearing individual files' check boxes to exclude them from the commit (as shown
below), and clicking Undo to reverse the changes instead of committing them.

Committing Changes

Page 253 of 1835

Reviewing a pending commit

When you're ready to commit to your commit, click Commit. Look for a Commit successful confirmation
banner.

Once Git is installed, you can revert to a previous commit using the git CLI. You can also restore a Worker
Group's previous commit using Cribl Stream's UI:

Select the commit from the Config Version drop-down, as shown below.

Reverting Commits

Page 254 of 1835

Then, in the resulting Commit modal, verify the di�'ed configuration changes and click Revert.

Undoing earlier commits

Finally, confirm permission for Cribl Stream to restart.

Git remote repositories are supported – but not required – for version control of all configuration changes.

You can configure a Standalone Leader Node with Git remote push capabilities through the Cribl Stream CLI,
or through the Cribl Stream UI (via global ⚙ Settings (lower le�) > Distributed Settings > Git Settings).

Support For Remote Repositories

This feature requires a Cribl Stream Enterprise or Standard license.

Page 255 of 1835

To create a repo, see these tutorials:

Setting Up a Repository (CLI instructions, host-agnostic, from Atlassian).

Creating a New Repository (specific to GitHub's Web UI).

Create a Repo (longer GitHub-specific tutorial, also covers committing changes).

Remote URI schema patterns should match this regex:
(?:git|ssh|ftps?|file|https?|git@[-\w.]+):(\/\/)?(.*?)(\.git\/?)?$.

You can find a list of supported formats here.

For example:

GitHub or other providers: <protocol>://git@example.com/<username>/<reponame>.git

Local Git servers: git://<host.xyz>:<port>/<user>/path/to/repo.git

Cribl recommends connecting to a remote repo over HTTPS. The example below shows a token-based HTTPS
connection to GitHub.

1. Create a new GitHub repository.
For best results, create a new empty repo, with no readme file and no commit history. This will prevent
git push errors.
Note the user name and email associated with your login to the repo provider.

2. Create a personal access token with repo scope.

Remote Formats Supported

Securing Remote Repos

Some files that are used by Cribl Stream (both Leader and Worker Groups) contain sensitive keys;
examples are cribl.secret and ...auth/ssh/git.key . These will be pushed to the remote repo
as part of the entire directory structure under version control. Ensure that this repo is secured
appropriately.

Connecting to a Remote with a Personal Access Token over HTTPS
(Recommended)

Example: Connecting to GitHub over HTTPS

Page 256 of 1835

3. Copy the token to your clipboard.

4. In Cribl Stream, go to global ⚙ Settings (lower le�) > System > Git Settings.

5. Fill in the Remote URL field with your repo name. Use the format below:
https://<accesstoken>@github.com/<reponame>.git

For additional details, see GitHub's Creating a Personal Access Token tutorial.

You can set up SSH keys from the CLI, or upload keys via the UI. If you have a passphrase set, this
functionality is available only through the CLI – see Encryption: Configuring Keys with the CLI. The example
below outlines the UI steps.

1. Create a new GitHub repository.
For best results, create a new empty repo, with no readme file and no commit history. (This will prevent
git push errors.) Note the user name and email associated with your login to the repo provider.

2. Add an SSH public key to your GitHub account.

3. In Cribl Stream, go to global global ⚙ Settings (lower le�) > System > Git Settings > Remote.

4. Fill in the Remote [repo] URL. In the generic example below, replace <username> with your user name
on the repo provider:
Remote URL: <protocol>://git@github.com:<username>/<reponame>.git

For GitHub specifically, the URL/protocol format must be:
Remote URL: git@github.com:<user>/<reponame>.git

A specific (fictitious) GitHub example:
Remote URL: git@github.com:taylorswift/leadsheets.git

5. Paste in the SSH private key.

For GitHub repos specifically, use only personal access tokens in the Remote URL field. GitHub
announced its end of support for plaintext passwords as of August 13, 2021.

Connecting to a Remote with SSH

Example: Connecting to GitHub with SSH

Page 257 of 1835

6. As the user running Cribl Stream, run this command to add the GitHub keys to known_hosts :

ssh-keyscan -H github.com >> ~/.ssh/known_hosts

For additional details, see GitHub's Connecting to GitHub with SSH tutorial.

Cribl Stream's Git settings

For repos hosted on GitLab, Cribl's general recommendations are:

Create a GitLab project access token for authentication. See GitLab's documentation, which also covers
project bot conventions.

With project bots, the first token's username is set to project_{project_id}_bot . The password is
the alphanumeric token.

Create the token with write_repository scope.

Specify a remote URL in HTTPS format – e.g.:
https://localgitlab.<yourdomain.ext>/<yourusername>/cribl.git

GitLab's Repository Settings > Push Rules section includes these two settings of interest:

The key will paste in with an appended newline below it. Do not delete this newline before you
save the Remote Settings, or else you will trigger an error of the form: fatal: Could not read
from remote repository.

GitLab Notes

Page 258 of 1835

As needed, enable Check whether author is a GitLab user.

Understand the consequences of of enabling Prevent committing secrets to Git. This blocks commits
of .pem and .key files. If you have certificates or SSH keys configured, this will break commits from
Cribl Stream, throwing only a generic API Error in the UI. Check your git CLI client for more-specific
diagnostics.

On the Git Settings > General tab, you can modify the following configurations, all of which are optional.

Branch, GitOps workflow: Use these drop-downs to configure GitOps.

Collapse actions: Combine multiple Git buttons to one, to reduce repetitive clicks. See Collapse Actions
below.

Default commit message: Enter a placeholder message to apply to all commits from Cribl Stream. This
also reduces clicks.

Git timeout: Maximum time (in milliseconds) to wait for Git processes to complete before killing them.
If a Leader instance hangs, try lowering this value from the default 60000 (60 seconds). However, avoid
very low values (like 20 ms) – which will time out even when Git processes are working properly. Enter
0 to wait indefinitely.

Git Authentication Type settings

On the Git Settings > Remote tab, you can change the Authentication Type from its SSH default to Basic
authentication. This displays two additional fields:

User: Username on the repo.

Password: Authentication password (e.g., a GitHub personal access token).

Additional Git Settings

Page 259 of 1835

Git Authentication Type settings

On the Git Settings > Scheduled Actions tab, you can schedule a Commit, Push, or Commit & Push action
to occur on a predefined interval.

Git Scheduled Actions selection

For the selected action type, you can define a cron schedule, and a commit message distinct from the
General tab's Default Commit Message. Then click Save.

GitHub (specifically) does not support Basic authentication.

Page 260 of 1835

Saving a Git Scheduled Action

You can schedule only one type of action. To swap to a di�erent type, select it from the Scheduled global
actions drop-down, and resave. To turn o� scheduled Git commands, select None from the drop-down, and
resave.

Once you've configured a remote, a Git Push button appears in the Changes overlay. You can use this to copy
committed configuration changes to your remote.

Git Push button

If you enabled the Git Settings > Collapse Actions option, you will instead see a combined Commit & Push
button in the overlay.

Pushing Configs to a Remote Repo

The branch indicator will normally read master , as shown above, unless you have enabled GitOps
with an appropriate license.

Collapse Actions

Page 261 of 1835

Git combined actions button

On a Group's top nav, the Collapse Actions option will display a combined Commit & Deploy button at the
right for the Group's config.

Git combined actions button for a Worker Group

Once you've configured your remote repo, changes to all Cribl Stream config files under the $CRIBL_HOME
directory will normally be backed up to your remote whenever you click the above Git Push or
Commit & Push UI buttons. The exceptions are:

Any configuration files you've chosen to store outside $CRIBL_HOME .

Any configuration files residing in paths you've added to .gitignore .

To back up these files to your remote, you'll need to either:

Change the above paths/settings, or

Use an external git client to manually push them.

Enabling Collapse Actions with a remote repo simplifies the Commit Changes confirmation dialog.
It substitutes just a commit Message text box, with OK and Cancel buttons – omitting the di� view.
Don't enable this option if you prefer to inspect configuration changes before committing.

Backing Up Configs Out of Band

Troubleshooting Push Errors

Page 262 of 1835

To resolve errors commonly encountered when pushing to a remote repo, see:

Git Push Errors

Git Remote Repos & Trusted CAs

If a remote repo is configured and has the latest known good Leader configuration, this section outlines the
general steps to restore the config from that repo.

Restoring from remote repo

Let's assume that either the entire $CRIBL_HOME directory of the Leader is corrupted, or you're replicating
the remote repo's config onto a fresh instance. Let's also assume that the remote repo has the form:
git@github.com:<username>/<reponame>.git .

1. Important: In a directory of choice, untar the same Cribl Stream version that you're trying to restore,
but do not start it.

2. Change directory into $CRIBL_HOME and initialize git :

Restoring Leader from a Remote Repo

Make sure you download the matching Cribl Stream version. Cribl's Download page foregrounds
Cribl Stream current version, but provides a link to this archive of prior releases.

Page 263 of 1835

3. If you are using SSH key authentication, specify the key using the following command:

4. Ensure that you have proper access to the remote repo:

5. Next, add/configure the remote:

6. Now set up your local branch to exactly match the remote branch:

7. Finally, to confirm that the commits match, run this command while in $CRIBL_HOME :

You should see output indicating that HEAD points to both master and origin/master , as in this
example:

git init

GIT_SSH_COMMAND='ssh -i </path/to/github/repo>.key -o IdentitiesOnly=yes' git
fetch origin

As an alternative to executing GIT_SSH_COMMAND on the fly, you can set your key in
$CRIBL_HOME/.git/config with:
git config core.sshCommand "ssh -i /path/to/key"

Or set it globally with:
git config --global core.sshCommand "ssh -i /path/to/key"

git ls-remote git@github.com:<username>/<reponame>.git
56331fabb4822eaec4ca0ffd008d6e9974c1e419f HEAD
5631fabb4822eaec4ca0ffd008d6e9974c1e419f refs/heads/master

git remote add origin git@github.com:<username>/<reponame>.git

git fetch origin
git reset --hard origin/master

git show --abbrev-commit

Page 264 of 1835

Step 6 above pulls in all the latest configs from the remote repo. Step 7 confirms the local repo matches the
remote. You should now be able to start the Leader as normal. Once up and running, Workers should start
checking in a�er about 60 seconds.

A .gitignore file specifies files that git should ignore when tracking changes. Each line specifies a
pattern, which should match a file path to be ignored. Cribl Stream ships with a .gitgnore file containing a
number of patterns/rules, under a section of the file labeled CRIBL SECTION .

commit 5631fab (HEAD -> master, origin/master)
Author: First Last <email@example.com>
Date: Fri Jan 31 10:16:07 2020 -0500

 admin: Last commit before failure/crash
......

Verify cribl.secret

The cribl.secret file – located at $CRIBL_HOME/local/cribl/auth/cribl.secret – contains
the secret key that is used to encrypt sensitive settings on configuration files (e.g., AWS Secret Access
Key, etc.). Make sure this file is properly restored on the new Leader, because it is required to make
encrypted conf file settings usable again.

.gitignore File

Do NOT REMOVE CRIBL and CUSTOM header lines!
DO NOT REMOVE rules under the CRIBL section as they may be reintroduced on update.
You can ONLY comment out rules in the CRIBL section.
You can add new rules in the CUSTOM section.
CRIBL SECTION -- DO NOT REMOVE
default/ui/**
default/data/ui/**
bin/**
log/**
pid/**
data/uploads/**
diag/**
/state/
CUSTOM SECTION -- DO NOT REMOVE

<User-defined patterns/rules go here>

CRIBL Section

Page 265 of 1835

User-defined, custom patterns/rules can be safely defined under the CUSTOM SECTION . Cribl Stream will
not modify the contents of CUSTOM SECTION .

Good candidates to add here include large lookup files – especially large binary database files. For details,
see Git Push Errors: Large Files Detected.

If you have files that you've set .gitgnore to skip, you will need to back them up and restore them by
means other than Git. For example, you can periodically copy/rsync them to a backup destination, and then
restore them to their original locations a�er you complete the steps above.

Files specified in .gitignore are not only excluded from pushes to the remote repo, but are also excluded
from Worker Group config bundles. When Workers load a new config that references a skipped (and missing)
file, this can produce unexpected results, and usually errors.

For example, if you add **/auth/** to .gitignore , then any certificate/key files stored in the default
$CRIBL_HOME/local/cribl/auth/certs/ path will be omitted from config deployments, because of a
match on the .../auth/... subdirectory.

You can automate commit and deploy commands by using Cribl Stream API requests. The following
examples show how to do so for a Worker Group's configuration.

Do Not Remove CRIBL SECTION or CUSTOM SECTION Headers

The CRIBL SECTION is used by Cribl Stream to define default patterns/rules that ship with every
version. Do not add or remove any of the lines here, because Chuck Norris will easily find you!

Maslow's theory of higher needs does not apply to Chuck Norris. He has only two needs: killing
people and finding people to kill. Seriously, do not remove them, as they will be overwritten on the
next update. The only modifications that will survive updates are commented lines.

CUSTOM Section

Files skipped with .gitignore

Commit and Deploy via the API

About the Examples

The API calls below include Worker Group names as path parameters.

Page 266 of 1835

To commit pending changes to your configured repo, adapt and run the following API call:

You will receive a JSON response with some details about the commit:

From that response, you'll need to extract the commit ID (abcd1234) to use in the second deploy API call
below.

Here, let's commit all pending changes to the default Worker Group:

To deploy your committed config changes to Worker Groups, adapt and run the following API call. As the
version value, you'll need the commit ID you received in the commit response above:

A successful response payload looks like this:

The curl commands assume that you have set the $token environment variable to match the
value of a bearer token. See Authentication for alternative approaches; adapt the example
commands to suit your chosen approach.

Commit Changes

POST /api/v1/version/commit

{"message":"a descriptive commit message","group":"<worker_group_name>"}

{"items":[{"branch":"master","commit":"abcd1234","summary":{"changes":"1","insertions":

Commit Example

curl -X POST --H "Authorization: Bearer $token"
"https://logstream:9000/api/v1/version/commit" -d '{"message":"automation@cribl:
commit","group":"default"}'

Deploy Changes

PATCH /api/v1/master/groups/<worker_group_name>/deploy

{"version":"abcd1234"}

Page 267 of 1835

Here, let's deploy the previously committed configuration to the default Worker Group:

If you want to commit only a subset of configuration changes, adapt and use the following payload:

Let's selectively commit a sample data file, and the updated YAML listing of all sample files, to the default
Worker Group:

;

{"items":[{"description":"Default Worker
Group","tags":"default","configVersion":"5b8f42a","id":"default"}],"count":1}

Deploy Example

-H "content-type: application/json" curl -X PATCH --H "Authorization: Bearer $token"
"https://logstream:9000/api/v1/master/groups/default/deploy" -d
'{"version":"abcd1234"}'

Selectively Commit Changes

POST /api/v1/version/commit

{
"message":"descriptive commit message",
"group":"default",
"files":["groups/default/data/samples/sample-

g0aT.json","groups/default/local/cribl/samples.yml"]
}

Selective Commit Example

curl -X POST --H "Authorization: Bearer $token"
"https://logstream:9000/api/v1/version/commit" -d '{"message":"automation@cribl:
commit","group":"default","files":["groups/default/data/samples/sample-
g0aT.json","groups/default/local/cribl/samples.yml"]}'

Page 268 of 1835

With the GitOps features available in Cribl Stream/LogStream 3.2 and higher, you can integrate Cribl Stream
configuration management with standard version-control systems and CI/CD flow: Push updates to your
remote Cribl Stream via webhook, manually or via automation. This separates development configurations
from production configurations, enabling you to safely build and continuously deploy your observability
pipelines.

To use GitOps, you must have a customer-managed, distributed Cribl Stream deployment. (Cribl.Cloud does
not currently support GitOps).

You'll need two Leader instances and a Cribl Enterprise license, which can be shared between the two
instances. For questions about developer licenses in Dev environments, please contact your Cribl sales team.

You must have access to an external Git management system like GitHub, GitLab, or Bitbucket, or access to a
self-hosted Git server.

Cribl recommends that you use private repositories for managing your GitOps environments, so as to prevent
leaking of sensitive information.

A Cribl Stream GitOps deployment can start with an existing repository, or you can set up an entirely new
repo and start fresh from there. If you're already using an existing remote repo for your Cribl Stream

4.3. GitOps

See also our GitOps/GitHub Tutorial and Managing Stream with GitOps Sandbox.

Prerequisites

This page is agnostic about where you host your repos. It provides general concepts, procedures, and
reference material. And it includes a setup scenario relying on Basic Auth, which might not be
appropriate to your workflow.

To jump straight into a tutorial written around GitHub, with authentication using SSH keys, see
GitOps/GitHub Tutorial.

Setup: Best Practices

Page 269 of 1835

deployment, Cribl recommends cloning a backup.

Create at least one branch for your production code. You will merge code into this branch and use it to
update your production Cribl Stream environment.

Cribl recommends that you also create a separate dev branch for your code. This is where you will sync and
work in your development environment. Once changes are validated and tested in dev, you can merge them
into production.

A representative repo would have this basic structure:

Sample repo topography

In the example below, we manually ping production Cribl Stream to update, based on a remote master
branch, and to deploy the changes. You can set this up via Bearer token (used in the full example below) or
via user Role.

If you have your Bearer token ready, you can use it in a CLI command of this form:

Bearer tokens refresh every 60 minutes by default. To extend the lifetime of a token, go to global ⚙ Settings
(lower le�) > System > General Settings > Advanced, and update the Auth‑token TTL.

Usage Examples

Bearer Token

curl -X POST "http://<leader URL or IP>:9000/api/v1/version/sync" -H "accept:
application/json" -H "Authorization: Bearer <bearer‐token>" -d
"ref=master&deploy=true"`

Page 270 of 1835

If you need to retrieve your Bearer token before applying it, you can access it via Cribl Stream's UI, as follows:

1. From the le� nav, select API Reference.

2. Near the top, expand the GET /auth/groups endpoint.

3. Click Try it out.

4. Click Execute.

5. From the displayed Curl field, copy the generated curl command.

6. Change the GET verb to POST , and execute the resulting command on your command, as shown above.

If you need to retrieve your Bearer token before applying it, you can also access it in the CLI, via a series of
commands of the following form. (The final command below replaces the single curl command above.)

Here, <username> and <password> stand for the credentials of the user getting the token:

Here's an example with placeholders filled in. This assumes that the API is running on localhost , and the
username and password are each the super-secret admin . Here again, the final command below replaces
the single curl command above:

Getting the Bearer Token via UI

Getting the Bearer Token via CLI

On your production environment's Leader, you'll need jq , which you can install using the command:
sudo yum install jq -y .

mkdir -p ~/.auth

curl http://<Leader-URL-or-IP>:9000/api/v1/auth/login -H 'Content-Type:
application/json' -d "{\"username\":\"<username>\",\"password\":\"<password>\"}"
2>/dev/null | jq -r .token > ~/.auth/token

export JWT_AUTH_TOKEN=`cat ~/.auth/token`

export AUTH_HEAD="Authorization:Bearer `cat ~/.auth/token`"

curl -X POST "http://<Leader-URL-or-IP>:9000/api/v1/version/sync" -H "accept:
application/json" -H "${AUTH_HEAD}" -d "ref=master&deploy=true"

Page 271 of 1835

Alternatively, before putting your environment into GitOps mode, create a new user and give them the
gitops Role. This Role's only permission is to POST to the sync endpoint.

This example relies on the Bearer token technique presented above.

1. Start with a production Cribl Stream, synced to an external git repository.

2. Create a new branch in the repository, called dev .

3. Rehydrate your dev environment from the dev branch.

On the dev box's command line, run:

4. Set your production environment to GitOps mode, using environment variables, as shown here:

mkdir -p ~/.auth

curl http://localhost:9000/api/v1/auth/login -H 'Content-Type: application/json' -d
"{\"username\":\"admin\",\"password\":\"admin\"}" 2>/dev/null | jq -r .token >
~/.auth/token

export JWT_AUTH_TOKEN=`cat ~/.auth/token`

export AUTH_HEAD="Authorization:Bearer `cat ~/.auth/token`"

curl -X POST "http://localhost:9000/api/v1/version/sync" -H "accept:
application/json" -H "${AUTH_HEAD}" -d "ref=master&deploy=true"

User Role

Setup Steps

CRIBL_GIT_REMOTE=https:<your_remote_repo> CRIBL_GIT_BRANCH=dev
CRIBL_GIT_AUTH=basic CRIBL_GIT_USER=<user> CRIBL_GIT_PASSWORD=<password>
bin/cribl start

CRIBL_GIT_REMOTE=https:<your_remote_repo> CRIBL_GIT_BRANCH=<your prod branch,
usually master> CRIBL_GIT_OPS=push CRIBL_GIT_AUTH=basic CRIBL_GIT_USER=<user>
CRIBL_GIT_PASSWORD=<password> bin/cribl start

Your production branch will now be in read-only mode. You can push changes to production via
a webhook called from your versioning system. (See the example using Git actions and our
request, above.)

Page 272 of 1835

5. When you make changes in your dev environment, those changes will be synced with your dev repo
whenever they are committed and pushed. Your production environment will be updated only when a
request is sent to the production API.

6. Update the dev repo, then use PR and merge capabilities in your version-control system to merge
updates into your production branch. (This will follow the workflow outlined in your version-control
system of choice.)

7. Send a request to your production environment to pick up the changes on your production branch:

8. Alternatively, you can set up a condition in your versioning tool to automatically update production with
an action. In GitHub, that action would look like this:

This action will start whenever a new release is created in GitHub, using a tag with the naming
convention v0.0.0 or v0.0.0-TC1 or v0.0.0-RC1 .

This helps control multiple updates to production as part of a single release or deployment. This is
useful when you are merging multiple changes to production, and want to push them all at once.

9. If deploy is set to true in the request to the production Cribl Stream instance, all new configs will be
applied and Cribl Stream Workers will be restarted to pick up the changes.

curl -X POST "http://<leader URL or IP>:9000/api/v1/version/sync" -H "accept:
application/json" -H "Authorization: Bearer <bearer token>" -d "ref=<production
branch>&deploy=true"

name: Deploy to Production
on:
push:
tags:
- 'v?[0-9]+.[0-9]+.[0-9]+'
- 'v?[0-9]+.[0-9]+.[0-9]+-[RT]C[0-9]+'

jobs:
deployment:
runs-on: ubuntu-latest
steps:
- name: deploy
uses: satak/webrequest-action@master
with:
url: http://54.190.53.106:9000/api/v1/version/sync
method: POST
payload: '{"ref":"master","deploy":"true"}'
headers: '{"Authorization": "Bearer ${{ secrets.BEARER_TOKEN }}"}'

Page 273 of 1835

It's common for your repository code to get out of sync with your local version. This is especially true when
first setting up a GitOps environment, where changes are being made to .gitignore , and to a README or
other non-functional files in your repo. If you attempt to push from your development environment to your
remote branch and you see this error:

Remote repo has lost sync with local config

...this means that your remote repo is ahead of your local. You can resync them via the command ,, with the
following commands:

(Replace <cribl_home> with your Cribl Stream directory path, and dev with whichever branch your
environment is tracking.)

This will resync your local branch with the remote. You will lose any local changes, so before running it, stash
those changes or make notes of what you will need to re-create a�er this reset.

Cribl Stream provides the following environment variables to facilitate GitOps:

NAME PURPOSE

CRIBL_GIT_REMOTE
Location of the remote repo to track. Can contain username and password for HTTPS
auth.

GIT_SSH /
GIT_SSH_COMMAND

See Git's documentation.

CRIBL_GIT_BRANCH Git ref (branch, tag, commit) to track/check out.

Advanced Workflows

<cribl_home>/git fetch origin
<cribl_home>/git reset --hard origin/dev
<cribl_home>/bin/cribl restart`

Environment Variables Reference

Bootstrap Variables

Page 274 of 1835

NAME PURPOSE

CRIBL_GIT_AUTH One of: none , basic , or ssh .

CRIBL_GIT_USER Used for basic auth.

CRIBL_GIT_PASSWORD Used for basic auth.

CRIBL_GIT_OPS Controls which GitOps workflow to use – one of: none , push , or pull .

Cribl recommends setting up GitOps using environment variables, as demonstrated above, because these are
persistent. However, if you later want to undo your CLI settings, the following options are available in the UI's
global ⚙ Settings (lower le�) > System > Git Settings:

Branch drop-down: Select a single branch to track in your remote repo.

GitOps workflow drop-down provides these options for the branch selected above:

None: Do not automate Cribl Stream's configuration management. (This switches o� GitOps.)

Push: Sync with remote repo via POST requests to /api/v1/version/sync endpoint .

You can maintain unique encryption keys, passwords, and tokens per environment, without sharing them
across (e.g.) dev vs. prod environments. Do so by setting unique environment variables per environment.

For other environment variables available in Cribl Stream, see Distributed Deployment.

To capture the name and version of the branch that GitOps is using when deploying Routes, Pipelines,
or Packs, use two Eval Functions as follows:

cribl_git_branch_name = C.logStreamEnv
cribl_git_branch_version = C.confVersion

UI Options

Security

Going Further

Page 275 of 1835

Because you have configured separate environments for development versus production, you can create
Routes, Functions, or Pipelines that behave di�erently in these di�erent environments.

For this purpose, you can use the C.env.CRIBL_GIT_BRANCH environment variable. Its value is the name of
the Git branch you're on. For any Destination, C.env.CRIBL_GIT_BRANCH corresponds to the Advanced
Settings > Environment setting.

You can also automate GitOps in various ways. E.g., you could automate your production environment's
syncing with a GitHub repo's prod branch, using GitHub Actions.

CRIBL-6961 When the GitOps Push workflow has placed the UI in read-only mode, the commit UI
displays a Revert button, even though reverting changes is not currently supported. Pressing the button
will simply trigger an error message.

CRIBL-6736 Bootstrapping a deployment from an existing repo using an SSH key works only if no
passphrase is required.

For other current limitations, please search our Known Issues topic on "GitOps".

;

Known Issues

Page 276 of 1835

This tutorial shows one of many possible ways to set up Cribl Stream GitOps, relying on a GitHub repo with
SSH authentication.

If you are using GitLab, Bitbucket, or a self-hosted Git server, you can adapt the GitHub examples here, or you
can rely on our generic GitOps page.

To use GitOps, you must have:

A customer-managed, distributed Cribl Stream deployment. (Cribl.Cloud does not currently support
GitOps).

Two Leader instances.

A Cribl Enterprise license, which can be shared between the two Leaders.

A GitHub account. (You can create one here.)

In your distributed Cribl Stream deployment, set up two separate environments: one for Development and
one for Production. This way, you can do your work in the Development environment, validate and test your
changes there, and then merge the changes into Production. For safety, the Production environment will be
read-only.

In both environments:

On the Leader, install git using the command:
sudo yum install git -y

Cribl strongly recommends that you use systemd, as we do throughout this tutorial. (If not using
systemd, use environment variables instead of systemctl commands.)

Cribl strongly recommends that you use SSH authentication, as we do throughout this tutorial.

In the Production environment:

4.3.1. GitOps/GitHub Tutorial

See also our Managing Stream with GitOps Sandbox.

Prerequisites

Setting Up Your Deployment for GitOps

Page 277 of 1835

On the Leader, install jq using the command:
sudo yum install jq -y

Starting on the command line:

1. Generate public and private SSH keys, specifying Ed25519 as the key type:

2. Validate that the /root/.ssh/ directory contains both of the newly generated keys:
The private key that Cribl Stream will use: id_ed25519 .

The public key that GitHub will use: id_ed25519.pub .

3. Copy the public SSH key to your clipboard.

Next, sign in to your GitHub account, and on the SSH and GPG keys page, enter the public SSH key:

1. Click New SSH key.

2. Paste the key in the Key field.

3. Click Add SSH key.

On your GitHub profile page:

1. Click Go to your personal profile.

2. On the resulting page,click the Repositories tab.

3. Click New to create a new repository.

Name the repo cribl , and leave it private (the default). The repo's default branch will be named main , and
we'll assume that name in this tutorial. (Older repos' default branch might instead be named master .)

A representative repo would have this basic structure:

Creating SSH Public and Private Keys

 ssh-keygen -t ed25519 -C "your_email@example.com"

Creating a Private GitHub Repo

Page 278 of 1835

Sample repo topography

In Cribl Stream, in the Production Leader's, select global ⚙ Settings (lower le�) > Git Settings. Then apply
the following settings.

Leave Branch set to main (the only branch created thus far), and GitOps Workflow set to None .

In Remote URL, enter the URL for your private Git repo, e.g.:
git@github.com:<your_Git_username>/cribl.git .

From the Authentication type drop–down, select SSH .

In SSH private key, copy and paste the private key (/root/.ssh/id_ed25519).

Toggle SSH strict host key checking to No .

Click Save, then Commit and Git Push. You should now see your commit in the main branch of your private
GitHub repo.

In a terminal on the Production Leader, run as root:

Configuring Your Production Leader

You can optionally create a new user with the gitops Role. This Role's only permission is to POST to
the sync endpoint. If you choose to do this, the Remote URL that you enter below should include
this username.

General Tab

Remote Tab

Page 279 of 1835

Add systemctl overrides to set environment variables that will make the Production Leader read-only on
startup, and set the branch to prod :

1. Use systemctl to open the cribl.service file in an editor:

2. When prompted, add the following overrides:

3. Restart:

In your GitHub repo:

1. Click the branches tab (if there's only a main branch in your repo, the tab will be labeled 1 branch).

The branches tab

2. On the main branch's row, click the pencil button at far right.

3. Rename main to prod .

4. From the branches drop-down (which should now say prod), create a new branch named dev .

sudo su -

 systemctl edit cribl.service

[Service]
Environment=CRIBL_GIT_OPS=push
Environment=CRIBL_GIT_BRANCH=prod

 systemctl daemon-reload && systemctl restart cribl

Once the system has restarted, the CRIBL_GIT_OPS=push override will be in e�ect, meaning that
your Production environment will be in read-only mode.

Setting Up the GitHub Branches

Page 280 of 1835

On Cribl Stream's Development Leader, select global ⚙ Settings (lower le�) > Git Settings. Then apply the
following settings.

In Remote URL, enter the URL for your private Git repo, e.g.:
git@github.com:<your_Git_username>/cribl.git .

From the Authentication type drop–down, select SSH .

In SSH private key, copy and paste the private key (/root/.ssh/id_ed25519).

Toggle SSH strict host key checking to No .

Click Save.

Set Branch to dev .

Set GitOps Workflow to None .

Click Save, then restart the Development Leader, which will now be able to write to GitHub.

Your goal is to make changes in the Development environment, and later propagate them to Production. To
demonstrate this, try adding a Route, as a minimal unit of work.

1. On Cribl Stream's Development Leader, navigate to Routing > Data Routes.

2. Click + Route.

3. Configure the new Route as follows:

NAME FILTER PIPELINE/OUTPUT

test-gitops true devnull:devnull

4. Click Commit/Deploy.

5. Click Commit and Git Push.

Pointing Your Development Leader to Its Branch

Remote Tab

General Tab

Working in the Development Environment

Page 281 of 1835

This will send the configurations to your dev branch on GitHub.

On your GitHub dev branch, you should see the new route.yml appearing within a subdirectory of the
local directory.

1. Click Compare & pull request. Be sure that the compare drop-down says dev , and the base drop-
down says prod :

Comparing dev to prod

2. Add some comments.

3. Click Create pull request. The UI should propose to merge 1 commit into prod from dev .

4. Assuming that GitHub does not detect any conflicts, click Merge pull request, then Confirm merge.

If the merge is successful, GitHub will display a confirmation message. You should now see the new
route.yml in both the dev and prod branches.

Now, to make your Production environment pick up the changes from the prod branch, you'll send an HTTP
request from the Production Leader to the Cribl API.

Adapt the following request, substituting your Production Leader's IP address and admin password for the
placeholders.

Merging Changes from dev to prod

Syncing Your Production Leader to GitHub

curl -X POST "http://<Production_Leader_IP>:9000/api/v1/version/sync" \
 -H "accept: application/json" \
 -H "Authorization: Bearer $(curl
http://<Production_Leader_IP>:9000/api/v1/auth/login \
 -H 'Content-Type: application/json' \
 -d "{\"username\":\"admin\",\"password\":\"<Production_Leader_password>\"}"
2>/dev/null | jq -r .token)" \
 -d "ref=prod&deploy=true"

Page 282 of 1835

You should now see the changes you made in your Development environment (in this example, the new
Route) in the Production environment, too.

There's much more you can do with GitOps. To learn about C.env.CRIBL_GIT_BRANCH and GitHub Actions,
see Going Further.

;

Nested within the request to /version/sync is another request to /auth/login . The nested
request obtains the Bearer token required by the parent request. For more about Bearer tokens, see
this section.

Page 283 of 1835

Cribl Stream's persistent queuing (PQ) feature helps minimize data loss if a downstream receiver is
unreachable. PQ provides durability by writing data to disk for the duration of the outage, and forwarding it
upon recovery.

Persistent queues are implemented:

On Push Sources.

On Streaming Destinations. (Sources can take advantage of a Destination's queue.)

Persistent queues trigger di�erently on the Destination versus Source side.

On each Cribl Stream Destination that supports PQ, an in-memory bu�er helps the Destination absorb
temporary imbalances between inbound and outbound data rates. E.g., if there is an inbound burst of data,
the Destination will store events in the queue, and will then output them at the rate to which the receiver can
sync (as opposed to blocking or dropping the events).

Only when this bu�er is full will the Destination impose backpressure upstream. (This threshold varies per
Destination type.) This is where persistent queues help safeguard your data.

In Cribl Stream 3.4 and later, Push Sources' config modals also provide a PQ option. When enabled, you can
choose between two trigger conditions: Smart Mode will engage PQ upon backpressure from Destinations,
whereas Always On Mode will use PQ as a bu�er for all events.

On the Destination side, you can configure backpressure behavior to one of Block, Drop Events, or (on
Destinations that support it) Persistent Queue. In Block mode, the output will refuse to accept new data
until the receiver is ready.

4.4. Persistent Queues

Persistent Queues Supplement In‑Memory Queues

Destination Side

Source Side

Life Without PQ

Page 284 of 1835

The system will back propagate block "signals" all the way back to the sender (assuming that the sender
supports backpressure, too). In general, TCP-based senders support backpressure, but this is not a
guarantee: Each upstream application's developer is responsible for ensuring that the application stops
sending data once Cribl Stream stops sending TCP acknowledgments back to it.

In Drop mode, the Destination will discard new events until the receiver is ready. In some environments, the
in-memory queues and their block/drop behavior are acceptable.

Persistent queues serve environments where more durability is required (e.g., outages last longer than
memory queues can sustain), or where upstream senders do not support backpressure (e.g.,
ephemeral/network senders).

Engaging persistent queues in these scenarios can help minimize data loss. Once the in-memory queue is
full, the Cribl Stream Destination will write its data to disk. Then, when the receiver is ready, the output will
start draining the queues in FIFO (first in, first out) fashion.

If your Source(s) and Destination(s) both support persistent queues, which side should you enable? If you
prioritize maximum data retention and delivery over performance, Cribl recommends that you enable both
Source PQ (in Smart Mode) and Destination PQ.

When PQ is engaged, throughput will be somewhat slower. But in exchange for this extra latency, you'll
minimize your risk of data loss.

Persistent queues are:

Available on Push Sources.

Available on the output side (i.e., a�er processing) of all streaming Destinations, with these exceptions:
Syslog and Graphite (when you select UDP as the outbound protocol) and SNMP Trap.

PQ + FIFO = Durability

Source and/or Destination PQ?

Because of this latency penalty, it is redundant to enable PQ on a Source whose upstream sender is
configured to safeguard events in its own disk bu�er.

Persistent Queue Details and Constraints

Page 285 of 1835

Implemented at the Worker Process level, with independent sizing configuration and dynamic
engagement per Worker Process.

With load-balanced Destinations (Splunk Load Balanced, Splunk HEC, Elasticsearch, TCP JSON, and
Syslog with TCP), engaged only when all of the Destination's receivers are blocking data flow. (Here, a
single live receiver will prevent PQ from engaging on the corresponding Destination.)

On Destinations, engaged only when receivers are down, unreachable, blocking, or throwing a serious
error (such as a connection reset). Destination-side PQ is not designed to engage when receivers' data
consumption rate simply slows down.

Drained when at least one receiver can accept data.

Not infinite in size. I.e., if data cannot be delivered out, you might run out of disk space.

Not able to fully protect in cases of application failure. E.g., in-memory data might get lost if a crash
occurs.

Not able to protect in cases of hardware failure. E.g., disk failure, corruption, or machine/host loss.

TLS-encrypted only for data in flight, and only on Destinations where TLS is supported and enabled.
To encrypt data at rest, including disk writes/reads, you must configure encryption on the underlying
storage volume(s).

Persistent Queueing is configured individually for each Source and Destination that supports it. To enable
persistent queueing:

Go to a Source's configuration modal, select the Persistent Queue Settings le� tab, and toggle the
Enable Persistent Queue slider to Yes .

Go to a Destination's configuration modal, and set the Backpressure Behavior control to
Persistent Queueing .

These selections expose the following additional controls.

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Configuring Persistent Queueing

Source-Side PQ Only

Page 286 of 1835

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 42 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Determines whether to block or drop events when the queue is exerting backpressure
(because disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the
Block option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while
leaving the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to delete the files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Common PQ Settings (Source and Destination Sides)

If you enable Compression and also enter a Max queue size value, set a value higher than the
volume's total available disk space (disregarding compression). This will maximize queue saturation
and minimize data loss. For details, see Known Issues.

Destination-Side PQ Only

Minimum Free Disk Space

For queuing to operate properly, you must provide su�icient disk space. You configure the minimum
disk space in global ⚙ Settings (lower le�) > General Settings > Limits > Min Free Disk Space. If

Page 287 of 1835

Persistent Queues support, behavior, and triggers vary by Destination type, as summarized below.

HTTP-based Destinations handle backpressure based on HTTP response codes. The following conditions will
trigger PQ:

1. Connection failure.

2. HTTP 500 responses.

3. Data overload – sending more data than the Destination will accept.

HTTP 400 response errors will not engage PQ, and Cribl Stream will simply drop corresponding events.
Cribl Stream cannot retry these requests, because they have been flagged as "bad," and would just fail again.
If you see 400 errors, these o�en indicate a need to correct your Destination's configuration.

HTTP-based Destinations include:

WebHook

New Relic Logs & Metrics

New Relic Events

Open Telemetry

Sumo Logic

DataDog

Elastic

Honeycomb

Prometheus

Splunk HEC

Signal FX

Wavefront

Google Chronicle

Loki

available disk space falls below this threshold, Cribl Stream will stop maintaining persistent queues,
and data loss will begin. The default minimum is 5GB. Be sure to set this on your Worker Nodes
(rather than on the Leader Node) when in distributed mode.

Persistent Queue Support by Destination Type

HTTP-Based Destinations

Page 288 of 1835

TCP load-balanced Destinations can be configured with one or multiple receivers. If one or more receivers go
down, Cribl Stream will continue sending data to any healthy receivers. The following conditions will trigger
PQ:

1. Connection errors on all receivers.

2. Data overload – sending more data than the Destination will accept.

TCP load-balanced Destinations include:

Splunk Load Balanced

TCP JSON

Syslog

Filesystem-and UDP Destinations do not support PQ. These include:

Amazon S3

Filesystem

Azure Blob Storage

Google Cloud Storage

SNMP Trap

StastsD (with UDP)

Statsd Extended (with UDP)

Syslog (with UDP)

Filesystem-based Destinations do not support PQ because they already persist events to disk, before sending
them to their final destinations.

UDP-based Destinations do not support PQ because the protocol is not reliable. Cribl Stream gets no
indication whether an event was received by the receiver.

TCP Load-Balanced Destinations

As long as even one of the Destination's receivers is healthy, Cribl Stream will redirect data to
that receiver, and will not engage PQ.

Destinations Without PQ Support

Other Destinations

Page 289 of 1835

Other Destinations with a single receiver generally engage PQ based on these trigger conditions:

1. Connection errors.

2. Fail to send an event (for any reason).

With an Enterprise or Standard license, you can configure Notifications to be sent when Persistent Queue
files exceed a configurable percentage of allocated storage, or when they reach the queue-full state described
above.

These Notifications always appear in Cribl Stream's UI and internal logs, and you can also send them to
external systems. For setup details, see Destination-State Notifications.

;

Getting Notified about PQ Status

Page 290 of 1835

Cribl Stream provides a range of access-management features for users with di�erent security requirements.
For details, see the following topics:

Authentication: Authenticating users in Cribl Stream.

Local Users: Creating and managing users and their permissions.

Roles: Managing roles and policies to assign to users.

;

4.5. Access Management

Role-based access control can be enabled only on distributed deployments (Stream, Edge) with an
Enterprise license. With other license types and/or single-instance deployments (Stream, Edge), all
users will have full administrative privileges.

Page 291 of 1835

User authentication in Cribl Stream

Cribl Stream supports local, Splunk, LDAP, and SSO/OpenID Connect authentication methods, depending
on license type.

To set up local authentication, navigate to global ⚙ Settings (lower le�) > Access Management >
Authentication and select Local.

You can then manage users through the global ⚙ Settings (lower le�) > Access Management > Local Users
UI. All changes made to users are persisted in a file located at
$CRIBL_HOME/local/cribl/auth/users.json .

This is the line format, and note that both usernames and passwords are case-sensitive:

{"username":"user","first":"Elvis","last":"Bath","disabled":"false",

"passwd":"Yrt0MOD1w8OzyMYB8WMcEleOtYESMwZw2qIZyTvueOE"}

The file is monitored for modifications every 60s, and will be reloaded if changes are detected.

Adding users through direct modification of the file is also supported, but not recommended.

To manually add, change, or restore a password, replace the a�ected user's passwd key-value pair with a
password key, in this format: "password":"<newPlaintext>" . Cribl Stream will hash all plaintext
password(s), identified by the password key, during the next file reload, and will rename the plaintext
password key.

Starting with the same users.json line above:

4.5.1. Authentication

Local Authentication

If you edit users.json , maintain each JSON element as a single line. Otherwise, the file will not
reload properly.

Manual Password Replacement

Page 292 of 1835

{"username":"user","first":"Elvis","last":"Bath","disabled":"false",

"passwd":"Yrt0MOD1w8OzyMYB8WMcEleOtYESMwZw2qIZyTvueOE"}

...you'd modify the final key-value pair to something like:

{"username":"user","first":"Elvis","last":"Bath","disabled":"false",

"password":"V3ry53CuR&pW9"}

Within at most one minute a�er you save the file, Cribl Stream will rename the password key back to
passwd , and will hash its value, re-creating something resembling the original example.

In a distributed deployment (Edge, Stream), once a Worker/Edge Node has been set to point to the
Leader Node, Cribl Stream will set each Worker/Edge Node's admin password with a randomized password
that is di�erent from the admin user's password on the Leader Node. This is by design, as a security
precaution. But it might lead to situations where administrators cannot log into a Worker/Edge Node directly,
and must rely on accessing them via the Leader.

To explicitly apply a known/new password to your Worker/Edge Node, you set and push a new password to
the Worker Group/Edge Fleet. Here's how, in the Leader Node's UI:

1. From the le� nav, select Groups.

2. Select the desired Worker Group/Fleet.

3. From the Group's top nav, select Settings (upper right).

4. Select Local Users, then expand the desired user.

5. Update the Password field and select Save.

Every 10 seconds, the Worker/Edge Node will request an update of configuration from the Leader, and any
new password settings will be included.

You can customize authentication behavior at global ⚙ Settings (lower le�) > General Settings >
API Server Settings > Advanced. The options here include:

Logout on Roles change: If role-based access control is enabled, determines whether users are
automatically logged out of Cribl Stream when their assigned Roles change. Defaults to Yes .

Auth-token TTL: Sets authentication tokens' valid lifetime, in seconds. Defaults to 3600 (60 minutes).

Set Worker/Edge Node Passwords

Authentication Controls

Page 293 of 1835

Login rate limit: Sets the number of login attempts allowed over a (selectable) unit of time. Defaults to
2/second .

HTTP header: Enables you to specify one or more custom HTTP headers to be sent with every response.

Here is how Cribl Stream sets tokens' valid lifetime by applying the Auth-token TTL field's value:

When a user logs in, Cribl Stream returns a token whose expiration time is set to {login time +
Auth‑token TTL value}.

If the user is idle (no UI activity) for the configured token lifetime, they are logged out.

As long as the user is interacting with Cribl Stream's UI in their browser, Cribl Stream continually renews
the token, resetting the idle-session time limit back by the Auth‑token TTL value.

When Cribl Stream first starts, it creates a $CRIBL_HOME/local/cribl/auth/cribl.secret file. This file
contains a key that is used to generate auth tokens for users, encrypt their passwords, and encrypt
encryption keys.

Default local credentials are: admin/admin

Below are configuration details for the following external authentication providers:

Splunk Authentication

LDAP Authentication

SSO/OpenID Connect Authentication

Token Renewal and Session Timeout

The cribl.secret File

Back up and secure access to this file by applying strict permissions – e.g., 600 .

External Authentication

All of these external auth methods require either an Enterprise or a Standard license. They're not
supported with a Free license.

Page 294 of 1835

Splunk authentication is very helpful when deploying Cribl Stream in the same environment as Splunk.
This option requires the user to have Splunk admin role permissions. To set up Splunk authentication:

Navigate to global ⚙ Settings (lower le�) > Access Management > Authentication > Type and select
Splunk. This exposes the following controls.

Host: Splunk hostname (typically a search head).

Port: Splunk management port (defaults to 8089).

SSL: Whether SSL is enabled on Splunk instance that provides authentication. Defaults to Yes .

Fallback on fatal error: Attempt local authentication if Splunk authentication is unsuccessful. Defaults
to No . If toggled to Yes , Cribl Stream will attempt local auth only a�er a failed Splunk auth. Selecting
Yes also exposes this additional option:

Fallback on bad login: Attempt local authentication if the supplied user/password fails to log in on
Splunk. This similarly defaults to No .

You can set up LDAP authentication as follows:

Cribl Stream Roles and role mapping are supported only with an Enterprise license. With a Standard
license, all your external users will be imported to Cribl Stream in the admin role.

While configuring any external auth method, make sure you don't get locked out of Cribl Stream!
Enable the Fallback on fatal error or Allow local auth toggle until you're certain that external auth is
working as intended. If you do get locked out, refer back to Manual Password Replacement for the
remedy.

Splunk Authentication

To prevent lockout, Cribl strongly recommends enabling Fallback on fatal error until you're certain
that external auth is working as intended. If you do get locked out, see
Manual Password Replacement.

The Splunk search head does not need to be locally installed on the Cribl Stream instance. See also
Role Mapping below.

LDAP Authentication

Page 295 of 1835

Navigate to global ⚙ Settings (lower le�) > Access Management > Authentication > Type, and select LDAP.
This exposes the following controls.

Secure: Enable to use a secure LDAP connections (ldaps://). Disable for an insecure (ldap://)
connection.

LDAP servers: List of LDAP servers. Each entry should contain host:port (e.g., localhost:389).

Bind DN: Distinguished name of entity to authenticate with LDAP server. E.g.,
'cn=admin,dc=example,dc=org' .

Password: Distinguished Name password used to authenticate with LDAP server.

User search base: Starting point to search LDAP for users, e.g., 'dc=example,dc=org' .

Username field: LDAP user search field, e.g., cn or (cn (or uid) . For Microso� Active Directory, use
sAMAccountName here.

User search filter: LDAP search filter to apply when finding user. Optional. Example:
(&(group=admin)(!(department=123*)))

Group search base,
Group search filter,
Group member field,
Group name field: These settings are used only for LDAP authentication with role-based access control.
See Role‑Based LDAP Authentication, below.

Connection timeout (ms): Defaults to 5000 .

Reject unauthorized: Valid for secure LDAP connections. Set to Yes to reject unauthorized server
certificates.

Fallback on fatal error: Attempt local authentication if LDAP authentication is down or misconfigured.
Defaults to No . If toggled to Yes , local auth will be attempted only a�er a failed LDAP auth. Selecting
Yes also exposes this additional option:

Fallback on bad login: Attempt local authentication if the supplied user/password fails to log in on
the LDAP provider. Defaults to No .

To prevent lockout, Cribl strongly recommends enabling Fallback on fatal error until you're
certain that external auth is working as intended. If you do get locked out, see
Manual Password Replacement.

Page 296 of 1835

When configuring LDAP authentication with role‑based access control (RBAC), you must use the following
settings to import user groups. (The UI does not enforce filling these fields. When using LDAP without roles,
ignore them.)

Group search base: Starting point to search LDAP for groups, e.g., dc=example,dc=org .

Group member field: LDAP group search field, e.g., member .

Group search filter: LDAP search filter to apply when finding group, e.g.,
(&(cn=cribl*)(objectclass=group)) .

Group name field: Attribute used in objects' DNs that represents the group name, e.g., cn . Cribl Stream
does not directly read this attribute from group objects; rather, it must be present in your groups' DN
values. Match the attribute name's original case (upper, lower, or mixed) when you specify it in this field.
In particular, Microso� Active Directory requires all-uppercase group names (e.g., CN).

Cribl Stream supports SSO/OpenID user authentication (login/password) and authorization (user's group
membership, which you can map to Cribl Roles). Using OpenID will change the default Log in button on the
login page to a button labeled Log in with <provider> which redirects to the specified provider. Set this
up as follows:

Navigate to global ⚙ Settings (lower le�) > Access Management > Authentication > Type and select
OpenID Connect. This exposes the following controls.

Provider name: The name of the identity provider service. You can select Google or Okta, both
supported natively. Manual entries are also allowed.

Audience: The Audience from provider configuration. This will be the base URL, e.g.:
https://master.yourDomain.com:9000 for a distributed environment.

Client ID: The client_id from provider configuration.

Role-Based LDAP Authentication

See also Role Mapping below.

SSO/OpenID Connect Authentication

For distributed environments with a second Leader configured, modify the Audience field to
point to the load balancer instead of the Leader Node.

Page 297 of 1835

Client secret: The client_secret from provider configuration.

Scope: Space-separated list of authentication scopes. The default list is: openid profile email .
If you populate the User info URL field, you must add groups to this list.

Authentication URL: The full path to the provider's authentication endpoint. Be sure to configure the
callback URL at the provider as <masterServerFQDN>:9000/api/v1/auth/authorization-
code/callback , e.g.: https://master.yourDomain.com:9000/api/v1/auth/authorization-
code/callback .

Token URL: The full path to the provider's access token URL.

User info URL: The full path to the provider's user info URL. Optional; if not provided, Cribl Stream will
attempt to gather user info from the ID token returned from the Token URL.

Logout URL: The full path to the provider's logout URL. Leave blank if the provider does not support
logout or token revocation.

User identifier: JavaScript expression used to derive userId from the id_token returned by the
OpenID provider.

Validate certs: Whether to validate certificates. Defaults to Yes . Toggle to No to allow insecure
self‑signed certificates.

Filter type: Select either Email allowlist or User info filter. This selection displays one of the following
fields:

Email allowlist: Wildcard list of emails/email patterns that are allowed access.

User info filter: JavaScript expression to filter against user profile attributes.
E.g.: name.startsWith("someUser") && email.endsWith("domain.com")

Group name field: Field in the User info URL response (if configured); otherwise, id_token that
contains the user groups. Defaults to groups .

Allow local auth: Toggle to Yes to also users to log in using Cribl Stream's local authentication. This
enables an extra button called Log in with local user on the Cribl Stream login page. (This option
ensures fallback access for local users if SSO/OpenID authentication fails.)

To prevent lockout, Cribl strongly recommends enabling Allow local auth until you're certain
that external auth is working as intended. If you do get locked out, see
Manual Password Replacement.

Page 298 of 1835

Email allowlist: Wildcard list of emails/email patterns that are allowed access.

Note the following details when filling in the form – for example, when using Okta:

<Issuer URI> is the account at the identity provider.

Audience is the URL of the host that will be connecting to the Issuer (e.g.,
https://master.yourDomain.com:9000 for a distributed environment). The issuer (Okta, in this
example) will redirect back to this site upon authentication success or failure.

User info URL is required, because Okta doesn't encode groups in id_token . Azure AD and Google
also rely on this field.

This section is displayed only on distributed deployments (Edge, Stream) with an Enterprise License.
For details on mapping your external identity provider's configured groups to corresponding Cribl Stream
user access Roles, see External Groups and Roles. The controls here are:

Default role: Default Cribl Stream Role to assign to all groups not explicitly mapped to a Role.

Mapping: On each mapping row, enter an external group name on the le�, and select the corresponding
Cribl Stream Role on the right drop-down list. Click + Add Mapping to add more rows.

;

See also Role Mapping below.

The only OAuth 2.0 flow that Cribl Stream supports is the Authorization Code Grant flow.

In version 3.0 and higher, Cribl Stream's former "master" application components are renamed
"leader." Above, while some legacy terminology remains within URLs, this document will reflect that.

Role Mapping

Page 299 of 1835

This page covers how to create and manage Cribl Stream users, including their credentials and (where
enabled) their access roles. These options apply if you're using the Local Authentication type, which is
detailed here.

On the Leader Node – or in single-instance deployments (Edge, Stream). – you manage users by selecting
global ⚙ Settings (lower le�) > Access Management > Local Users.

The resulting Manage Local Users page will initially show only the default admin user. You are operating as
this user.

Managing users

To create a new Cribl Stream user, click + Add New. To edit an existing user, click anywhere on its row. With
either selection, you will see the modal shown below.

The first few fields are self-explanatory: they establish the user's credentials. Usernames and passwords are
case-sensitive.

If you choose to establish or maintain a user's credentials on Cribl Stream, but prevent them from currently
logging in, you can toggle the Enabled slider to No .

4.5.2. Local Users

Creating and Managing Local Users

Page 300 of 1835

Entering and saving a user's credentials

In Cribl Stream 3.1 and above, logged-in users can change their own Cribl Stream passwords via the
User Settings fly-out at the UI's lower le�. This fly-out also provides user-specific options to customize the UI.

Self-serve password changes

If you've enabled role-based access control you can use the modal's bottom Roles section to assign access
Roles to this new or existing user.

Adding Roles

For details, see Roles. Role-based access control can be enabled only on distributed deployments
(Edge, Stream) with an Enterprise license. With other license types and/or single-instance
deployments (Edge, Stream), all users will have full administrative privileges.

Page 301 of 1835

Click + Add Role to assign each desired role to this user. The options on the Roles drop-down reflect the
Roles you've configured in global ⚙ Settings (lower le�) > Access Management > Roles.

Note that when you assign multiple Roles to a user, the Roles' permissions are additive: This user is granted a
superset of the highest permissions contained in all the assigned Roles.

When you've configured (or reconfigured) this user as desired, click Save.

By default, Cribl Stream will log out a user upon a change in their assigned Roles. You can defeat this
behavior at global ⚙ Settings (lower le�) > General Settings > API Server Settings > Advanced > Logout on
roles change.

;

Page 302 of 1835

Define and manage access-control roles and policies

Cribl Stream o�ers role-based access control (RBAC) to serve these common enterprise goals:

Security: Limit the blast radius of inadvertent or intentional errors, by restricting each user's actions to
their needed scope within the application.

Accountability: Ensure compliance, by restricting read and write access to sensitive data.

Operational e�iciency: Match enterprise workflows, by delegating access over subsets of
objects/resources to appropriate users and teams.

Cribl Stream's RBAC mechanism is designed around the following concepts, which you manage in the UI:

Roles: Logical entities that are associated with one or multiple Policies (groups of permissions). You use
each Role to consistently apply these permissions to multiple Cribl Stream users.

Policies: A set of permissions. A Role that is granted a given Policy can access, or perform an action on,
a specified Cribl Stream object or objects.

Permissions: Access rights to navigate to, view, change, or delete specified objects in Cribl Stream.

Users: You map Roles to Cribl Stream users in the same way that you map user groups to users in LDAP
and other common access-control frameworks.

4.5.3. Roles

Role-based access control is enabled only on distributed deployments (Edge, Stream) with an
Enterprise license. With other license types and/or single-instance deployments (Edge, Stream), all
users will have full administrative privileges.

RBAC Concepts

Users are independent Cribl Stream objects that you can configure even without RBAC enabled. For
details, see Local Users.

Page 303 of 1835

Cribl Stream RBAC is designed to grant arbitrary permissions over objects, attributes, and actions at arbitrary
levels.

Cribl Stream's UI will be presented di�erently to users who are assigned Roles that impose access
restrictions. Controls will be visible but disabled, and search and log results will be limited, depending on
each user's permissions.

Access to the same objects via Cribl Stream's API and CLI will be similarly filtered, with appropriate error
reporting. E.g., if a user tries to commit and deploy changes on a Worker Group/Fleet where they are not
authorized, they might receive a CLI error message like this: git commit-deploy command failed with
err: Forbidden

Cribl Stream Roles can be integrated with external authorization/IAM mechanisms, such as LDAP and OIDC
and mapped to their respective groups, tags, etc.

Cribl Stream ships with a set of default Roles, which you can supplement.

These Roles ship with Cribl Stream by default:

NAME DESCRIPTION

admin Superusers – authorized to do anything and everything in the system.

owner_all Read/write access to (and Deploy permission on) all Worker Groups/Fleets.

editor_all Read/write access to all Worker Groups/Fleets.

reader_all Read-only access to all Worker Groups/Fleets.

collect_all Ability to run existing collection jobs on all Worker Groups/Fleets.

How Cribl Stream RBAC Works

As of v. 2.4.x, Roles are customizable only down to the Worker Group/Fleet level. E.g., you can grant
Edit permission on Worker Group/Fleet WG1 to User A and User B, but cannot grant them finer-
grained permissions on child objects such as Pipelines, Routes, etc.

Using Roles

Default Roles

Page 304 of 1835

NAME DESCRIPTION

gitops Ability to sync the Cribl Stream deployment to a remote Git repository.

notification_admin Read/write access to all Notifications.

user Default role that gets only a home/landing page to authenticate. This is a fallback for users who
have not yet been assigned a higher role by an admin.

Cribl strongly recommends that you do not edit or delete these default roles. However, you can readily
clone them (see Clone Role below), and modify the duplicates to meet your needs.

In a distributed environment, you manage Roles at the Leader level, for the entire deployment. On the Leader
Node, select global ⚙ Settings (lower le�) > Access Management > Roles.

Manage Roles page

To add a new Role, click + Add New at the upper right. To edit an existing Role, click anywhere on its row.
Here again, either way, the resulting modal o�ers basically the same options.

Initial Installation or Upgrade

When you first install Cribl Stream with the prerequisites to enable RBAC (Enterprise license and
distributed deployment), you will be granted the admin role. Using this role, you can then define and
apply additional roles for other users.

You will similarly be granted the admin role upon upgrading an existing Cribl Stream installation from
pre-2.4 versions to v. 2.4 or higher. This maintains backwards-compatible access to everything your
organization has configured under the previous Cribl Stream version's single role.

Adding and Modifying Roles

Page 305 of 1835

Add/edit Role modal

The options at the modal's top and bottom are nearly self-explanatory:

Role name: Unique name for this Role.

Description: Optional free-text description.

Delete Role: And...it's gone. (But first, there's a confirmation prompt. Also, you cannot delete a Role assigned
to an active user.)

Clone Role: Opens a New role version of the modal, duplicating the Description and Policies of the Role you
started with.

The modal's central Policies section (described below) is its real working area.

The Policies section is an expandable table. In each row, you select a Policy using the le� drop-down, and
apply that Policy to objects (i.e., assign permissions on those objects) using the right drop-down.

Let's highlight an example from the above screen capture of Cribl Streams built-in Roles: The editor_all
Role has the GroupEdit Policy, with permission to exercise it on any and all Worker Groups/Fleets (as
indicated by the * wildcard).

Policies on the le�, objects on the right

Adding and Modifying Policies

Page 306 of 1835

To add a new Policy to a Role:

1. Click + Add Policy to add a new row to the Policies table.

2. Select a Policy from the le� column drop-down.

3. Accept the default object on the right; or select one from the drop-down.

To modify an already-assigned Policy, just edit its row's drop-downs in the Policies table.

To remove a Policy from the Role, click its close box at right.

In all cases, click Save to confirm your changes and close the modal.

In the Policies table's le� column, the drop-down o�ers the following default Policies:

NAME DESCRIPTION

GroupRead
The most basic Worker Group/Fleet-level permission. Enables users to view a Worker Group/Fleet
and/or its configuration.

GroupEdit
Building on GroupRead , grants the ability to also change and commit a Worker Group/Fleet's
configuration.

GroupFull Building on GroupEdit , grants the ability to also deploy a Worker Group/Fleet.

GroupCollect Grants the ability to run Collectors on a Worker Group/Fleet.

* (wildcard) Grants all permissions on associated objects.

In the Policies table's right column, use the drop-down to select the Cribl Stream objects on which the le�
column's Policy will apply. (Remember that in v. 2.4, the objects available for selection are specific
Worker Groups/Fleets, or a wildcard representing all Worker Groups/Fleets.) For example:

Worker Group <id>

NewGroup2

default (Worker Group)

* (all Worker Groups)

Default Policies

Objects and Permissions

Page 307 of 1835

Here's a basic example that ties together the above concepts and facilities. It demonstrates how to add a Role
whose permissions are restricted to a particular Worker Group/Fleet.

Here, we've cloned the editor_all Role that we unpacked above. We've named the clone
editor_default .

We've kept the GroupEdit Policy from editor_all . But in the right column, we're restricting its object
permissions to the default Worker Group/Fleet that ships with Cribl Stream.

Cloning a default Role

You can readily adapt this example to create a Role that has permissions on an arbitrarily named
Worker Group/Fleet of your own.

Once you've defined a Role, you can associate it with Cribl Stream users. On the Leader Node, select global
Settings (lower le�) > Access Management > Local Users. For details, see Local Users.

Note that when you assign multiple Roles to a given user, the Roles' permissions are additive: This user is
granted a superset of all the permissions contained in all the assigned Roles.

By default, Cribl Stream will log out a user upon a change in their assigned Roles. You can defeat this
behavior at global ⚙ Settings (lower le�) > General Settings > API Server Settings > Advanced > Logout on
roles change.

Extending Default Roles

Roles and Users

External Groups and Cribl Stream Roles

Page 308 of 1835

You can map user groups from external identity providers (LDAP, Splunk, or OIDC) to Cribl Stream Roles, as
follows:

1. Select global ⚙ Settings (lower le�) > Access Management > Authentication.

2. From the Type drop-down, select LDAP, Splunk, or OpenID Connect, according to your needs.

3. On the resulting Authentication Settings page, configure your identity provider's connection and other
basics. (For configuration details, see the appropriate Authentication section.)

4. Under Role Mapping, first select a Cribl Stream Default role to apply to external user groups that have
no explicit Cribl Stream mapping defined below.

5. Next, map external groups as you've configured them in your external identity provider (le� field below)
to Cribl Stream Roles (right drop-down list below).

6. To map more user groups, click + Add Mapping.

7. When your configuration is complete, click Save.

Here's a composite showing the built-in Roles available on both the Default role and the Mapping drop-
downs:

Mapping external user groups to Cribl Stream Roles

And here, we've set a conservative Default Role and one explicit Mapping:

Page 309 of 1835

External user groups mapped to Cribl Stream Roles

;

Page 310 of 1835

4.6. Securing

You can secure Cribl Stream access and tra�ic using various combinations of SSL (Secure Sockets Layer), TLS
(Transport Layer Security), custom HTTP headers, and internal or external KMS (Key Management Service)
options.

A best practice in enterprise distributed deployments, this prevents direct browser access to Worker Nodes'
UI.

1. Select a Group.

2. Open Group ⚙ Settings (top right).

3. Navigate to Settings > General Settings > API Server Settings > Advanced.

4. Toggle the Disable UI Access slider to Yes .

5. Click Save.

You can secure Cribl Stream's API and UI access by configuring SSL. Do this on the Leader, to secure
Worker Nodes' inbound communications.

You can use your own certs and private keys, or you can generate a pair with OpenSSL, as shown here:

4.6.1. Securing Cribl Stream

In a single-instance deployment (Edge, Stream), wherever this page refers to a Worker Group, the
equivalent le�-nav link is labeled Configure .

Secure Access to Worker Nodes' UI

Cribl recommends that you first enable the Leader's Worker Node UI access distributed deployment (
 Edge, Stream) option, so that administrators will still be able to tunnel through to any

Worker Nodes' UI from the Leader. This is also a prerequisite for Connecting Workers to Leader
Securely.

SSL Certificate Configuration

Page 311 of 1835

openssl req -nodes -new -x509 -newkey rsa:2048 -keyout myKey.pem -out myCert.pem -days

420

This example command will generate both a self-signed cert myCert.pem (certified for 420 days), and an
unencrypted, 2048-bit RSA private key myKey.pem . (Change the filename arguments to modify these
placeholder names.)

In the Cribl Stream UI, you can configure the cert via global ⚙ Settings (lower le�) > Security > Certificates.
You can configure the key via:

Global ⚙ Settings (lower le�) > Security > Encryption Keys single-instance deployments (Edge,
Stream), or

Groups > <group‐name> > Settings > Security > Encryption Keys distributed deployments
(Edge,Stream).

Alternatively, you can edit the local/cribl.yml file's api section to directly set the privKeyPath and
certPath attributes. For example:

cribl.yml

You can encode custom, security-related HTTP headers, as needed. As shown in the examples below, you
specify these at global ⚙ Settings (lower le�) > General Settings > API Server Settings > Advanced >

As indicated by these examples, Cribl Streamexpects certificates and keys to be formatted in privacy-
enhanced mail (.pem) format.

api:
host: 0.0.0.0
port: 9000
disabled : false
ssl:
disabled: false
privKeyPath: /path/to/myKey.pem
certPath: /path/to/myCert.pem

...

See Securing Communications for details about using this certificate and key to secure
communications on, and among, your Cribl Stream Leader and Worker Nodes.

Custom HTTP Headers

Page 312 of 1835

HTTP Headers. Click + Add Header to display extra rows for new key-value pairs.

Custom HTTP headers

This table shows TLS client/server pairs, and encryption defaults, per tra�ic type.

TRAFFIC TYPE TLS CLIENT TLS SERVER ENCRYPTION CERT AUTH CN* CHECK

UI Browser Cribl Stream
Default
disabled

Default
disabled

Default
disabled

API Worker/Edge Node Leader
Default
disabled

Default
disabled

Default
disabled

Worker-to-
Leader

Worker/Edge Node Leader
Default
disabled

Default
disabled

Default
disabled

Data Any data sender
Cribl Stream
(Source)

Default
disabled

Default
disabled

Default
disabled

Data
Cribl Stream
(Destination)

Any data receiver
Default
disabled

Default
disabled

Default
disabled

Authentication ———— ———— ———— ———— ————

TLS Settings and Tra�ic Types

Page 313 of 1835

TRAFFIC TYPE TLS CLIENT TLS SERVER ENCRYPTION CERT AUTH CN* CHECK

Local* Browser Cribl Stream
Default
Disabled

N/A N/A

LDAP* Cribl Stream LDAP Provider Custom N/A
Default
Disabled

Splunk* Cribl Stream
Splunk Search
Head

Default
Enabled

N/A
Default
Disabled

OIDC†/ Okta*
Browser and
Cribl Stream

Okta
Default
Enabled

N/A
Enabled
(Browser)

OIDC†/ Google*
Browser and
Cribl Stream

Google
Default
Enabled

N/A
Enabled
(Browser)

* Common name
† OpenID Connect

You can configure advanced, system-wide TLS settings – minimum and maximum TLS versions, default
cypher lists, and ECDH curve names. Select global ⚙ Settings (lower le�) > System > General Settings >
Default TLS Settings.

Here, in Cribl Stream's Default cypher list field, you can specify between one and all of the following
supported cyphers:

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

You can create and manage keys that Cribl Stream will use for real-time encryption of fields and patterns
within events. For details on applying the keys that you define here, see Encryption.

Default TLS Settings (Cyphers, Etc.)

Encryption Keys

Page 314 of 1835

In a single-instance deployment, select global ⚙ Settings (lower le�) > Security > Encryption Keys.

In a distributed deployment with one Worker Group, select Configure > Settings > Security >
Encryption Keys.

In a distributed deployment with multiple Worker Groups, keys are managed per Worker Group. Select
Groups > <group-name> Settings > Security > Encryption Keys.

On the resulting Manage Encryption Keys page, you can configure existing keys, and/or use the following
options to add new keys.

To import existing keys, click Get Key Bundle. You'll be prompted to supply a login and password to proceed.

To define a new key. click + Add New The resulting New Key modal provides the following controls:

Key ID: Cribl Stream will automatically generate this unique identifier.

Description: Optionally, enter a description summarizing this key's purpose.

Encryption algorithm: Currently, the only option supported here is aes-256-cbc .

KMS for this key: Currently, the only option supported here is local (Cribl Stream's internal Key
Management Service).

Key Class: Classes are arbitrary collections of keys that you can map to di�erent levels of access control. For
details, see Encryption. This value defaults to 0 ; you can assign more classes, as needed.

Expiration time: Optionally, assign the key an expiration date. Directly enter the date or select it from the
date picker.

With Cribl Stream's secrets store, you can centrally manage secrets that Cribl Stream instances use to
authenticate on integrated services. Use this UI section to create and update authorization tokens,
username/password combinations, and API‑key/secret‑key combinations for reuse across the application.

Accessing Keys

Get Key Bundle

Add New Key

Secrets

Page 315 of 1835

In a single-instance deployment, select global ⚙ Settings (lower le�) > Security > Secrets.

In a distributed deployment with one Worker Group, select Configure > Settings > Security > Secrets.

In a distributed deployment with multiple Worker Groups, secrets are managed on each Worker Group.
Select Groups > <group-name> Settings > Security > Secrets.

On the resulting Manage Secrets page, you can configure existing secrets, and/or click + Add New to define
new secrets.

The New Secret modal provides the following controls:

Secret name: Enter an arbitrary, unique name for this secret.

Secret type: See below for this second field's options, some of which expose additional controls.

Description: Optionally, enter a description summarizing this secret's purpose.

Tags: Optionally, enter one or multiple tags related to this secret.

This drop-down o�ers the following types:

Text: This default type exposes a Value field where you directly enter the secret.

API key and secret key: Exposes API key and Secret key fields, used to retrieve the secret from a secure
endpoint. This is the only secret type supported on Cribl Stream's AWS-based Sources, Collectors, and
Destinations, and on our Google Cloud Storage Destination.

Username with password: Exposes Username and Password fields, which you fill to retrieve the secret
using Basic Authentication.

Where Cribl Stream Sources and Destinations support TLS, each Source's or Destination's configuration
provides a CA Certificate Path field where you can point to corresponding Certificate Authority (CA) .pem
file(s). However, you can also use environment variables to manage CAs globally. Here are some common
scenarios:

Accessing Secrets

Add New Secret

Secret Type

CA Certificates and Environment Variables

Page 316 of 1835

1. How do I add a set of trusted root CAs to the list of trusted CAs that Cribl Stream trusts?
Set this environment variable in each Worker Node's environment (e.g., in its systemd unit file):
NODE_EXTRA_CA_CERTS=/path/to/file_with_certs.pem . For details, see the nodejs docs.

2. How do I make Cribl Stream trust all TLS certificates presented by any server it connects to?
Set this environment variable: NODE_TLS_REJECT_UNAUTHORIZED=0 – for details, see the nodejs docs.

Cribl Stream's Key Management Service maintains the keys that Cribl Stream uses to encrypt secrets on
Worker Groups and Worker Nodes.

In a single-instance deployment, the KMS is configured at global ⚙ Settings (lower le�) > Security > KMS. In
a distributed deployment, the Leader's KMS is configured at the same global location, while additional KMS
configs for each Worker Group are available at the Group's ⚙ Settings (upper right) > Security > KMS page.

In versions 3.0 and above, administrators with a Cribl Stream Enterprise or Standard license can integrate an
external KMS provider. In all, the KMS Provider drop-down currently provides these options:

Cribl Stream Internal KMS: The only option with a Free license. With this option, the secrets themselves
are configured and maintained in Cribl Stream Settings' parallel Secrets section.

HashiCorp Vault.

AWS KMS.

KMS Configuration

External KMS Providers and Worker Groups

To integrate an external KMS provider Into a distributed deployment, Cribl Stream's Leader Node
must have Internet access.

When you initially install a license in distributed mode, a known bug prevents immediate use of KMS
features within Worker Groups. Here is the workaround:

1. Open global ⚙ Settings (lower le�) > Worker Processes.

2. In the list of processes, locate any process with a Role of CONFIG_HELPER .

3. Click that process' Restart button.

Upon restarting, KMS will be available for use in the corresponding Worker Group.

Internal KMS

Page 317 of 1835

The KMS provider field defaults to Stream Internal . With this option, no further configuration here is
required (or possible). See Secrets to configure individual secrets.

Setting the KMS provider drop-down to HashiCorp Vault exposes the following configuration options:

Vault URL: Enter the Vault server's URL (e.g., http://localhost:8200).

Auth provider: The method for authenticating requests to Vault server. Select one of Token , AWS IAM , or
AWS EC2 . Your selection determines the remaining Authentication options displayed.

Token: Enter the authentication token. This token will be used only to generate child tokens for further
authentication actions.

Use the Authentication method buttons to select one of the following AWS methods:

Auto: Uses the AWS instance's metadata service to automatically obtain short-lived credentials from the
IAM role attached to an EC2 instance. The attached IAM role grants Cribl Stream Worker Nodes access to
authorized AWS resources. Can also use the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY . Works only when running on AWS.

Manual: If not running on AWS, you can select this option to enter a static set of user-associated IAM
credentials directly or by reference. This is useful for Worker Nodes not in an AWS VPC, e.g., those
running a private cloud. It prompts you to provide an Access key and a Secret key.

Vault AWS IAM Server ID: Value to use for the Vault-AWS-IAM-Server-ID header value. This should match
the value configured with IAM authentication on Vault.

Vault Role: Authentication role to use in Vault.

This section is displayed for all AWS IAM authentication methods.

HashiCorp Vault

KMS Settings

Authentication

Token-based Authentication

AWS IAM Authentication

Assume Role

Page 318 of 1835

Enable for Vault Auth: Toggle to Yes if you want to use your Assume Role credentials to access Vault
authentication.

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to assume.

External ID: Enter the External ID to use when assuming the role.

Vault Role: Enter the authentication role to use in Vault.

Mount: Mount point of the Vault secrets engine to use. (Currently, only the KVv2 engine is supported.)
Defaults to secret .

Secret path: Enter the path on which the Cribl Stream secret should be stored, e.g.:
<somePath>/cribl‐secret .

Enable health check: Whether to perform a health check before migrating secrets data. Defaults to Yes .

Health check endpoint: Configurable endpoint to use for validating system health. Defaults to
/v1/sys/health .

Setting the KMS provider drop-down to AWS KMS exposes the following configuration options:

Authentication method: Select an AWS authentication method.

Auto: This default option uses the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY , or the attached IAM role. Works only when running on AWS.

Manual: You must select this option when not running on AWS.

AWS EC2 Authentication

Secret Engine

In a distributed deployment, the Leader, and each Worker Group, require a distinct secret. This
location cannot be shared between them.

Advanced

AWS KMS

Authentication

Page 319 of 1835

The Manual option exposes these corresponding additional fields:

Access key: Enter your AWS access key. If not present, will fall back to env.AWS_ACCESS_KEY_ID , or to
the metadata endpoint for IAM role credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to env.AWS_SECRET_ACCESS_KEY , or
to the metadata endpoint for IAM credentials.

Enable for KMS: Toggle to Yes if you want to use Assume Role credentials to access the AWS KMS.

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to assume.

External ID: Enter the External ID to use when assuming role. This is required only when assuming a role that
requires this ID in order to delegate third-party access. For details, see AWS' documentation.

KMS Key ARN: Enter the Amazon Resource Name (ARN) of the AWS KMS Key to use for encryption. This entry
is required.

;

Assume Role

Service Configuration

Page 320 of 1835

This page outlines how to protect Cribl Stream Leader to Worker Nodes communications, using an existing
SSL certificate and key.

Cribl Stream expects certificates and keys to be formatted in privacy-enhanced mail (.pem) format.
To generate a self-signed certificate and corresponding key, see Securing Cribl Stream.

To use your certificate and key to prepare secure communications between Workers/Edge Nodes and the
Leader:

1. Open your SSL certificate file. (The self-signed certificate example used the placeholder name
myCert.pem .)

2. Copy the file's contents to your clipboard.

3. Paste the content into the Leader's global ⚙ Settings (lower le�) > Security > Certificates >
New Certificates modal > Certificate field.

4. Open your private key file. (The self-signed certificate example used the placeholder name myKey.pem .)

5. Copy the file's contents to your clipboard.

6. Paste the clipboard contents into the same Leader modal's Private key field.

7. Fill in the Name and Description fields.

8. If you've uploaded a self-signed certificate, just Save it now.

9. If your private key is encrypted, fill in the modal's Passphrase with the corresponding key.

4.6.2. Securing Communications

Importing Certificate and Key

You can also skip the preceding two steps, and just upload or drag/drop the file from your
filesystem.

You can also skip the preceding two steps, and just upload or drag/drop the file from your
filesystem.

Page 321 of 1835

10. If you're uploading a certificate signed by an external certificate authority – e.g., a downloaded Splunk
Cloud certificate – import the chain into the CA certificate field before saving the cert. For details, see
Obtain the Certificate Chain (TLS/SSL).

You can configure secure communication between your Leader and Worker Nodes using the UI, the
instance.yml config file, or environment variables.

Set up secure communication first on the Worker Node, then on the Leader.

1. Enable the Leader's UI access to each desired Worker Node (Stream, Edge).

2. Tunnel through from the Leader to a Worker Node's UI.

3. Select the Worker Node's ⚙ Settings (top right) > System > Distributed Settings > TLS Settings.

4. Toggle the Enabled slider to Yes .

5. Click Save.

6. Repeat the preceding steps on each Worker Node.

Connecting to the Leader Securely

Using the UI

Worker Node Setup

Page 322 of 1835

Configuring TLS on Worker's/Edge Node's UI, from the Leader

Next, return to the Leader's UI:

1. Select global ⚙ Settings (bottom le�) > System > Distributed Settings > TLS Settings.

2. Toggle Enable server TLS to Yes .

3. In the Certificate name drop-down, select an existing Certificate. This will auto-populate the
corresponding cert fields.

4. Click Save.

You can also configure the $CRIBL_HOME/local/_system/instance.yml file to ensure that TLS is enabled.
Here's the relevant section:

Another way to set up secure communications between Worker Nodes and the Leader is via environment
variables (Stream, Edge).

If you deploy your Worker Nodes in a container, you can enable encrypted TLS communications with the
Leader by configuring the CRIBL_DIST_MASTER_URL with the tls: protocol. This will override the default
setting in instance.yml . Hereʼs the format:

CRIBL_DIST_LEADER_URL=tls://<authToken>@leader:4200

Leader Setup

Using YAML Config File

distributed:
tls:
disabled: false

If you are setting up a Worker Node for the first time using the bootstrapping command, executing
that command will automatically update this configuration setting with the appropriate value.

Using Environment Variables

Configuring TLS Mutual Authentication

Page 323 of 1835

Once you have configured the Leader for encrypted TLS communication, you can implement client certificate
exchange to enable mutual authentication. This allows Cribl Stream to permit only explicitly authorized
clients, which hold valid certificates, to connect to the Leader.

When a client certificate is presented to a Leader, two things happen:

1. The Leader validates the client certificate presented to Cribl Stream. The Validate Client Certs
setting is optional, but highly recommended. When tenabled, the Leader checks the certificate against
the trust store, to see if it has been signed by a valid certificate authority (CA).

The Leader checks the list of certificates in the CA Certificates Path box first (if populated), then
against the list of built-in system certificates.

2. The Leader checks whether the Common Name (CN) matches the regular expression in the configuration.
Cribl Stream's default is to accept any value in the Common Name field. You can customize this as
needed.

Within the Common Name , we validate against the value a�er the CN=string . If your Common Name is
CN=logstream.worker , you would enter logstream\.worker in the Common Name field – including
the backslash, because the value entered is a regular expression.

When configuring TLS mutual authentication on Worker Nodes, make sure you place your certificates into a
separate directory outside of $CRIBL_HOME . If you place the certificates inside $CRIBL_HOME , theyʼll be
removed when the next config bundle is deployed from the Leader.

Similarly, you can't bootstrap Worker Nodes with mutual authentication already populated. To bootstrap
Worker Nodes, you supply only the shared authentication token. Certificates should be viewed as two-factor
authentication; so placing the certificates in the config bundle defeats the purpose of two-factor
authentication.

Below is a sample configuration on the Leader:

Limitations on TLS Mutual Auth

Using the UI

Page 324 of 1835

Configuring Mutual Authentication

In the above configuration, note:

You can set both the Minimum TLS version and Maximum TLS version.

The Common Name regex contains an additional check for \d+ . This allows checking for the format:
logstream1.worker , logstream2.worker , logstream3.worker , etc.

To set up TLS mutual authentication via config file, add a few extra items need to the Worker Node's
instance.yml , as shown here:

Using YAML Config File

distributed:
tls:
disabled: false
privKeyPath: /path/to/certs/worker.key
certPath: /path/to/certs/worker.pem
caPath: /path/to/certs/root.pem
requestCert: true
rejectUnauthorized: true # false if ignoring untrusted certs

Page 325 of 1835

You can set up TLS mutual authentication by configuring this environment variable, using the format shown
in this example:

Once you've set this variable, restart the Worker Node. You should see the Worker Node successfully
reconnect to the Leader.

If the Worker Node doesn't connect, check cribl.log on both the Worker Node and Leader for more
context about the problem. You should see errors related to dist leader communications .

You can use certificates to authenticate Cribl Stream to external data senders and receivers. You configure
this at the Group level, as follows:

1. Select a Group.

2. Open Group ⚙ Settings (top right) > Security > Certificates.

3. Select + Add New.

4. Paste or upload .pem files, as in Setting Up the Encrypted Channel.

5. Supply a Passphrase and/or CA certificate, if required by your integration partner's certificate.

6. Click Save.

7. Open your relevant Source's or Destination's config modal.

Using Environment Variables

CRIBL_DIST_Master_URL="tls://<authToken>@leader.cribl:4200?
tls.privKeyPath=/path/to/certs/woker.key&tls.certPath=/path/to/certs/wokers.pem&tls.caP

To build your own Certificate Authority (a self-signed CA), see our blog post on How to Secure
Cribl Stream Worker-to-Leader Communications.

Setting Authentication on Sources/Destinations

As an alternative to the preconfiguration in steps 2–6, you can import a certificate on the fly,
using the Source's or Destination's Create button. See this section's final steps below.

Page 326 of 1835

8. Select TLS Settings (Client Side) or TLS Settings (Server Side), depending on the integration.

9. Slide Enabled on.

10. In the Certificate name drop-down, select a cert that you've preconfigured for this integration. This will
auto-populate the corresponding fields here.

11. If you're creating a certificate on the fly, click the Create button beside Certificate name.

12. Click Save.

Group-level certificate modal

This is a best practice that enables the Leader to validate itself to clients. We can secure it using the self-
signed cert we created in Securing Cribl Stream:

1. Navigate to global ⚙ Settings (lower le�) > General Settings > API Server Settings > TLS.

2. Slide the toggle to Enabled.

3. From the Certificate Name drop-down, select a cert you've previously imported. This will populate the
corresponding fields here.

4. Click Save.

Cribl Stream will create new certificates at the same Group level that you're configuring. You can
verify this at the Create new certificate modal's bottom, by making that the Referenced table
includes rows for poulated for the appropriate Sources and Destinations.

Securing the Leader Node

Page 327 of 1835

;

A�er this save, you must prepend https:// to all Cribl Stream URLs on the Leader Node. E.g.,
to get back to the Settings page you just configured, you'll now need to use
https://<hostname>:<port>/settings/system)`.

Page 328 of 1835

Cribl Stream can be used to encrypt sensitive data in real time, and to route the encrypted data to an end
system. Decrypted retrieval can be implemented on a per-system basis. Currently, decryption is supported
only when Splunk is the end system.

Data Encryption

Data Decryption

;

4.6.3. Securing Data

Page 329 of 1835

With Cribl Stream, you can encrypt fields or patterns within events in real time, by using
C.Crypto.encrypt() in a Mask function. The Mask function accepts multiple replacement rules and
multiple fields to apply them to.

A Match regex defines the pattern of content to be replaced. The Replace expression is a JS expression or
literal to replace matched content. The C.Crypto.encrypt() method can be used here to generate an
encrypted string from a value passed to it.

Symmetric keys can be configured through the CLI or UI. Users are free to define as many keys as required.
Each key is characterized by the following:

keyId : ID of the key.

algorithm : Algorithm used with the key

keyclass : Cribl Key Class (below) that the key belongs to.

kms : Key management system for the key. Defaults to local .

created : Time (epoch) when key was generated.

expires : Time (epoch) a�er which the key is invalid. Useful for key rotation.

useIV : Flag that indicates whether or not an initialization vector was used.

4.6.4. Encryption

Encryption of Data in Motion

C.Crypto.encrypt() Syntax

(method) Crypto.encrypt(value: any, keyclass: number, keyId?: string, defaultVal?:
string): string Encrypt the given value with the keyId , or with a keyId picked up automatically
based on keyclass .

@param {string | Bu�er} value – what to encrypt. @param – keyclass – if keyId isn't specified,
pick one at the given keyclass . @param – keyId - encryption keyId, takes precedence over
keyclass . @param – defaultVal – what to return if encryption fails for any reason; if unspecified,
the original value is returned. @returns – if encryption succeeds, the encrypted value; otherwise,
defaultVal if specified; otherwise, value .

Encryption Keys

Page 330 of 1835

Key Classes in Cribl Stream are collections of keys that can be used to implement multiple levels of access
control. Users (or groups of users) with access to data with encrypted patterns can be associated with key
classes, for even more granular, pattern-level compartmentalized access.

Users U0, U1 have been given access to keyclass 0 which contains key IDs 0 and 1 . These keys are used to
encrypt certain patterns in datasetA . Even though users U0, U1, U2 have access to read this dataset, only
U0 and U1 can decrypt its encrypted patterns.

KEY CLASS DATASET

keyclass: 0
Keys: keyId: 0, keyId: 1
Users: U0, U1

datasetA
Users: U0, U1, U2

User U1 has been given access to an additional keyclass, 1 , which contains key IDs 11 and 22 . These keys
are used to encrypt certain other patterns in datasetA . Even though users U0, U1, U2 have access to read
this dataset – same as above – only U1 can decrypt the additional encrypted patterns.

KEY CLASS DATASET

keyclass: 1
Keys: keyId: 11, keyId: 22
Users: U1

datasetA
Users: U0, U1, U2

When using the local key management system, encryption keys in Cribl Stream are encrypted with
$CRIBL_HOME/local/cribl/auth/cribl.secret and stored in
$CRIBL_HOME/local/cribl/auth/keys.json . Cribl monitors the keys.json file for changes every 60
seconds.

Key Classes

Example

Configuring Keys with the CLI

When installed as a Splunk app, $CRIBL_HOME is $SPLUNK_HOME/etc/apps/cribl .

Listing Keys

Page 331 of 1835

Keys are added and listed using the keys command:

$CRIBL_HOME/bin/cribl keys list -g <workerGroupID>

Displaying --help :

$CRIBL_HOME/bin/cribl keys add --help

Adding a key to keyclass 1 , with no expiration date, on the default Worker Group:

$CRIBL_HOME/bin/cribl keys add -c 1 -i -g default

(You would use the same syntax to reference a non- default Worker Group by its name.) ? Listing keys to
verify key generation:

$CRIBL_HOME/bin/cribl keys list -g default

keyId algorithm keyclass kms created expires useIV

1 aes-256-cbc 0 local 1544906269.316 0 false
2 aes-256-cbc 1 local 1544906272.452 0 false
3 aes-256-cbc 2 local 1544906275.948 1545906275 true
4 aes-256-cbc 3 local 1544906278.026 0 false

Adding Keys

Add encryption keys
Usage: [options] [args]

Options:
[-c <keyclass>] - key class to set for the key
[-k <kms>] - KMS to use, must be configured, see cribl.yml
[-e <expires>] - expiration time, epoch time
[-i] - use an initialization vector
 -g <group> - Group ID

Adding key: success. Key count=1

keyId algorithm keyclass kms created expires useIV

1 aes-256-cbc 1 local 1545243364.342 0 true

Page 332 of 1835

In a single-instance deployment, you can access the key management interface through global ⚙ Settings
(lower le�) > Security > Encryption Keys. In a distributed deployment, for each Group, select Groups >
<group‐name> > Settings > Security > Encryption Keys.

Here, you can list and add new keys. To protect against accidental changes, a key's parameters, once saved,
can be edited only through configuration files.

List or create keys through Cribl Stream's UI

To successfully decrypt data, the decrypt command will need access to the same keys that were used to
encrypt, in the Cribl instance where encryption happened.

In a single-instance deployment, the cribl.secret and keys.json files reside in:
$CRIBL_HOME/local/cribl/auth/ .

In a distributed deployment, the cribl.secret and keys.json files reside on the Leader Node in:
$CRIBL_HOME/groups/<group‐name>/local/cribl/auth/ .

When using the UI, you can download these files by clicking the Get Key Bundle button.

Configuring Keys with the UI

Sync auth/(cribl.secret|keys.json)

Page 333 of 1835

Sync/copy these files over to their counterparts on the Search Head/decrypting side, residing in:
$SPLUNK_HOME/etc/apps/cribl/local/cribl/auth/ .

When you update keys by editing the keys.json file, you must add them back to the directories above
(respectively, on a single instance or on a distributed deployment's Leader Node).

;

Modifying Keys

Page 334 of 1835

Currently, Cribl Stream supports decryption only when Splunk is the end system. In Splunk, decryption is
available to users of any role with permissions to run the cribldecrypt command that ships with Cribl App
for Splunk. Further restrictions can be applied with Splunk capabilities. This page provides details.

The cribldecrypt command is used to display Cribl-encrypted fields in cleartext. It is an alias to the
decrypt command. This command decrypts fields only for the encryption keys that the user can access.

The example below retrieves data from a Splunk index with Cribl-encrypted data, and pipes it to the
cribldecrypt command:

Decryption in Splunk is implemented via a custom command called cribldecrypt . To use the command,
users must belong to a Splunk role that has permissions to execute it. Capabilities, which are aligned to Cribl
Key Classes, can be associated with a particular role to further control the scope of cribldecrypt .

4.6.5. Decryption

Decryption of Data

As of v.3.5.3, Cribl has added cribldecrypt as an alias to the original decrypt command. Use this
alias to avoid conflicts with Splunk's internal commands. (We show it in the examples below.)
Both are, in fact, aliases to the actual command: /path/2/cribl ‐‐spunk‐decrypt . You can use
both aliases.

Usage

index=index_with_encrypted_fields | cribldecrypt

Decrypting in Splunk

Decrypt Command Is Search Head ONLY

To ensure that keys don't get distributed to all search peers – including peers that your search head
can search, but you don't have full control over – cribldecrypt is scoped to run locally on the
installed search head.

Page 335 of 1835

In Splunk, capability names should follow the format cribl_keyclass_N , where N is the Cribl Key Class.
For example, a role with capability cribl_keyclass_1 has access to all key IDs associated with key class 1 .

CAPABILITY NAME CORRESPONDING CRIBL KEY CLASS

cribl_keyclass_1
cribl_keyclass_2

...
cribl_keyclass_N

1
2

...
N

You set up decryption in Splunk according to this schematic:

1. Download the Cribl Stream App for Splunk from Cribl's Download Cribl Stream page: In the On Prem
section, select the Splunk app from the drop-down list, as shown. Clicking the orange button downloads
a file named: cribl-splunk-app-<version‐#>-<hash‐#>-linux-x64.tgz .

Restricting Access with Splunk Capabilities

Configuring Splunk Search Head to Decrypt Data

Page 336 of 1835

Downloading Cribl's Splunk app

2. To install the Cribl/LogStream App for Splunk on your search head, untar the package into your
$SPLUNK_HOME/etc/apps directory.
As of LogStream v1.7, the app will run in search head mode by default. If the app has previously been
installed and later modified, you can convert it to search head mode with the command:
$CRIBL_HOME/bin/cribld mode-searchhead . (When installed as a Splunk app, $CRIBL_HOME is
$SPLUNK_HOME/etc/apps/cribl .)

3. Assign permissions to the cribldecrypt command, per your requirements.

4. Assign capabilities to your roles, per your requirements. If you'd like to create more capabilities, ensure
that they follow the naming convention defined above.

5. In the $SPLUNK_HOME/etc/apps/cribl/local/cribl/auth/ directory, sync
cribl.secret | keys.json . (To successfully decrypt data, the cribldecrypt command will need
access to the same keys that were used to encrypt, in the Cribl instance where encryption happened.)

In a single-instance deployment, the cribl.secret and keys.json files reside in:
$CRIBL_HOME/local/cribl/auth/ .

In a distributed deployment, these files reside on the Leader Node in:
$CRIBL_HOME/groups/<group‐name>/local/cribl/auth/ .

When using Cribl Stream's UI, you can download these files by clicking the Get Key Bundle button.

Page 337 of 1835

Sync/copy these files over to their counterparts on the search head (decryption side). In a non-Splunk
integration, you would copy these assets to wherever decryption will take place.

;

Modifying Keys

When you update keys by editing the keys.json file, you must add them back to the directories
above (respectively, on a single instance or on a distributed deployment's Leader Node).

Page 338 of 1835

To get an operational view of a Cribl Stream deployment, you can consult the following resources.

Monitoring Page

Internal Logs and Metrics

Licensing

Flows (Beta)

Health Endpoint

Select Monitoring from the le� nav in distributed deployments (Edge, Stream) or top nav in single‑instance
deployments (Edge, Stream). The resulting Monitoring page displays information about tra�ic in and out
of the system, as well as collection jobs and tasks. It tracks events, bytes, splits by data fields over time, and
broader system metrics.

The initial view (below) shows aggregate data for all Worker Groups/Fleets and all Workers/Edge Nodes. You
can use the drop-downs at the upper right to isolate individual Groups/Fleets, or individual
Workers/Edge Nodes.

Also at the upper right, you can change the display's granularity from the default 15 min , selecting from a
variety of time ranges from 1 min up to 1 day . (The latter covers the preceding 24 hours, and this
maximum window is not configurable.)

The displayed Storage represents the amount of free storage remaining on the partition where Cribl Stream
is installed. (This quantity might not represent the maximum storage available for the selected Worker or
Group. Also, it does not calculate the system free space.)

Similarly, the Free Memory graph reflects only the operating system's free statistic, matching Linux's strict
free definition by excluding buff/cache memory. So this graph indicates a lower value than the OS'
available memory statistic – and it does not necessarily indicate that the OS is running out of memory to
allocate.

Byte-related charts show the uncompressed amounts and rates of data processed over the selected time
range:

4.7. Monitoring

Monitoring Resources

Monitoring Page

Page 339 of 1835

Events (total) in and out

Events per second in and out

Bytes (total) in and out

Bytes per second in and out

We measure bytes in and out based on the size of _raw , if this field is present and is of type string.
Otherwise, we use the size of read (uncompressed) data.

The displayed CPU Load Average is an average per Worker/Edge Node Process, updated at 1‑minute
granularity. (It is not an average for the Worker/Edge Node as a whole.)

Vertical lines across each chart display configuration changes. Click anywhere on the line to view summary
information including time, data, and configuration versions.

Monitoring page

From the Monitoring page's top nav, open the Data submenu to isolate throughput for any of the following:

Sources

Routes

Pipelines

Packs

Destinations

Except for these configuration change markers, Monitoring data does not persist across Cribl Stream
restarts. Keep this in mind before you restart the server.

Data Monitoring

Page 340 of 1835

Data Fields

Monitoring > Data submenu (Pipelines selected)

Dense displays are condensed to sparklines for legibility. Hover over the right edge to display Maximize
buttons that you can click to zoom these up to detailed graphs.

Sparklines and fly-out

You can hover over an expanded graph fly-out to display further details.

Page 341 of 1835

Throughput details

From the Monitoring page's top nav, open the System submenu to isolate throughput for any of the
following:

Leaders (see Second Leader)

Queues (see Persistent Queues)

Licensing

Jobs (and tasks in-flight, see Collector Sources)

Job Inspector

System Monitoring

Page 342 of 1835

Monitoring > System submenu (Jobs in‑flight selected)

Select Monitoring (side or top nav) > System > Leaders to view the status of your Leader Nodes. For more
information on how to configure a second Leader Node for failover/durability, see Second Leader).

Monitoring Leader Nodes

Leaders

Licensing

Page 343 of 1835

Select System > Licensing from the Monitoring page's top nav to check your licenses' expiration dates, and
daily data throughput quotas. You can also compare your daily data throughput against your license quota –
and against granular and average throughput over the last 30 to 365 days. Highlights include:

A horizontal bar indicates license usage against your quota.

Tooltips display details about data usage, data amount over/under license quota, and data percentage
over/under license quota.

Dots on the daily usage bar graph represent configuration changes in the system.

Monitoring > Licensing

Even on single-instance deployments, you must have git installed in order for the Monitoring >
Licensing page to display configuration change markers.

Job Inspector

Page 344 of 1835

Select System > Job Inspector from the Monitoring page's top nav to view and manage pending, in-flight,
and completed collection jobs and their tasks. For details about the resulting page, see Monitoring and
Inspecting Collection Jobs.

Select Monitoring > Reports / Top Talkers > Top Talkers, where you can examine your five highest-volume
Sources, Destinations, Pipelines, Routes, and Packs. All components are ranked by events throughput.
Sources and Destinations get separate rankings by bytes in and out, respectively.

Monitoring > Reports/Top Talkers

Select Flows from the Monitoring page's top nav or ••• overflow menu to see a graphical, le�-to-right
visualization of data flow through your Cribl Stream deployment.

Reports/Top Talkers

Flows (Beta)

Internal Logs and Metrics

Page 345 of 1835

Select Logs from the Monitoring page's top nav. Cribl Stream's internal logs and internal metrics provide
comprehensive information about an instance's status/health, inputs, outputs, Pipelines, Routes, Functions,
and tra�ic.

Query this endpoint on any instance to check the instance's health. (Details below.)

Cribl Stream provides the following log types, by originating process:

API Server Logs – These logs are emitted primarily by the API/main process. They correspond to the
top-level cribl.log that shows up on the Diag page. These include telemetry/license-validation logs.
Filesystem location: $CRIBL_HOME/log/cribl.log

Worker/Edge Node Process(es) Logs – These logs are emitted by all the Worker/Edge Node Processes,
and are very common on single-instance deployments and Worker/Edge Nodes. Filesystem location:
$CRIBL_HOME/log/worker/N/cribl.log

Worker Group/Fleet Logs – These logs are emitted by all processes that help a Leader Node configure
Worker Groups/Fleets. Filesystem location: $CRIBL_HOME/log/group/GROUPNAME/cribl.log

Cribl Stream rotates logs every 5 MB, keeping the most recent 5 logs. In a distributed deployment (Edge,
Stream), all Workers/Edge Nodes forward their metrics to the Leader Node, which then consolidates them to
provide a deployment-wide view.

Cribl Stream supports forwarding internal logs and metrics to your preferred external monitoring solution. To
make internal data available to send out, go to Sources and enable the Cribl Internal Source.

This will send internal logs and metrics down through Routes and Pipelines, just like another data source.
Both logs and metrics will have a field called source , set to the value cribl , which you can use in Routes'
filters.

Health Endpoint

Types of Logs

For details about generated log files, see Internal Logs. To work with logs in Cribl Stream's UI, see
Search Internal Logs.

Forward Logs and Metrics Externally

Page 346 of 1835

Note that the only logs supported here are Worker/Edge Node Process logs (see Types of Logs above). You
can, however, use a Script Collector to listen for API Server or Worker/Edge Node Group/Fleet events.

For recommendations about useful Cribl metrics to monitor, see Internal Metrics.

Cribl Stream exists because logs are great and wonderful things! Using Cribl Stream's Monitoring > Logs
page, you can search all Cribl Stream's internal logs at once – from a single location, for both Leader and
Worker/Edge Node. This enables you to query across all internal logs for strings of interest.

The labels on this screenshot highlight the key controls you can use (see the descriptions below):

Logs page (controls highlighted)

1. Log file selector: Choose the Node to view. In a distributed deployment (Edge, Stream), this list will be
hierarchical, with Workers/Edge Nodes displayed inside their Leader.

2. Fields selector: Click the Main | All | None toggles to quickly select or deselect multiple check boxes
below. Beside these toggles, a Copy button enables you to copy field names to the clipboard in CSV

CriblMetrics Override

The Disable field metrics setting – in global ⚙ Settings (lower le�) > System > General Settings >
Limits ‑ applies only to metrics sent to the Leader Node. When the Cribl Internal Source is enabled,
Cribl Stream ignores this Disable field metrics setting, and full-fidelity data will flow down the
Routes.

Search Internal Logs

Page 347 of 1835

format.

Monitoring - Copy Fields Icon

3. Fields: Select or deselect these check boxes to determine which columns are displayed in the Results
pane at right. (The upper Main Fields group will contain data for every event; other fields might not
display data for all events.)

4. Time range selector: Select a standard or custom range of log data to display. (The
Custom Time Range pickers use your local time, even though the logs' timestamps are in UTC.)

5. Search box: To limit the displayed results, enter a JavaScript expression here. An expression must
evaluate to truthy to return results. You can press Shi�+Enter to insert a newline.

Typeahead assist is available for expression completion:

Expression autocompletion

Click a field in any event to add it to a query:

Click to add a field

Click other fields to append them to a query:

Page 348 of 1835

Click to append a field

Shi�+click to negate a field:

Shi�-click to negate a field

6. Click the Search box's history arrow (right side) to retrieve recent queries:

Retrieve recent searches

7. The Results pane displays most-recent events first. Each event's icon is color-coded to match the event's
severity level.

Click individual log events to unwrap an expanded view of their fields:

To modify the depth of information that is originally input to the Logs page, see
Logging Settings.

Page 349 of 1835

Log event details

On Cribl Stream's Settings pages, you can adjust the level (verbosity) of internal logging data processed, per
logging channel. You can also redact fields in customized ways. In a distributed deployment, you manage
each of these settings per Worker Group//Edge Node Fleet.

To adjust logging levels:

In a single-instance deployment, or for the Leader Node's own logs, select global ⚙ Settings (lower
le�) > System > Logging > Levels.

In a distributed deployment's le� nav, first select Groups, then click into the group you want to
configure. Next, select group Settings (upper right) > System > Logging > Levels.

On the resulting Manage Logging Levels page, you can:

Modify one channel by clicking its Level column. In the resulting drop-down, you can set a verbosity
level ranging from error up to debug. (Top of composite screenshot below.)

Modify multiple channels by selecting their check boxes, then clicking the Change log level drop-down
at the bottom of the page. (Bottom of composite screenshot below.) You can select all channels at once
by clicking the top check box. You can search for channels at top right.

Logging Settings

Change Logging Levels

Page 350 of 1835

Manage Logging Levels page

On the Redact Internal Log Fields page, you can customize the redaction of sensitive, verbose, or just ugly
data within Cribl Stream's internal logs. To access these settings:

In a single-instance deployment, or for the Leader Node's own logs, select global ⚙ Settings (lower
le�) > System > Logging > Redactions.

In a distributed deployment's le� nav, first select Groups, then click into the group you want to
configure. Next, select that group's Settings (upper right) > System > Logging > Redactions.

Redact Internal Log Fields page

The silly (ultra-verbose) logging level is available for all channels. However, it provides additional
metrics information only for inputs.

Change Logging Redactions

Page 351 of 1835

It's easiest to understand the resulting Redact Internal Log Fields page's fields from bottom to top:

Default fields: Cribl Stream always redacts these fields, and you can't modify this list to allow any of
them through. However, you can use the two adjacent fields to define stricter redaction:

Additional fields: Type or paste in the names of extra fields you want to redact. Use a tab or hard return
to confirm each entry.

Custom redact string: Unless this field is empty, it defines a literal string that will override
Cribl Stream's default redaction pattern (explained below) on the a�ected fields.

By default, Cribl Stream transforms this page's selected fields by applying the following redaction pattern:

Echo the field value's first two characters.

Replace all intermediate characters with a literal ... ellipsis.

Echo the value's last two characters.

Anything you enter in the Custom redact string field will override this default ??...?? pattern.

Each Cribl Stream instance exposes a health endpoint – typically used in conjunction with a Load Balancer
– that you can use to make operational decisions.

HEALTH CHECK ENDPOINT HEALTHY RESPONSE
CRIBL STREAM

VERSION

curl http(s)://<host>:
<port>/api/v1/health

{"status":"healthy"} Through 2.4.3

curl http(s)://<host>:
<port>/api/v1/health

{"status":"healthy","startTime":1617814717110}

(see details below)
2.4.4 and later

Specifically, the health endpoint can return one of the following response codes:

200 – Healthy.

420 – Shutting down.

503 – HTTP engine reports server busy: too many concurrent connections (configurable).

In the above curl examples, <port> stands for the API port (by default, 9000).

Default Redact String

Health Endpoint

Page 352 of 1835

;

Page 353 of 1835

When sending Cribl Stream metrics to a metric system of analysis, such as InfluxDB, Splunk, or Elasticsearch,
some metrics are particularly valuable. You can use these metrics to set up alerts when a Worker/Edge Node
is having a problem, a Node is down, a Destination is down, a Source stops providing incoming data, etc.

Cribl Stream reports its internal metrics within the Cribl StreamUI (in the same way that it reports internal
logs at Monitoring > Logs). To expose metrics for capture or routing, enable the Cribl Internal Source >
CriblMetrics section.

By default, Cribl Stream generates internal metrics every 2 seconds. To consume metrics at longer intervals,
you can use or adapt the cribl‐metrics_rollup Pipeline that ships with Cribl Stream. Attach it to your
Cribl Internal Source as a pre‑processing Pipeline. The Pipeline's Rollup Metrics Function has a default
Time Window of 30 seconds, which you can adjust to a di�erent granularity as needed.

You can also use our public endpoints to automate monitoring using your own external tools.

Counter-type metrics in Cribl Stream do not monotonically increase or decrease. They are reset at the end of
each reporting period. Cribl Stream does not report counters when their value is 0. For example, if there
aren't any Destinations reporting dropped events then the total.dropped_events metric won't be
reported because its value would be 0.

Five important metrics below are prefixed with total. These power the top of Cribl Stream's Monitoring
dashboard. The first two report on Sources, the remainder on Destinations.

total.in_bytes

total.in_events

total.out_events

total.out_bytes

total.dropped_events – helpful for discovering situations such as: you've disabled a Destination
without noticing.

These total. metrics' values could reflect Cribl Stream's health, but could also report low activity simply
due to the Source system. E.g., logs from a store site will be low at low buying periods.

4.7.1. Internal Metrics

Total Throughput Metrics

Interpreting Total Metrics

Page 354 of 1835

Also, despite the total. prefix, these metrics are each specific to the Worker/Edge Node Process that's
generating them.

You can distinguish unique metrics by their #input=<id> dimension. For example,
total.in_events|#input=foo would be one unique metric, while total.in_events|#input=bar would
be another.

Five specific metrics are most valuable for monitoring system health. The first two are Cribl Stream
composite metrics; the remaining three report on your hardware or VM infrastructure. Because the
Cribl Internal Source does not export these metrics to Routes or Pipelines, you can obtain them only by using
the REST endpoints documented listed on this page.

health.inputs

health.outputs – see the JSON Examples below for both health. metrics.

system.load_avg

system.free_mem

system.disk_used – valuable if you know your disk size, especially for monitoring Persistent Queues.
Here, a 0 value typically indicates that the disk-usage data provider has not yet provided the metric
with data. (Getting the first value should take about one minute.)

All of the above metrics take these three values:

0 = green = healthy.

1 = yellow = warning.

2 = red = trouble.

The health.inputs metrics are reported per Source, and the health.outputs metrics per Destination.
The health.inputs example below has two configured Sources, and two Cribl Stream-internal inputs. The
health.outputs example includes the built-in devnull Destination, and six user-configured Destinations.

Given all the 0 values here, everything is in good shape!

System Health Metrics

Health Inputs/ Outputs JSON Examples

Page 355 of 1835

As of Cribl Stream (LogStream) 2.4.4, the Cribl Internal Source reports two useful metrics on individual
Worker/Edge Node Processes' resource usage:

system.cpu_perc – CPU percentage usage.

system.mem_rss – RAM usage.

These metrics are valuable for monitoring Persistent Queues' behavior:

pq.queue_size – Total bytes in the queue.

pq.in_bytes – Total bytes in the queue for the given Time Window.

pq.in_events – Number of events in the queue for the given Time Window.

pq.out_bytes – Total bytes flushed from the queue for the given Time Window.

pq.out_events – Number of events flushed from the queue for the given Time Window.

These are aggregate metrics. But you can distinguish unique metrics per queue Destination, using the
#output=<id> dimension. For example, pq.out_events|#output=kafka would be one unique metric;
pq.out_events|#output=camus would be another.

"health.inputs": [
{ "model": { "ci": "http:http", "input": "http:http" }}, "val": 0},
{ "model": { "ci": "cribl:CriblLogs", "input": "cribl:CriblLogs" }}, "val":

0},
{ "model": { "ci": "cribl:CriblMetrics", "input": "cribl:CriblMetrics" }},

"val": 0},
{ "model": { "ci": "datagen:DatagenWeblog", "input": "datagen:DatagenWeblog"

}}, "val": 0 }
],

"health.outputs": [
{ "model": { "output": "devnull:devnull" }}, "val": 0},
{ "model": { "output": "router:MyOut1" }}, "val": 0},
{ "model": { "output": "tcpjson:MyTcpOut1" }}, "val": 0},
{ "model": { "output": "router:MyOut2" }}, "val": 0},
{ "model": { "output": "tcpjson:MyTcpOut2" }}, "val": 0},
{ "model": { "output": "router:MyOut3" }}, "val": 0},
{ "model": { "output": "router:MyOut4" }}, "val": 0 }
],

Worker/Edge Node Resource Metrics

Persistent Queue Metrics

Other Internal Metrics

Page 356 of 1835

The Cribl Internal Source emits other metrics that, when displayed in downstream dashboards, can be useful
for understanding Cribl Stream's behavior and health. These include:

cribl.logstream.total.activeCxn – Total active inbound TCP connections.

cribl.logstream.pipe.in_events – Inbound events per Pipeline.

cribl.logstream.pipe.out_events – Outbound events per Pipeline.

cribl.logstream.pipe.dropped_events – Dropped events per Pipeline.

cribl.logstream.metrics_pool.num_metrics – The total number of unique metrics that have been
allocated into memory.

cribl.logstream.collector_cache.size – Each Collector function
(default/cribl/collectors/<collector>/index.js) is loaded/initialized only once per job, and
then cached. This metric represents the current size of this cache.

cribl.logstream.cluster.metrics.sender.inflight – Number of metric packets currently being
sent from a Worker/Edge Node Process to the API Process, via IPC (interprocess communication).

cribl.logstream.backpressure.outputs – Destinations experiencing backpressure, causing events
to be either blocked or dropped.

cribl.logstream.blocked.outputs – Blocked Destinations. (This metric is more restrictive than the
one listed just above.)

cribl.logstream.pq.queue_size – Current queue size, per Destination, per
Worker/Edge NodeProcess.

cribl.logstream.host.in_bytes – Inbound bytes from a given host (host is a characteristic of the
data).

cribl.logstream.host.in_events – Inbound events from a given host (host is a characteristic of the
data).

cribl.logstream.host.out_bytes – Outbound bytes from a given host (host is a characteristic of the
data).

cribl.logstream.host.out_events – Outbound events from a given host (host is a characteristic of
the data).

cribl.logstream.route.in_bytes – Inbound bytes per Route.

cribl.logstream.route.in_events – Inbound events per Route.

cribl.logstream.route.out_bytes – Outbound bytes per Route.

cribl.logstream.route.out_events – Outbound events per Route.

cribl.logstream.sourcetype.in_bytes – Inbound bytes per sourcetype.

cribl.logstream.sourcetype.in_events – Inbound events per sourcetype.

cribl.logstream.sourcetype.out_bytes – Outbound bytes per sourcetype.

cribl.logstream.sourcetype.out_events – Outbound events per sourcetype.

Page 357 of 1835

Cribl Stream internal metrics have extra dimensions, these include:

cribl_wp – Identifies the Worker/Edge Node Process that processed the event.

event_host – Machine's hostname from which the event was made.

event_source – Set as cribl .

group – Name of Cribl Worker Group from which the event was made.

input – Entire Input ID, including the prefix, from which the event was made.

output – Entire Output ID, including the prefix, from which the event was made.

Below is basic information on using the /system/metrics endpoint, the /system/info endpoint, and the
cribl_wp dimension.

/system/metrics is Cribl Stream's primary public metrics endpoint, which returns most internal metrics.
Note that many of these retrieved metrics report configuration only, not runtime behavior. For details, see
our API Docs.

/system/info generates the JSON displayed in the Cribl Stream UI at global ⚙ Settings (lower le�) >
Diagnostics > System Info. Its two most useful properties are loadavg and memory .

"loadavg": [1.39599609375, 1.22265625, 1.31494140625],

This property is an array containing the 1-, 5-, and 15-minute load averages at the UNIX OS level.
(On Windows, the return value is always [0, 0, 0] .) For details, see the Node.js os.loadavg()
documentation.

"memory": { "free": 936206336, "total": 16672968704 },

Dimensions

Other Metrics Endpoints

/system/metrics Endpoint

/system/info Endpoint

loadavg Example

memory Example

Page 358 of 1835

Divide total / free to monitor memory pressure. If the result exceeds 90%, this indicates a risky situation:
you're running out of memory.

The cpus metric returns an array of CPU/memory key-value pairs. This provides an alternative way to
understand CPU utilization, but it requires you to query all your CPUs individually.

;

cpus Alternative

Page 359 of 1835

Distributed deployments emit a larger set of logs than single-instance deployments. We'll describe the full
set first.

The API/main process emits the following logs into the Leader Node's $CRIBL_HOME/log/ directory:

LOGFILE NAME DESCRIPTION
EQUIVALENT ON

LOGS PAGE

cribl.log
Principal log in Cribl Stream. Includes telemetry/license-validation logs.
Corresponds to top-level cribl.log on Diag page.

Leader > API
Process

access.log API calls, e.g., GET /api/v1/version/info . Leader >
Access

audit.log
Actions pertaining to files, e.g., create , update , commit , deploy ,
delete .

Leader >
Audit

notifications.log Messages that appear in the notification list in the UI. Leader >
Notifications

ui-access.log
Interactions with di�erent UI components described as URLs, e.g.,
/settings/apidocs , /dashboard/logs .

Leader > UI
Access

The Config Helper process for each Worker Group/Fleet emits the following log in
$CRIBL_HOME/log/group/GROUPNAME :

LOGFILE NAME DESCRIPTION EQUIVALENT ON LOGS PAGE

cribl.log Messages about config maintenance, previews, etc. GROUPNAME > Config helper

The API Process emits the following log in $CRIBL_HOME/log/ :

4.7.2. Internal Logs

Leader Node Logs (Distributed)

Worker/Edge Node Logs (Distributed)

Page 360 of 1835

LOGFILE

NAME
DESCRIPTION

EQUIVALENT ON LOGS

PAGE

LOGFILE

NAME
DESCRIPTION

EQUIVALENT ON LOGS

PAGE

cribl.log

Messages about the Worker/Edge Node communicating with the Leader Node
(i.e., with its API Process) and other API requests, e.g., sending metrics,
reaping job artifacts.

GROUPNAME >
Worker: HOSTNAME >
API Process

Each Worker Process emits the following log in $CRIBL_HOME/log/worker/N/ , where N is the
Worker/Edge Node Process ID:

LOGFILE

NAME
DESCRIPTION EQUIVALENT ON LOGS PAGE

cribl.log
Messages about the Worker/Edge Node
processing data.

GROUPNAME > Worker:HOSTNAME > Worker
Process N

For convenience, the UI aggregates the Worker/Edge Node Process logs as follows:

LOGFILE NAME DESCRIPTION EQUIVALENT ON LOGS PAGE

N/A Aggregation of all the Worker Process N logs and the API Process log. GROUPNAME > WORKER_NAME

The API/main process emits the same logs that it does for a distributed deployment, in $CRIBL_HOME/log/ :

cribl.log

access.log

audit.log

notifications.log

ui-access.log

Each Worker/Edge Node Process emits the following log in $CRIBL_HOME/log/worker/N/ , where N is the
Worker/Edge Node Process ID:

LOGFILE

NAME
DESCRIPTION EQUIVALENT ON LOGS PAGE

cribl.log
Messages about the Worker/Edge Node
processing data.

GROUPNAME > Worker:HOSTNAME > Worker
Process N

Single‑Instance Logs

Page 361 of 1835

Each Worker/Edge Node Process logs this information at a 1-minute frequency. So each event's scope covers
only that Worker/Edge Node Process, over a 1‑minute time span defined by the startTime and endTime
fields.

{"time":"2021-11‐24T15:12:05.713Z","cid":"w1","channel":"server","level":"info",

"message":"_raw stats","inEvents":31237,"outEvents":44791,"inBytes":7820263,

"outBytes":14701001,"starttime":1637766660,"endtime":1637766720,"activeCxn":0,"openCxn":

136,"closeCxn":135,"pqInEvents":0,"pqOutEvents":0,"pqInBytes":0,"pqOutBytes":0,"pqTotalB

ytes":0,"droppedEvents":1113,"activeEP":41,"blockedEP":5,"cpuPerc":23.34,"mem":

{"heap":119,"ext":79,"rss":380}}

FIELD DESCRIPTION

inEvents

Number of events received from all inputs a�er Event Breakers are applied. This can be larger than
outEvents if events are dropped via Drop, Aggregation, Suppression, Sampling, or similar

Functions.

outEvents
Number of events sent out to all Destinations. This can be larger than inEvents due to creating
event clones or entirely new unique events. (E.g., when using the Aggregation Function.)

inBytes Number of bytes received from all Sources (based only o� _raw).

outBytes Number of bytes sent to all Destinations (based only o� _raw).

startTime The beginning of the timespan represented by these metrics.

endTime
The end of the timespan represented by these metrics. (Will always be 60 seconds a�er startTime
.)

activeCxn

Number of TCP connections newly opened at the time the _raw stats are logged. (This is a gauge
when exported in internal metrics, and can otherwise be ignored as an instantaneous
measurement. Only some application protocols count toward this; e.g., any HTTP-based Source
does not count.)

openCxn
Same as activeCxn , but tracked as a counter rather than a gauge. So openCxn will show all
connections newly opened each minute, and is more accurate than using activeCxn .

_raw stats Event Fields

Sample Event

Field Descriptions

Page 362 of 1835

FIELD DESCRIPTION

closeCxn Number of TCP connections that were closed.

pqInEvents Number of events that were written to Persistent Queues, across all Destinations.

pqOutEvents Number of events that were flushed from Persistent Queues, across all Destinations.

pqInBytes Number of bytes that were written to Persistent Queues, across all Destinations.

pqOutBytes Number of bytes that were flushed from Persistent Queues, across all Destinations.

pqTotalBytes Amount of data currently stored in Persistent Queues, across all Destinations.

droppedEvents

This is equivalent to the total.dropped_events metric. Drops can occur from Pipeline Functions,
from Destination Backpressure, or from other errors. Any event not sent to a Destination is
considered dropped.

activeEP

Number of currently active event processors (EPs). EPs are used to process events through Breakers
and Pipelines as the events are received from Sources and sent to destinations. EPs are typically
created per TCP connection (such as for HTTP).

blockedEP Number of currently blocked event processors (caused by blocking Destinations).

cpuPerc CPU utilization from the combined user and system activity over the last 60 seconds.

mem.heap Heap section of process memory, in bytes.

mem.ext External section of process memory, in bytes.

mem.rss Resident set size section of process memory, in bytes.

;

Page 363 of 1835

In Cribl Stream (LogStream) 3.1 or later, and all Cribl Edge versions, you can configure Notifications about:

Sources and Collectors that report abnormally high or low data flow rates.

Sources and Collectors that report no data flow.

Destinations that report errors.

Destinations experiencing backpressure.

Pending expiration of a Cribl Stream license.

Notifications are not designed to take the place of alerts on your overall infrastructure's health – but they
warn you about conditions that could impede expected data flow into and out of Cribl Stream.

Every Notification is sent to one or more targets. By default, any Notification that you configure will have a
target of System Messages . This means that when a Notification is triggered, it will add an indicator on the
le� nav's 💬 Messages tab. Click this to view details in a fly-out, as shown below.

All Notifications will also be sent as events to Cribl Stream's internal logs – both application-wide, and with a
filtered view available on a�ected Sources and Destinations. The application-wide logs are recorded as
notifications.log on the Leader Node. The Leader Node is also responsible for sending all Notifications.

System Messages pane

4.8. Notifications

Notifications require an Enterprise or Standard license, without which the configuration options
described below will be hidden or disabled in Cribl Stream's UI.

Notifications and Targets

Page 364 of 1835

You can also send any Notification to additional targets, using Cribl Stream's native PagerDuty integration
and/or by specifying custom webhooks. For details, see Configuring Targets.

Notifications work with Cribl Stream's role-based access control. For users with non-administrative
permissions, their assigned Roles and Policies determine the Worker Groups on which they can view
Notification messages, and can create and manage Notifications and targets

Destination-state, Source-/Collector-state, and license-expiration Notifications are configured separately.

On individual Destinations, you can configure Notifications that will trigger under these conditions:

Destination Backpressure Activated

Persistent Queue Usage

Unhealthy Destination

Read on for details about the above conditions, and about how to specify them in a Destination's Condition
drop-down.

This will generate a Notification reading Backpressure (<blocking|dropping>) is engaged for
Destination <name> when one of the following events occur:

The Destination's Backpressure behavior is set to Block or Drop , and backpressure causes outgoing
events to block or drop.

The Destination's Backpressure behavior is set to Persistent Queue, but its Queue‑full behavior is set
to either Block or Drop new data ; and a filled queue causes outgoing events to block or drop.

The threshold for the Notification to trigger is: Cribl Stream detected a blocked or dropped state during ≥ 5%
of the trailing Time window that you configure in the Notification Settings below.

Notifications and RBAC

Configuring Notifications

Destination-State Notifications

Destination Backpressure Activated

Page 365 of 1835

Backpressure notification

This will generate a Persistent Queue usage has surpassed <threshold>% Notification when PQ files
accumulate past the <threshold> percentage of capacity that you set in the Usage threshold field.

Persistent Queue notification

This will generate a Destination <name> is unhealthy Notification when the Destination's health has
been in "red" status (as indicated on the UI's Monitoring page) over the trailing Time window that you
configure in the Notification Settings below.

The algorithm has slight variations among Destination types, but red status generally means that ≥ 5% of
health checks, aggregated over the Time window, reported either:

An error inhibiting the Destination's normal operation, such as a connection error; or

For multiple-output Destinations like Splunk Load Balanced or Output Router, > 50% of the Destination
senders in an error state.

Persistent Queue Usage

Unhealthy Destination

Configuring Destination Notifications

Page 366 of 1835

To start configuring a Destination-state Notification:

1. Configure and save the Destination.

2. Access this Destination's Notifications tab. Either:
Click the Notifications button on the Manage...Destinations page's appropriate row, or

Reopen the Destination's config modal, and click its Notifications tab.

3. Click + Add New to access the New Notification modal shown below.

Configuring a Destination Notification (composite screenshot)

The New Notification modal provides Notification Settings and Metadata tabs, whose controls are listed in
the respective sections below.

ID: Enter a unique ID for this Notification. (Cribl recommends using a string that will make the Notification's
purpose clear.)

Condition: Select either Unhealthy Destination or Destination Backpressure Activated . (You can
set triggers for both conditions on the same Destination, but you must configure them as separate
Notifications.)

Notification Settings

Page 367 of 1835

Notification targets: The Default target is always locked to System Messages . Click Add target to send
this Notification to additional targets. You can add multiple targets.

Use the resulting Notification targets drop-down to select any target you've already configured.

Click Create to configure a new target. (See Configuring Targets for details.)

Destination name: This is locked to the Destination on which you're setting this Notification.

Time window: Sets the threshold period before the Notification will trigger. E.g., the default 60s will
generate a Notification when the Destination has reported the trigger condition over the past 60 seconds.
(For % trigger conditions, see Destination Backpressure Activated and Unhealthy Destination.) To enter
alternative numeric values, append units of s for seconds, m for minutes, h for hours, etc.

Usage threshold: This percentage setting is displayed only when you've set the Condition to
Persistent Queue Usage.

Click Add field here to add custom metadata fields to your Notifications, as key-value pairs:

Name: Enter a name for this custom field.

Value: Enter a JavaScript expression that defines this field's value, enclosed in quotes or backticks. (Can
evaluate to a constant.)

If a Destination-State Notification's trigger condition persists beyond your configured Time window, expect a
new notification to be sent once per Time window interval.

Notifications will cease when the triggering condition clears. There is no explicit "problem cleared"
Notification.

Metadata

Once you've saved your Notification, you can see Notification events specific to this Destination on
the Destination config modal's Events tab. (When you set Source-state Notifcations, a corresponding
Events tab is available on Sources' and Collectors' config modals.) For a comprehensive view of all
Notification events, see the systemwide Events Tab.

Recurrence/Expiration

Source-State Notifications

Page 368 of 1835

In Cribl Stream 3.5 and above, you can configure Notifications on Sources and Collectors to trigger under
these conditions:

High Data Volume

Low Data Volume

No Data

You configure these similarly to Destination Notifications: Select the Notification type from the Condition
drop-down. Each type exposes additional fields, as outlined below.

Configuring a High Data Volume Notification (composite screenshot)

Select the High Data Volume Condition to trigger Notifications when incoming data over your configured
Time window exceeds your configured Data volume threshold. This selection exposes the following fields:

Notification targets: As with Destination‑State Notifications, the Default target is always locked to
System Messages . Click Add target to send this Notification to additional targets. You can add multiple
targets.

Use the resulting Notification targets drop-down to select any target you've already configured.

Click Create to configure a new target. (See Configuring Targets for details.)

Source name: This is locked to the Source on which you're setting this Notification.

Time window: As with the corresponding field on Destination-State Notifications, this field's value sets the
threshold period before the Notification will trigger. The default 60s will generate a Notification when the

High Data Volume

Page 369 of 1835

Source has reported the trigger condition over the past 60 seconds. To enter alternative numeric values,
append units of s for seconds, m for minutes, h for hours, etc.

Data volume: Enter the threshold above which a Notification will trigger. Accepts numerals with units like
KB, MB, etc. (e.g.: 4GB).

Select the Low Data Volume Condition to trigger Notifications when incoming data over your configured
Time window is lower than your configured Data volume threshold.

This selection exposes the same additional fields as High Data Volume, except that here, the Data volume
value defines a floor below which the Notification will trigger.

Select the No Data Received Condition to trigger Notifications when the Source or Collector ingests zero
data over your configured Time window.

This selection exposes the same additional fields as High Data Volume, except (for obvious reasons) it omits
the Data volume field – there is no threshold, because this is a binary condition.

To prevent interruptions in data throughput, you can configure a Notification that will be triggered two
weeks before your Cribl Stream paid license (licensing.#license-types) expires, and then again upon
expiration. (If the two-week Notification is cleared from the 💬 Messages tab between those dates, but the
license has not been extended, it will trigger again.)

1. Select global ⚙ Settings (lower le�) > Licensing.

2. Click + Add expiration notification to access the New Notification modal shown below.

Low Data Volume

No Data

License-Expiration Notifications

Configuring License-Expiration Notifications

Page 370 of 1835

Configuring an expiration Notification (composite screenshot)

This New Notification modal provides Notification Settings and Metadata tabs, with a subset of the controls
available in the Destination-unhealthy modal:

ID: Enter a unique ID for this Notification.

Condition: This modal's triggering condition is locked to License Expiration .

Notification targets: The Default target is always locked to System Messages . Click Add target for each
additional target that you want to send this Notification to.

Use the resulting Notification targets drop-down to select any target you've already configured.

Click Create to configure a new target. See Configuring Targets for details.

The options here are identical to those on the Destination-unhealthy modal's Metadata tab.

The Manage Notifications page provides global display and controls for all your configured Notifications,
targets, and triggered Events – across all Sources, Collectors, Destinations, and all Worker Groups. To access

Notification Settings

Metadata

Managing Notifications

Page 371 of 1835

this page:

In distributed deployment (Edge, Stream), click the le� nav's (!) Notifications tab.

In a single-instance deployment (Edge, Stream), click the top nav's Notifications tab.

This tab lists all your configured Source‑state and Destination-unhealthy Notifications, across all
integrations, along with any configured license-expiration Notifications. You can't create new Notifications
here, but you can disable or delete existing Notifications; you can also click on any Notification's row to open
and modify its configuration.

Notifications tab

This tab is where you centrally configure and manage targets that are available across Cribl Stream – to all
Source-, Destination-, and license-based Notifications. See Configuring Targets for details.

This tab displays logged events that have been fired by all your configured Notifications. You can filter by
search string, and by lookback time.

In future Cribl Stream releases, Cribl plans to expand the Notifications feature with options to configure
additional triggering conditions and time resolutions.

;

Notifications Tab

Targets Tab

Events Tab

What's Next

Page 372 of 1835

;

Page 373 of 1835

To add a new Notification target from the Manage Notifications page's Targets tab:

1. Click + Add New to open the New Target modal shown below.

2. Give this target a unique Target ID.

3. Set the Target type to either PagerDuty or Webhook. Then configure the target according to the
corresponding section below.

Adding a new target (composite screenshot)

This option sends Cribl StreamNotifications to PagerDuty, a real-time incident response platform, using
Cribl Stream's native integration with the PagerDuty API. Select Target type: PagerDuty to expose the
following additional options on the modal's (single) General Settings le� tab:

Routing key: Enter your 32-character Integration key on a PagerDuty service or global ruleset.

4.8.1. Configuring Targets

Notifications require an Enterprise or Standard license, without which all the target configuration
options described on this page will be hidden or disabled in Cribl Stream's UI.

PagerDuty Targets

Page 374 of 1835

Group: Optionally, specify a PagerDuty default group to assign to Cribl Stream Notifications.

Class: Optionally, specify a PagerDuty default class to assign to Cribl Stream Notifications.

Component: Optionally, a PagerDuty default component value to assign to Cribl Stream Notification. (This
field is prefilled with logstream .)

Severity: Set the default message severity for events sent to PagerDuty. Defaults to info ; you can instead
select error , warning , or critical . (Will be overridden by the __severity value, if set.)

With this option, you can send Cribl Stream Notifications to an arbitrary webhook. Select Target type:
Webhook to expose multiple le� tabs, with the following configuration options:

The added options that appear on this first le� tab are:

URL: The endpoint that should receive Cribl Stream Notification events.

Method: Select the appropriate HTTP verb for requests: POST (the default), PUT , or PATCH .

Format: Specifies how to format Notification events before sending them to the endpoint. Select one of the
following:

NDJSON (newline-delimited JSON, the default).

JSON Array .

Custom , which exposes these additional fields:
Source expression: JavaScript expression whose evaluation shapes the event to send to the
endpoint. E.g.: ${fieldA}, ${fieldB} . Defaults to __httpOut (meaning the value of the
__httpOut field).

Drop when null: Toggle to Yes if you want to drop events where the above Source expression
evaluates to null .

Content type: Defaults to application/x‐ndjson . You can substitute a di�erent content type for
requests sent to the endpoint. This entry will be overridden by any content types set in this modal's
Advanced Settings tab > Extra HTTP Headers section.

Webhook Targets

General Settings

Processing Settings

Page 375 of 1835

The options on this le� tab are identical to those on the Webhook Destination's Processing Settings tab,
with two exceptions:

The default System fields entry here is cribl_host .

You cannot specify a post-processing Pipeline here.

The options on this le� tab are identical to those on the Webhook Destinations Advanced Settings tab.

;

Advanced Settings

Page 376 of 1835

Admins can run scripts (e.g., shell scripts) from within Cribl Stream by configuring and executing them at
global ⚙ Settings (lower le�) > Scripts. Scripts are typically used to call custom automation jobs or, more
generally, to trigger tasks on demand. For example, you can use Scripts to run an Ansible job, or to place a
call to another automation system, when Cribl Stream configs are updated.

Settings > Manage Scripts page

The Manage Scripts page provides the following tields:

ID: Unique ID for this script.

Command: Command to execute for this script.

Description: Brief description about this script. Optional.

Arguments: Arguments to pass when executing this script.

Env variables: Extra environment variables to set when executing script.

4.9. Scripts

With Great Power Comes Great Responsibility!

Scripts will allow you to execute almost anything on the system where Cribl Stream is running. Make
sure you understand the impact of what you're executing before you do so!

Scripts in Distributed Deployments

Scripts can be deployed from Leader Node, but can be run only locally from each Worker Node.

If the Script command is referencing a file (e.g., 420.sh), that file must exist on the Cribl Stream
instance. In other words, the Script management interface cannot be used to upload or manage

Page 377 of 1835

;

script files.

Page 378 of 1835

This page outlines how to upgrade a Cribl Stream single-instance or distributed deployment along one of the
following supported upgrade paths:

v2.x ==> v2.x || v3.x

v1.7.x/v2.0.x ==> v2.x.x || v3.x

v1.6.x or below ==> v1.7.x ==> v2.x.x || v3.x

This path requires upgrading only the single/standalone node:

1. Stop Cribl Stream.

2. Uncompress the new version on top of the old one.

On some Linux systems, tar might complain with: cribl/bin/cribl: Cannot open: File exists .
In this case, please remove the cribl/bin/cribl directory if it's empty, and untar again. If you have
custom functions in cribl/bin/cribl , please move them under
$CRIBL_HOME/local/cribl/functions/ before untarring again.

3. Restart Cribl Stream.

For a distributed deployment, the general order of upgrade is: First upgrade the Leader Node, then upgrade
the Worker Nodes, then commit and deploy the changes on the Leader.

4.10. Upgrading

Cribl Stream does not support direct upgrades from a Beta to a GA version. To get the GA version
running, you must perform a new install. See notes on Upgrading from LogStream 2.2 or Prior
Versions below.

Standalone/Single-Instance

Distributed Deployment

This sequence is slightly di�erent when upgrading via the UI from a version below v.3.2.

Page 379 of 1835

1. Commit and deploy your desired last version. (This will be your most recent checkpoint.)

Optionally, git push to your configured remote repo.

2. Stop Cribl Stream.

Optional but recommended: Back up the entire $CRIBL_HOME directory.

Optional: Check that the Worker Nodes are still functioning as expected. In the absence of the
Leader Node, they should continue to work with their last deployed configurations.

3. Uncompress the new Cribl Stream version on top of the old one.

4. Restart Cribl Stream and log back in.

5. Wait for all the Worker Nodes to report to the Leader, and ensure that they are correctly reporting the
last committed configuration version.

Also, for distributed environments with a second Leader configured, the order of upgrade is: First
upgrade the Primary Leader Node, then upgrade the Secondary Leader Node, then upgrade the
Worker Nodes.

Upgrade the Leader Node

Workers' UI will not be available until the Worker version has been upgraded to match the version on
the Leader. Errors like those below will appear until the Worker nodes are upgraded.

Page 380 of 1835

Worker Node version mismatch

These are the same basic steps as when upgrading a Single Instance, above:

1. Stop Cribl Stream on each Worker Node.

2. Uncompress the new version on top of the old one.

3. Restart Cribl Stream.

1. Ensure that newly upgraded Worker Nodes report to the Leader with their new so�ware version.

2. Commit and deploy the newly updated configuration only a�er all Workers have upgraded.

Upgrade the Worker Nodes

Commit and Deploy Changes from the Leader Node

Page 381 of 1835

Post-2.1.4 upgrade to 2.2

LogStream v.2.4.4 and higher provide streamlined options to upgrade the Leader Node (or single instance),
as well as Worker Nodes, directly through the UI. In LogStream 3.0 or higher, go to global ⚙ Settings (lower
le�) > System > Upgrade. These streamlined controls perform the whole above sequence of stopping the
LogStream server, updating the installed package, and restarting LogStream.

LogStream 3.0 (or higher) also enables you to manage automatic backup and rollback in case an upgrade
fails.

Upgrade and Rollback via the UI

These options will work only if all LogStream instances (including Worker Processes) start at v.2.4.4 or
higher. For other version-specific limitations, please see Upgrading to v.3.2 and Beyond below and
Known Issues.

Be aware that the Checking for upgrade status message, and its accompanying spinner, can take up
to several minutes to resolve. Also, a�er you initiate an upgrade, it can take up to several minutes
before the View button (described below) is displayed.

Page 382 of 1835

The following controls are available here:

Beside Package source, the default CDN button downloads a package directly from Cribl's content delivery
network.

If you select the alternative Path button, next click + Add Path (below Custom path) to define as many paths
as you need. In the resulting table, each row provides these additional fields:

Platform‑specific package location: Enter either a URL (HTTP) or a local path to the upgrade package.

Package hash location: Enter either a URL (HTTP), or a local path to the hash that validates the
package. Supports SHA‑256 and MD5 formats. (You can simply append .sha256 to the contents of the
Platform‑specific package location field.)

X (close box): Click to delete a row – immediately. (There is no confirmation prompt.)

Save/Cancel buttons: Click Save to store the specified locations. Clicking Cancel restores the CDN
package-source selection.

Di�erent rows in this table can identify packages for di�erent platforms/architectures.

The Disable automatic upgrades slider has a di�erent default state per deployment type:

In on-prem/ customer-managed deployments, Disable automatic upgrades defaults to Yes , to prevent
Cribl Stream from automatically upgrading out-of-date Worker Nodes. Before you toggle this to No (i.e.,
enable automatic upgrades) in a self-managed deployment, see Upgrading to v.3.2 and Beyond below.

In Cribl.Cloud deployments, Disable automatic upgrades defaults to No . This enables Cribl to automatically
upgrade Worker Nodes to Cribl Stream's newest stable version. Cribl-managed and hybrid Workers will auto-
upgrade as soon as they see a new Leader version. If you toggle this to Yes , you will need to explicitly
upgrade each Worker. Cribl-managed and hybrid Workers will auto-upgrade as soon as they see a new
Leader version. If you toggle this to Yes , you will need to explicitly upgrade each Worker.

When enabled, the automatic upgrade process works like this:

1. The Leader pulls packages, and checks their hashes.

The Leader must be able to connect to the path.

The Leader must also have privileges to download the files.

If the path is an HTTP URL, the Leader copies the file to a known location in its filesystem.

Package Source

Automatic Upgrades

Page 383 of 1835

If the package is already hosted on the Leader Node, specify its filesystem path.

2. Workers pull packages and check their hashes.

Workers pull from the Leader through HTTP, not directly from the Leader's filesystem.

Each Worker pulls the package that is appropriate for that Worker's platform and architecture.

3. Workers install the packages.

In a Single-instance deployment, the Upgrade button is the only other control provided. In a
distributed deployment, the Upgrade button is displayed on an Upgrade Leader tab, and clicking it
upgrades the Leader Node. (As with manual upgrades, always upgrade the Leader before upgrading the
Workers.)

When using the UI to upgrade to v.3.2 or higher, commit and deploy your upgrade on the Leader before using
the following options to upgrade Workers to a corresponding version. This is especially important if you
enable automatic upgrades.

This second tab, displayed only in distributed deployments, shows each Worker Group's status.

Upgrade vs. Upgrade Leader

Upgrading to v.3.2 and Beyond

Breaking Change at v.3.2

Because of a breaking change at v.3.2, Leaders running v.3.2.x cannot upgrade (via the UI) Workers
running LogStream versions prior to 3.2.0. The upgrade will fail with errors of the form:
Error checking upgrade path and Cannot read property 'greaterThan' of undefined .

The workaround is to upgrade these Workers via the filesystem to v.3.2.0 or higher. The error does not
a�ect upgrades of Workers running v.3.2.0+.

Upgrade Worker Groups

Page 384 of 1835

Upgrade Worker Groups tab

Click any row's Upgrade button to upgrade that group. The resulting Upgrade Group dialog o�ers two
states: Basic Upgrade and Advanced Upgrade.

In this default Upgrade Group dialog, you can simply upgrade the whole Group, by clicking the dialog's
Upgrade button to confirm.

Cribl Stream will check to ensure that Workers are upgraded no higher than the Leader's version. Upgrades
are performed as the user that was running Cribl Stream on each machine.

Click Advanced configuration to expose these additional options:

Quantity %: Specify what percentage of the Group's Workers to upgrade in this operation. If you enter a
value less than the default 100%, Cribl Stream will perform a partial upgrade, keeping the remaining
Workers active to process data.

Rolling upgrade: Toggle this slider on to upgrade Workers one at a time. Enabling the slider also enables the
dialog's two remaining controls:

Retry delay (ms): How many milliseconds to wait between upgrade attempts. Defaults to 1000 ms
(1 second).

Retry count: How many times to retry a failed upgrade. Defaults to 5 .

Upgrading Workers from the Leader requires a Cribl Stream Standard or Enterprise license.

Basic Upgrade Configuration

Advanced Upgrade Configuration

Page 385 of 1835

A�er you click the Upgrade confirmation button, the Upgrade Worker Groups tab will display an additional
button on this Group's row:

View: Click to display the upgrade task's status in the Job Inspector modal – select that modal's System tab
to access details.

By default, Cribl Stream will automatically roll back to a stored backup package if an upgrade (initiated
through the UI) fails. You can adjust this behavior at global ⚙ Settings (lower le�) > System >
General Settings > Upgrade & Share Settings, using the following controls.

Enable automatic rollback: Cribl Stream will automatically roll back an upgrade if the Cribl Stream server
fails to start, or if the Worker Node fails to connect to the Leader. (Toggle to No to defeat this behavior.)

Rollback timeout (ms): Time to wait, a�er an upgrade, before checking each Node's health to determine
whether to roll back. Defaults to 30000 milliseconds, i.e., 30 seconds.

Rollback condition retries: Number of times to retry the health check before performing a rollback. Defaults
to 5 attempts.

Check interval (ms): Time to wait between health-check retries. Defaults to 1000 milliseconds, i.e., 1
second.

Backups directory: Specify where to store backups. Defaults to $CRIBL_HOME/state/backups .

Backup persistence: A relative time expression specifying how long to keep backups a�er each upgrade.
Defaults to 24h .

When you initiate an upgrade via the UI, the new package is untarred to $CRIBL_HOME/unpack.
<random‐hash>.tmp . This location inherits the permissions you've already assigned to
$CRIBL_HOME .

Backup and Rollback

LogStream can perform rollbacks only on Worker Nodes/instances that started on at least LogStream
v. 3.0.0, before the attempted upgrade.

Upgrading from LogStream 2.2 or Prior Versions

Page 386 of 1835

As of version 2.3, the LogStream Free license is permanent, but it enforces certain restrictions that especially
a�ect distributed deployments:

Even if you have more than one Worker Group defined, only one Worker Group will be visible and
usable.

This will be the first Group listed in $CRIBL_HOME/local/cribl/groups.yml – typically, the
default Group. You can edit groups.yml to move the desired Group to the top.

Your cluster will be limited to 10 Worker Processes across all Worker Nodes.

Cribl Stream will balance (or rebalance) these Processes as evenly as possible across the Worker
Nodes.

Authentication will fall back to local authorization. You will not be able to authenticate via Splunk, LDAP,
or SSO/OpenID.

Git Push to remote repos will not be supported through the product.

As of LogStream 2.3, licenses no longer need to be deployed directly to Worker Groups. The Leader will push
license information down to Worker Groups as part of the heartbeat.

Follow these steps to upgrade from v.1.7, or higher, of the Cribl App for Splunk:

1. Stop Splunk.

2. Untar/unzip the new app version on top of the old one.

On some Linux systems, tar might complain with: cribl/bin/cribl: Cannot open: File exists .
In this case, please remove the cribl/bin/cribl directory if it's empty, and untar again. If you have

If you are upgrading LogStream Free from version 2.2.x or lower, these changes might require you to
adjust your existing configuration and/or workflows.

See Licensing for details on all current license options.

Splunk App Package Upgrade Steps

See Deprecation note for v.2.1.

Page 387 of 1835

custom functions in cribl/bin/cribl , please move them under
$CRIBL_HOME/local/cribl/functions/ before untarring again.

3. Restart Splunk.

As of v.1.7, contrary to prior versions, Cribl's Splunk App package defaults to Search Head Mode. If you have
v.1.6 or earlier deployed as a Heavy Forwarder app, upgrading requires an extra step to restore this setting:

1. Stop Splunk.

2. Untar/unzip the new app version on top of the old one.

3. Convert to HF mode by running: $SPLUNK_HOME/etc/apps/cribl/bin/cribld mode-hwf

4. Restart Splunk.

;

Upgrading from Splunk App v.1.6 (or Lower)

Page 388 of 1835

Removing an Cribl Stream installation, whether for a clean reinstall or permanently

(Optional) To prevent systemd from trying to start Cribl Stream at boot time, run the following
command:
sudo $CRIBL_HOME/bin/cribl boot-start disable

If you're running both Cribl Stream and Cribl Edge on the same host, be sure to execute this command in
the same mode (Stream or Edge) and the same directory in which you originally ran
cribl boot‐start enable .

Stop Cribl Stream (stopping the main process).

Back up necessary configurations/data.

Remove the directory where Cribl Stream is installed.

In a distributed deployment, repeat the above steps for the Leader instance and all Worker instances.

Stop Splunk.

Back up necessary configurations/data.

Remove the Cribl App in $SPLUNK_HOME/etc/apps .

Remove the Cribl module in $SPLUNK_HOME/etc/modules/cribl (some versions).

;

4.11. Uninstalling

Uninstalling the Standalone Version

Uninstalling the Splunk App Version

Page 389 of 1835

5. WORKING WITH DATA

All data processing in Cribl Stream is based on discrete data entities commonly known as events. An event is
defined as a collection of key-value pairs (fields). Some Sources deliver events directly, while others might
deliver bytestreams that need to be broken up by Event Breakers. Events travel from a Source through
Pipelines' Functions, and on to Destinations.

The internal representation of a Cribl Stream event is as follows:

Event Model

Some notes about these representative fields:

Fields that start with a double-underscore are known as internal fields, and each Source can add one or
many to each event. For example, Syslog adds both a __inputId and a __srcIpPort field. Internal
fields are used only within Cribl Stream, and are not passed down to Destinations.

Upon arrival from a Source, if an event cannot be JSON-parsed, all of its content will be assigned to
_raw .

If a timestamp is not configured to be extracted, the current time (in UNIX epoch format) will be
assigned to _time .

5.1. Event Model

{
"_raw": "<body of non-JSON parse-able event>",
"_time": "<timestamp in UNIX epoch format>",
"__inputId": "<Id/Name of Source that delivered the event>",
"__other1": "<Internal field1>",
"__other2": "<Internal field2>",
"__otherN": "<Internal fieldN>",
"key1": "<value1>",
"key2": "<value2>",
"keyN": "<valueN>",
"...": "..."

}

Using Capture

Page 390 of 1835

One way to see what an event looks like as it travels through the system is to use the Capture feature. While
in Preview (right pane):

1. Click Start a Capture.

2. In the resulting modal, enter a Filter expression to narrow down the events of interest.

3. Click Capture... and (optionally) change the default Time and/or Event limits.

4. Select the desired Where to capture option. There are four options:

1. Before the pre-processing Pipeline – Capture events right a�er they're delivered by the respective
Input.

2. Before the Routes – Capture events right a�er the pre-processing Pipeline. before they go down any
Routes. (QuickConnect bypasses Routes, and can bypass processing Pipelines.)

3. Before the post-processing Pipeline – Capture events right a�er any Processing Pipeline that
handled them, before any post-processing Pipeline.

4. Before the Destination – Capture events right a�er any post-processing Pipeline, before they go out
to the configured Destination.

;

Page 391 of 1835

The expanded schematic below shows how all events in the Cribl Stream ecosystem are processed linearly,
from le� to right.

Cribl Stream in great detail

Here are the stages of event processing:

1. Sources: Data arrives from your choice of external providers. (Cribl Stream supports Splunk, HTTP/S,
Elastic Beats, Amazon Kinesis/S3/SQS, Kafka, TCP raw or JSON, and many others.)

2. Custom command: Optionally, you can pass this input's data to an external command before the data
continues downstream. This external command will consume the data via stdin , will process it and
send its output via stdout .

3. Event Breakers can, optionally, break up incoming bytestreams into discrete events. (Note that because
Event Breakers precede tokens, Breakers cannot see or act on tokens.)

4. Auth tokens are applied at this point on Splunk HEC Sources. (Details here.)

5. Fields/Metadata: Optionally, you can add these enrichments to each incoming event. You add fields by
specifying key/value pairs, per Source, in a format similar to Cribl Stream's Eval Function. Each key

5.2. Event Processing Order

Page 392 of 1835

defines a field name, and each value is a JavaScript expression (or constant) used to compute the field's
value.

6. Auth tokens are applied at this point on HTTP-based Sources other than Splunk HEC (e.g.,
Elasticsearch API Sources).

7. Pre-processing Pipeline: Optionally, you can use a single Pipeline to condition (normalize) data from this
input before the data proceeds further.

8. Routes map incoming events to Processing Pipelines and Destinations. A Route can accept data from
multiple Sources, but each Route can be associated with only one Pipeline and one Destination.
(QuickConnect bypasses Routes.)

9. Processing Pipelines perform most event transformations. Within a Pipeline, you define these
transformations as a linear series of Functions. A Function is an atomic piece of JavaScript code invoked
on each event. (QuickConnect optionally bypasses processing Pipelines.)

10. Post-processing Pipeline: Optionally, you can append a Pipeline to condition (normalize) data on its way
into its Destination.

11. Destinations: Each Route/Pipeline combination forwards processed data to your choice of streaming or
storage Destination. (Cribl Stream supports Splunk, Syslog, Elastic, Kafka/Confluent, Amazon S3,
Filesystem/NFS, and many other options.)

;

Pipelines Everywhere

All Pipelines have the same basic internal structure – they're a series of Functions. The three Pipeline
types identified above di�er only in their position in the system.

Page 393 of 1835

Before incoming events are transformed by a processing Pipeline, Cribl Stream uses a set of filters to first
select a subset of events to deliver to the correct Pipeline. This selection is normally made via Routes.

Select Routing > Data Routes from Cribl Stream's global top nav (single-instance deployments) or from a
Worker Group's/Fleet's top nav (distributed deployments). To configure a new Route, click + Route.

Routes apply filter expressions on incoming events to send matching results to the appropriate Pipeline.
Filters are JavaScript-syntax–compatible expressions that are configured with each Route. Examples are:

true

source=='foo.log' && fieldA=='bar'

Routes are evaluated in their display order, top‑>down. The stats shown in the Bytes/Events (toggle) column
are for the most-recent 15 minutes.

5.3. Routes

Don't Need Routes?

Routes are designed to filter, clone, and cascade incoming data across a related set of Pipelines and
Destinations. If all you need are independent connections that link parallel Source/Destination pairs,
you can use Cribl Stream's QuickConnect rapid visual configuration tool as an alternative to Routes.

Accessing Routes

How Do Routes Work

There can be multiple Routes in a Cribl Stream deployment, but each Route can be associated with
only one Pipeline.

Page 394 of 1835

Routes and bytes

In the example above, incoming events will be evaluated first against the Route named speedtest, then
against mtr, then against statsd, and so on. At the end, the main Route serves as a catch-all for any event
that does not match any of the other Routes.

Above, note the selectors to toggle between displaying Events versus Bytes, and to display In versus Out.

When you condense the Routes page to a narrower viewport, Cribl Stream consolidates the In/Out/Dropped
selectors onto an expanded Bytes/Events drop-down menu, as shown below.

Routes and events (combined menu)

To apply a Route before another, simply drag it vertically. Use the sliders to turn Routes On/O� inline, as
necessary, to facilitate development and debugging.

You can press the] (right-bracket) shortcut key to toggle between the Preview pane and the expanded
Routes display shown above. (This works when no field has focus.)

Managing the Routes Page

Page 395 of 1835

Click a Route's Options (...) menu to display multiple options:

Insert, group, move, copy, or delete Routes.

Insert comments above or below Routes.

Capture sample data through a selected Route.

Route > Options menu

Copying a Route displays the confirmation message and the (highlighted) Paste button shown below.

Paste button for copied Route

Pasting creates an exact duplicate of the Route, with a warning indicator to change its duplicate name.

Page 396 of 1835

Pasted duplicate Route

Comments work like a Pipeline's Comment Functions: You can use them to describe Routes' purposes and/or
interactions.

Comments make the Routing table self-documenting

You can configure each Route with an Output that defines a Destination to send events to, a�er they're
processed by the Pipeline.

If you toggle the Enable expression slider to Yes , the Output field changes to an Output expression field.
Here, you can enter a JavaScript expression that Cribl Stream will evaluate as the name of the Destination.

Output Destination

Page 397 of 1835

Sample expression format: myType:myDest_${C.logStreamEnv} . (This evaluation happens at Route
construction time, not per event.)

Output expression enabled

When an event that enters the system and matches a Route-Pipeline pair, it will usually be either:

Dropped by a function, or

Transformed (optionally) and exit the system.

This behavior is ensured by the Final toggle in Route settings. It defaults to Yes , meaning that matched
events will be consumed by that Route, and will not be evaluated against any other Routes that sit below it.

If the Final toggle is set to No , clone(s) of the matching events will be processed by the configured
Pipeline, and the original events will be allowed to continue their trip to be evaluated and/or processed by

Expressions that match no Destination name will silently fail.

On Routes within Packs, neither Output control has any e�ect, because Packs cannot specify
Destinations.

The Final Toggle

Page 398 of 1835

other Route-Pipeline pairs.

When you set the Final toggle to No , the Add Clone button appears. Click it to open the table shown
below. Here, you can add a field – name and value – to the cloned events sent to this Route's Pipeline. Click
Add Field to define more added fields/values.

Non-final Route: add clone fields

Depending on your cloning needs, you might want to follow a most-specific first or a most-general first
processing strategy. The general goal is to minimize the number of filters/Routes an event gets evaluated
against. For example:

If cloning is not needed at all (i.e., all Final toggles stay at default), then it makes sense to start with
the broadest expression at the top, so as to consume as many events as early as possible.

If cloning is needed on a narrow set of events, then it might make sense to do that upfront, and follow it
with a Route that consumes those clones immediately a�er.

Final Flag and Cloning Considerations

Page 399 of 1835

The endRoute bumper appears at the bottom of the Routing table. This is a reminder that, if no Route in the
table has the Final flag enabled, events will continue to Cribl Stream's configured Default Destination.

endRoute warning and link

This is a backstop to ensure data flow. However, if that configured default is also configured as the Output of
a Route higher in the table, duplicate events will reach that Destination.

You can correct this either by setting a Route to Final , or by changing the Default Destination. The bumper
provides a link to the Default Destination's config, and identifies the currently configured default in
parentheses.

A Route group is a collection of consecutive Routes that can be moved up and down the Route stack together.
Groups help with managing long lists of Routes. They are a UI visualization only: While Routes are in a group,
those Routes maintain their global position order.

Routes display an "unreachable" warning indicator (orange triangle) when data can't reach them.

The endRoute Bumper

Route Groups

Route groups work much like Function groups, o�ering similar UI controls and drag-and-drop
options.

Unreachable Routes

Page 400 of 1835

Unreachable Route warning, on hover

This condition will occur when, with your current configuration, any Route higher in the stack matches all
three of these conditions:

Previous Route is enabled (slider is set to On).

Previous Route is final (Final slider is set to Yes).

Previous Route's Filter expression evaluates to true, (e.g., true , 1 === 1 , etc.).

Note that the third condition above can be triggered intermittently by a randomizing method like
Math.random() . This might be included in a previous Route's own Filter expression, or in a Pipeline
Function (such as one configured for random data sampling).

Unreachable Route warnings, many

Output Router Destinations o�er another way to route data. These function as meta-Destinations, in that
they allow you to send data to multiple peer Destinations based on rules. Rules are evaluated in order,
top‑>down, with the first match being the winner.

Routing with Output Router

Page 401 of 1835

;

Page 402 of 1835

Data matched by a given Route is delivered to a Pipeline. Pipelines are the heart of Cribl Stream processing.
Each Pipeline is a list of Functions that work on the data.

Select Processing > Pipelines from Cribl Stream's global top nav (single-instance deployments) or from a
Worker Group's/Fleet's top nav (distributed deployments). Next, click any displayed Pipeline to see or
reconfigure its contained Functions.

To create a new Pipeline, or to import an existing Pipeline to a di�erent Cribl Stream instance, click
+ Pipeline at the upper right. The resulting menu o�ers three options:

Create Pipeline: Configure a new Pipeline from scratch, by adding Functions in Cribl Stream's graphical
UI.

Import from File: Import an existing Pipeline from a .json file on your local filesystem.

Import from URL: Import an existing Pipeline from .json file at a remote URL. (This must be a public
URL ending in .json – the import option doesn't pass credentials to private URLs – and the target file
must be formatted as a valid Pipeline configuration.)

Creating or importing a Pipeline

5.4. Pipelines

As with Routes, the order in which the Functions are listed matters. A Pipeline's Functions are
evaluated in order, top‑>down.

Accessing Pipelines

Adding Pipelines

To export a Pipeline, see Advanced Mode (JSON Editor).

Page 403 of 1835

Events are always delivered to the beginning of a Pipeline via a Route. The data in the Stats column shown
below are for the last 15 minutes.

Pipelines and Route inputs

Preview on hovering over the bottom Pipeline (highlighted in gray)

Within the Pipeline, events are processed by each Function, in order. A Pipeline will always move events in
the direction that points outside of the system. This is on purpose, to keep the design simple and avoid

To import or export a Pipeline along with broader infrastructure (like Knowledge Objects and/or
sample data files), see Packs.

How Do Pipelines Work

You can press the] (right-bracket) shortcut key to toggle between the Preview pane and an
expanded Pipelines display. (This shortcut works when no field has focus.)

In the condensed Pipelines display above, you can also hover over any Pipeline's Functions column
to see a horizontal preview of the stack of Functions contained in the Pipeline:

Page 404 of 1835

potential loops.

Pipeline Functions

Click the gear button at the top right to open the Pipeline's Settings. Here, you can:

Use the Async function timeout (ms) to set the maximum amount of processing time, in milliseconds,
that a Function is allowed to take before it is terminated. This prevents a Function from causing
undesirable delays in your Pipeline (for example, a Lookup Function taking too long to process a large
lookup file).

Use the Tags field to attach arbitrary labels to the Pipeline. Once attached, you can use these tags to
filter/search and group Pipelines.

Use the Attach to Route link at upper le� to associate a new Pipeline with a Route.

You can streamline a complex Pipeline's display by organizing related Functions into Function groups.

Pipeline Settings

Page 405 of 1835

Pipeline Settings

Once you've clicked the gear button to enter Pipeline Settings, you can click Edit as JSON at the upper right
to edit the Pipeline's definition in a JSON text editor. In this mode's editor, you can directly edit multiple
values. You can also use the Import and Export buttons here to copy and modify existing Pipeline
configurations, as .json files.

Advanced Pipeline Editing

Click Edit in GUI at upper right to return to the graphical Pipeline Settings page; then click Back to
<pipeline-name> to restore the graphical Pipeline editor.

Advanced Mode (JSON Editor)

Page 406 of 1835

Click a Pipeline's Actions (...) menu to display options for copying or deleting the Pipeline.

Pipeline > Actions menu

Copying a Pipeline displays the confirmation message and the (highlighted) Paste button shown below.

Paste button for copied Pipeline

Pasting prompts you to confirm, or change, a modified name for the new Pipeline. The result will be an exact
duplicate of the original Pipeline in all but name.

Saving/renaming a pasted Pipeline

Pipeline Actions

Page 407 of 1835

In Cribl Stream (LogStream) 3.2.x and above, you can use the Chain Function to send the output of a Pipeline
to another Pipeline or Pack. There are scope restrictions within Packs, and general guardrails against circular
references.

You can apply various Pipeline types at di�erent stages of data flow. All Pipelines have the same basic
internal structure (a series of Functions) – the types below di�er only in their position in the system.

Pre-processing, processing, and post-processing Pipelines

These are Pipelines that are attached to a Source to condition (normalize) the events before they're
delivered to a processing Pipeline. They're optional.

Typical use cases are event formatting, or applying Functions to all events of an input. (E.g., to extract a
message field before pushing events to various processing Pipelines.)

Chaining Pipelines

Types of Pipelines

Pre-Processing Pipelines

Page 408 of 1835

You configure these Pipelines just like any other Pipeline, by selecting Pipelines from the top menu. You then
attach your configured Pipeline to individual Sources, using the Source's Pre‑Processing > Pipeline drop-
down.

Fields extracted using pre-processing Pipelines are made available to Routes.

These are "normal" event processing Pipelines, attached directly to Routes.

These Pipelines are attached to a Destination to normalize the events before they're sent out. A post-
processing Pipeline's Functions apply to all events exiting to the attached Destination.

Typical use cases are applying Functions that transform or shape events per receiver requirements. (E.g., to
ensure that a _time field exists for all events bound to a Splunk receiver.)

You configure these Pipelines as normal, by selecting Pipelines from the top menu. You then attach your
configured Pipeline to individual Destinations, using the Destination's Post‑Processing > Pipeline drop-
down.

You can also use a Destination's Post‑Processing options to add System Fields like cribl_input ,
identifying the Cribl Stream Source that processed the events.

Functions in a Pipeline are equipped with their own filters. Even though filters are not required, we
recommend using them as o�en as possible.

As with Routes, the general goal is to minimize extra work that a Function will do. The fewer events a
Function has to operate on, the better the overall performance.

For example, if a Pipeline has two Functions, f1 and f2, and if f1 operates on source 'foo' and f2 operates
on source 'bar' , it might make sense to apply source=='foo' versus source=='bar' filters on these
two Functions, respectively.

;

Processing Pipelines

Post-Processing Pipelines

Best Practices for Pipelines

Page 409 of 1835

Packs enable Cribl Stream administrators and developers to pack up and share complex configurations and
workflows across multiple Worker Groups, or across organizations.

With a Cribl Stream deployment of any size, using Packs can simplify and accelerate your work. Packs can
also accelerate internal troubleshooting, and accelerate working with Cribl Support, because they facilitate
quickly replicating your Cribl Stream environment.

For example, where a Pipeline's configuration references Lookup file(s), Cribl Stream will import the Pipeline
only if the Lookups are available in their configured locations. A Pack can consolidate this dependency,
making the Pipeline portable across Cribl Stream instances. You can develop and test a configuration, and
then port it from development to production instances, or readily deploy it to multiple Worker Groups/Fleets.

We don't claim to have brokered world peace here, but we do modestly hope to promote a stable,
prosperous Pax Criblatica for the Cribl Stream ecosystem.

Packs are implemented as a user interface (described on this page) and as a .crbl file format.

Currently, a Pack can pack up everything between a Source and a Destination:

Routes (Pack-level)

Pipelines (Pack-level)

Functions (built-in and custom)

Sample data files

Knowledge objects (Lookups, Parsers, Global Variables, Grok Patterns, and Schemas)

5.5. Packs

Packs = Portability

What Is a Pack?

What's in a Pack?

Page 410 of 1835

A Pack with internal Routes & Pipelines; no Knowledge or samples

As the above list suggests, a Pack can encapsulate a whole set of infrastructure for a given use case.

Sources, Collectors, and Destinations are external to Packs, so you can't specify them within a Pack. This
excludes a few other things:

Routes configured within a Pack can't specify a Destination.

Packs can't include Event Breakers, which are associated with Sources. (However, you can instead use
the Event Breaker Function in Packs' contained Pipelines.)

You connect a Pack with a Source and Destination by attaching it to a Route (see below), just as you'd attach
a Pipeline.

Easy now. See The Cribl Packs Dispensary™ below.

These instructions cover using predefined Packs, as well as creating and modifying Pack configurations.

What's Not in a Pack?

Where Can I Get Some Packs?

Using Packs

Page 411 of 1835

Wherever you can reference a Pipeline, you can specify a Pack:

In Sources, where you attach pre-processing Pipelines.

In Destinations, where you attach post-processing Pipelines.

In Routes, in the Routing table's Pipeline/Output column.

This expanded view shows how a Pack can replace a Pipeline in a Route:

A Pack snaps into Cribl Stream like an enhanced Pipeline

Where Can I Use Packs?

Page 412 of 1835

Packs are distinguished in the display with a PACK badge, as you can see here in the Routing table:

PACKs badged in Routing table's Pipeline column

The PACK badge is also displayed when you click into a resource – shown here on one of the Routes from the
above table:

PACK badge on a Pack connected to a Route

Cribl Stream's Monitoring page includes a Packs link where you can monitor Packs' throughput.

You access Packs di�erently, depending on your deployment type.

In a single-instance deployment, Packs are global. From Cribl Stream's top-level navigation, just select
Processing > Packs.

Accessing Packs

Single-Instance

Page 413 of 1835

Packs, single-instance navigation

In a distributed deployment with the default single Worker Group/Fleet (Leader mode), select Configure
from the le� nav, then Processing > Packs from the resulting top nav.

Packs, Leader mode

In a distributed deployment with multiple Worker Groups/Fleets (Leader mode), Packs are associated with
(and installed within) Worker Groups. Navigate to the parent Worker Group/Fleet, then select Processing >
Packs from that Group's top nav.

Worker Group/Fleet > Manage Packs page

Distributed/Default Worker Group/Fleet

Distributed/Multiple Worker Groups/Fleets

As the top nav adds more controls on narrower browsers, Packs and other right-side links can move
onto the ••• overflow menu, as shown above.

Page 414 of 1835

To unpack Packs, use the above instructions (per deployment type) to navigate to the HelloPacks example
Pack shipped with Cribl Stream. On the Manage Packs page, click this Pack's row to see its configuration.

Manage Packs page with example Pack

Click Pipelines on the Pack's submenu, and you'll see that the Pack includes devnull , main , and
passthru Pipelines, corresponding to the default Pipelines provided at Cribl Stream's global level. This Pack
also includes an Apache-specific sample Pipeline – click it to unpack that, too.

Click Routes on the Pack's submenu, and you'll see that this Pack also provides both a default and an
Apache-specific Route.

Once loaded, each Pack displays a submenu with familiar links – a subset of Cribl Stream's top nav – above it:
Routes, Pipelines, Knowledge, and Settings on the le� pane, along with Sample Data, and Preview Simple
on the right.

By design, you can readily share Packs across Worker Groups/Fleets by exporting/importing them
(both covered below).

Getting Started with Packs

Configuring a Pack

Page 415 of 1835

Configuring a Pack

The le� pane's links give you access to configuration objects specific to this Pack.

The right pane defaults to displaying all sample data files available on your Cribl Stream instance. If you
prefer to filter only sample files internal to the Pack, toggle the In Pack only slider to the right.

If you add sample data files via this Pack UI, they will be internal to that Pack. Each sample file here displays
its own In Pack toggle on its row, which works as follows:

A light-blue toggle is locked, meaning that this sample file is internal to the Pack. It will export with the Pack.
If you want to make this sample available across Cribl Stream, you'll need to also add it via the global right
preview pane (accessed from Routing > Data Routes or Processing > Pipelines).

A grayed-out or dark-blue toggle means that this sample file is global to Cribl Stream. It is available to this
Pack. Toggle this to Yes (dark blue) if you want the sample file to export along with the Pack.

Sample file in Pack

Basically, you can manipulate all the options here as you'd work with their big sister or brother in
Cribl Stream's global navigation.

Sample Data

Importing or Upgrading a Pack

Page 416 of 1835

To import a new Pack, or an updated version of an existing Pack, from your filesystem:

1. Navigate to the Manage Packs page.

2. Click + Add New at the upper right.

3. Select your desired Add/Import source: Dispensary, File, URL, or Git repo.

4. Follow the above links to details on each of these options.

Importing a Pack

You might be wondering, "Where can I find a reliable source of Packs that add useful features to Cribl Stream,
vetted for safety?"

Well, Cribl is proud to point you to the Cribl Packs Dispensary™. Here, Cribl's own solutions engineers have
seeded several strains of high-productivity Cribl Stream configurations. Because this repo is a place to share
good stu�, we expect many new hybrids to sprout from the community. Cribl will test and curate submissions
to ensure the quality of the repo's contents.

You can install Dispensary Packs directly through Cribl Stream's UI, as outlined in Add from Packs Dispensary
below.

Custom Functions

Packs can include Pipelines containing custom functions, which can (in turn) run arbitrary JavaScript.
Before you install a Pack, make sure it comes from a provider you trust, such as the
Cribl Packs Dispensary or your own organization.

As an additional protection layer, all Pack import modals provide an Allow custom functions slider.
In the slider's default No position, if Cribl Stream detects custom functions in the specified Pack, it
will block the import with an error message. If you trust the Pack's provider, toggle the slider to Yes ,
and the import will proceed normally.

The Cribl Packs Dispensary™

Page 417 of 1835

Cribl Packs Dispensary™ (as displayed in Cribl Stream's Add drawer)

To add a Pack from the Cribl Packs Dispensary™ sharing site:

1. From the Manage Packs page's + Add New submenu, select Add from Dispensary.

2. The Packs Dispensary will open in a drawer, as shown in the screenshot above.

3. Using the drawer's controls, browse or search for the Pack(s) you want. (You can use the check boxes at
the le� to filter by data type/technology and purpose.)

4. Click any Pack's tile to display its details page. This will typically outline the Pack's purpose,
compatibility, requirements, and installation.

Interested in publishing your own Packs on the Cribl Packs Dispensary™? See Publishing a Pack.

Add from Packs Dispensary

Page 418 of 1835

5. To proceed, click + Add Pack on this page.

6. That's it! You'll see a banner confirming that the Pack is now installed.

Pack details page: Composite with + Add Pack button, confirmation banner, Dispensary drawer in

background

To import a Pack (.crbl file) from your local filesystem:

1. From the + Add New submenu, select Import from File.

2. From the resulting File Open dialog, select the file to import.

3. Optionally, give the pack an explicit, unique New Pack ID. (For details about this option, see Upgrading
an Existing Pack below.)

4. Where appropriate (see just above), enable Allow custom functions.

Import from File

Page 419 of 1835

5. Click OK to confirm the import.

Importing from a file

To import a Pack from a known, public or internal, URL:

1. From the + Add New submenu, select Import from URL.

2. Enter a valid URL for the Pack's source. (This field's input is validated for URL format, but not for
accuracy, before you submit the modal.)

3. Optionally, give the pack an explicit, unique New Pack ID. (See Upgrading an Existing Pack.)

4. Where appropriate, enable Allow custom functions. (See Custom Functions.)

5. Click OK to confirm the import.

Import from URL

Page 420 of 1835

Confirming file import from URL

To import a Pack from a known public or private Git repo:

1. From the + Add New submenu, select Import from Git.

2. Enter the source repo's valid URL.
This field's input is validated for URL format, but not for completeness or accuracy, before you submit
the modal. When targeting a private repo, use the format: https://<username>:<token/password>:
<repo‐address> . Public repos need only https://<repo‐address> , as shown in the example below.

3. Optionally, give the pack an explicit, unique New Pack ID. (See Upgrading an Existing Pack.)

4. Optionally, enter a Branch or tag to filter the import source using the repo's metadata. You can specify a
branch (such as master) or a tag (such as a release number: 0.5.1 , etc.).

5. Where appropriate (see Custom Functions), enable Allow custom functions.

6. Click OK to confirm the import.

To import a Pack from a public URL, Cribl Stream's Leader Node (or single instance) requires Internet
access. A distributed deployment's Leader can then deploy the Pack to Workers even if the Workers
lack Internet access.

Import from Git Repos

Page 421 of 1835

Importing from a Git repo

One authoritative public repo is the Cribl Pack Dispensary on GitHub. (This is the precursor to the Cribl-
hosted Cribl Packs Dispensary™ site.)

You can install Dispensary Packs directly through Cribl Stream's UI, as outlined in Import from Git Repos
above. However, if you prefer, you can click through to any Dispensary repo's release page, download the
corresponding .crbl file, and then upload the file into Cribl Stream.

To import a Pack from a public repo, Cribl Stream's Leader Node (or single instance) requires Internet
access. A distributed deployment's Leader can then deploy the Pack to Workers even if the Workers
lack Internet access.

Dispensary GitHub Repo

Page 422 of 1835

Downloading a .crbl file from the Cribl Pack Dispensary's Web UI

Each Pack that is installed within a given Worker Group/Fleet (or single-instance deployment) must have a
unique ID. The ID is based on the Pack's internal configuration – not its container's file name, nor on its
Display name.

If you import a Pack whose internal ID matches an installed Pack – whether an update, or just a duplicate –
you'll be prompted to assign a unique New Pack ID to import it as a separate Pack.

If you've posted completed Packs to our GitHub repo, we encourage you to now submit them to our
new Cribl Packs Dispensary™ site. See Publishing a Pack.

Upgrading an Existing Pack

Page 423 of 1835

Renaming a Pack on import

You'll also have the option to Overwrite the installed Pack, reusing the same ID.

To explicitly upgrade an existing Pack, you can instead click the Upgrade button on its row.

Upgrading an existing Pack

If you toggle this option to Yes , the imported Pack will completely overwrite your existing Pack's
configuration.

Each Pack within a Cribl Stream instance must have a unique Pack ID, so you cannot share an ID
between two (or more) installed Packs.

If you've modified an installed Pack, Cribl Stream will block the overwrite of the Pack, to prevent
deletion of your locally created resources.

Creating a Pack

Page 424 of 1835

You can create a new Pack from scratch, to consolidate and export multiple Cribl Stream configuration
objects:

1. Navigate to the Manage Packs page.

2. Click + Add New.

3. From the submenu, select Create Pack.

4. In the resulting New Pack modal, fill in a unique Pack ID and other details.

5. Click OK to save the Pack.

Each Pack within a Cribl Stream instance must have a separate Pack ID, but you can assign
arbitrary Display names.

Version is a required field identifying the Pack's own versioning.

Minimum Stream version is an optional field specifying the lowest compatible version of
Cribl Stream/Edge so�ware.

Description and Author are optional identifiers.

Data type, Use cases, and Technologies are optional combo boxes. You can insert one or
multiple keywords to help users filter Packs that you post publicly on the Cribl Packs
Dispensary™.

Tags are optional, arbitrary labels that you can use to filter/search and organize Packs.

Page 425 of 1835

Creating a Pack

6. On the Manage Packs page, click the new Pack's row to open the Pack.

Manage Packs page

7. Use the standard Cribl Stream controls (see above) to configure and save the infrastructure you want to
pack up. As you save changes in the UI, they're saved to the Pack.

Page 426 of 1835

You can update a Pack's metadata (Version, Description, Author, etc.) and display settings. If you're
developing a new Pack to share, you'll want to use this interface to populate the Pack's README and display
logo.

1. From the Pack's submenu, select Settings.

Pack Settings

2. To populate the Pack's README file, toggle View to Edit, replace the placeholder markdown content,
and Save.

If you'd like to share your Pack with the community of Cribl users, you can publish it on the
Cribl Packs Dispensary™.

The Cribl Packs Dispensary™ site is designed for sharing completed Packs. If you want to collaborate
with others on iteratively developing a Pack, Cribl recommends relying on our
Dispensary GitHub Repo for the development phase.

Once your pack is ready to share, we encourage you to submit it to the Cribl Packs Dispensary™ site.
If you already have completed Packs on our GitHub repo, bring them over here!

Modifying Pack Settings

Page 427 of 1835

Editing Pack's README

3. To update other metadata, click the le� Settings tab.

Editing Pack's metadata

4. To add a Pack logo, click the Pack's Settings > Display le� tab.

Cribl recommends adding a logo to each custom Pack, to visually distinguish the Pack's UI from the
surrounding Cribl Stream UI (as well as from other Packs). You can upload a .png or .jpg / .jpeg file,
up to a maximum size of 2MB and 350x350px. Cribl recommends a transparent image, sized
approximately 280x50px.

Page 428 of 1835

Editing Pack's display (logo) settings

To export a newly created or modified Pack, click its Export button on the Packs page.

Exporting a Pack

The resulting Export Pack modal provides the following options.

Select one of these three buttons:

Merge safe: Attempt to safely merge local modifications into the Pack's default layer (original
configuration), then export.

Merge: Force-merge local modifications into the Pack's original configuration, then export.

Default only: Export only the Pack's original configuration, without local modifications.

The Merge safe option is conservative, and will block the export where Cribl Stream can't readily merge
conflicting, modified contents with the Pack's original contents:

Exporting a Pack

Export Mode

Merge is the only export mode available when you've selected Groups as your Export target.

Page 429 of 1835

Merge safe error

If you encounter an error like the example shown above, use the Merge or Default only export mode instead.

The options here are:

File (the default): You'll be prompted to confirm a file name and destination a�er you click OK.
(In Cribl Stream 3.5 and higher, the default file name automatically includes the Pack's version number.)

Groups: Selecting this displays a Groups control, prompting you to select one or multiple existing
Worker Groups/Fleets to export the Pack to. (The current Worker Group/Fleet is automatically omitted
from the options.)

You can export multiple Packs in one operation, by selecting their check boxes and then clicking
Export multiple Packs. This option comes with a few constraints:

You can export multiple Packs only to Groups (not to Files).

Therefore, this option is available only in distributed deployments.

The only export mode available is Merge.

The Exported Pack ID field is disabled, and hidden.

Export Target

Exporting Multiple Packs

Page 430 of 1835

Exporting multiple packs at once

A status modal will list any Packs that failed to export.

You can perform Pack operations by running Cribl Stream API calls on the command line. This is required if
you plan to automate Pack operations, e.g., in a CI/CD pipeline.

In this section, we'll walk through one scenario where running API calls on the command line works well:
exporting a Pack from one Worker Group/Fleet and installing it into another. The two Worker Groups/Fleets
do not need to have the same Leader Node.

Adapt and run this Export pack API call, using the export mode of your choice:

GET /api/v1/m/<worker_group_name>/packs/<pack_name>/export?mode=merge

Managing Packs via API

About the Following Examples

The API calls here include Worker Group/Fleet names as path parameters.

The curl commands assume that you have set the $token environment variable to match the
value of a bearer token. Of course, this is just one option for authentication. See the
Authentication topic for others; adapt the example commands to suit your chosen approach.

Export via API

Export Example

Page 431 of 1835

Let's export a Pack named goat-herd from the default Worker Group/Fleet, and use the > redirect to
write the exported Pack to a file named goat-herd.crbl :

This request returns an octet-stream attachment which is downloaded as a crbl file. And voilà, you have
exported your Pack.

Installing the exported Pack in a di�erent Worker Group/Fleet is a two-step process: First upload, then
actually install.

Adapt and run this Upload pack API call, referencing the exported Pack file:

PUT /api/v1/m/<new_worker_group>/packs?filename=<pack_name>.crbl

We'll use our target Worker Group/Fleet name (in this example, it's group420). Then we need to specify the
exported pack contents as a file payload, using the --data-binary option to upload the binary data
without modification. The @ prefix tells curl that goat-herd.crbl is the path to the file, not the data
itself.

This request returns a JSON object of the following form:

{"source":"pack_name.random_id.crbl"}

Adapt and run this Install pack API call:

POST /api/v1/m/<new_worker_group>/packs

curl -X GET -H "Authorization: Bearer $token"
'https://logstream:9000/api/v1/m/default/packs/goat-herd/export?mode=merge' > goat-
herd.crbl

Install via API

Install via API – Step 1

Install Example – Step 1

curl -X PUT -H "Authorization: Bearer $token"
'https://logstream:9000/api/v1/m/group420/packs?filename=goat-herd.crbl' --data-
binary "@goat-herd.crbl"

Install via API – Step 2

Page 432 of 1835

Meanwhile, remember that this API call will need a payload – the JSON object returned by the previous API
call.

We'll use the curl -d option to specify the JSON object payload. We'll add a new element to the object,
whose key is id , and whose value is the Pack's new name in the new Worker Group/Fleet.

Here, the goat-herd Pack is renamed as billys_pack . (If you do not wish to rename the Pack, just omit
the id element – but keep the source element.)

To bulk-copy Packs between Worker Groups/Fleets, adapt and run this Clone pack API call, referencing a
source Worker Group/Fleet, destination Worker Group(s)/Fleet(s), and Pack(s).

For example, to copy the Palo Alto Networks and Cisco ASA Packs from the default to dc1-logs and dc2-
logs Worker Group/Fleets:

Install Example – Step 2

curl -X POST -H "Authorization: Bearer $token" -H "Content-Type: application/json"
'https://logstream:9000/api/v1/m/group420/packs' -d '{"source":"goat-
herd.987654321.crbl", "id":"billys_pack"}'

Copy via API

POST /api/v1/packs/__clone__

{
 "srcGroup": "copy_from_this_worker_group_id",
 "dstGroups": [
 "destination_group_1",
 "destination_group_2",
 ...
],
 "packs": [
 "pack_id_1",
 "pack_id_2",
 ...
]
}

Copy Example

Page 433 of 1835

Last updated by: Dritan Bitincka

;

curl -X POST -H "Authorization: Bearer $token" -H "Content-Type: application/json"
'https://logstream:9000/api/v1/packs/__clone__' -d
'{"srcGroup":"default","dstGroups":["dc1-logs","dc2-logs"],"packs":
["PAN","cribl_cisco_asa_cleanup"]}'

Page 434 of 1835

This page outlines the process for Cribl Community members to publish Cribl Stream Packs to the
Cribl Packs Dispensary™. It also lists standards that apply to all publicly available Community Packs.

Publishing your Pack is a three-step process:

1. Prepare and Produce.

In this initial phase, feel free to share with other Community members, who can help refine the Pack. For
this development phase, consider working collaboratively on Cribl's Dispensary GitHub repo.

2. Publish the Pack to the Cribl Packs Dispensary™.

The submission process, outlined below, validates that all required fields are included: Pack name,
version, author, and license, if the version is newer than the last one published.

3. Celebrate!

A Cribl Community Pack must be useful, reusable, and subject to the Cribl Pack Developer Agreement (PDA).

Above all, what makes a Cribl Community Pack useful is the value that it provides for your fellow Community
members. A Pack will be most useful if it includes Pipelines, along with supporting sample files and
Knowledge objects (especially Lookups) as needed.

5.5.1. Packs Publication Standards

Publication Overview

If you've already posted completed Packs to Cribl's GitHub repo, we encourage you to now submit
them to the Packs Dispensary™. See Publishing a Pack.

Community Pack Guidelines

Making Your Pack Useful

Making Your Pack Reusable

Page 435 of 1835

Reusability means that the Pack brings value to multiple Cribl Stream users. To make this possible, you
should provide:

1. Instructions for using the Pack, including details on how to configure any relevant Sources and
Destinations.

2. Details about the impact on downstream systems, so that users can prepare for changes that the Pack
will make to data flowing through.

The Pack Developer Agreement (PDA) appears when you first access the Cribl Packs Dispensary™. As a Pack
author, you must electronically acknowledge that you have read the Agreement, and that you intend to
adhere to its requirements.

Before you start creating your Pack, check the Cribl Packs Dispensary™ to see if something similar has
already been published. If your idea for a Pack is new:

Post to Cribl Community Slack's the #packs channel, asking whether any of your fellow Community
members are working on a Pack that's similar to yours.

If someone is already working along the same lines, then you have a good opportunity to collaborate on
the Pack you want to create.

Read the docs that explain how to easily create your Pack from within the Cribl Stream UI.

Here's how you should formulate the information you'll need to create the Pack.

Pack names should not:

Start with Cribl or Cribl- , which are reserved for Cribl-created packs.

Use the word Pack , at all.

Pack names should:

Start with cc (this indicates that the Pack was contributed by a Cribl Community member).

Acknowledging the Pack Developer Agreement

Before you Begin

Creating the Pack

Page 436 of 1835

Use all lowercase.

Use dashes to separate words, e.g., cc-tanium-events .

Pack Version numbers should:

Use 0.0.1 for the initial version of the Pack.

Designate (number) subsequent versions as described in the Pack Publication Process below.

Pack Descriptions should:

Be brief - no more than 1 or 2 sentences, e.g., This Pack for Syslog inputs will reduce volume,
and address timestamp normalization for Syslog senders that omit timezones.

Pack Author names should be in the following format:

Your Community name, a dash (-) and cc , e.g., art chavez - cc .

Pack License Notes should:

Appear at the end of the Pack README and appropriately linked, e.g., This Pack uses the following
license: [Apache 2.0](https://github.com/criblio/appscope/blob/master/LICENSE).

To properly scope the documentation you write for your Pack, follow these principles:

The optimal user experience is to have a single Pack that supports all data sets for the relevant device or
sender.

The Pack documentation should list all of the data sets that the Pack supports.

If there are known data sets that are relevant but not yet supported, the documentation should list
those, too.

For example, consider a device sending data to Cribl Stream, such as a Palo Alto Networks firewall. This
device supports multiple data sets, in that Palo Alto Firewall data is really one co-mingled set of data that
includes individual data sets like PAN-Traffic , PAN-System , PAN-Accept , and so on.

Think about what data sets would be involved for other devices, and how you would document them. For
example, consider an F5 load balancer, various types of routers, or various types of servers. This exercise will
help you anticipate what your users will need to see documented for your own Pack.

Creating Documentation for the Pack

What a Pack Must Contain

Page 437 of 1835

Every Pack must contain some combination of Pipelines, samples, Routes, Knowledge objects (including
Lookups), configuration descriptions, support contact information, and release notes. The exact ingredients
will vary by Pack.

1. Except for rare cases, each Pack should have at least one Pipeline. Packs without Pipelines are of limited
use.

2. Cribl recommends that you provide one Pipeline (and one Route) for each data set that your Pack
supports.

3. Each Pipeline should have an internal Comment describing the overall functionality and benefits that
the Pipeline provides. The procedure for adding a Comment is the same as for adding any other
Function. Comment is under the + Function > Standard drop-down.

4. Within each Pipeline, follow these best practices for Functions:

Use grouping to bundle any Functions that a user should enable or disable together.

Add a Description to each Function, to make it clear what is happening at each step, along with the
Function's purpose and mechanics.

5. Overall, design for supportability and e�iciency.

1. Include at least one data sample for each Pipeline. Data samples can be reused across Pipelines, but it is
preferable to include multiple data samples, each specific to a Route/filter available in the Pipeline.

2. Remember to remove all sensitive data (e.g., internal host names or IP addresses) from samples.

1. A Pack includes Routes with appropriate filters.

2. Each Pipeline should have a corresponding Route on the Packʼs Routes page. (The only exception to this
is when the Pack serves as a delivery mechanism for pre-processing and post-processing Pipelines.)

3. The filter in that Route should be as generic as possible. For example, if the data is coming from PAN ,
donʼt assume youʼll have sourcetype . Instead, filter by _raw.match() .

Pipelines

Samples

Routes

Page 438 of 1835

4. Each Route must have a meaningful description.

5. The final Route (where Filter is set to true) should route to the devnull Pipeline.

1. Include all Knowledge objects that the Pack requires, in the Pack –(Lookups, Parsers, Global Variables,
Grok Patterns, and Schemas).

2. Remember to remove all sensitive data (e.g., internal host names, IP addresses) from Knowledge
objects.

3. Lookups are especially important. If it's not practical to include the required Lookup, include
instructions for building it.

Where applicable, the Pack documentation should include clear descriptions for each pre-shipped
configuration.

The Pack documentation should list your preferred method of contact for support, e.g., your Cribl
Community name for Slack DMs, or your email address.

If the Pack is an update from a previous release, the documentation should include Release Notes.

A logo and a README file are recommended, but optional.

You can include a logo associated with the technology addressed by the Pack, e.g., a Windows logo for
Windows events, an AWS Cloudwatch logo for AWS Cloudwatch data, and so on.

Knowledge Objects

Configuration Descriptions

Support Contact Information

Release Notes

What a Pack Should Contain

The Logo

Page 439 of 1835

Including a README improves the user experience for your Pack. Create a README.md file in the Settings
directory, with detailed answers to the following questions:

1. What does the Pack do, and why was it created? Here, you can state what value the Pack provides.

2. What technologies, data sources, and data destinations does the Pack interact with?

3. What other dependencies does the Pack have? As examples:

Does the Pack use an external tool, like Redis?

What is the minimum supported version of Cribl Stream? This must be newer than Cribl LogStream
v.3.0.4 or Cribl Edge 3.3.0.

What deployment restrictions apply? What combination of single instance, distributed, or Cloud
deployments of Cribl Stream does the Pack support?

4. What is required to configure a data source or destination?

Include specific examples of configurations when possible.

Link to specific sources and destinations to configure, e.g., link to AWS Firehose Source for a Pack
that requires Firehose to collect data.

5. What else does your user need to know to use the Pack?

Include specific instructions.

6. How should your users contact you for support?

The README should contain the Pack author's contact info for providing feedback/requesting
support, e.g., your Community name or email address.

Packs start at version 0.0.1 , and continue through as many "pre-release" versions as needed, until the
authors feel that the Pack is ready for production use. During this initial Prepare phase, you'll share your
idea with other Cribl Community members, to collaboratively refine the Pack.

Next, you'll enter the Publish phase, where it's appropriate to release version 1.0 . Here, you'll:

Satisfy all the requirements for publishing a Pack, as documented above.

The README

Versioning Packs

Page 440 of 1835

Export the Pack by creating a .crbl file.

Upload the Pack to the Cribl Packs Dispensary™, as outlined below. The Dispensary will validate the
Pack name, version, author, and license, including by checking that the new version number is greater
than the last one.

The easiest way to do this is to make the Pack changes in Cribl Stream, then export the new Pack and upload
it to the Cribl Packs Dispensary™.

1. Update your Pack.

2. Increment the version number. See semantic versioning for guidelines.

3. In the README , update the Release Notes section to specify the new version and release date, and to
describe what has changed. For a good model of how this is done, see the README on the Dispensary's
Microso� Windows Events Pack.

4. Export your Pack and save the .crbl file locally.

5. Upload your Pack's .crbl file. to the Cribl Packs Dispensary™, as outlined below. Remember to version
the file.

To submit your Pack:

1. Sign into, or create an account on, the Cribl Packs Dispensary™ site. You can create an account using the
same email address as used on your Cribl.Cloud account.

If you don't have a Cribl.Cloud account, Cribl automatically creates a new one for you automatically
when you create an account on the Cribl Packs Dispensary™.

2. Once signed in, you'll see the + Publish Pack and the View only my Packs controls shown below.

Packs Dispensary™: Signed-in view

Versioning an Existing Pack

Publishing a Pack

Page 441 of 1835

3. Click + Publish Pack, and then click Upload Pack.

4. Select the .crbl Pack file you want to publish, and click Submit.

5. The Packs Dispensary™ will quickly verify whether the Pack has valid configurations and whether it
meets all of the requirements outlined in this document.

6. If validation is successful, the Dispensary submits the Pack for review, and graduates it to a Validating
state.

7. Once your Pack is reviewed, you'll receive an email from packs@cribl.io informing you whether it
was accepted or rejected.

Rejected Packs display on the Packs Dispensary™ as Failed , with a note about the rationale for
rejection. A�er you've fixed your Pack, you can resubmit it.

Community-authored Packs are primarily supported by the Pack author, who also handles feature
requests and suggestions.

Cribl-authored Packs are supported by Cribl.

For both kinds of Packs, the greater Cribl Slack Community also provides a wealth of knowledge - see
the #packs channel.

;

Who Supports Packs

Page 442 of 1835

Data generators for testing and troubleshooting

Cribl Stream's datagens feature enables you to generate sample data for the purposes of troubleshooting
Routes, Pipelines, Functions, and general connectivity.

Several datagen template files ship with the product, out of the box. You can create others from sample files
or live captures.

Preview pane – add samples via paste, attach/upload file, or live capture

As outlined in the following tutorial: Once you've created a template, you can configure a Datagen Source to
use the template to generate real-time data at a given EPS (events per second) rate.

To see how datagens work, start by enabling a pair of Cribl Stream's out-of-the-box generators:

Navigate to Sources > Datagens and click + Add New.

5.6. Using Datagens

Enabling a Datagen

Page 443 of 1835

Select a Data Generator File (e.g., apache_common.log) and set it at 4 EPS/worker process. Select another
Data Generator File (e.g., syslog.log) and set it at 8 EPS/worker process. Hit Save.

Selecting datagens files and event rates

On the Monitoring page, under Sources, search for datagen and confirm that the Source is generating data.

To convert a sample into a template:

Go to Preview > Paste a Sample, and add a sample like the AWS VPC Flow logs below:

From the Event Breaker drop-down, select AWS VPC Flow to ensure that:

Creating a Datagen Template from a Sample File

2 123456789010 eni-abc123de 172.31.16.139 172.31.16.21 20641 22 6 20 4249 1418530010
1418530070 ACCEPT OK
2 123456789010 eni-abc123de 172.31.9.69 172.31.9.12 49761 3389 6 20 4249 1418530010
1418530070 REJECT OK
2 123456789010 eni-1a2b3c4d - - - - - - - 1431280876 1431280934 - NODATA
2 123456789010 eni-4b118871 - - - - - - - 1431280876 1431280934 - SKIPDATA
2 123456789010 eni-1235b8ca 203.0.113.12 172.31.16.139 0 0 1 4 336 1432917027
1432917142 ACCEPT OK
2 123456789010 eni-1235b8ca 172.31.16.139 203.0.113.12 0 0 1 4 336 1432917094
1432917142 REJECT OK
2 123456789010 eni-f41c42bf 2001:db8:1234:a100:8d6e:3477:df66:f105
2001:db8:1234:a102:3304:8879:34cf:4071 34892 22 6 54 8855 1477913708 1477913820
ACCEPT OK

Page 444 of 1835

The pasted text gets broken properly into individual events (notice the Event Breaker on newlines).

Timestamps are extracted correctly (text highlighted purple below).

Once you've verified these results, click Create a Datagen File.

Creating a datagen template

On the resulting Create Datagen File screen:

Enter a file name, e.g.: vpc-flow-datagen.log

Ensure that the timestamp template format is correct: ${timestamp: %s}
${timestamp: <format>} is a template that the datagen engine uses to insert the current time – in
each newly generated event – using the given format. In this case, %s is the desired strftime format
for the timestamp (i.e., the epoch).

Once you've verified these results, click Save as Datagen File.

Page 445 of 1835

Saving a named datagen template

To confirm that the datagen file has been created, check Preview > Datagens.

Verifying datagen file creation

Page 446 of 1835

Now, to start using your newly created datagen file, go back to Sources > Datagens. Add it using the drop-
down shown below.

Adding new template file to datagens Source

1. In the right Preview pane, select the Datagens tab.

2. Hover over the file name you want to modify. This displays an edit (pencil) button to its le�.

3. Click that button to open the modal shown below. It provides options to edit the datagen, clone it,
delete it, or modify its metadata (File name, Description, Expiration time, and Tags).

Modifying a Datagen

Page 447 of 1835

Options for modifying a datagen

4. To make changes to the datagen, click the modal's Edit Datagen button. This opens the Edit Datagen
modal shown below, exposing the raw data that this datagen uses to generate events.

5. Edit the raw data as desired.

6. Click Update Datagen to resave the modified datagen, or click Save as New Datagen to give the
modified version a new name.

Editing a datagen

;

Page 448 of 1835

Cribl Stream's Sample Data Preview features enable you to visually inspect events as they flow into and out
of a Pipeline. Preview helps you shape and control events before they're delivered to a Destination, and
helps you troubleshoot Pipeline Functions.

Preview works by taking a set of sample events and passing them through the Pipeline, while displaying the
inbound and outbound results in a separate pane. Any time a Function is modified, added, or removed, the
Pipeline changes, and so does its displayed output.

The Preview pane is shown below, to the right of the Pipelines pane.

Preview options

When you're on the Pipelines or Routes page, you can add samples through any of the supported options:
Paste, Attach, Remote File, or Capture New. The Paste, Attach, and Remote File options work with content
that needs to be broken into events, while the Capture New option works with events only.

5.7. Data Preview

You can press the] (right-bracket) shortcut key to toggle the visibility of the Preview pane. (This
shortcut works when no field has focus.)

Adding Sample Data

The Remote File option requires a working Edge node, and is not available when you've teleported to
the node.

Paste Area

Page 449 of 1835

Once you've clicked the Paste button, attached a file, or uploaded a remote file, you'll see an
Add Sample Data modal, where you can edit and then save your data.

Add Sample Data modal

To upload data from a file on an Edge node:

1. Click the Remote File button, and navigate to the Edge node where the file is stored.

Clicking the Edge node opens the Select a file modal, shown below.

Remote File

Page 450 of 1835

Select a file modal

2. Use the available filters to narrow the results:

Path: Sets the location from which to discover files.

Allowlist: This filter supports wildcard syntax (as shown in the screenshot above), and supports the
exclamation mark (!) for negation.

Max depth: Sets which layers of files to return highlighted in bold typeface. By default, this field is
empty, which implicitly specifies 0 . This default will boldface only the top-level files within the
Path.

3. Once you find the file you want, click its name to add its contents to the Add Sample Data modal, where
you'll finish configuring the data sample.

An Event Breaker is a regular expression that tells Cribl Stream how to break the file or pasted content into
events. Breaking will occur at the start of the match. Cribl Stream ships with several common breaker
patterns out of the box, but you can also configure custom breakers. The UI here is interactive, and you can
iterate until you find the exact pattern.

If you notice fragmented events, check whether Cribl Stream has added a __timeoutFlush internal field to
them. This diagnostic field's presence indicates that the events were flushed because the Event Breaker
bu�er timed out while processing them. These timeouts can be due to large incoming events, backpressure,
or other causes.

The Capture New button opens a slightly di�erent modal – it does not require event breaking. In the
composite screenshot below, we've already captured some events using the Capture drop-down.

Event Breaker Settings

Troubleshooting Event Breakers

Capturing Sample Data

Page 451 of 1835

Capture New > Capture Sample Data modal

To capture data from a single enabled Source or Destination, it's fastest to use the Sources or Destinations UI
instead of the Preview pane. You can initiate an immediate capture by clicking the Live button on the
Source's or Destination's configuration row.

Source > Live button

You can similarly start an immediate capture from within an enabled Source's or Destination's configuration
modal, by clicking the modal's Live Data tab.

Destination modal > Live Data tab

Capturing from a Single Source or Destination

Page 452 of 1835

Beside the Live Data tab's Fields selectors is a Copy button, which enables you to copy the field names to the
clipboard in CSV format. The Logs tab also provides this copy button.

Destination modal > Live Data - Copy Fields Icon

To prevent in-memory samples from getting unreasonably large, samples input by any means (Paste, Attach,
Remote File, or Capture New) are constrained by a limit set at global ⚙ Settings (lower le�) >
General Settings > Limits > Max sample size. The default limit is 256KB , and you can adjust this upward or
downward.

Cribl Stream's JavaScript implementation can safely represent integers only up to the
Number.MAX_SAFE_INTEGER constant of about 9 quadrillion (precisely, {2^53}‑1). Data Preview will round
down any integer larger than this, and trailing 0ʼs might indicate such rounding.

In the Capture Sample Data and Live Data modals, use the Fields sidebar (at le�) to streamline how events
are displayed. You can toggle among All fields, None (to reset the display), and check boxes that
enable/disable individual fields by name.

Within the right Preview pane, each field's type is indicated by one of these leading symbols:

Controlling Sample Size

Very Large Integer Values

Fields

Field Type Symbols

Page 453 of 1835

SYMBOL MEANINGSYMBOL MEANING

α string

numeric

b boolean

m metric

{} JSON object

[] array

On JSON objects and arrays, you'll also see:

SYMBOL MEANING

+ expandable

- collapsible

The Preview pane's Add Sample Data or Capture Sample Data modal, once you've successfully populated it
with data, provides options to save the data as a sample and/or datagen file. Click the appropriate button,
accept or modify the default/generated file name and other options, and confirm the save.

Saving sample data

Saving Sample Data

Accessing and Managing Data Files

Page 454 of 1835

As you add more samples to your system, you can easily access them via the Sample data file drop-down.
You can also manage and modify sample files via the Samples tab highlighted below.

Managing sample files

Click Simple or Full beside a file name to display its events in the Preview pane. The Preview Simple option
enables you to view events on either the IN or the OUT (processed) side of a single Pipeline.

Preview Simple schematic

Simple Versus Full Preview

Page 455 of 1835

The Preview Full option gives you a choice of viewing events on the OUT side of either the processing or
post-processing Pipeline. Selecting this option expands the Preview pane's upper controls to include an
Exit Point drop-down, where you make this choice.

Preview Full schematic

1. In the right Preview pane, select the Samples tab.

2. Hover over the file name you want to modify. This displays an edit (pencil) button to its le�.

3. Click that button to open the modal shown below. It provides options to edit, clone, or delete the
sample, save it as a datagen Source, or modify its metadata (File name, Description, Expiration time,
and Tags).

Modifying Sample Files

Page 456 of 1835

Options for modifying a sample

4. To make changes to the sample, click the modal's Edit Sample button. This opens the Edit Sample
modal shown below, exposing the sample's raw data.

5. Edit the raw data as desired.

6. Click Update Sample to resave the modified sample, or click Save as New Sample to give the modified
version a new name.

Editing a sample file

The Preview pane o�ers two display options for events: Event and Table. Each format can be useful,
depending on the type of data you are previewing. This screenshot shows Event view:

IN Tab: Displaying Samples on the Way IN to the Pipeline

Page 457 of 1835

Event, Table, and Advanced options (composite screenshot)

On the ⚙ Advanced Settings menu at the upper right, the first few toggles are self-explanatory, and are used
primarily to filter the OUT tab's display of processed data. The following subsections cover the less-obvious
controls at the menu's bottom.

This toggles between displaying carriage returns, newlines, tabs, and spaces as white space, versus
as(respectively) the symbols ␍ , ↵ , → , and · .

If large sample files time out before they fully load, increase this field's default value of 10 seconds. A blank
field is interpreted as the minimum allowed timeout value of 1 second.

The CPU Profiling submenu o�ers an Enable CPU Profiling slider, which in turn unlocks a Memory (MB)
limit control. If very large data samples fail to load, you can enable the Profiler and adjust the defaults.

Render Whitespace

Timeout (Sec)

CPU Profiling

Page 458 of 1835

For example, you might increase the Timeout limit (described above) to 30 , and the Memory (MB) limit to
3048 . Optionally, click Show Profiler to see detailed results in a modal.

CPU profiling

The Save submenu enables you to save your captured data to a file, using either the Download as JSON or
the Downoad as NDJSON (Newline-Delimied JSON) option.

Saving sample data as JSON

The final option on the ⚙ Advanced Settings menu opens a modal where you can preview Cribl Stream's
internal logs summarizing how this data sample was processed and captured.

Save

Preview Log

Page 459 of 1835

As data traverses through a Pipeline's Functions, events can be modified, and some might be dropped
altogether. The OUT tab indicates changes using this color coding:

Dropped events: When events are dropped, the OUT tab displays them as grayed-out text, with
strikethrough. You can control their display using the Advanced Settings menu's Show Dropped
Events slider.

Added fields: When Cribl Stream's processing adds new fields, these fields are highlighted green. You
can control these fields' display using the Select Fields drop-down.

Redacted fields: These fields are highlighted amber.

Deleted fields: These fields are highlighted red.

Dropped and added fields in a Pipeline's output

The OUT tab displays the same Event versus Table buttons as the IN tab. It also displays the same
⚙ Advanced Settings menu options – and here, you can use the menu's Show Dropped Events,
Show Internal Fields, and Enable Di� toggles to clarify how the data has been transformed by the Pipeline.

OUT Tab: Displaying Samples on the Way OUT of the
Pipeline

Enable Show Internal Fields to discover fields that Cribl Stream adds to events, as well as Source-
specific fields that Cribl Stream forwards from upstream senders.

Page 460 of 1835

With the Routes or Pipelines page displayed in the le� pane, hover over the pane divider (in the headers row)
to display the Collapse/Expand toggle shown in the composite screenshot below.

Collapse / Expand toggle (composite)

Click Collapse to hide the Preview pane. This allows the Route or Pipeline configuration to expand to your
browser's full width. (The Preview pane collapses automatically on narrow viewports.)

Click Expand at your browser's right edge to restore the split view. The pane divider will snap back to
wherever you last dragged it.

;

Managing the Preview Pane

Page 461 of 1835

Onboarding data into Cribl Stream can vary in complexity, depending on your organization's needs,
requirements, and constraints. Proper onboarding from all Sources is key to system performance,
troubleshooting, and ultimately the quality of data and decisions both in Cribl Stream and in downstream
Destinations.

Typically, a data onboarding process revolves around these steps, both before and a�er turning on the
Source:

Create configuration settings.

Verify that settings do the right thing.

Iterate.

Below, we break down individual steps.

Cribl recommends that you take the following steps to verify and tune incoming data, before it starts flowing.

Use a sample of your real data in Data Preview. Sample data can come from a sample Source file that you
upload or paste into Cribl Stream.

You can also obtain sample data in a live data capture from a Source. One way to do this before going to
production is to configure your Source with a devnull Pipeline (which just drops all events) as a pre-
processing Pipeline. Then, let data flow in for just long enough to capture a su�icient sample.

5.8. Data Onboarding

General Onboarding Steps

Before Turning On the Source

Preview Sample Data

Very Large Integer Values

Cribl Stream's JavaScript implementation can safely represent integers only up to the
Number.MAX_SAFE_INTEGER constant of about 9 quadrillion (precisely, {2^53}‑1). Data Preview will
round down any integer larger than this, and trailing 0ʼs might indicate such rounding down.

Page 462 of 1835

While events can be processed almost arbitrarily by Functions in Cribl Stream Pipelines, make sure you
understand the event processing order. This is very important, as it tells you exactly where certain processing
steps occur. For instance, as we'll see just below, quite a few steps can be accomplished at the Source level,
before data even hits Cribl Stream Routes.

Source-level processing options

Where supported, data streams will be handled by custom commands. These are external system
commands that can (optionally) be used to pre-process the data. You can specify any command, script, etc.,
that consumes via stdin and outputs via stdout .

Verify that such commands are doing what's expected, as they are the very first in a series of processing
steps.

Next, data streams are handled by Event Breakers, which:

Convert data streams into discrete events.

Extract and assign timestamps to each event.

Check the Processing Order

Custom Command

Event Breakers

Page 463 of 1835

If the resulting events do not look correct, feel free to use non-default breaking rules and timestamp
recognition patterns. Downstream, you can use the Auto Timestamp Function to modify _time as needed, if
timestamps were not recognized properly. Examples of such errors are:

Timestamps too far out in the future or past

Wrong timezone.

Incorrect timestamp is selected from multiple timestamps present in the event.

Next, events can be enriched with Fields . This is where you'd add static or dynamic fields to all events
delivered by a particular Source.

Next, you can optionally configure a pre-processing Pipeline on a particular Source. This is extremely useful
in these cases:

Drop non-useful events as early as possible (so as to save on CPU processing).

Normalize events from this Source to conform a certain shape or structure.

Fix/touch up events accordingly. E.g., if event breakers assigned the wrong timestamp, this is the best
place to use the Auto Timestamp Function to adjust _time .

Verify, verify, verify, data integrity before turning on the Source.

Use data Destinations to verify that certain metrics of interest are accurate. This will depend significantly on
the capabilities of each Destination, but here's a basic checklist of things to ensure:

Timestamps are correct.

All necessary fields are assigned to events.

All expected events show up correctly. (E.g., if a Drop or Suppress Function was configured, ensure that
it's not dropping unintended events.)

Throughput – both in bytes and in events per second (EPS) – is what's expected, or is within a certain
tolerance.

Fields

Pre-Processing Pipeline

We Can't Say This Enough

A�er Turning On the Source

Page 464 of 1835

Iterate on the steps above as necessary. E.g., adjust fields values and timestamps as needed.

;

Iterate

Remember that there is almost always a workaround. Any arbitrary event transformation that you
need is likely just a Function or two away.

Page 465 of 1835

When events enter a Pipeline, they're processed by a series of Functions. At its core, a Function is code that
executes on an event, and it encapsulates the smallest amount of processing that can happen to that event.

The term "processing" means a variety of possible options: string replacement, obfuscation, encryption,
event-to-metrics conversions, etc. For example, a Pipeline can be composed of several Functions – one that
replaces the term foo with bar , another one that hashes bar , and a final one that adds a field (say,
dc=jfk-42) to any event that matches source=='us-nyc-application.log' .

Functions are atomic pieces of JavaScript code that are invoked on each event that passes through them.
To help improve performance, Functions can be configured with filters to further scope their invocation to
matching events only.

You can add as many Functions in a Pipeline as necessary, though the more you have, the longer it will take
each event to pass through. Also, you can turn Functions On/O� within a Pipeline as necessary. This enables
you to preserve structure as you optimize or debug.

6. Functions

How Do They Work

Page 466 of 1835

Functions stack in a Pipeline

You can reposition Functions up or down the Pipeline stack to adjust their execution order. Use a Function's
le� grab handle to drag and drop it into place.

Similar to the Final toggle in Routes, the Final toggle here controls the flow of events at the Function
level. Its states are:

No (default): means that matching events processed by this Function will be passed down to the next
Function.

Yes : means that this Function is the last one that will be applied to matching events. All Functions
further down the Pipeline will be skipped. A Function with Final set to Yes will display an F indicator
in the Pipeline stack.

Cribl Stream is built on a shared-nothing architecture, where each Node and its Worker Processes operate
separately, and process events independently of each other. This means that all Functions operate strictly
in a Worker Process context – state is not shared across processes.

This is particularly important to understand for certain Functions that might imply state-sharing, such as
Aggregations, Sampling, Dynamic Sampling, Suppress, etc.

Cribl Stream ships with several Functions out-of-the-box, and you can chain them together to meet your
requirements. For more details, see individual Functions, and the Use Cases section, within this
documentation.

The special variable __e represents the (context) event inside a JavaScript expression. Using __e with
square bracket notation, you can access any field within the event object, for example, __e['hostname'] .

The Final Toggle

Functions and Shared-Nothing Architecture

Out-of-the-Box Functions

Accessing Event Fields with __e

Page 467 of 1835

Functions use __e extensively. You also must use this notation for fields that contain a special character, like
- , . , or @ .

For an overview of adding custom Functions to Cribl Stream, see our blog post, Extending Cribl:
Building Custom Functions.

Cribl Stream's JavaScript implementation can safely represent integers only up to the
Number.MAX_SAFE_INTEGER constant of about 9 quadrillion (precisely, {2^53}‑1). Cribl Stream Functions will
round down any integer larger than this, in Data Preview and other contexts. Trailing 0ʼs might indicate such
rounding down of large integers.

Add, remove, update fields: Eval, Lookup, Regex Extract

Find & Replace, including basic sed -like, obfuscate, redact, hash, etc.: Mask, Eval

Add GeoIP information to events: GeoIP

Extract fields: Regex Extract, Parser

Extract timestamps: Auto Timestamp

Drop events: Drop, Regex Filter, Sampling, Suppress, Dynamic Sampling

Sample events (e.g, high-volume, low-value data): Sampling, Dynamic Sampling

Suppress events (e.g, duplicates, etc.): Suppress

Serialize events to CEF format (send to various SIEMs): CEF Serializer

Serialize / change format (e.g., convert JSON to CSV): Serialize

Convert JSON arrays into their own events: JSON Unroll, XML Unroll

Flatten nested structures (e.g., nested JSON): Flatten

Custom Functions

Very Large Integer Values

What Functions to Use When

Page 468 of 1835

Aggregate events in real-time (i.e., statistical aggregations): Aggregations

Convert events to metrics format: Publish Metrics, Prometheus Publisher (beta)

Resolve hostname from IP address: Reverse DNS (beta)

Extract numeric values from event fields, converting them to type number : Numerify

Send events out to a command or a local file, via stdin , from any point in a Pipeline: Tee

Convert an XML event's elements into individual events: XML Unroll

Duplicate events in the same Pipeline, with optional added fields: Clone

Break events within, instead of before they reach, a Pipeline: Event Breaker

Add a text comment within a Pipeline's UI, to label steps without changing event data: Comment

A Function group is a collection of consecutive Functions that can be moved up and down a Pipeline's
Functions stack together. Groups help you manage long stacks of Functions by streamlining their display.
They are a UI visualization only: While Functions are in a group, those Functions maintain their global
position order in the Pipeline.

To build a group from any Function, click the Function's ••• (Options) menu, then select Group Actions >
Create Group.

Creating a group

Function Groups

Function groups work much like Route groups.

Page 469 of 1835

You'll need to enter a Group Name before you can save or resave the Pipeline. Optionally, enter a
Description.

Naming a group

Once you've saved at least one group to a Pipeline, other Functions' ••• (Options) > Group Actions submenus
will add options to Move to Group or Ungroup/Ungroup All.

Expanded Group Actions submenu

You can also use a Function's le� grab handle to drag and drop it into, or out of, a group. A saved group that's
empty displays a dashed target into which you can drag and drop Functions.

Drag-and-drop target

;

Page 470 of 1835

The Auto Timestamp Function extracts time to a destination field, given a source field in the event.
By default, Auto Timestamp makes a first best e�ort and populates _time . When you add a sample (via
paste or a local file), you should accomplish time and event breaking at the same time you add the data.

This Function allows fine-grained and powerful transformations to populate new time fields, or to edit
existing time fields. You can use the Function's Additional timestamps section to create custom time fields
using regex and custom JavaScript strptime functions.

Filter: Filter expression (JS) that selects data to feed through the Function. The default true setting passes
all events through the Function.

Description: Simple description about this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Source field: Field to search for a timestamp. Defaults to _raw .

Destination field: Field to place extracted timestamp in. Defaults to _time . Supports nested addressing.

Default timezone: Select a timezone to assign to timestamps that lack timezone info. Defaults to Local .
(This drop-down includes support for legacy names: EST5EDT , CST6CDT , MST7MDT , and PST8PDT .)

Additional timestamps: To extract additional timestamp formats, click + Add Timestamp to define each
format. Each row will provide these fields:

Regex: Regex, with first capturing group matching the timestamp.

Strptime format: Select or enter the strptime format for the captured timestamp.

6.1. Auto Timestamp

The Auto Timestamp Function uses the same basic algorithm as the Event Breaker Function and the
C.Time.timestampFinder() native method.

Usage

Advanced Settings

Page 471 of 1835

Time expression: Expression with which to format extracted time. Current time, as a JavaScript Date object,
is in global time . Defaults to time.getTime() / 1000 . You can access other fields' values via __e.
<fieldName> .

Start scan o�set: How far into the string to look for a time string.

Max timestamp scan depth: Maximum string length at which to look for a timestamp.

Default time: How to set the time field if no timestamp is found. Defaults to Current time.

Two fields enable you to constrain (clamp) the parsed timestamp, to prevent the Function from mistakenly
extracting non-time values as unrealistic timestamps:

Earliest timestamp allowed: Enter a string that specifies the latest allowable timestamp, relative to
now. (Sample value: -42years . Default value: -420weeks .) Parsed values earlier than this date will be
set to the Default time.

Future timestamp allowed: Enter a string that specifies the latest allowable timestamp, relative to now.
(Sample value: +42days . Default value: +1week .) Parsed values a�er this date will be set to the
Default time.

This references https://github.com/d3/d3-time-format#locale_format. Directives annotated with a (†)
symbol might be a�ected by the locale definition.

For details about Cribl Stream's Library (native) time methods, see: C.Time – Time Functions.

Format Reference

Page 472 of 1835

In order to use auto timestamping upon ingestion, the formatting used must match the %Z parameters
above. E.g., this Function will automatically parse all of these formats:

2020/06/10T17:17:35.004-0700

2020/06/10T17:17:35.004-07:00

2020/06/10T17:17:35.004-07

2020/06/10T10:17:35.004Z

2020/06/10T11:17:35.004 EST

To parse other formats, you can use the Additional Timestamps sectionʼs internal Regex or Strptime Format
operators.

Filter: name.startsWith('kumquats') && value=='specific string here'

%a - abbreviated weekday name. (†)
%A - full weekday name. (†)
%b - abbreviated month name. (†)
%B - full month name. (†)
%c - the locale’s date and time, such as %x, %X. (†)
%d - zero-padded day of the month as a decimal number [01,31].
%e - space-padded day of the month as a decimal number [1,31]; equivalent to %_d.
%f - microseconds as a decimal number [000000, 999999].
%H - hour (24-hour clock) as a decimal number [00,23].
%I - hour (12-hour clock) as a decimal number [01,12].
%j - day of the year as a decimal number [001,366].
%m - month as a decimal number [01,12].
%M - minute as a decimal number [00,59].
%L - milliseconds as a decimal number [000, 999].
%p - either AM or PM. (†)
%Q - milliseconds since UNIX epoch.
%s - seconds since UNIX epoch.
%S - second as a decimal number [00,61].
%u - Monday-based (ISO 8601) weekday as a decimal number [1,7].
%U - Sunday-based week of the year as a decimal number [00,53].
%V - ISO 8601 week of the year as a decimal number [01, 53].
%w - Sunday-based weekday as a decimal number [0,6].
%W - Monday-based week of the year as a decimal number [00,53].
%x - the locale’s date, such as %-m/%-d/%Y. (†)
%X - the locale’s time, such as %-I:%M:%S %p. (†)
%y - year without century as a decimal number [00,99].
%Y - year with century as a decimal number.
%Z - time zone offset, such as -0700, -07:00, -07, or Z.
%% - a literal percent sign (%).

Complying with the Format

Basic Example

Page 473 of 1835

This will allow the Auto Timestamp Function to act only on events matching the specified parameters.

Sample event:

Sep 20 12:03:55 PA-VM 1,2019/09/20 13:03:58,CRIBL,TRAFFIC,end,2049,2019/09/20

14:03:58,314.817.108.226,10.0.0.102,314.817.108.226,10.0.2.65,cribl,,,incomplete,vsys1,u

ntrusted,trusted,ethernet1/3,ethernet1/2,log-forwarding-default,2018/09/20

13:03:58,574326,1,53722,8088,53722,8088,0x400064,tcp,allow,296,296,0,4,2018/09/20

13:03:45,7,any,0,730277,0x0,United States,10.0.0.0-10.255.255.255,0,4,0,aged-

out,0,0,0,0,,PA-VM,from-policy,,,0,,0,,N/A,0,0,0,0

To add this sample (a�er creating an Auto Timestamp Function with the above Filter expression): Go to
Preview > Add a Sample > Paste a Sample, and add the data snippet above. Do not make any changes to
timestamping or line breaking, and select Save as Sample File.

By default, Cribl Stream will inspect the first 150 characters, and will extract the first valid timestamp it sees.
You can modify this character limit under Advanced Settings > Max Timestamp Scan Depth.

Cribl Stream will grab the first part of the event, and will settle on the first matching value to display for
time :

_time 1569006235

GMT: Friday, 20 September 2019, 7:03:55 PM GMT

Your Local Time: Friday, 20 September 2019 PDT, 12:03:55 AM GMT -07:00

Because no explicit timezone has been set (under Default Timezone), _time will inherit the Local timezone,
which in this example is GMT -07:00 .

Page 474 of 1835

The datetime.strptime() method creates a datetime object from the string passed in by the Regex field.

Here, we'll use datetime.strptime() to match a timestamp in AM/PM format at the end of a line.

Sample:

This is a sample event that will push the datetime values further on inside the event.

This is still a sample event and finally here is the datetime information!:

Server_UTC_Timestamp="04/27/2020 2:30:15 PM"

Max timestamp scan depth: 210

Click to add Additional timestamps:

Regex: (\d{1,2}\/\d{2}\/\d{4}\s\d{1,2}:\d{2}:\d{2}\s\w{2})

Strptime format: '%m/%d/%Y %H:%M:%S %p'

;

Timezone Dependencies and Details

Cribl Stream uses ICU for timezone information. It does not query external files or the operating
system. The bundled ICU is updated periodically.

For additional timezone details, see: https://www.iana.org/time-zones.

Advanced Settings Example

Gnarly Details

This Function supports the %f (microseconds) directive, but Cribl Stream will truncate it to
millisecond resolution.

For further examples, see Extracting Timestamps from Messy Logs.

Page 475 of 1835

The Aggregations Function performs aggregate statistics on event data.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description about this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Time window: The time span of the tumbling window for aggregating events. Must be a valid time string
(e.g., 10s). Must match pattern \d+[sm]$.

Aggregates: Aggregate function(s) to perform on events.
E.g., sum(bytes).where(action=='REJECT').as(TotalBytes) . Expression format:
aggFunction(<FieldExpression>).where(<FilterExpression>) .as(<outputField>) . See more
examples below.

Note: When used without as() , the aggregate's output will be placed in a field labeled
<aggFunction>_<fieldName> . If there are conflicts, the last aggregate wins. For example, given two
aggregates – sum(bytes).where(action=='REJECT') and sum(bytes) – the latter one (sum_bytes)
is the winner.

Group by Fields: Fields to group aggregates by. Supports wildcard expressions.

Evaluate fields: Set of key/value pairs to evaluate and add/set. Fields are added in the context of an
aggregated event, before theyʼre sent out. Does not apply to passthrough events.

Cumulative aggregations: If enabled, aggregations will be retained for cumulative aggregations when
flushing out an aggregation table event. When set to No (the default), aggregations will be reset to 0 on
flush.

Lag tolerance: The lag tolerance represents the tumbling window tolerance to late events. Must be a valid
time string (e.g., 10s). Must match pattern \d+[sm]$.

6.2. Aggregations

Usage

Time Window Settings

Page 476 of 1835

Idle bucket time limit: The amount of time to wait before flushing a bucket that has not received events.
Must be a valid time string (e.g., 10s). Must match pattern \d+[sm]$.

Passthrough mode : Determines whether to pass through the original events along with the aggregation
events. Defaults to No .

Metrics mode: Determines whether to output aggregates as metrics. Defaults to No , causing aggregates to
be output as events.

Su�icient stats mode: Determines whether to output only statistics su�icient for the supplied aggregations.
Defaults to No , meaning output richer statistics.

Output prefix: A prefix that is prepended to all of the fields output by this Aggregations Function.

Aggregation event limit: The maximum number of events to include in any given aggregation event.
Defaults to unlimited. Must be at least 1 .

Aggregation memory limit: The memory usage limit to impose upon aggregations. Defaults to unlimited
(i.e., the amount of memory available in the system). Accepts numerals with multiple-byte units, like KB, MB,
GB, etc. (such: as 4GB .)

Flush on stream close: If set to Yes (the default), aggregations will flush when an input stream is closed. If
set to No , the Time Window Settings will control flush behavior; this can be preferable in cases like the
following:

Your input data consists of many small files.

You are sending data to Prometheus. Enabling Flush on stream close can send Prometheus multiple
aggregations from the same Worker Process for the same time period. Prometheus cannot tell the
multiple aggregations apart, and will ingest only the first one.

avg(expr:FieldExpression) : Returns the average of the values of the parameter.

count(expr:FieldExpression) : Returns the number of occurrences of the values of the parameter.

Output Settings

Advanced Settings

List of Aggregate Functions

Page 477 of 1835

dc(expr: FieldExpression, errorRate: number = 0.01) : Returns the estimated number of
distinct values of the <expr> parameter, within a relative error rate.

distinct_count(expr: FieldExpression, errorRate: number = 0.01) : Returns the estimated
number of distinct values of the <expr> parameter, within a relative error rate.

earliest(expr:FieldExpression) : Returns the earliest (based on _time) observed value of the
parameter.

first(expr:FieldExpression) : Returns the first observed value of the parameter.

last(expr:FieldExpression) : Returns the last observed value of the parameter.

latest(expr:FieldExpression) : Returns the latest (based on _time) observed value of the
parameter.

list(expr:FieldExpression[,max:number]) : Returns a list of values of the parameter.

Optional max parameter limits the number of values returned. If omitted, the default is 100 . If set
to 0 , will return all values.

max(expr:FieldExpression) : Returns the maximum value of the parameter.

median(expr:FieldExpression) : Returns the middle value of the sorted parameter.

min(expr:FieldExpression) : Returns the minimum value of the parameter.

per_second(expr:FieldExpression) : Returns the per second rate (based on _time) observed value
of the parameter.

perc(level: number, expr: FieldExpression) : Returns <level> percentile value of the numeric
values of the <expr> parameter.

rate(expr:FieldExpression, timeString: string = '1s') : Returns the rate (based on _time)
observed value of the parameter.

stdev(expr:FieldExpression) : Returns the sample standard deviation of the values of the
parameter.

stdevp(expr:FieldExpression) : Returns the population standard deviation of the values of the
parameter.

sum(expr:FieldExpression) : Returns the sum of the values of the parameter.

Page 478 of 1835

sumsq(expr:FieldExpression) : Returns the sum of squares of the values of the parameter.

values(expr:FieldExpression[,max:number,errorRate:number]) : Returns a list of distinct values
of the parameter.

Optional max parameter limits the number of values returned; if omitted, the default is 0 ,
meaning return all distinct values.

Optional errorRate parameter controls how accurately the function counts “distinct” values.
Range is 0 – 1 ; if omitted, the default value is 0.01 . Higher values allow higher error rates (fewer
unique values recognized), with the o�setting benefit of less memory usage.

variance(expr:FieldExpression) : Returns the sample variance of the values of the parameter.

variancep(expr:FieldExpression) : Returns the population variance of the values of the parameter.

Upon shutdown, Cribl Stream will attempt to flush the bu�ers that hold aggregated data, to avoid data loss.
If you set a Time window greater than 1 hour, Cribl recommends adjusting the Aggregation memory limit
and/or Aggregation event limit to prevent the system from running out of memory.

This is especially necessary for high-cardinality data. (Both settings default to unlimited, but we recommend
setting defined limits based on testing.)

As events are aggregated into windows, there is a good chance that most will arrive later than their event
time. For instance, given a 10s window (10:42:00 - 10:42:10), an event with timestamp 10:42:03
might come in 2 seconds later at 10:42:05 .

In several cases, there will also be late, or lagging, events that will arrive a�er the latest time window
boundary. For example, an event with timestamp 10:42:04 might arrive at 10:42:12 . Lag Tolerance is the
setting that governs how long to wait – a�er the latest window boundary – and still accept late events.

Safeguarding Data

How Do Time Window Settings Work?

Lag Tolerance

Page 479 of 1835

The "bucket" of events is said to be in Stage 1, where it's still accepting new events, but it's not yet finalized.
Notice how in the third case, an event with event time 10:42:09 arrives 1 second past the window boundary
at 10:42:11 , but it's still accepted because it happens before the lag time expires.

A�er the lag time expires, the bucket moves to Stage 2.

Page 480 of 1835

If the bucket is created from a historic stream, then the bucket is initiated in Stage 2. Lag time is not
considered. A "historic" stream is one where the latest time of a bucket is before now() . E.g., if the window
size is 10s, and now()=10:42:42 , an event with event_time=10 will be placed in a Stage 2 bucket with
range 10:42:10 - 10:42:20 .

While Lag Tolerance works with event time, Idle Bucket Time Limit works on arrival time (i.e., real time). It is
defined as the amount of time to wait before flushing a bucket that has not received events.

A�er the Idle Time limit is reached, the bucket is "flushed" and sent out of the system.

Assume we're working with VPC Flowlog events that have the following structure:

Idle Bucket Time Limit

Examples

Page 481 of 1835

version account_id interface_id srcaddr dstaddr srcport dstport protocol packets bytes

start end action log_status

For example:

2 99999XXXXX eni-02f03c2880e4aaa3 10.0.1.70 10.0.1.11 9999 63030 6 6556 262256

1554562460 1554562475 ACCEPT OK 2 496698360409 eni-08e66c4525538d10b 37.23.15.38
10.0.2.232 4373 8108 6 1 52 1554562456 1554562466 REJECT OK

Every 10s, compute sum of bytes and output it in a field called TotalBytes .

Time Window: 10s Aggregations: sum(bytes).as(TotalBytes)

Every 10s, compute sum of bytes , output it in a field called TotalBytes , group by srcaddr .

Time Window: 10s Aggregations: sum(bytes).as(TotalBytes) Group by Fields: srcaddr

Every 10s, compute sum of bytes but only where action is REJECT , output it in a field called TotalBytes ,
group by srcaddr .

Time Window: 10s Aggregations: sum(bytes).where(action=='REJECT').as(TotalBytes) Group by
Fields: srcaddr

Every 10s, compute sum of bytes but only where action is REJECT , output it in a field called TotalBytes .
Also, compute distinct count of srcaddr .

Time Window: 10s Aggregations:
sum(bytes).where(action=='REJECT').as(TotalBytes)
distinct_count(srcaddr).where(action=='REJECT')

Scenario A:

Scenario B:

Scenario C:

Scenario D:

For further examples, see Engineering Deep Dive: Streaming Aggregations Part 2 –
Memory Optimization.

Page 482 of 1835

;

Each Worker Process executes this Function independently on its share of events. For details, see
Functions and Shared-Nothing Architecture.

Page 483 of 1835

The CEF Serializer takes a list of fields and/or values, and formats them in the Common Event Format (CEF)
standard. CEF defines a syntax for log records. It is composed of a standard prefix, and a variable extension
formatted as a series of key-value pairs.

CEF:Version|Device Vendor|Device Product|Device Version|Device Event Class

ID|Name|Severity|[Extension]

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description about this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Output field: The field to which the CEF formatted event will be output. Nested addressing supported.
Defaults to _raw .

CEF Header field definitions. The field values below will be written pipe (|)–delimited in the Output Field.
Names cannot be changed. Values can be computed with JS expression, or can be constants.

cef_version: Defaults to CEF:0 .

device_vendor: Defaults to Cribl .

device_product: Defaults to Cribl .

device_version: Defaults to C.version .

device_event_class_id: Defaults to 420 .

name: Defaults to Cribl Event .

severity: Defaults to 6 .

6.3. CEF Serializer

Format

Usage

Header Fields

Page 484 of 1835

CEF Extension field definitions. Field names and values will be written in key=value format. Select each
field's Name from the drop-down list. Values can be computed with JS expressions, or can be constants.

For each CEF field, allowed values include strings, plus any custom Cribl function. For example, if using a
lookup:

Name: Name Value expression: C.Lookup('lookup-exact.csv', 'foo').match('abc', 'bar')

This can be used for any of the CEF Header Fields.

The resulting event has the following structure for an Output Field set to _CEF_out :

_CEF_out:CEF:0|Cribl|Cribl|42.0-61c12259|420|Business Group

6|6|c6a1Label=Colorado_Ext_Bldg7

;

Extension Fields

Example

Page 485 of 1835

The Chain Function does one thing: It chains data processing from a Pipeline or Pack to another Pipeline or
Pack. This can be useful for sequential processing, or just to separate groups of related Functions into
discrete Pipeline or Pack units that make intuitive sense.

This Function includes guardrails against circular references. Still, Cribl recommends that you keep chained
configurations understandable by all your users. There are also di�erent scope restrictions when using Chain
in a Pack versus in a Pipeline:

In a Pipeline, the Processor drop-down displays both Pipelines and Packs as targets to chain to.

In a Pack, the Processor drop-down o�ers only Pipelines contained within that Pack.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Optionally, add a simple description of this Function's purpose. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No . (Note that this will
not prevent data from flowing to the Function's defined Processor.)

Processor: Use this drop-down to select a configured Pipeline or Pack through which to forward events.

This shows a simple preview of a pipeline-1 Pipeline, which chains to a pipeinpipe Pipeline. Notice that
each event's added cribl_pipe field lists all Pipelines/Packs through which the event was chained.

6.4. Chain

Usage

Example

Page 486 of 1835

cribl_pipe field shows whole processing path

;

Page 487 of 1835

The Clone Function clones events, with optional added fields. Cloned events will be sent to the same
Destination as the original event, because they are in the same Pipeline.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description about this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Clones: Create clones with the specified fields added and set.

Fields: Set of key-value pairs to add. Nested addressing is supported.

In this example, the Destination will receive a clone with an env field set to staging .

Field: env Value: staging

In this scenario, we insert a Clone Function at the beginning of a Pipeline to create cloned events. We can
later use these events as a baseline to compare against the original events, a�er various Functions have
processed them.

You can assign any meaningful fields to the cloned events – anything that will help you identify them when
comparing. This example simply assigns a key-value pair of index: clones .

Field: index Value: clones

6.5. Clone

Usage

Examples

Staging Example

Index Example

Page 488 of 1835

To keep the cloned events from being processed by Functions later in the same Pipeline, you'll need to
specify index!='clones' in their Filter expressions.

;

Page 489 of 1835

If you need to operate on data in a way that can't be accomplished with Cribl Stream's out-of-the-box
Functions, the Code Function enables you to encapsulate your own JavaScript code. This Function is
available in Cribl Stream 3.1+, and imposes some restrictions for security reasons.

Generally speaking, anything forbidden in JavaScript strict mode is forbidden in the context of the Code
Function. Specifically, the following are not allowed:

console , eval , uneval , Function (constructor) , Promises , setTimeout , setInterval ,
global , globalThis , and window .

Code Functions can include for loops, while loops, and JavaScript methods such as map , reduce ,
forEach , some , and every . For further details, see Supported JavaScript Options.

Cribl Stream's predefined Functions, such as Eval, cover the vast majority of scenarios that users typically
need to implement. You should use Code Functions only as a last resort, when you need to construct a
complex block of code.

Also, only skilled JavaScript developers should define Code Functions. This is to avoid unintended results –
such as creating infinite loops, or otherwise failing to return – that could needlessly add to your throughput
burden.

When added to a Pipeline, the Code Function o�ers the following configuration options:

Filter: JavaScript filter expression that selects data to feed through the Function. Defaults to true , meaning
it evaluates all events.

Description: Optionally, add a simple description of this Function.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Code: The mini-editor where you type your JavaScript code.

6.6. Code

Restrictions

Usage

Page 490 of 1835

Maximum number of iterations: The maximum number of iterations per instance of this Code Function.
Defaults to 5,000 ; highest allowed value is 10000 .

Functions (including the Code Function) always use the special variable __e to access the (context) event
inside JavaScript expressions.

Possibly the simplest Code Function creates a new field and then assigns it a value:

For more ambitious implementations, see Code Function Examples.

With some exceptions, the Code Function supports the options described in the following MDN JavaScript
Guide topics:

Expressions and Operators

Global variables

Control flow and error handling

Loops and iteration

Functions

Numbers and dates

Text formatting

Regular Expressions

Indexed collections

Keyed collections

Working with Objects

;

Advanced Settings

Notes and Examples

__e['foo'] = 'Hello, Goats!'

Supported JavaScript Options

Page 491 of 1835

The Comment Function adds a text comment in a Pipeline. It makes no changes to event data. The added
comment is visible only within the Pipeline UI, where it is useful for labeling Pipeline steps.

Comment: Add your comment as plain text in this field.

This comment labels the Pipeline's next function:

6.7. Comment

Usage

Examples

Page 492 of 1835

;

Page 493 of 1835

The DNS Lookup Function o�ers two operations useful in enriching security and other data:

DNS lookups based on host name as text, resolving to A record (IP address) or to other record types.

Reverse DNS Lookup. (This duplicates Cribl Stream's existing Reverse DNS Function, which is now
deprecated.)

To reduce DNS lookups and minimize latency, the DNS Lookup Function incorporates a configurable DNS
cache (including resolved and unresolved lookups). If you need additional caching, consider enabling OS-
level DNS caching on each Cribl Stream Worker that will execute this Function. (OS-level caching options
include DNSMasq, nscd, systemd‑resolved, etc.)

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description of this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Lookup field name: Name of the field containing the domain to look up.

Resource record type: DNS record type (RR) to return. Defaults to A ' record.

Output field name: Lookup result(s) will be added to this field. Leave blank to overwrite the original field
specified in Lookup field name.

Lookup field name: Name of the field containing the IP address to look up.

6.8. DNS Lookup

Usage

DNS Lookup Fields Section

Reverse DNS Lookup Field(s) Section

If the field value is not in IPv4 or IPv6 format, the lookup is skipped.

Page 494 of 1835

Output field name: Name of the field in which to add the resolved hostname. Leave blank to overwrite the
original field specified in Lookup field name.

DNS server(s) overrides: IP address(es), in RFC 5952 format, of the DNS server(s) to use for resolution. IPv4
examples: 1.1.1.1 , 4.2.2.2:53 . IPv6 examples: [2001:4860:4860::8888] ,
[2001:4860:4860::8888]:1053 . If this field is not specified, Cribl Stream will use the system's DNS server.

Cache time to live (minutes): Determines the interval on which the DNS cache will expire, and its contents
will be refetched. Defaults to 30 minutes. Use 0 to disable cache expiration/refresh behavior.

Maximum cache size: Maximum number of DNS resolutions to cache locally. Before changing the default
5000 , contact Cribl Support to understand the implications. Highest allowed value is 10000 .

This example Pipeline chains two Functions. First, we have an Eval Function that defines key-value pairs for
two alphabetical domain names and two numeric IP addresses.

DNS Lookup: Eval Function

Advanced Settings

Example

Page 495 of 1835

Next, the DNS Lookup Function looks up several record types for the two domain names, placing each
retrieved record type in its own output field.

DNS Lookup: multiple record types

Finally, the same Function's Reverse DNS lookup section retrieves domain names for the two IP addresses.

DNS Lookup: reverse lookups

;

Page 496 of 1835

The Drop Function drops (deletes) any events that meet its Filter expression. This is useful when you want to
prevent certain events from continuing to a Pipeline's downstream Functions.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description about this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Assume that we care only about errors, so we want to filter out any events that contain the word “success,”
regardless of case: “success,” “SUCCESS,” etc.

In our Drop Function, weʼll use the JavaScript search() method to search the _raw fieldʼs contents for our
target pattern. We know that search() returns a non-negative integer to indicate the starting position of the
first match in the string, or -1 if no match. So we can evaluate the Function as true when the return value is
>= 0 .

Filter: _raw.search(/success/i)>=0

You can filter out specific JSON events based on their key-value pairs.

The following Filter expression uses a strict inequality operator to check, per event, whether channel has a
di�erent data type or value from auth . Matching events will drop, ensuring that only events with
"channel":"auth" will pass to the next Function.

Filter: channel !== 'auth'

6.9. Drop

Usage

Examples

Scenario A:

Scenario B:

Page 497 of 1835

;

Page 498 of 1835

The Dynamic Sampling Function filters out events based on an expression, a sample mode, and the volume
of events. Your sample modeʼs configuration determines what percentage of incoming events will be passed
along to the next step.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description about this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Sample mode: Defines how sample rate will be derived. For formulas and usage details, see Sample Modes
below. Supported methods:

Logarithmic (the default): log(previousPeriodCount) .

Square root: sqrt(previousPeriodCount) .

Sample group key: Expression used to derive sample group key. For example: ${domain}:${httpCode} .
Each sample group will have its own derived sampling rate, based on the volume of events. Defaults to
`${host}` .

All events without a host field passing through the Function will be associated with the same group and
sampled the same.

Sample period Sec: How o�en (in seconds) sample rates will be adjusted. Defaults to 30 .

Minimum events: Minimum number of events that must be received, in previous sample period, for
sampling mode to be applied to current period. If the number of events received for a sample group is
less than this minimum, a sample rate of 1:1 is used. Defaults to 30 .

Max sampling rate. Maximum sampling rate. If the computed sampling rate is above this value, the rate
will be limited to this value.

6.10. Dynamic Sampling

Usage

Advanced Settings

Page 499 of 1835

Compared to static sampling, where users must select a sample rate a priori, Dynamic Sampling allows for
automatically adjusting sampling rates, based on the volume of incoming events per sample group. This
Function allows users to set only the aggressiveness/coarseness of this adjustment. Square Root is more
aggressive than Logarithmic mode.

As an event passes through the Function, it's evaluated against the Sample Group Key expression to
determine the sample group it will be associated with. For example, given an event with these fields:
...ip=1.2.3.42, port=1234... , and a Sample Group Key of `${ip}:${port}` , the event will be
associated with the 1.2.3.42:1234 sample group.

When a sample group is new, it will initially have a sample rate of 1:1 for Sample Period seconds (this
value defaults to 30 seconds). Once Sample Period seconds have elapsed, a sample rate will be derived
based on the configured Sample Mode , using the sample group's event volume during the previous sample
period.

For example, assuming a Logarithmic Sample Mode:

Period 0 (first 30s): Number of events in sample group: 1000 , Sample Rate: 1:1 , Events allowed: ALL
Sample Rate calculation for next period: Math.ceil(Math.log(1000)) = 7

Period 1 (next 30s) -- Number of events in sample group: 4000 , Sample Rate: 7:1 : Events allowed: 572
Sample Rate calculation for next period: Math.ceil(Math.log(4000)) = 9

Period 2 (next 30s) -- Number of events in sample group: 12000 , Sample Rate: 9:1 : Events allowed: 1334
Sample Rate calculation for next period: Math.ceil(Math.log(12000)) = 10

Period 3 (next 30s) -- Number of events in sample group: 2000 , Sample Rate: 10:1 : Events allowed: 200
Sample Rate calculation for next period: Math.ceil(Math.log(2000)) = 8
...

1. Logarithmic – The sample rate is derived, for each sample group, using a natural log:
Math.ceil(Math.log(lastPeriodVolume)) . This mode is less aggressive, and drops fewer events.

How Does Dynamic Sampling Work

If the Sample Group Key is le� at its `${host}` default, all events without a host will be associated
with the same group and sampled the same.

Sample Modes

Page 500 of 1835

2. Square Root – The sample rate is derived, for each sample group, using:
Math.ceil(Math.sqrt(lastPeriodVolume)) . This mode is more aggressive, and drops more events.

Hereʼs an example that illustrates the e�ectiveness of using the Square Root sample mode.

Sample Mode: Square Root Sample Period (sec): 20 Minimum Events: 3 Max. Sampling Rate: 3

Events In: 4.23K Events Out: 1.41K

In this generic example, we reduced the incoming event volume from 4.23K to 1.41K. Your own results will
vary depending on multiple parameters – the Sample Group Key, Sample Period, Minimum Events, Max
Sampling Rate, and rate of incoming events.

;

Example

Settings:

Results:

For further examples, see Getting Smart and Practical With Dynamic Sampling.

Each Worker Process executes this Function independently on its share of events. For details, see
Functions and Shared-Nothing Architecture.

Page 501 of 1835

The Eval Function adds or removes fields from events. (In Splunk, these are index-time fields.)

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description about this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Evaluate fields: Set of key/value pairs to add. The le�-hand side input (Name) is the key name. The right-
hand side input (Value Expression) is a JS expression to compute the value – this can be a constant. Nested
addressing is supported. Strings intended to be used as values must be single- or double-quoted. (For
details, see Cribl Expression Syntax.)

Keep fields: List of fields to keep. Wildcards (*) and nested addressing are supported. Takes precedence over
Remove fields (below). To reference a parent object and all children requires using the (*) wildcard. For
example, if _raw is converted to an object then use _raw* to refer to itself and all children.

Remove fields: List of fields to remove. Wildcards (*) and nested addressing are supported. Cannot remove
fields matching Keep fields. Cribl Stream internal fields that start with __ (double underscore) cannot be
removed via wildcard. Instead, they need to be specified individually. For example, __myField cannot be
removed by specifying __myF* .

A field matching an entry in both Keep (wildcard or not) and Remove will not be removed. This is useful for
implementing “remove all but” functionality. For example, to keep only _time, _raw, source,
sourcetype, host , we can specify them all in Keep, while specifying * in Remove.

Negated terms are supported in both Keep fields and Remove fields. The list is order-sensitive when
negated terms are used. Examples:

!foobar, foo* means "All fields that start with 'foo' except foobar ."

!foo*, * means "All fields except for those that start with 'foo'."

6.11. Eval

Usage

Using Keep and Remove

Page 502 of 1835

Note that Functions use the special variable __e to access the (context) event inside JavaScript
expressions.

Scenario A: Create field myField with static value of value1 :

Name: myField

Value Expression: 'value1'

Scenario B: Set field action to blocked if login==error :

Name: action

Value Expression: login=='fail' ? 'blocked' : action

Scenario C: Create a multivalued field called myTags . (i.e., array):

Name: myTags

Value Expression: ['failed', 'blocked']

Scenario D: Add value error to the multivalued field myTags :

Name: myTags

Value Expression: login=='error' ? [...myTags, 'error'] : myTags

(The above expression is literal, and uses JavaScript spread syntax.)

Scenario E: Rename an identification field to the shorter ID – copying over the original fieldʼs value,
and removing the old field:

Name: ID

Value Expression: identification

Remove Field: identification

Consider the following when working with Eval Functions.

Examples

See Ingest-time Fields for more examples.

Usage Notes

Page 503 of 1835

Before you can use the Eval function on a new child object, you must create the parent object – then define
the children using Eval Functions.

The Eval Function can execute expressions without assigning their value to the field of an event. You can do
this by simply leaving the le�-hand side input empty, and having the right-hand side do the assignment.

Object.assign(foo, JSON.parse(bar), JSON.parse(baz)) on the right-hand side (and le�-hand side
empty) will JSON-parse the strings in bar and baz , merge them, and assign their value to foo , an already
existing field.

To parse JSON, enter Object.assign(__e, JSON.parse(_raw)) on the right-hand side (and le�-hand side
empty). __e is a special variable that refers to the (context) event within a JS expression. In this case,
content parsed from _raw is added at the top level of the event.

;

Create Parent Objects First

Example:

parent = (parent || { child1: child1Value })
parent.child2 = child2Value
parent.child3 = child3Value
<some other Evals, if you need them>

To Append:

parent = Object.assign(parent, { child2: child2Value })

To Create a New Field:

parent2 = Object.assign(parent, { child2: child2Value, child3: child3Value })

Execution Without Assignment

Example: Parse and Merge to Existing Field

Example: Reference Event with __e

Page 504 of 1835

This Function enables you to split large blobs or streams of events into discrete events within a Pipeline. This
is useful for Sources like Azure Event Hubs, which do not natively support Event Breakers.

Even with Sources that do support Event Breakers (like Raw HTTP), it sometimes makes sense to use both a
Source-configured Event Breaker on the incoming stream, and an Event Breaker Function within a Pipeline.

Use the following options to define this Event Breaker Function.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description of this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Existing or New?: Whether to use an existing ruleset or create a new one. Defaults to Use Existing .

When Existing or New? is set to Use Existing , the Existing Ruleset? drop-down appears and you
choose a ruleset from there.

When Existing or New? is set to Create New , the ruleset creation UI appears and you configure its
settings.

6.12. Event Breaker

Limitations

The Event Breaker Function operates only on data in _raw . For other events, move the array to _raw
and stringify it before applying this Function.

The largest event that this Function can break is about about 128 MB (134217728 bytes). Events
exceeding this maximum size will be split into separate events, but le� unbroken. Cribl Stream will set
these events' __isBroken internal field to false .

Unlike regular Event Breakers, Event Breaker Functions do not have names, only descriptions.

Usage

Page 505 of 1835

Add to cribl_breaker: Whether to add the cribl_breaker field to output events. Defaults to Yes .

How this field behaves depends on whether you are also using a regular Event Breaker with your Source.
That matters because a regular Event Breaker always adds the cribl_breaker field to events, which it does
before the data reaches your Event Breaker Function.

When you are not using a regular Event Breaker, there is no cribl_breaker field yet when the data reaches
your Event Breaker Function. At this point, cribl_breaker is added, and:

When Existing or New? is set to Use Existing , cribl_breaker 's value is set to the name of the
existing ruleset you chose.

When Existing or New? is set to Create New , the cribl_breaker 's value is set to
"event_breaker_func" . Since Event Breaker Functions do not have names, the string
event_breaker_func serves as a kind of generic name that represents whatever new Event Breaker
Function you created.

When you are also using a regular Event Breaker, the cribl_breaker field already exists when the data
reaches your Event Breaker Function. At this point, the value of cribl_breaker is changed from a string to
an array, with the first item in the array being the value originally set by the regular Event Breaker, and the
second item determined as follows:

When Existing or New? is set to Use Existing , the second item's value is set to the name of the
existing ruleset you chose.

When Existing or New? is set to Create New , the second item's value is set to
"event_breaker_func" . Since Event Breaker Functions do not have names, the string
event_breaker_func serves as a kind of generic name that represents whatever new Event Breaker
Function you create.

Handling syslog data and nested JSON data are two primary use cases for Event Breaker Functions.

Advanced Settings

In Cribl Stream 3.4.2 and above, where an Event Breaker Function has set an event's _time to the
current time – rather than extracting the value from the event itself – it will mark this by adding the
internal field __timestampExtracted: false to the event.

Examples

Page 506 of 1835

Event Breaker Functions can help you deal with syslog data that does not break correctly. Examples include
multi-line syslog data, and, the kinds of non-standard syslog data emitted by Blue Coat proxy appliances,
Layer7 API Gateways, and other appliances. See the Cribl video Scaling syslog for an in-depth discussion.

(In this context, "non-standard" means syslog data that only partly conforms to the standard Syslog Protocol
defined in RFC 5424, or its predecessor, the BSD syslog Protocol defined in RFC 3164.)

Kafka-based data from Confluent, Azure Event Hubs, Google Pub Sub, or Kafka itself, is nicely structured as
events according to the Kafka protocol. But when these events contain JSON objects which you want to
break into their constituent objects, you can use an Event Breaker Function to do that.

If you notice fragmented events, check whether Cribl Stream has added a __timeoutFlush internal field to
them. This diagnostic field's presence indicates that the events were flushed because the Event Breaker
bu�er timed out while processing them. These timeouts can be due to large incoming events, backpressure,
or other causes.

;

Event Breaker Functions for syslog Data

Event Breaker Functions for Nested JSON Data

Troubleshooting

Page 507 of 1835

The Flatten Function flattens fields out of a nested structure. It pulls up nested key-value pairs (fields) to a
higher level in the object. You can specify:

Individual fields to flatten.

The depth at which to flatten fields.

The delimiter to use when concatenating keys.

An optional prefix to add to transformed field names.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description of this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Fields: List of top-level fields to include for flattening. Defaults to an empty array, which means all fields.
Limit to specific fields by typing in their names, separated by hard returns. Supports wildcards (*). Supports
double-underscore (__) internal fields only if individually enumerated – not via wildcards.

Prefix: Prefix string for flattened field names. Defaults to empty.

Depth: Number representing the nested levels to consider for flattening. Minimum 1 . Defaults to 5 .

Delimiter: Delimiter to use for flattening. Defaults to _ (underscore).

Add the following test sample in Preview > Paste a Sample:

6.13. Flatten

The Flatten Function creates fully qualified names for promoted fields. If you simply need to promote
fields without transforming their names, use the eval Function.

Usage

Example

Page 508 of 1835

input

Under Select Event Breaker, choose ndjson (newline-delimited JSON), and click Save as a Sample File.

Here's sample output with all settings at default:

output

Using the Flatten Functionʼs default settings, we successfully create top-level fields from the nested JSON
structure, as expected.

;

{
"accounting": [{

"firstName": "John",
"lastName": "Doe",
"age": 23

}, {
"firstName": "Mary",
"lastName": "Smith",
"age": 32

}],
"sales": [{

"firstName": "Sally",
"lastName": "Green",
"age": 27

}, {
"firstName": "Jim",
"lastName": "Galley",
"age": 41

}]
}

{
"accounting_0_firstName": "John",
"accounting_0_lastName": "Doe",
"accounting_0_age": 23,
"accounting_1_firstName": "Mary",
"accounting_1_lastName": "Smith",
"accounting_1_age": 32,
"sales_0_firstName": "Sally",
"sales_0_lastName": "Green",
"sales_0_age": 27,
"sales_1_firstName": "Jim",
"sales_1_lastName": "Galley",
"sales_1_age": 41,

}

Page 509 of 1835

The GeoIP Function enriches events with geographic fields, given an IP address. It works with
MaxMind's GeoIP binary database.

You need to host the .mmdb database file from MaxMind. The following steps cover this process at a high
level. They link to our Managing Large Lookups topic, where you can find additional details.

1. Download and extract the .mmdb database file.

2. Determine where to place the database file. We recommend the $CRIBL_HOME/state/ subdirectory,
which is already listed in the default .gitignore file that ships with Cribl Stream.

You always have the option to upload the file to Cribl Stream's Lookups Library. In a Cribl Cloud
deployment, this is currently the only option. For details, see Reducing Deploy Tra�ic.

3. Place the database file on your Worker Node(s). In a distributed deployment, we recommend having the
file on the Leader and all Worker Nodes. Smaller deployments can get away with hosting the file only on
the Leader Node.

4. Optionally, set up automatic updates of the database file.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description about this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

GeoIP file (.mmdb): Path to a MaxMind database, in binary format, with .mmdb extension.

6.14. GeoIP

Prerequisite

Usage

If the database file is located within the lookup directory ($CRIBL_HOME/data/lookups/), the
GeoIP fIle does not need to be an absolute path.

Page 510 of 1835

IP field: Field name in which to find an IP to look up. Can be nested. Defaults to ip .

Result field : Field name in which to store the GeoIP lookup results. Defaults to geoip .

Assume that you are receiving SMTP logs, and need to see geolocation information associated with IPs using
the SMTP service.

Here's a sample of our data, from IPSwitch IMail Server logs:

03:19 03:22 SMTPD(00180250) [192.168.1.131] connect 74.136.132.88 port 2539 03:19 03:22

SMTPD(00180250) [74.136.132.88] EHLO msnbc.com 03:19 03:22 SMTPD(00180250)

[74.136.132.88] MAIL FROM:<info-jjgcdshx@test.us> 03:19 03:22 SMTPD(00180250)

[74.136.132.88] RCPT To:<user@domain.com>

In this example, weʼll chain together three Functions. First, weʼll use a Regex Extract Function to isolate the
hostʼs IP. Next, weʼll use the GeoIP Function to look up the extracted IP against our geoIP database, placing
the returned info into a new __geoip field. Finally weʼll use an Eval Function to parse that fieldʼs city, state,
country, ZIP, latitude, and longitude.

Regex: \[(?<ip>\S+)\] Source field: _raw Result: 74.136.132.88

Eventʼs IP field: ip Result field: __geoip

NAME VALUE EXPRESSION

City __geoip.city.names.en

In distributed deployments, ensure that the MaxMind database file is in the same location on the
Leader Node and all Worker Nodes. However, if you've uploaded .mmdb files via Cribl Stream's
Lookups Library UI, just click this combo box to display and select them on a drop-down list.
Your selection here will handle the path management automatically.

Examples

Function 1 – Regex Extract

Function 2 – GeoIP

Function 3 – Eval

Page 511 of 1835

NAME VALUE EXPRESSION

Country __geoip.country.names.en

Zip __geoip.postal.code

Lat __geoip.location.latitude

Long __geoip.location.longitude

In the Eval Functionʼs Remove fields setting, you could specify the __geoip field for removal, if desired.
However, its __ prefix makes it an internal field anyway.

;

For a hosted tutorial on applying the GeoIP Function, see Cribl's GeoIP and Threat Feed Enrichment
Sandbox.

Page 512 of 1835

The Grok Function extracts structured fields from unstructured log data, using modular regex patterns.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Optional description of this Function's purpose in this Pipeline. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Pattern: Grok pattern to extract fields. Cick the Expand button at right to open a preview/valdiation modal.
Syntax supported: %{PATTERN_NAME:FIELD_NAME} .

Click + Add pattern to chain more patterns.

Source field: Field on which to perform Grok extractions. Defaults to _raw .

You can add and edit Grok patterns via Cribl Stream's UI by selecting Knowledge > Grok Patterns.
Pattern files are located at: $CRIBL_HOME/(default|local)/cribl/grok-patterns/

Example event:

Pattern: %{TIMESTAMP_ISO8601:event_time} %{LOGLEVEL:log_level} %{GREEDYDATA:log_message}
Source Field: _raw

Event a�er extraction:

6.15. Grok

Usage

Management

Example

{"_raw": "2020-09-16T04:20:42.45+01:00 DEBUG This is a sample debug log message"}`

Page 513 of 1835

Note the new fields added to the event: event_time , log_level , and log_message .

Syntax for a Grok pattern is %{PATTERN_NAME:FIELD_NAME} . E.g.: %{IP:client} %{WORD:method} .

Useful links for creating and testing Grok patterns: http://grokdebug.herokuapp.com and
http://grokconstructor.appspot.com/.

Additional patterns are available here: https://github.com/logstash-plugins/logstash-patterns-
core/tree/master/patterns.

;

{"_raw": "2020-09-16T04:20:42.45+01:00 DEBUG This is a sample debug log message",
 "_time": 1600226442.045,
 "event_time": "2020-09-16T04:20:42.45+01:00",
 "log_level": "DEBUG",
 "log_message": "This is a sample debug log message",
}

References

Page 514 of 1835

The JSON Unroll Function accepts a JSON object string _raw field, unrolls/explodes an array of objects
therein into individual events, while also inheriting top level fields. See example(s). Cribl highly recommends
not using this JSON Unroll function for certain types of data. Instead, perform the unrolling using an event
breaker for those inputs which support configuring an event breaker. Specifying the event breaker type JSON
Array and toggling the JSON Extract Fields option to Yes will accomplish the same unrolling but much more
e�iciently. This is recommended, for example, for CloudTrail and O�ice635 events, which are collected as
JSON arrays.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description about this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Path: Path to array to unroll, e.g., foo.0.bar .

New name: The name that the exploded array element will receive in each new event. Leave empty to
expand the array element with its original name.

Assume you have an incoming event that has a _raw field as a JSON object string like this:

Sample _raw field

6.16. JSON Unroll

Usage

Example(s)

{"date":"9/25/18 9:10:13.000 PM",
"name":"Amrit",
"age":42,
"allCars": [

{ "name":"Ford", "models":["Fiesta", "Focus", "Mustang"] },
{ "name":"GM", "models":["Trans AM", "Oldsmobile", "Cadillac"] },
{ "name":"Fiat", "models":["500", "Panda"] },
{ "name":"Blackberry", "models":["KEY2", "Bold Touch 9900"] }

]
}

Page 515 of 1835

Path: allCars New Name: cars

Resulting Events

Each element under the original allCars array is now placed in a cars field in its own event, inheriting original
top level fields; date, name and age

;

Settings:

Output Events:

Event 1:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"cars":
{"name":"Ford","models":["Fiesta","Focus","Mustang"]}}"}

Event 2:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"cars":
{"name":"GM","models":["Trans AM","Oldsmobile","Cadillac"]}}"}

Event 3:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"cars":
{"name":"Fiat","models":["500","Panda"]}}"}

Event 4:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"cars":
{"name":"Blackberry","models":["KEY2","Bold Touch 9900"]}}"}

Page 516 of 1835

The Lookup Function enriches events with external fields, using lookup table files in CSV, compressed
.csv.gz , or binary .mmdb format.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description about this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Lookup file path (.csv, .csv.gz): Path to the lookup file. Select an existing file that you've uploaded via
Cribl Stream's UI at Knowledge > Lookups Libary, or specify the path. You can reference environment
variables via $, e.g.: $CRIBL_HOME/file.csv .

Match mode: Defines the format of the lookup file, and indicates the matching logic that will be performed.
Defaults to Exact .

Match type: For CIDR and Regex Match modes, this attribute refines how to resolve multiple matches.
First match will return the first matching entry. Most specific will scan all entries, finding the most
specific match. All will return all matches in the output, as arrays. (Defaults to First match .
Not displayed for Exact Match mode.)

Lookup fields (.csv): Field(s) that should be used to key into the lookup table.

Lookup field name in event: Exact field name as it appears in events. Nested addressing supported.

Corresponding field name in lookup: The field name as it appears in the lookup file. Defaults to the
Lookup field name in event value. This input is optional.

6.17. Lookup

Usage

When you configure this field via a distributed deployment's Leader Node, Cribl Stream will swap
$CRIBL_HOME/groups/<groupname>/ for $CRIBL_HOME when validating whether the file exists. In
this case, the default upload path changes from $CRIBL_HOME/data/lookups (single-instance
deployments) to $CRIBL_HOME/groups/<groupname>/data/lookups/ (distributed deployments).

Page 517 of 1835

Output field(s): Field(s) to add to events a�er matching the lookup table. Defaults to all if not specified.

Output field name from lookup: Field name, as it appears in the lookup file.

Lookup field name in event: Field name to add to event. Defaults to the lookup field name. This input is
optional. Nested addressing is supported.

Reload period (sec): Periodically check the underlying file for modtime changes, and reload if necessary.
Use -1 to disable. Defaults to 60 .

Ignore case: Ignore case when performing Match mode: Exact lookups. Defaults to No .

Add to raw event: Whether to append the looked-up values to the _raw field, as key=value pairs. Defaults to
No .

Assign a sourcetype field to events if their _raw field matches a particular regex.

Match mode: Regex

Match type: First match

Lookup field name in event: _raw

Case-Sensitive / Multiple Matches

Lookups are case-sensitive by default. (See the Ignore case option below.)

If the lookup file contains duplicate key names with di�erent values, all Match modes of this Function
will use only the value in the key's final instance, ignoring all preceding instances.

Advanced Settings

Examples

Example 1: Regex Lookups

regex,sourcetype
"^[^,]+,[^,]+,[^,]+,THREAT",pan:threat
"^[^,]+,[^,]+,[^,]+,TRAFFIC",pan:traffic
"^[^,]+,[^,]+,[^,]+,SYSTEM",pan:system

Page 518 of 1835

Corresponding field name in lookup: regex

Assign a location field to events if their destination_ip field matches a particular CIDR range.

Match mode: CIDR

Match type: See options below

Lookup field name in event: destination_ip

Corresponding field name in lookup: range

BEFORE:

{"_raw": "Sep 20 13:03:55 PA-VM 1,2018/09/20 13:03:58,FOOBAR,TRAFFIC,end,2049,2018/09/2
13:03:58,34.217.108.226,10.0.0.102,34.217.108.226,10.0.2.65,splunk,,,incomplete,vsys1,u
forwarding-default,2018/09/20 13:03:58,574326,1,53722,8088,53722,8088,0x400064,tcp,allo
13:03:45,7,any,0,730277,0x0,United States,10.0.0.0-10.255.255.255,0,4,0,aged-out,0,0,0,
{"_raw": "Sep 20 13:03:55 PA-VM 1,2018/09/20 13:03:58,FOOBAR,THREAT,end,2049,2018/09/20
13:03:58,34.217.108.226,10.0.0.102,34.217.108.226,10.0.2.65,splunk,,,incomplete,vsys1,u
forwarding-default,2018/09/20 13:03:58,574326,1,53722,8088,53722,8088,0x400064,tcp,allo
13:03:45,7,any,0,730277,0x0,United States,10.0.0.0-10.255.255.255,0,4,0,aged-out,0,0,0,

AFTER:

{"_raw": "Sep 20 13:03:55 PA-VM 1,2018/09/20 13:03:58,FOOBAR,TRAFFIC,end,2049,2018/09/2
13:03:58,34.217.108.226,10.0.0.102,34.217.108.226,10.0.2.65,splunk,,,incomplete,vsys1,u
forwarding-default,2018/09/20 13:03:58,574326,1,53722,8088,53722,8088,0x400064,tcp,allo
13:03:45,7,any,0,730277,0x0,United States,10.0.0.0-10.255.255.255,0,4,0,aged-out,0,0,0,
 "sourcetype": "pan:traffic"
 }
{"_raw": "Sep 20 13:03:55 PA-VM 1,2018/09/20 13:03:58,FOOBAR,THREAT,end,2049,2018/09/20
13:03:58,34.217.108.226,10.0.0.102,34.217.108.226,10.0.2.65,splunk,,,incomplete,vsys1,u
forwarding-default,2018/09/20 13:03:58,574326,1,53722,8088,53722,8088,0x400064,tcp,allo
13:03:45,7,any,0,730277,0x0,United States,10.0.0.0-10.255.255.255,0,4,0,aged-out,0,0,0,
 "sourcetype": "pan:threat"
 }

Example 2: CIDR Lookups

range,location
10.0.0.0/24,San Francisco
10.0.0.0/16,California
10.0.0.0/8,US

Page 519 of 1835

In Match mode: CIDR with Match type: Most specific, the lookup will implicitly search for matches
from most specific to least specific. There is no need to pre-sort data.

Note that Match mode: CIDR with Match type: First Match is likely the most performant with large
lookups. This can be used as an alternative to Most specific, if the file is sorted with the most
specific/relevant entries first. This mode still performs a table scan, top to bottom.

BEFORE:

{"_raw": "Sep 20 13:03:55 PA-VM 1, 2018/09/20 13:03:58,FOOBAR,TRAFFIC,end,2049,2018/09/
13:03:58,34.217.108.226,10.0.0.102,34.217.108.226,10.0.2.65,splunk,,,incomplete,vsys1,u
forwarding-default,2018/09/20 13:03:58,574326,1,53722,8088,53722,8088,0x400064,tcp,allo
13:03:45,7,any,0,730277,0x0,United States,10.0.0.0-10.255.255.255,0,4,0,aged-out,0,0,0,
 "destination_ip": "10.0.0.102"
 }

AFTER with Match Type: First Match

{"_raw": "Sep 20 13:03:55 PA-VM 1, 2018/09/20 13:03:58,FOOBAR,TRAFFIC,end,2049,2018/09/
13:03:58,34.217.108.226,10.0.0.102,34.217.108.226,10.0.2.65,splunk,,,incomplete,vsys1,u
forwarding-default,2018/09/20 13:03:58,574326,1,53722,8088,53722,8088,0x400064,tcp,allo
13:03:45,7,any,0,730277,0x0,United States,10.0.0.0-10.255.255.255,0,4,0,aged-out,0,0,0,
 "destination_ip": "10.0.0.102",
 "location": "San Francisco"
 }

AFTER with Match Type: Most Specific

{"_raw": "Sep 20 13:03:55 PA-VM 1, 2018/09/20 13:03:58,FOOBAR,TRAFFIC,end,2049,2018/09/
13:03:58,34.217.108.226,10.0.0.102,34.217.108.226,10.0.2.65,splunk,,,incomplete,vsys1,u
forwarding-default,2018/09/20 13:03:58,574326,1,53722,8088,53722,8088,0x400064,tcp,allo
13:03:45,7,any,0,730277,0x0,United States,10.0.0.0-10.255.255.255,0,4,0,aged-out,0,0,0,
 "destination_ip": "10.0.0.102",
 "location": "San Francisco"
 }

AFTER with Match Type: All

{"_raw": "Sep 20 13:03:55 PA-VM 1, 2018/09/20 13:03:58,FOOBAR,TRAFFIC,end,2049,2018/09/
13:03:58,34.217.108.226,10.0.0.102,34.217.108.226,10.0.2.65,splunk,,,incomplete,vsys1,u
forwarding-default,2018/09/20 13:03:58,574326,1,53722,8088,53722,8088,0x400064,tcp,allo
13:03:45,7,any,0,730277,0x0,United States,10.0.0.0-10.255.255.255,0,4,0,aged-out,0,0,0,
 "destination_ip": "10.0.0.102",
 "location": [
 "San Francisco",
 "California",
 "US",
]}

Page 520 of 1835

More examples:

Ingest-time Lookups.

Lookups and Regex Magic.

Lookups as Filters for Masks.

See also:

Managing Large Lookups to optimize file locations for large lookup files.

Redis Function for faster lookups using a Redis integration.

;

More Examples and Scenarios

Page 521 of 1835

The Mask Function masks, or replaces, patterns in events. This is especially useful for redacting PII
(personally identifiable information) and other sensitive data.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description about this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Masking rules: Match Regex and Replace Expression pairs. Defaults to empty. Each row has the following
fields:

Match regex: Pattern to replace. Supports capture groups. Use /g to replace all matches, e.g.:
/foo(bar)/g

Replace expression: A JavaScript expression or literal to replace all matching content. Capture groups
can be referenced with g and the group number – e.g., g2 to reference the second capture group.

To add more rows, click + Add Rule.

Apply to fields: Fields on which to apply the masking rules. Defaults to _raw . Add more fields by typing in
their names, separated by hard returns. Supports wildcards (*) and nested addressing. Supports double-
underscore (__) internal fields only if individually enumerated – not via wildcards.

Evaluate fields: Optionally, specify fields to add to events in which one or more of the Masking Rules were
matched. These fields can be useful in downstream processing and reporting. You specify the fields as key–
value expression pairs, like those in the Eval Function.

6.18. Mask

Usage

Negated terms are supported. When you negate field names, the fields list is order-sensitive.
E.g., !foobar before foo* means "Apply to all fields that start with foo , except foobar ." However,
!foo* before * means "Apply to all fields, except for those that start with foo ."

Advanced Settings

Page 522 of 1835

Name: Field name.

Value Expression: JavaScript expression to compute the value (can be a constant).

The Replace expression field accepts a full JS expression that evaluates to a value, so you're not necessarily
limited to what's under C.Mask . For example, you can do conditional replacement: g1%2==1 ?
`fieldA="odd"` : `fieldA="even"`

The Replace expression can reference other event fields as event.<fieldName> . For example,
 `${g1}${event.source}` . Note that this is slightly di�erent from other expression inputs, where event
fields are referenced without event. Here, we require the event. prefix for the following reasons:

We don't expect this to be a common case.

Expanding the event in the replace context would have a high performance hit on the common path.

There is a slight chance that there might be a gN field in the event.

Here, we'll simply search for the string dfhgdfgj , and replace that value (if found) with Trans AM . This will
help close Americaʼs muscle-car gap:

Evaluating the Replace Expression

Examples

Example 1: Transform a String

Page 523 of 1835

Event before masking

Configure the Mask Function > Masking Rules as follows:

Match Regex: dfhgdfgj Replace Expression: Trans AM

Mask Function configuration

Page 524 of 1835

Result: Vroom vroom!

Event a�er masking

Assume that you're ingesting data whose _raw fields contain unredacted Social Security numbers in the
Key=Value pattern social=######### .

Example 2: Mask Sensitive Data

Page 525 of 1835

Event with unredacted SSNs

You can use a Mask Function to run an md5 hash of the social keys' numeric values, replacing the original
values with the hashed values. Configure the Masking Rules as follows:

Match Regex: (social=)(\d+) Replace Expression: `${g1}${C.Mask.md5(g2)}`

In the first example everything in the Match regex field was replaced by the Replace Expression. However if
that isn't desired then you can use capture groups in the Match Regex to define individual string components
for manipulation or, alternatively, use string literals in the Replace expression for retaining any static text. Any
content matching the Match Regex that is not inserted into the Replace expression will not be retained.

In this example, social= is assigned to capture group g1 for later reference. The value of social= will be
hashed by referencing it as g2 in the md5 function. If we didn't make social= its own capture group (or
specified social= as a literal in the Replace Expression) then we cannot reference it using g1 in the Replace
expression, the value of social= would instead be assigned to g1, and the entire social=######### string
would be replaced with a hash of the social security number, which probably isn't desired because no one
would know the value being hashed without a field name preceding it.

Page 526 of 1835

Mask Function configuration

Result: The sensitive values are replaced by their md5 hashes.

Event with hashed SSNs

In scenarios where you need to send unmodified values to certain Destinations (such as archival
stores), you can narrow the Mask Function's scope by setting the associated Route's Output field.

Page 527 of 1835

In this example, we'll replace the IP address 127.0.0.1 in the _raw field with the IP address
192.168.123.25 from an existing field named source_ip . The following is a snippet of _raw :

To match the IP address, we'll define three capture groups. Set Match Regex to:

In the Replace Expression, we'll reference the source_ip field by prepending event to it, like this:

Note that we've also referenced the first and third capture groups, using g1 and g3 . This changes _raw to:

;

For further masking examples, see Masking and Obfuscation.

Example 3: Replace with an Event Field

ProcessId=0x0 IpAddress=127.0.0.1 IpPort=0

/(IpAddress=)((?:\d{1,3}\.){3}\d{1,3})(\s)/

${g1}${event.source_ip}${g3}

ProcessId=0x0 IpAddress=192.168.123.25 IpPort=0

Page 528 of 1835

The Numerify Function converts event fields that are numbers to type number .

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description about this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Ignore fields: Specify fields to not numerify. Type in field names, separated by hard returns. Supports
wildcards (*) and nested addressing. When empty (the default), Numerify applies to all fields. When
populated, takes precedence over the Include expression.

Include expression: Optional JavaScript expression to specify fields to numerify. If empty (the default), the
Function will attempt to numerify all fields – except those listed in Ignore fields, which takes precedence.
Use the name and value global variables to access fields' names/values. (Example: value ! = null .) You
can access other fields' values via __e.<fieldName> .

Format: Optionally, reformat or truncate the extracted numeric value. Select one of:

None: Applies no reformatting (the default).

Floor: Rounds the number down to the lower adjacent integer (truncates it).

Ceil: Rounds the number up to the higher adjacent integer, removing decimal digits.

Round: Rounds (truncates) the number to a specified number of digits. This option exposes an extra
field:

Digits: Number of digits a�er the decimal point. Enter a value between 0 – 20 ; defaults to 2 .

6.19. Numerify

Usage

Double Negatives

Ignore fields also supports negated terms. When you negate field names, the fields list is order-
sensitive. E.g., !foobar before foo* means "Ignore all fields that start with foo , except foobar ."
However, !foo* before * means "Ignore all fields, except for those that start with foo ."

Page 529 of 1835

Assume an event whose text contains a numeric value that must be extracted to perform some numeric
analysis. The text looks like this:

version=11.5.0.0.1.1588476445

We can extract the numeric value by chaining together two Functions:

1. A Regex Extract Function. Set its Regex field to /version=(?<ver>\d+)/ , to capture the first set of
digits found in the event string.

2. Then use Numerify.

This captures the substring 11 and converts it to a numeric 11 value.

Assume email transaction log events like the sample below. The final field is the messageʼs size, in bytes. We
want to extract this as a numeric value, for analysis in Cribl Stream or downstream services:

03:19 03:22 SMTPD (00180250) [209.221.59.70] C:\IMail\spool\D28de0018025017cd.SMD 3827

Again, we can accomplish this with two Functions:

1. A Regex Extract Function. To capture a substring of digits that follows six other substrings (all separated
by white space), we set the Regex field to: \S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+(?<bytes>\d+)

2. Then use Numerify.

;

Examples

Scenario A:

Scenario B:

Page 530 of 1835

The Parser Function can be used to extract fields out of events, or to reserialize (rewrite) events with a subset
of fields. Reserialization will maintain the format of the events.

For example: If an event contains comma-delimited fields, and fieldA and fieldB are filtered out, those
fields' positions will be set to null , but not deleted completely.

Parser cannot remove fields that it did not create. A subsequent Eval Function can do so.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description about this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Operation mode: Extract will create new fields. Reserialize will extract, filter fields, and then reserialize.

Type: Parser/Formatter type to use. Options:

CSV

Extended Log File Format (ELFF)

Common Log Format (CLF)

K=V Pairs

JSON

Delimited Values

Setting Type to Delimited Values displays the following extra options:

Delimiter: Delimiter character to split value. Defaults to comma (,). You can also specify pipe (|) or tab
characters.

Quote char: Character used to quote literal values. Defaults to " .

Escape char: Character used to escape delimiter or quote characters. Defaults to: \

Null value: Field value representing the null value. These fields will be omitted. Defaults to: -

6.20. Parser

Usage

Page 531 of 1835

Library: Select an option from the Parsers Library. Although specifying a Library will auto-generate an
example list of fields, the list may still need modified to accommodate the desired fields from the events as
well as the actual field order.

Source field: Field that contains text to be parsed. Not usually needed in Serialize mode.

Destination field: Name of field in which to add extracted and serialized fields. If multiple new fields are
created and this setting is configured then all new fields are created as elements of an array with the array
name set to the name specified for this setting. If you want all new fields to be independent, rather than in an
array, then specify them using List of fields below. (Extract and Serialize modes only.)

Clean fields: This option appears for Type: K=V Pairs. Toggle to Yes to clean field names by replacing non-
alphanumeric characters with _ . This will also strip leading and trailing " symbols.

List of fields: Fields expected to be extracted, in order. If not specified, Parser will auto-generate fields.

Fields to keep: List of fields to keep. Supports wildcards (*). Takes precedence over Fields to remove.
Nested addressing supported.

Fields to remove: List of fields to remove. Supports wildcards (*). Cannot remove fields matching Fields to
keep. Nested addressing supported.

Fields filter expression: Expression to evaluate against {index, name, value} context of each field.
Return truthy to keep, falsy to remove field. Index is zero-based.

Allowed key characters: Enter characters permitted in a key name, even though they are normally separator
or control characters. Separate entries with a tab or hard return. This setting does not a�ect how the value is
parsed.

Allowed value characters: Enter characters permitted in a value name, even though they are normally
separator or control characters. Separate entries with a tab or hard return. This setting does not a�ect how
the key is parsed.

Negated terms are supported in both Fields to remove and Fields to keep. When you use negated
terms, the list is order-sensitive. E.g., !foobar, foo* means "All fields that start with foo , except
foobar ." However, !foo*, * means "All fields, except for those that start with foo ."

Advanced Settings

How Fields Settings Interact

Page 532 of 1835

The Fields to keep, Fields to remove, and Fields filter expression settings interact as follows:

Order of evaluation: Fields to keep > Fields to remove > Fields filter expression.

If a field is in both Fields to keep and Fields to remove, Fields to keep takes precedence.

If a field is in both Fields to remove and Fields filter expression, Fields to remove takes precedence.

Insert the following sample, using Preview > Add a Sample > Paste a Sample: 2019/06/24 05:10:55 PM Z
a=000,b=001,c=002,d=003,e=004,f=005,g1=006,g2=007,g3=008

Create the following test Parser Function (or import this Pipeline: https://raw.githubusercontent.com/weeb-
cribl/cribl-samples/master/parser/functions/parser/parser_1.json).

Parser Function initial configuration

First, set the Parser type to Key=Value Pairs .

Example 1

Page 533 of 1835

Keep fields a , b , c . Drop the rest.

Expected result: a , b , c

Fields to Keep: a , b , c

Fields to Remove: *

Fields Filter Expression: <empty>

Result: The event will gain four new fields and values, as follows.

a: 000

b: 001

c: 002

cribl_pipe: parser2

Scenario A result

You can check your stats by clicking the Preview paneʼs Basic Statistics (chart) button. In the resulting pop-
up, the Number of Fields should have incremented ty four.

Now that you have the hang of it, try out the other simple scenarios below.

Keep fields a , b , those that start with g . Drop the rest.

Expected result: a , b , g1 , g2 , g3

Scenario A:

Scenario B:

Page 534 of 1835

Fields to keep: a , b

Fields to remove: [empty]

Fields filter expression: name.startsWith('g')

Keep fields a , b , those that start with g but only if value is 007 . Drop the rest.

Expected result: a , b , g2

Fields to keep: a , b

Fields to remove: [empty]

Fields filter expression: name.startsWith('g') && value=='007'

Keep fields a , b , c , those that start with g , unless it's g1 . Drop the rest.

Expected result: a , b , c , g2 , g3

Fields to keep: a , b , c

Fields to remove: g1

Fields filter expression: name.startsWith('g')

Keep fields a , b , c , those that start with g but only if index is greater than 6 . Drop the rest.

Expected result: a , b , c , g2 , g3

Fields to keep: a , b , c

Fields to remove: [empty]

Fields filter expression: name.startsWith('g') && index>6

Scenario C:

Scenario D:

Scenario E:

The index refers to the location of a field in the array of all fields extracted by this Parser. It is zero-
based. In the case above, g2 and g3 have index values of 7 and 8 , respectively.

Page 535 of 1835

Assume we have a JSON event that needs to be reserialized, given these requirements:

1. Remove the level field only if it's set to info .

2. Remove the startTime field, and all fields in the values.total. path that end in Cxn .

Parser Function configuration:

Parser Function configuration for Example 2

JSON event a�er being processed by the Function:

Example 2

Page 536 of 1835

Example 2 event transformation

Insert the following sample, using Preview > Add a Sample > Paste a Sample:

2019/06/24 15:25:36 PM Z a=000,b=001,c=002,d=003,e=004,f=005,g1=006,g2=007,g3=008,

For all scenarios below, first create a Parser Function to extract all fields, by setting the Parser type to
Key=Value Pairs . Then add a second Parser Function with the configuration shown under Parser 2.

Serialize fields a , b , c , d in CSV format.

Expected result: _raw field will have this value 000,001,002,003

Example 3

Scenario A:

Parser 2:

Page 537 of 1835

Operation mode: Reserialize

Source field: [empty]

Destination field: [empty]

Type: CSV

List of fields: a , b , c , d (needed for positional formats)

Serialize fields a , b , c in JSON format, under a field called bar .

Expected result: bar field will be set to: {"a":"000","b":"001","c":"002","d":"003"}

Operation mode: Reserialize

Source field: [empty]

Destination field: bar

Type: JSON

List of fields: [empty]

Fields to keep: a , b , c , d

;

Scenario B:

Parser 2:

Page 538 of 1835

The Publish Metrics Function extracts, formats, and outputs metrics from events.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description about this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Overwrite: If set to Yes , overwrite previous metric specs. Otherwise, append. Defaults to No .

Add Metrics: List of metrics to extract from the event and format. Destinations can pass the formatted
metrics to a metrics aggregation platform. Click Add Metrics to add new rows containing the following
options:

Event field name: The name of the field (in the event) that contains the metric value. Should contain
only letters, numbers, underscores (_), and . characters (to separate names in nested structures).

Metric name expression: JavaScript expression to evaluate the metric field name. Defaults to the Event
field name value.

Metric type: Select Gauge (the default), Counter , Timer , or Distribution . General definitions that
can vary across senders:

Gauge : A numeric value that can increase or decrease over time – like a temperature or pressure
gauge.

Counter : A cumulative numeric value – it can only increase over time.

6.21. Publish Metrics

Usage

Metrics

The JavaScript expression will evaluate the metric field name only a�er the metrics are
processed for transport to the Destination. While in the processing Pipeline, the metric name
expression appears as a literal.

Page 539 of 1835

Timer : Generally measures how long a given event type takes (duration), and how o�en it occurs
(frequency).

Distribution : The statistical distribution of a set of values over a time interval. (This type
generally provides raw data, not an aggregation.)

Remove Metrics: Optionally, enter a List of field names to look for when removing metrics. Where a metric's
field name matches an element in this list, Cribl Stream will remove that metric from the event.

Add Dimensions: Optional list of dimensions to include in events. Supports wildcards. If you don't specify
metrics, values will be appended to every metric found in the event. When you add a new metric, dimensions
will be present only in those new metrics. Defaults to !_* * .

Remove Dimensions: Optional list of dimensions to associate with every extracted metric value. Leave blank
if this function is used to process output from the Aggregation function as dimensions will be automatically
discovered. If this Function is used to process output from the Aggregations Function, leave this field blank,
because dimensions will be automatically discovered.

Overwrite: If set to Yes , overwrite previous metric specs. Otherwise, append. Defaults to No .

On the right Preview pane's OUT tab, the Publish Metrics Function adds the following color codes to field
labels:

Dimensions

The Add Dimensions and Remove Dimensions fields support wildcards and negated terms. When
you use negated terms, the list is order-sensitive. E.g., !foobar before foo* means "All fields that
start with foo , except foobar ." However, !foo* before * means "All fields, except for those that
start with foo ."

Cribl Stream can send out multi metrics, but this must be configured on compatible Destinations.

Fields Color Coding

Page 540 of 1835

Dimension: purple | Value: cyan (light blue) | Info: dark blue

These are in addition to the color codes applied to field values, which are listed here.

Assume we're working with AWS VPC Flowlog events that have the following structure:

version account_id interface_id srcaddr dstaddr srcport dstport protocol packets bytes

start end action log_status

For example:

2 99999XXXXX eni-02f03c2880e4aaa3 10.0.1.70 10.0.1.11 9999 63030 6 6556 262256

1554562460 1554562475 ACCEPT OK

... and we want to use values of packets and bytes as metrics across these dimensions: action ,
interface_id , and dstaddr .

To reference the packets and bytes fields by name, as ‘packets’ and ‘bytes’ , our Pipeline will need a
Parser Function before the Publish Metrics Function.

Filter: Set as needed Operation mode: Extract Type: Extended Log File Format (automatically set when
specifying a library) Library: AWS VPC Flow Logs Source: _raw (No need to specify any other fields.)

Examples

Scenario A:

Parser Function

Publish Metrics Function

Page 541 of 1835

Below, the metric_name prefix was arbitrarily chosen. Because there is no JavaScript expression to evaluate
– i.e., this is literal text – the strings specified for the Metric name expression will be identical to those in the
final metrics data sent to the Destination. See Raw Output below.

EVENT FIELD NAME METRIC NAME EXPRESSION METRIC TYPE

bytes `metric_name.bytes` Gauge

packets `metric_name.packets` Gauge

action interface_id dstaddr

All specified dimension names must align with those from the original event. When you preview the
Function's output, the metrics and dimensions will all have special highlighting to separate them from other
fields. Additional highlighting is used to di�erentiate the metrics from the dimensions. (If one or more
metrics/dimensions are not highlighted as expected, check the Function's configuration.)

metric_name.bytes:262256|g#action:REJECT,interface_id:eni-

02f03c2880e4aaa3,dstaddr:10.0.1.11

metric_name.packets:6556|g#action:REJECT,interface_id:eni-

02f03c2880e4aaa3,dstaddr:10.0.1.11

Formatted Output

Metrics

Dimensions

Raw Output

Compatible Destinations

All text a�er the # symbol represents the dimensions as key-value pairs. In order for dimension data
to be included in metrics, the Destination type cannot be standard StatsD. However,
StatsD Extended, Splunk, and Graphite do support dimensions.

Page 542 of 1835

Assume that we want to extract some metrics from specific fields in PANOS logs, whose events have the
following structure:

future_use_0,receive_time, serial_number, type, threat_content_type, future_use_1,

generated_time, source_ip, destination_ip, nat_source_ip, nat_destination_ip, rule_name,

source_user, destination_user, application, virtual_system, source_zone,

destination_zone, inbound_interface, outbound_interface, log_action, future_use_2,

session_id, repeat_count, source_port, destination_port, nat_source_port,

nat_destination_port, flags, protocol, action, bytes, bytes_sent, bytes_received,

packets, start_time, elapsed_time, category, future_use_3, sequence_number,

action_flags, source_location, destination_location, future_use_4, packets_sent,

packets_received, session_end_reason, device_group_hierarchy_level_1,

device_group_hierarchy_level_2, device_group_hierarchy_level_3,

device_group_hierarchy_level_4, virtual_system_name, device_name, action_source,

source_vm_uuid, destination_vm_uuid, tunnel_id_imsi, monitor_tag_imei,

parent_session_id, parent_start_time, tunnel_type, sctp_association_id, sctp_chunks,

sctp_chunks_sent, sctp_chunks_received

For example:

Jan 10 10:19:15 DMZ-internal.nsa.gov 1,2019/01/10

10:19:15,001234567890002,TRAFFIC,drop,2304,2019/01/10

10:19:15,209.118.103.150,160.177.222.249,0.0.0.0,0.0.0.0,InternalServer,,,not-

applicable,vsys1,inside,z1-FW-Transit,ethernet1/2,,All traffic,2019/01/10

10:19:15,0,1,63712,443,0,0,0x0,udp,deny,60,60,0,1,2019/01/10

10:19:15,0,any,0,0123456789,0x0,Netherlands,10.0.0.0-10.255.255.255,0,1,0,policy-

deny,0,0,0,0,,DMZ-internal,from-policy,,,0,,0,,N/A,0,0,0,0,1202585d-b4d5-5b4c-aaa2-

d80d77ba456e,0

Our goal is to use the four values of bytes_sent , bytes_received, packets_sent ,
and packets_received as metrics across these dimensions: destination_ip , inbound_interface ,
outbound_interface , and destination_port .

{
"action": "REJECT",
"interface_id": "eni-02f03c2880e4aaa3",
"dstaddr": "10.0.1.11",
"metric_name.bytes": 262256,
"metric_name.packets": 6556,

}

Scenario B:

Page 543 of 1835

Here again, our Pipeline will need a Parser Function before the Publish Metrics Function.

Filter: Set as needed Operation mode: Extract Type: Extended Log File Format (automatically set when
specifying a Library) Library: Palo Alto Tra�ic Source: _raw (No need to specify any other fields.)

Set up the Publish Metrics Function as follows.

EVENT FIELD NAME METRIC NAME EXPRESSION METRIC TYPE

bytes_sent `metric.${host}.bytes_sent` Counter

bytes_received `metric.${host}.bytes_rcvd` Counter

packets_sent `metric.${host}.pkts_sent` Counter

packets_received `metric.${host}.pkts_rcvd` Counter

destination_ip , inbound_interface , outbound_interface , destination_port

metric.10.10.12.192.bytes_sent:60|c|#destination_ip:160.177.222.249,inbound_interface:et

hernet1/2,destination_port:443

metric.10.10.12.192.bytes_rcvd:0|c|#destination_ip:160.177.222.249,inbound_interface:eth

ernet1/2,destination_port:443

metric.10.10.12.192.pkts_sent:1|c|#destination_ip:160.177.222.249,inbound_interface:ethe

rnet1/2,destination_port:443

metric.10.10.12.192.pkts_rcvd:0|c|#destination_ip:160.177.222.249,inbound_interface:ethe

rnet1/2,destination_port:443

Here again, all text a�er the # symbol represents the dimensions as key-value pairs. (See the Compatible
Destinations note above.) Unlike the first example, this example uses JavaScript expressions, which you can
see evaluated in the raw output where the ${host} has been converted to 10.10.12.192 .

Parser Function

Publish Metrics Function

Metrics

Added Dimensions

Raw Output

Page 544 of 1835

;

Page 545 of 1835

The Redis Function interacts with Redis stores, setting and getting key-hash and key-value combinations.
Redis' in-memory caching of these key pairs enables large lookup tables that would be cumbersome with a
.CSV or binary lookup file.

You can use Cribl Stream Collectors (e.g., a REST Collector) to retrieve reference data from desired endpoints,
and then use this Function to store the data on Redis and retrieve it to enrich your production data. Note that
Cribl Stream does not cache the data returned from this Redis Function.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description of this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Result field: Name of the field in which to store the returned value. (Leave empty to discard the returned
value.)

Command: Redis command to perform. Required. (A complete list of Redis commands is at:
https://redis.io/commands.)

Key: A JavaScript expression to compute the value of the key to operate on. Can also be a constant, e.g.:
username . This is a required field. Click the icon at right to open a validation modal.

Args: A JavaScript expression to compute arguments to the operation. Can return an array. Click the icon at
right to open a validation modal.

Redis URL: Redis URL to connect to. The format is: [redis[s]:]//[[user][:password@]][host][:port]
[/db-number][?db=db-number[&password=bar[&option=value]]]

For example: redis://user:secret@localhost:6379/0?foo=bar&qux=baz

With no user specified: redis://secret@localhost:6379/0?foo=bar&qux=baz

6.22. Redis

Usage

Redis URL Vs. Redis ACL

Page 546 of 1835

Use the Authentication method buttons to select one of the following options, some of which display
additonal controls below.

None: Select this option where authentication either is not required, or is provided in the URL.

Basic: This displays Username and Password fields for you to enter your Redis credentials.

User Secret: This option exposes a drop-down in which you can select a stored text secret that
references a Redis username and password, as described above. A Create link is available to store a
new, reusable secret.

Admin Secret: This option exposes a drop-down in which you can select a stored text secret that
references a Redis admin password. A Create link is available to store a new, reusable secret.

Max blocking time: Maximum amount of time (in seconds) before assuming that Redis is down and passing
events through. Defaults to 60 seconds. Use 0 to disable timeouts.

This Pipeline demonstrates the use of a pair of Redis Functions. The first Function sets two key-value pairs in
Redis. The second Function gets their values, by key, into two corresponding new Result fields.

Through LogStream 2.4.3, the Redis URL field has limited compatibility with Redis 6.x's ACL (Access
Control List) feature. When using an ACL, point this field to the Redis default account, either with a
password (e.g., redis://default:Password1@192.168.1.20:6379) or with no password
(redis://192.168.1.20:6379).

Do not specify a specific user other than default , or authentication against Redis will fail.

Authentication Method

Advanced Settings

Examples

Scenario A: Set and Get

Page 547 of 1835

Redis set and get Functions

Description: Set keys to Redis

Command: set Key: 'myFieldA' Args: 420

Command: set Key: 'myFieldB' Args: 'sample value'

Description: Read keys from Redis

Result field: myField_AA Command: get Key: 'myFieldA'

Result field: myField_BB Command: get Key: 'myFieldB'

This example demonstrates how to configure a Redis Function that supplies an array of multiple arguments
to Redis commands (in this example, lset and lrange).

Redis Function #1

Redis Function #2

Scenario B: Multiple‑Argument Arrays

Page 548 of 1835

Redis Function, arrays of multiple arguments, and sample output

Description: Push arrays of multiple arguments to Redis

Result field: rs1 Command: rpush Key: "mylist" Args: 'one'

Result field: rs2 Command: rpush Key: "mylist" Args: 'two'

Result field: rs3 Command: rpush Key: "mylist" Args: 'three

Result field: rs4 Command: lset Key: "mylist" Args: [0,'four']

Result field: rs5 Command: lset Key: "mylist" Args: [-2,'five']

Result field: rs6 Command: lrange Key: "mylist" Args: [0,-1]

The Pipeline below contains only this example Function. You can import it into your own Cribl Stream
environment, fill in the url with your own credentials, and further modify it to meet your needs.

redis-multiple-args.json

Redis Function

Try This at Home

Page 549 of 1835

{
"id": "redis-multiple-args",
"conf": {
"output": "default",
"groups": {},
"asyncFuncTimeout": 1000,
"functions": [
{
"filter": "true",
"conf": {
"commands": [
{
"outField": "rs1",
"command": "rpush",
"keyExpr": "\"mylist\"",
"argsExpr": "'one'"

},
{
"outField": "rs2",
"command": "rpush",
"keyExpr": "\"mylist\"",
"argsExpr": "'two'"

},
{
"outField": "rs3",
"command": "rpush",
"keyExpr": "\"mylist\"",
"argsExpr": "'three'"

},
{
"command": "lset",
"keyExpr": "\"mylist\"",
"argsExpr": "[0,'four']",
"outField": "rs4"

},
{
"outField": "rs5",
"command": "lset",
"keyExpr": "\"mylist\"",
"argsExpr": "[-2,'five']"

},
{
"outField": "rs6",
"command": "lrange",
"keyExpr": "\"mylist\"",
"argsExpr": "[0,-1]"

}
],
"maxBlockSecs": 60,
"url": "redis://<your-credentials-here>"

},
"id": "redis",
"disabled": false,
"description": "Push arrays of multiple arguments to Redis"

}
]

}
}

Page 550 of 1835

;

Page 551 of 1835

The Regex Extract Function extracts fields using regex named groups. (In Splunk, these will be index-time
fields). Fields that start with __ (double underscore) are special in Cribl Stream. They are ephemeral: they
can be used by any Function downstream, but will not be added to events, and will not exit the Pipeline.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description of the Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Regex: Regex literal. Must contain named capturing groups, e.g.: (?<foo>bar) . Can contain special
_NAME_N and _VALUE_N capturing groups, which extract both the name and value of a field, e.g.: (?
<_NAME_0>[^\s=]+)=(?<_VALUE_0>[^\s]+) . Defaults to empty. See Examples below.

Additional regex: Click + Add Regex to chain extra regex conditions.

Source field: Field on which to perform regex field extraction. Nested addressing is supported. Defaults to
_raw .

Max exec: The maximum number of times to apply the Regex to the source field when the global flag is set,
or when using _NAME_N and _VALUE_N capturing groups. Named capturing groups will always use a value of
1 . Defaults to 100 .

Field name format expression: JavaScript expression to format field names when _NAME_n and _VALUE_n
capturing groups are used. E.g., to append XX to all field names, use: `${name}_XX` (backticks are literal).
If not specified, names will be sanitized using regex: /^[_0-9]+|[^a-zA-Z0-9_]+/g . The original field
name is in the global name . You can access other fields' values via __e.<fieldName> .

Overwrite existing fields: Whether to overwrite existing event fields with extracted values. If set to No (the
default), existing fields will be converted to an array. If toggled to Yes , Regex Extract will create array fields if
applied multiple times, or if fields exist. (E.g., if src_ip is extracted in an input Pipeline where it is assigned

6.23. Regex Extract

Usage

Advanced Settings

Page 552 of 1835

a value of 10.1.2.2 , and is also in a processing Pipeline with a value of 10.2.3.3 , then the resulting field is
["10.1.2.2", "10.2.3.3"] .)

Assume a simple event that looks like this: metric1=23 metric2=42 dc=23 abc=xyz

Extract only the metric1 field:

Regex: metric1=(?<metric1>\d+) Result: metric1:"23"

Use this sample:

Examples

Example 1: Single Field from Simple Event

Example 2: Key‑Value Pairs from Multiple Fields

rec_type=71 rec_type_simple=RNA dest_port=443 snmp_out=0 netflow_src="00000000-0000-
0000-0000-000000000000" ssl_server_cert_status="Not Checked" dest_ip=172.20.115.42
sec_intel_event=No mac_address=00:00:00:00:00:00 dest_bytes=3746
dest_autonomous_system=0 security_context=00000000000000000000000000000000
src_port=41925 web_app=Unknown url=https://outlook.ssg.petsmart.com
url_reputation="Risk unknown" first_pkt_sec=1543598207 vlan_id=0 ssl_flow_error=0
ssl_actual_action=Unknown has_ipv6=1 monitor_rule_6=N/A monitor_rule_7=N/A
monitor_rule_4=N/A monitor_rule_5=N/A monitor_rule_2=N/A monitor_rule_3=N/A
ips_count=0 monitor_rule_1=N/A dest_tos=0 src_ip=192.168.228.5 referenced_host=""
iface_ingress=DMZ3.30 monitor_rule_8=0 event_subtype=1 fw_rule_reason=N/A
event_type=1003 ssl_version=Unknown dns_resp_id=0 sensor=ssg-inet-fpr-ftd-fw01
sec_zone_egress=Inside src_tos=0 client_app="SSL client" snmp_in=0 user=Unknown
ssl_flow_messages=0 iface_egress=inside http_referrer="" src_pkts=0 event_desc="Flow
Statistics" event_usec=0 client_version="" fw_rule_action=Allow
ssl_cert_fingerprint=00 ssl_url_category=0
file_count=0 sec_zone_ingress=DMZ3 instance_id=6 src_bytes=1013
src_ip_country=unknown ssl_cipher_suite=TLS_NULL_WITH_NULL_NULL user_agent=""
http_response=0 src_mask=0 dest_mask=0 sec_intel_ip=N/A netbios_domain=""
tcp_flags=0 dns_rec_id=0 fw_policy="SSG INET Access Control Policy"
last_pkt_sec=1543598207 legacy_ip_address=0.0.0.0 ip_proto=TCP connection_id=21378
dest_pkts=0 app_proto=HTTPS ssl_flow_status=Unknown ssl_rule_id=0
ssl_session_id=00
dns_query="" rec_type_desc="Connection Statistics" url_category=Unknown
fw_rule="Outbound Web" src_autonomous_system=0 ssl_flow_flags=0 ip_layer=0
event_sec=1543598205 ssl_ticket_id=00
sinkhole_uuid=00000000-0000-0000-0000-000000000000 dest_ip_country=unknown
ssl_expected_action=Unknown num_ioc=0 dns_ttl=0
ssl_policy_id=00000000000000000000000000000000 ssl_server_name=""

Page 553 of 1835

Use a regex to extract all k=v pairs, then use Field Name Format Expression to append an _XX su�ix to each
extracted field:

Regex: (?<_NAME_0>[\w-]+)="?(?<_VALUE_0>(?<=")[^"]*|\S*) Field Name Format Expression:
${name}_XX

Results:

Example 2 results

This example builds on the syntax in Example 2, to tackle a more complex event structure.

In the right Sample Data pane, click Paste and insert the following sample:

Example 3: Multi‑Stage Extraction, Complex Events

<134>1 2020-12-22T17:06:08Z CORP_INT_NLB CheckPoint 18160 - [action:"Accept";
conn_direction:"Internal"; flags:"4606212"; ifdir:"inbound"; ifname:"bond2.1025";
logid:"0"; loguid:"{0x5fe25889,0x0,0x80ad57cd,0xeb91c0c3}"; origin:"192.168.20.54";
originsicname:"CN=TST32-VSX0-FW-DC-01_tst302-shd,O=CORP-SEC-SHRD-CMA..t7xpcz";
sequencenum:"3"; time:"1608656768"; version:"5"; __policy_id_tag:"product=VPN-1 &
FireWall-1[db_tag={15E4B45A-663B-5B49-BD59-
CD9B9F21AA16};mgmt=SHRDFW01CON;date=1608236862;policy_name=TEST-SHRD-POL\]";
dst:"192.168.79.20"; log_delay:"1608656768"; layer_name:”TEST-SHRD-POL Security";
layer_uuid:"e914c2f3-d7bd-4a77-8e7a-7a5e403447aa"; match_id:"1"; parent_rule:"0";
rule_action:"Accept"; rule_uid:"001ab86d-d201-4b61-9b64-0fede1a9f059"; product:"VPN-
1 & FireWall-1"; proto:"17"; s_port:"45519"; service:"123"; service_id:"ntp-udp";
src:"192.168.79.22";]

Page 554 of 1835

This event is from a CheckPoint Firewall CMA system. With this type of event structure, properly extracting
each event field into a separate metadata field requires two-stage processing. So we'll use two Regex Extract
Functions.

The first Regex Function splits the event to separate the actual data from the header information. We'll split
a�er the CheckPoint 18160 string, by capturing everything between the [and] :

Regex: \[(?<__fields>.*)\] Source: _raw

Next, add this second Regex Extract Function to extract all k=v pairs:

Regex: (?<_NAME_0>[^ :]+):(?<_VALUE_0>[^;]+); Source: __fields

Results:

Page 555 of 1835

Example 3 results

;

For further examples, see Using Cribl to Analyze DNS Logs in Real Time – Part 2.

Page 556 of 1835

The Regex Filter Function filters out events based on regex matches.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description of this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Regex: Regex to test against. Defaults to empty.

Additional regex: Click + Add Regex to chain extra regex conditions.

Field: Name of the field to test against the regex. Defaults to _raw . Supports nested addressing.

See Regex Filtering for examples.

;

6.24. Regex Filter

Usage

Examples

Page 557 of 1835

The Rename Function is designed to change fields' names or reformat their names (e.g., by normalizing
names to camelcase). You can use Rename to change specified fields (much like the Eval Function), or for
bulk renaming based on a JavaScript expression (much like the Parser Function).

Compared to these alternatives, Rename o�ers a streamlined way to alter only field names, without other
e�ects.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Optionally, enter a simple description of this step in the Pipeline. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Parent fields: Specify fields whose children will inherit the Rename fields and Rename expression
operations. Supports wildcards. If empty, only top-level fields will be renamed.

Rename fields: Each row here is a key-value pair that defines how to rename fields. The current name is the
key, and the new name is the value. Click + Add Field to add more rows.

Current name: Original name of the field to rename. You must quote literal identifiers (non-
alphanumeric characters such as spaces or hyphens).

New name: New or reformatted name for the field. Here again, you must quote literals.

Rename expression: Optional JavaScript expression whose returned value will be used to rename fields. Use
the name and value global variables to access fields' names/values. Example: name.startsWith('data')
? name.toUpperCase() : name . You can access other fields' values via event.<fieldName> .

6.25. Rename

Usage

This Function cannot operate on internal fields whose names begin with double underscores (__).

Note that you can still use __e to access fields within the (context) object, as long as those fields
do not begin with double underscores. That's because __e is a special variable, not a field.

Page 558 of 1835

Parent field wildcard depth: For wildcards specified in Parent fields, sets the maximum depth within
events to match and rename fields. Enter 0 to match only top-level fields. Defaults to 5 levels down.

Change the level field, and all fields that start with out , to all-uppercase.

Example event:

Rename Fields:

Current name: level
New name: LEVEL Rename expression: name.startsWith('out') ? name.toUpperCase() : name

Event a�er Rename:

A single Function can include both Rename fields (to rename specified field names) and
Rename expression (to globally rename fields). However, the Rename fields strategy will execute
first.

Advanced Settings

Example

{"inEvents": 622,
 "level": "info",
 "outEvents": 311,
 "outBytes": 144030,
 "activeCxn": 0,
 "openCxn": 0,
 "closeCxn": 0,
 "activeEP": 105,
 "blockedEP": 0
}

{"inEvents": 622,
 "LEVEL": "info",
 "OUTEVENTS": 311,
 "OUTBYTES": 144030,
 "activeCxn": 0,
 "openCxn": 0,
 "closeCxn": 0,
 "activeEP": 105,
 "blockedEP": 0
}

Page 559 of 1835

1. Remove filename prefix <myPrefix> :

Rename expression: name.replace(/<myPrefix>/, '')

2. Add a wildcard to rename a set of fields named json.record[0] , json.record[1] , etc., preserving
the variable numbers in the brackets:

Rename expression: name.replace(/(json)\.(\w+)/,'MYNEWNAME-$2-$1')

;

Applications

Page 560 of 1835

The Rollup Metrics Function merges/rolls up frequently generated incoming metrics into more manageable
time windows.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Optional description of this Function's purpose in this Pipeline. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Dimensions: List of data dimensions across which to perform rollups. Supports wildcards. Defaults to *
wildcard, meaning all original dimensions.

Time window: The time span over which to roll up (aggregate) metrics. Must be a valid time string
(e.g., 10s). Must match pattern: \d+[sm]$.

Gauge update: The operation to use when rolling up gauge metrics. Defaults to Last; other options are
Maximum, Minimum, or Average.

Assume that you have metrics coming in at a rate that is too high. For example, Cribl Stream's internal
metrics come in at a 2s interval.

To roll up these metrics to 1-minute granularity, you would set up the Rollup Metrics Function with a
Time Window value of 60s .

6.26. Rollup Metrics

Usage

With high-cardinality data, beware of setting long time windows. Doing can cause high memory
consumption and/or lost data, because memory is flushed upon restarts and redeployments.

Examples

Scenario A:

Page 561 of 1835

Assume that you have metrics coming up with multiple dimensions – e.g. host , source , data_center ,
and application . You want to aggregate these metrics to eliminate some dimensions.

Here, you would configure Rollup Metrics Function with a Time Window value that matches the metrics'
generation – e.g., 10s . In the Dimensions field, you would remove the default * wildcard, and would
specify only the dimensions you want to keep – e.g.: host , data_center .

;

Scenario B:

Page 562 of 1835

The Sampling Function filters out events, based on an expression and a sampling rate.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description of this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Sampling rules: Events matching these rules will be sampled at the rates you specify:

Filter: Filter expression matching events to be sampled. Use true to match all.

Sampling rate: Enter an integer N . (Defaults to 1 .) Sampling will pick 1/ N events matching this rule.

Setting this Functionʼs Sampling rate to 30 would mean that only 1 of every 30 events would be kept.

Letʼs assume that we save this setting, and then capture data from a datagen Source by selecting Preview >
Start a Capture > Capture. In the Capture Sample Data modal, select: 100 seconds, 100 events, and
As they come in. Then start the capture, and Save as Sample File.

6.27. Sampling

Usage

How It Works

Page 563 of 1835

Next, in the Preview pane, click Simple beside the new fileʼs name. If you then click the Basic Statistics
(chart) button, you should see that weʼve kept about 4 of the original 100 events, or close to 1 in 30.

See Sampling for examples.

;

Examples

Each Worker Process executes this Function independently on its share of events. For details, see
Functions and Shared-Nothing Architecture.

Page 564 of 1835

Use the Serialize Function to serialize an event's content into a predefined format.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description of this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Type: Data output format. Defaults to CSV .

Library: Browse Parser/Formatter library.

Fields to serialize: Required for CSV , ELFF , and CLF Types. (All other formats support wildcard field lists.)

Source field: Field containing the object to serialize. Leave blank to serialize top-level event fields.

Destination field: Field to serialize the data into. Defaults to _raw .

Assume a simple event that looks like this: {"time":"2019-08-
25T14:19:10.240Z","channel":"input","level":"info","message":"initializing

input","type":"kafka"}

We want to serialize these fields: _time , channel , level , and type into a single string, in CSV format,
stored in a new destination field called test .

To properly extract the key-value pairs from this event structure, weʼll use a built-in Event Breaker:

1. Copy the above sample event to your clipboard.

2. In the Preview pane, select Paste a Sample, and paste in the sample event.

6.28. Serialize

Usage

Examples

Scenario A: JSON to CSV

Page 565 of 1835

3. Under Select Event Breaker, choose ndjson (newline-delimited JSON), and click Save as a Sample
File.

Now youʼre ready to configure the Serialize Function, using the settings below:

Type: CSV Fields to Serialize: _time channel level type Destination Field: test Source Field: [leave
empty] Result: test: 1566742750.24,input,info,kafka

In the new test field, you now see the time , channel , level , and type keys extracted as top-level
fields.

Letʼs assume that a merchant wants to extract a subset of each customer order, to aggregate anonymized
order statistics across their customer base. The transaction data is originally in CSV format, but the statistical
data must be in JSON.

Hereʼs a CSV header (which we donʼt want to process), followed by a row that represents one order:

orderID,custName,street,city,state,zip 20200622102822,john smith,100 Main
St.,Anytown,AK,99911

To convert to JSON, weʼll need to first parse each field from the CSV to a manipulable field in the Pipeline,
which the Serialize Function will be able to reference. In this example, the new manipulable field is message .

Use the Parser Function:

Filter: true Operation mode: Extract Type: CSV Source field: _raw Destination field: message List of
fields: orderID custName street city state zip

Now use the Serialize Function:

Filter: true Type: JSON Fields to serialize: city state Source field: message Destination field:
orderStats

;

Scenario B: CSV to JSON

Page 566 of 1835

The Suppress Function suppresses events over a time period, based on evaluating a key expression.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description of this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Key expression: Suppression key expression used to uniquely identify events to suppress. For example,
`${ip}:${port}` will use the fields ip and port from each event to generate the key.

Number to allow: The number of events to allow per time period. Defaults to 1 .

Suppression period (sec): The number of seconds to suppress events a�er 'Number to allow' events are
received. Defaults to 300 .

Drop suppressed events: Specifies if suppressed events should be dropped, or just tagged with
suppress=1 . Defaults to Yes , meaning drop.

Maximum cache size : The maximum number of keys that can be cached before idle entries are removed.
Before changing the default 50000 , contact Cribl Support to understand the implications.

Suppression period timeout: The number of suppression periods of inactivity before a cache entry is
considered idle. This defines a multiple of the Suppression period (sec) value. Before changing the default
2 , contact Cribl Support to understand the implications.

Num events to trigger cache clean-up: Check cache for idle sessions every N events when cache size
exceeds the Maximum cache size. Before changing the default 10000 , contact Cribl Support to understand
the implications.

6.29. Suppress

Usage

Advanced Settings

Seeing the Results

Page 567 of 1835

If you've enabled Drop suppressed events, such events will be omitted from logs as they exit this Function.
However, the next event allowed through will include a suppressCount: N field, whose N value indicates
the number of events dropped in the preceding Suppression period.

suppressCount shows number of events dropped

In the examples below, Filter is the Function-level Filter expression:

1. Suppress by the value of the host field: Filter: true Key expression: host Number to allow: 1
Suppression period (sec): 30
Using a datagen sample as a source, generate at least 100 events over 2 minutes.

Result: One event per unique host value will be allowed in every 30s. Events without a host field will
not be suppressed.

2. Suppress by the value of the host and port tuple : Filter: true Key expression: `${host}:${port}`
Number to allow: 1 Suppression period (sec): 300

Result: One event per unique host : port tuple value will be allowed in every 300s.

3. To guarantee that suppression applies only to events with host and port , check for their presence
using a Filter: Filter: host!=undefined && port!=undefined Key expression: `${host}:${port}`
Number to allow: 1 Suppression period (sec): 300

4. Decorate events that qualify for suppression: Filter: true Key expression: `${host}:${port}`
Number to allow: 1 Suppression period (sec): 300 Drop suppressed events: No

Result: No events will be suppressed. But all qualifying events will gain an added field suppress=1 ,
which can be used downstream to further transform these events.

Examples

Suppression will also apply to events without a host or a port field. The reason is that if field is
not present, `${field}` results in the literal undefined .

Page 568 of 1835

;

For further use cases, see Cribl's Streaming Data Deduplication with Cribl blog post.

Each Worker Process executes this Function independently on its share of events. For details, see
Functions and Shared-Nothing Architecture.

Page 569 of 1835

The Tee Function tees events out to a command of choice, via stdin . The output is one JSON-formatted
event per line. You can send the events to (for example) a local file on the Cribl Stream worker. This can be
useful in verifying the data being processed in a Pipeline.

The Filesystem/NFS Destination o�ers similar capability, but only a�er the data leaves the Pipeline. Tee, by
comparison, can be inserted at any point in the Pipeline.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description of this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Command: Command to execute and receive events (via stdin) – one JSON-formatted event per line.

Args: Click + Add Arg to supply arguments to the command.

Restart on exit: Restart the process if it exits and/or we fail to write to it. Defaults to Yes .

Environment variables: Environment variables to set or overwrite. Click + Add Variable to add key/value
pairs.

Data is passed to the command through its stdin , using the following protocol:

First line: Metadata serialized in JSON, containing the following fields:

format: Serialization format for event. Defaults to JSON .

conf: Full Function configuration.

Remaining: Payload.

6.30. Tee

Usage

Communication Protocol

Page 570 of 1835

Assume that we are parsing PANOS Tra�ic logs, and want to see how they look at a particular step in the
processing Pipeline Weʼll assume that the Parser Function is already in place, so weʼll insert the Tee
Function at any (arbitrary) later point in the Pipeline.

The Tee Function itself requires only that we define the Command field. In this particular example, that
Command will be tee itself.

Weʼve also clicked + Add Arg, to specify a local output file in the resulting Args field. (A file path would
normally be the first argument to a tee command executed from the command line. The Cribl Stream user
must have write permission on the specified file path.)

Command: tee

Args: /opt/cribl/foo.log

In this first scenario, assume that we have the Parser configured to parse, but not keep any fields. A�er
changes are deployed and PANOS logs are received, if we tail foo.log , weʼd see the following:

Line 1: {"format":"json","conf":{"restartOnExit":true,"env":{},"command":"tee","args":

["/opt/cribl/foo.log"]}

Line 2: {"_raw":"Oct 09 10:19:15 DMZ-internal.nsa.gov 1,2019/10/09

10:19:15,001234567890002,TRAFFIC,drop,2304,2019/10/09

10:19:15,209.118.103.150,160.177.222.249,0.0.0.0,0.0.0.0,InternalServer,,,not-

applicable,vsys1,inside,z1-FW-Transit,ethernet1/2,,All traffic,2019/10/09

10:19:15,0,1,63712,443,0,0,0x0,udp,deny,60,60,0,1,2019/10/09

10:19:15,0,any,0,0123456789,0x0,Netherlands,10.0.0.0-10.255.255.255,0,1,0,policy-

deny,0,0,0,0,,DMZ-internal,from-policy,,,0,,0,,N/A,0,0,0,0,1202585d-b4d5-5b4c-aaa2-

d80d77ba456e,0","_time":1593185574.663,"host":"127.0.0.1"}

In Line 2 above, note that the _raw field makes up most of the contents, with only the _time and host
fields added.

Assume that we use the Tee Function, using the same Command and arguments, but weʼve modified the
Parser Function to retain five fields: receive_time , source_port , destination_port

Examples

Scenario A:

Scenario B:

Page 571 of 1835

bytes_received , and packets_received .

This time, if we tail foo.log , weʼll see something like the following. If you compare this output to the
previous output example, youʼll notice the five fields appended to this event:

Line 3: {"_raw":"Oct 09 10:19:15 DMZ-internal.nsa.gov 1,2019/10/09

10:19:15,001234567890002,TRAFFIC,drop,2304,2019/10/09

10:19:15,209.118.103.150,160.177.222.249,0.0.0.0,0.0.0.0,InternalServer,,,not-

applicable,vsys1,inside,z1-FW-Transit,ethernet1/2,,All traffic,2019/10/09

10:19:15,0,1,63712,443,0,0,0x0,udp,deny,60,60,0,1,2019/10/09

10:19:15,0,any,0,0123456789,0x0,Netherlands,10.0.0.0-10.255.255.255,0,1,0,policy-

deny,0,0,0,0,,DMZ-internal,from-policy,,,0,,0,,N/A,0,0,0,0,1202585d-b4d5-5b4c-aaa2-

d80d77ba456e,0","_time":1593185606.965,"host":"127.0.0.1","receive_time":"2019/10/09

10:19:15","source_port":"63712","destination_port":"443","bytes_received":"0","packets_r

eceived":"0"}

;

In this Functionʼs Command field, you can specify commands other than tee itself. For example:
By using nc as the command, and specifying localhost and a port number (as two separate
arguments), youʼll see event data being received via nc on the specified port.

Page 572 of 1835

The Trim Timestamp Function removes timestamp patterns from events, and (optionally) stores them in a
specified field.

This Function looks for a timestamp pattern that exists between the characters indicated by numeric
timestartpos and timeendpos fields. It removes timestartpos and timeendpos along with the
timestamp pattern.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description about this step in the Pipeline. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Field name: Name of field in which to save the timestamp. (If empty, timestamp will not be saved to a field.)

Remove the timestamp pattern (indicated by timestartpos and timeendpos) from _raw , and stash it in a
field called time_field .

Field name: time_field

Example event before:

6.31. Trim Timestamp

The Trim Timestamp Function, in current Cribl Stream versions, removes timestamps only from
events whose timestartpos value is set to 0 . If you need to strip timestamps from arbitrary
postions within events, instead use an Eval Function.

Usage

Example

Page 573 of 1835

To create this example payload, we selected Sample Data > Paste, pasted the _raw field's original contents
into the resulting modal, and then added the two required position fields:

Example event setup

Example event a�er:

In the Preview pane's OUT view, the original timestamp has been removed from _raw , and li�ed into the
new time_field we specified in the Function. The timestartpos and timeendpos fields have been
removed.

{"_raw": "2020-05-22 16:32:11,359 Event [Event=UpdateBillingProvQuote,
timestamp=1581426279, properties={JMSCorrelationID=NA, JMSMessageID=ID:ESP-
PD.D2BB2D95F857B:FA323D61, orderType=RatePlanFeatureChange, quotePriority=NORMAL}",
"timestartpos":0,
"timeendpos":23
}

{"_raw": "Event [Event=UpdateBillingProvQuote, timestamp=1581426279, properties=
{JMSCorrelationID=NA, JMSMessageID=ID:ESP-PD.D2BB2D95F857B:FA323D61,
orderType=RatePlanFeatureChange, quotePriority=NORMAL}",
"time_field":"2020-05-22 16:32:11,359"
}

Page 574 of 1835

Example event, saved and transformed

;

Page 575 of 1835

The Unroll Function accepts an array field – or an expression to evaluate an array field – and breaks/unrolls
the array into individual events.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description of this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Source field expression: Field in which to find/calculate the array to unroll. E.g.: _raw , _raw.split(/\n/) .
Defaults to _raw .

Destination field: Field (within the destination event) in which to place the unrolled value. Defaults to _raw .

Assume we want to break/unroll each line of this event:

Source field expression: _raw.split(/\n/)

6.32. Unroll

Usage

Example

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.5 38000 5356 ? Ss 2018 2:02
/lib/systemd/systemd --system --deserialize 28
root 2 0.0 0.0 0 0 ? S 2018 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S 2018 1:51 [ksoftirqd/0]
root 5 0.0 0.0 0 0 ? S< 2018 0:00 [kworker/0:0H]
root 7 0.0 0.0 0 0 ? S 2018 3:55 [rcu_sched]
root 8 0.0 0.0 0 0 ? S 2018 0:00 [rcu_bh]

Settings

The split() JavaScript method breaks _raw into an ordered set of substrings/values, puts these
values into an array, and returns the array.

Page 576 of 1835

Destination field: _raw

;

Event 1:
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

Event 2:
root 1 0.0 0.5 38000 5356 ? Ss 2018 2:02
/lib/systemd/systemd --system --deserialize 28

Event 3:
root 2 0.0 0.0 0 0 ? S 2018 0:00 [kthreadd]

Event 4:
root 3 0.0 0.0 0 0 ? S 2018 1:51 [ksoftirqd/0]

Event 5:
root 5 0.0 0.0 0 0 ? S< 2018 0:00 [kworker/0:0H]

Event 6:
root 7 0.0 0.0 0 0 ? S 2018 3:55 [rcu_sched]

Event 7:
root 8 0.0 0.0 0 0 ? S 2018 0:00 [rcu_bh]

Page 577 of 1835

The XML Unroll Function accepts a proper XML event with a set of elements, and converts the elements into
individual events.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description of this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Unroll elements regex: Path to the array to unroll. E.g.: ^root\.child\.ElementToUnroll$

Copy elements regex: Regex matching elements to copy into each unrolled event. E.g.: ^root\.
(childA|childB|childC)$

Unroll index field: Cribl Stream will add a field with this name, containing the 0-based index at which the
element was located within the event. In Splunk, this will be an index-time field. Supports nested addressing.
Name defaults to unroll_idx .

Pretty print: Whether to pretty print the output XML.

Assume that the following sample is ingested as a single event:

sample.xml

6.33. XML Unroll

Usage

Examples

Page 578 of 1835

Set up the XML Unroll Function using these settings:

Unroll elements regex: ^Parent\.Child$ Copy elements regex: ^Parent\.(myID|branchLocation)$

Output 4 Events:

Resulting Events

<?xml version="1.0" encoding="UTF-8"?>
<Parent>

<myID>123456</myID>
<branchLocation>US</branchLocation>
<Child>

<state>NY</state>
<city>New York</city>

</Child>
<Child>

<state>NJ</state>
<city>Edgewater</city>

</Child>
<Child>

<state>CA</state>
<city>Oakland</city>

</Child>
<Child>

<state>CA</state>
<city>San Francisco</city>

</Child>
</Parent>

If you insert this sample using Preview > Add a Sample > Paste a Sample, adjust Event Breaker
settings to add the sample as a single event. One way to do this is to add a regex Event Breaker that
(by design) will not match anything present in the sample. For example:
/[\n\r]+donotbreak(?!\s)/ . In current Cribl Stream versions, you can also use the built-in
Do Not Break Ruleset.

Page 579 of 1835

;

Event 1
<?xml version="1.0"?>
<Child>
<myID>123456</myID>
<branchLocation>US</branchLocation>
<state>NY</state>
<city>New York</city>

</Child>

Event 2
<?xml version="1.0"?>
<Child>
<myID>123456</myID>
<branchLocation>US</branchLocation>
<state>NJ</state>
<city>Edgewater</city>

</Child>

Event 3
<?xml version="1.0"?>
<Child>
<myID>123456</myID>
<branchLocation>US</branchLocation>
<state>CA</state>
<city>Oakland</city>

</Child>

Event 4
<?xml version="1.0"?>
<Child>
<myID>123456</myID>
<branchLocation>US</branchLocation>
<state>CA</state>
<city>San Francisco</city>

</Child>

Page 580 of 1835

The Prometheus Publisher Function allows for metrics to be published to a Prometheus-compatible metrics
endpoint. These can be upstream metrics received by Cribl Stream, or metrics derived from the output of
Cribl Streamʼs Publish Metrics or Aggregation Functions. A Prometheus instance is responsible for
collecting the metrics at that endpoint, and for performing its own processing of the metric data.

In the current Cribl Stream version, the endpoint is: http://<worker_node_IP>:<api-port>/metrics .
Within Cribl Stream, that endpoint redirects from http://<worker_node_IP>:9000/metrics to
http://<worker_node_IP>:9000/api/v1/metrics .

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description of this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Fields to publish: Wildcard list of fields to publish to the Prometheus endpoint.

Batch write interval: How o�en, in milliseconds, the contents should be published. Defaults to 5000 .

Passthrough mode: If set to No (the default), overrides the Final setting, and suppresses output to
downstream Functions' Destinations. Toggle to Yes to allow events to flow to consumers beyond the
Prometheus endpoint. In e�ect, when previewing the pipeline output what you'll see is your event fields will

6.34. Prometheus Publisher (Deprecated)

This Function is deprecated as of Cribl Stream 3.0. Please instead use the Prometheus Destination to
send metrics to Prometheus-compatible endpoints.

If used, this Function must follow any Publish Metrics or Aggregations Functions within the same
Pipeline. This is to ensure that any data not originating from a metrics input is transformed into
metrics format.

Usage

Advanced Settings

Page 581 of 1835

have strikethrough font applied to them. This does not mean the Prometheus function is not matching your
events but rather indicative of the Passthrough being disabled.

Update mode: On the default No setting, suppresses output to downstream Functions' Destinations.
(This overrides the Final setting.) Toggle to Yes to allow events to flow to consumers beyond the
Prometheus endpoint.

This example uses the same PANOS sample data as the Publish Metrics Function, and is similarly preceded in
a Pipeline by a Parser Function that extracts fields from the PANOS log.

Filter: Set as appropriate. Fields to publish: Set as appropriate. Weʼll use the default of * for this example.
Advanced settings: Accept defaults.

A�er committing and deploying changes, you should be able to use a curl command (-L needed to follow
the redirect mentioned above) to verify that metrics are being published, just a few seconds a�er data is
ingested on an idle system.

curl output

Now, we need to have Prometheus scrape the metrics. In this very basic example, you can add the target
endpoint to the prometheus.yml file, under the scrape_configs ‑> static_configs section. Specify the
endpoint in IP:port syntax, because Prometheus assumes (and requires) /metrics for all endpoints.

Example

$ curl -L http://<worker_node_IP>:9000/metrics
TYPE perf_192_168_1_248_bytes_sent counter

metric_192_168_1_248_bytes_sent
{destination_ip="160.177.222.249",inbound_interface="ethernet1/2",destination_port="443
60

TYPE perf_192_168_1_248_bytes_rcvd counter
metric_192_168_1_248_bytes_rcvd
{destination_ip="160.177.222.249",inbound_interface="ethernet1/2",destination_port="443
0

TYPE perf_192_168_1_248_pkts_sent counter

metric_192_168_1_248_pkts_sent
{destination_ip="160.177.222.249",inbound_interface="ethernet1/2",destination_port="443
1

TYPE perf_192_168_1_248_pkts_rcvd counter
metric_192_168_1_248_pkts_rcvd
{destination_ip="160.177.222.249",inbound_interface="ethernet1/2",destination_port="443
0

Page 582 of 1835

Restart Prometheus. Within just a few seconds, you should be able to use its query interface to retrieve
metrics published by Cribl Stream.

;

Page 583 of 1835

The Reverse DNS Function resolves hostnames from a numeric IP address, using a reverse DNS lookup.

Filter: Filter expression (JS) that selects data to feed through the Function. Defaults to true , meaning it
evaluates all events.

Description: Simple description of this Function. Defaults to empty.

Final: If toggled to Yes , stops feeding data to the downstream Functions. Defaults to No .

Lookup field name: Name of the field containing the IP address to look up.

Output field name: Name of the field in which to add the resolved hostname. Leave blank to overwrite the
lookup field.

Reload period (minutes): How o�en to refresh the DNS cache. Use 0 to disable refreshes. Defaults to 60
minutes.

Lookup field name: dest_ip Output field name: dest_host Result: See the dest_ip field, and the
newly created dest_host field, in the events.

6.35. Reverse DNS (deprecated)

This Function is deprecated. Use the DNS Lookup Function's reverse lookup feature instead.

Usage

Lookup Fields

If the field value is not in IPv4 or IPv6 format, the lookup is skipped.

Example

Page 584 of 1835

;

Page 585 of 1835

Cribl Stream can receive continuous data input from various Sources, including Splunk, HTTP, Elastic Beats,
Kinesis, Kafka, TCP JSON, and many others.

Push and Pull Sources

Collectors, the top group of Sources in Cribl Stream's UI, are designed to ingest data intermittently – in on-
demand bursts ("ad hoc collection"), or on preset schedules, or by "replaying" data from local or remote
stores:

Azure Blob Storage

Filesystem/NFS

Google Cloud Storage

REST/API Endpoint

S3

Script

Splunk Search

For background and instructions on using Collectors, see:

Collectors

Scheduling and Running

Job Limits

7. Sources

COLLECTOR Sources

Page 586 of 1835

Supported data Sources that send to Cribl Stream:

Syslog

TCP JSON

Splunk TCP

Splunk HEC

Amazon Kinesis Firehose

Prometheus Remote Write

HTTP/S (Bulk API)

Raw HTTP/S

Elasticsearch API

Metrics

SNMP Trap

TCP (Raw)

Datadog Agent

OpenTelemetry (OTel)

AppScope

Grafana

Loki

Windows Event Forwarder

Data from these Sources is normally sent to a set of Cribl Stream Workers through a load balancer. Some
Sources, such as Splunk forwarders, have native load-balancing capabilities, so you should point these
directly at Cribl Stream.

Supported Sources that Cribl Stream fetches data from:

Amazon Kinesis Streams

Amazon SQS

Amazon S3

Google Cloud Pub/Sub

Azure Event Hubs

PUSH Sources

PULL Sources

Page 587 of 1835

Azure Blob Storage

O�ice 365 Services

O�ice 365 Activity

O�ice 365 Message Trace

CrowdStrike

Prometheus Scraper

Kafka

Confluent Cloud

Splunk Search

Sources that supply information generated by Cribl Stream about itself or from files it owns; or, that move
data between Workers within your Cribl Stream deployment.

Datagen

Cribl Internal

System Metrics

Cribl HTTP

Cribl TCP

Cribl Stream (Deprecated)

File Monitor

Exec

For each Source type, you can create multiple definitions, depending on your requirements.

To configure Sources, select Data > Sources from Cribl Stream's global top nav (single-instance
deployments), or from a Worker Group's/Fleet's top nav (distributed deployments). On the resulting
Data Sources page's tiles or le� menu, select the desired type, then click + Add New.

To capture data from a single enabled Source, you can bypass the Preview pane, and instead capture directly
from a Manage Sources page. Just click the Live button beside the Source you want to capture.

System and Internal Sources

Configuring and Managing Sources

Capturing Source Data

Page 588 of 1835

Source > Live button

You can also start an immediate capture from within an enabled Source's config modal, by clicking the
modal's Live Data tab.

Source modal > Live Data tab

To accelerate your setup, Cribl Stream ships with several common Sources configured for typical listening
ports, but not switched on. Open, clone (if desired), modify, and enable any of these preconfigured Sources
to get started quickly:

Syslog – TCP Port 9514, UDP Port 9514

Splunk TCP – Port 9997

Splunk HEC – Port 8088

TCP JSON – Port 10070

TCP – Port 10060

HTTP – Port 10080

Elasticsearch API – Port 9200

SNMP Trap – Port 9162

Cribl Internal > CriblLogs – Internal

Cribl Internal > CriblMetrics – Internal

Preconfigured Sources

Backpressure Behavior and Persistent Queues

Page 589 of 1835

On the Destination side, you can configure how each Cribl Stream output will respond to a backpressure
situation – a situation where its in-memory queue is overwhelmed with data.

All Destinations default to Block mode, in which they will refuse to accept new data until the downstream
receiver is ready. Here, Cribl Stream will back-propagate block signals through the Source, all the way back to
the sender (if it supports backpressure, too).

All Destinations also support Drop mode, which will simply discard new events until the receiver is ready.

Several Destinations also support a Persistent Queue option to minimize data loss. Here, the Destination will
write data to disk until the receiver is ready. Then it will drain the disk-bu�ered data in FIFO (first in, first out)
order. You can also define fallback behavior when the queue's allotted disk space is full.

Push Sources' config modals provide a corresponding Persistent Queue Settings option for inbound
streaming data. When you enable this, you can choose between two trigger conditions: Smart Mode will
engage PQ upon backpressure from Destinations, whereas Always On Mode will use PQ as a bu�er for all
events.

For details about all the above modes and options, see Persistent Queues.

The S3 Source provides a configurable Advanced Settings > Socket timeout option, to prevent data loss
(partial downloading of logs) during backpressure delays.

When backpressure a�ects HTTP Sources (Splunk HEC, HTTP/S, Raw HTTP/S, and Kinesis Firehose),
Cribl Stream internal logs will show a 503 error code.

;

Persistent Queues

Persistent Queues, when engaged, slow down data throughput somewhat. It is redundant to enable
PQ on a Source whose upstream sender is configured to safeguard events in its own disk bu�er.

Other Backpressure Options

Diagnosing Backpressure Errors

Page 590 of 1835

Unlike other Cribl Stream Sources, Collectors are designed to ingest data intermittently, rather than
continuously. You can use Collectors to dispatch on‑demand (ad hoc) collection tasks, which fetch or
"replay" (re-ingest) data from local or remote locations.

Collectors also support scheduled periodic collection jobs – recurring tasks that can make batch collection
of stored data more like continual processing of streaming data. You configure Collectors prior to, and
independently from, your configuration of ad hoc versus scheduled collection runs.

Collectors are integral to Cribl Stream's larger story about optimizing your data throughput. Send full-fidelity
log and metrics data ("everything") to low-cost storage, and then use Cribl Stream Collectors to selectively
route ("replay") only needed data to your systems of analysis.

Cribl Stream currently provides the following Collector options:

Azure Blob – enables data collection and replay from Azure Blob Storage objects.

Filesystem/NFS – enables data collection and replay from local or remote filesystem locations.

Google Cloud Storage – enables data collection and replay from Google Cloud Storage buckets.

REST/API Endpoint – enables data collection and replay via REST API calls. Provides four Discover
options, to support progressively more complex (and dynamic) item enumerations.

S3 – enables data collection and replay from Amazon S3 buckets or S3-compatible stores.

Script – enables data collection and replay via custom scripts.

Splunk Search – enables data collection and replay from Splunk queries. Supports both simple and
complex queries, as well as real-time searches.

7.1. Collector Sources

Collector Resources

Video introduction to Data Collection, in < 2 minutes.

Video introduction to Data Collection Scheduling, in < 2 minutes.

Free, interactive try-out of Collectors in Cribl's Data Collection & Replay sandbox.

Using Collectors guides: S3 Storage and Replay | REST API Collectors |
Microso� Graph API Collection | ServiceNow API Collection | Creating a Custom Collector.

Collector Types

Page 591 of 1835

If you are exploring Collectors for the first time, the Filesystem/NFS Collector is the simplest to configure,
while the REST/API Collector o�ers the most complex configuration options.

You can configure a Cribl Stream Node to retrieve data from a remote system by selecting Collectors from the
top nav. Data collection is a multi-step process:

First, define a Collector instance. In this step, you configure collector-specific settings by selecting a
Collector type and pointing it at a specific target. (E.g., the target will be a directory if the type is Filesystem,
or an S3 bucket/path if the type is Amazon S3.)

Next, schedule or manually run the Collector. In this step, you configure either scheduled-job–specific or
run‑specific settings – such as the run Mode (Preview, Discovery, or Full Run), the Filter expression to match
the data against, the time range, etc.

When a Node receives this configuration, it prepares the infrastructure to execute a collection job.
A collection job is typically made up of one or more tasks that: discover the data to be fetched; fetch data that
match the run filter; and finally, pass the results either through the Routes or (optionally) into a specific
Pipeline and Destination.

You might process data from inherently non-streaming sources, such as REST endpoints, blob stores, etc.
Scheduled jobs enable you to emulate a data stream by scraping data from these sources in batches, on a set
interval.

You can schedule a specific job to pick up new data from the source – data that hadnʼt been picked up in
previous invocations of this scheduled job. This essentially transforms a non-streaming data source into a
streaming data source.

How Do Collectors Work

Select Monitoring (side or top nav) > System > Job Inspector to see the results of recent collection
runs. You can filter the display by Worker Group (in distributed deployments), and by run type and
run timing.

Scheduled Collection Jobs

Collectors in Distributed Deployments

Page 592 of 1835

In a distributed deployment, you configure Collectors at the Worker Group level, and Worker Nodes execute
the tasks. However, the Leader Node oversees the task distribution, and tries to maintain a fair balance
across jobs.

When Workers ask for tasks, the Leader will normally try to assign the next task from a job that has the least
tasks in progress. This is known as "Least-In-Flight Scheduling," and it provides the fairest task distribution
for most cases. If desired, you can change this default behavior by opening global ⚙ Settings (lower le�) >
General Settings > Job Limits, and then setting Job Dispatching to Round Robin.

Select Monitoring (side or top nav) > System > Job Inspector to view and manage pending, in-flight, and
completed collection jobs and their tasks.

Job Inspector: all the things

Here are the options available on the Job Inspector page:

All vs. Currently Scheduled tabs: Click Currently Scheduled to see jobs foward-scheduled for future
execution – including their cron schedule details, last execution, and next scheduled execution. Click All
to see all jobs initiated in the past, regardless of completion status.

More generally: In a distributed deployment, you configure Collectors and their jobs on individual
Worker Groups. But you configure Collectors' resource allocation globally in the Leader's global
⚙ Settings (lower le�) > General Settings > Job Limits section.

Because the Leader manages Collectors' state, if the Leader instance fails, Collection jobs will fail as
well. (This is unlike other Sources, where Worker Groups can continue autonomously receiving
incoming data if the Leader goes down.)

Monitoring and Inspecting Collection Jobs

Page 593 of 1835

Job categories (buttons): Select among Ad hoc, Scheduled, System, and Running. (At this level,
Scheduled means scheduled jobs already running or finished.)

Filters: Click the gear icon to open a drop-down with multiple options to filter the jobs shown within
your selected category.

Group selectors: Select one or more check boxes to display the Pause, Resume, etc., buttons shown
along the bottom.

Sortable headers: Click any column to reverse its sort direction.

Search bar: Click to filter displayed jobs by arbitrary strings.

Action buttons: For finished jobs, the icons (from le� to right) indicate: Re-run; Keep job artifacts; Copy
job artifacts; Delete job artifacts; and Display job logs in a modal. For running jobs, the options (again
from le� to right) are: Pause; Stop; Copy job artifacts; Delete job artifacts; and Live (show collection
status in a modal).

Last updated by: Dritan Bitincka

;

Page 594 of 1835

Cribl Stream supports collecting data, and replaying specific events, from Azure Blob Storage. This page
covers how to configure the Collector.

From the top nav of a Cribl Stream instance or Group, select Data > Sources, then select Collectors >
Azure Blob from the Data Sources page's tiles or the Sources le� nav. Click + Add New to open the
Azure Blob > New Collector modal, which provides the following options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., azure_42-a .

Auto-populate from: Optionally, select a predefined Destination that will be used to auto-populate Collector
settings. Useful when replaying data.

Container name: Container to collect from. This value can be a constant, or a JavaScript expression that can
be evaluated only at init time. E.g., referencing a Global Variable: myBucket-${C.vars.myVar} .

7.1.1. Azure Blob Storage

Configuring an Azure Blob Storage Collector

The sections described below are spread across several tabs. Click the tab links at le� to navigate
among tabs. Click Save when you've configured your Collector.

Collector Sources currently cannot be selected or enabled in the QuickConnect UI.

Cribl Stream supports data collection and replay from Azure's hot and cool access tiers, but not from
the archive tier – whose stated retrieval lag, up to several hours, cannot guarantee data availability.

Collector Settings

Container names can include only lowercase letters, numbers, and/or hyphens (-). This restriction is
imposed by Azure.

Authentication

Page 595 of 1835

Use the Authentication method buttons to select one of these options:

Manual: Use this default option to enter your Azure Storage connection string directly. Exposes a
Connection string field for this purpose. (If le� blank, Cribl Stream will fall back to
env.AZURE_STORAGE_CONNECTION_STRING .)

Secret: This option exposes a Connection string (text secret) drop-down, in which you can select a
stored secret that references an Azure Storage connection string. The secret can reside in Cribl Stream's
internal secrets manager or (if enabled) in an external KMS. A Create link is available if you need to
generate a new secret.

Path: The directory from which to collect data. Templating is supported (e.g.,
myDir/${datacenter}/${host}/${app}/). Time-based tokens are also supported (e.g.,
myOtherDir/${_time:%Y}/${_time:%m}/${_time:%d}/). More on templates and Filters.

Path extractors: Extractors allow using template tokens as context for expressions that enrich discovery
results.

Click + Add Extractor to add each extractor as a key-value pair, mapping a Token name on the le� (of the
form /<path>/${<token>}) to a custom JavaScript Extractor expression on the right (e.g.,
{host: value.toLowerCase()}).

Each expression accesses its corresponding <token> through the value variable, and evaluates the token
to populate event fields. Here is a complete example:

TOKEN EXPRESSION MATCHED VALUE EXTRACTED RESULT

/var/log/${foobar}
foobar: {program:
value.split('.')[0]}

/
var/log/syslog.1

{program: syslog,
foobar: syslog.1}

Recursive: If set to Yes (the default), data collection will recurse through subdirectories.

Include metadata: With the default Yes setting, Cribl Stream will include Azure Blob metadata in collected
events (at __collectible.metadata).

Include tags: With the default Yes setting, Cribl Stream will include Azure Blob tags in collected events
(at __collectible.tags). To prevent errors, toggle this to No when using a Shared Access Signature
connection string, especially on storage accounts that do not support Azure Blob index tags.

Optional Settings

Page 596 of 1835

Max batch size (objects): Maximum number of metadata objects to batch before recording as results.
Defaults to 10 . To override this limit in the Collector's Schedule/Run modal, use Advanced Settings >
Upper task bundle size.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Either authentication method uses an Azure Storage connection string in this format:
DefaultEndpointsProtocol=[http|https];AccountName=<your‐account‐name>;AccountKey=

<your‐account‐key>

A fictitious example, using Microso�'s recommended HTTPS option, is:
DefaultEndpointsProtocol=https;AccountName=storagesample;AccountKey=12345678...32

The Result Settings determine how Cribl Stream transforms and routes the collected data.

In this section, you can pass the data from this input to an external command for processing, before the data
continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will process its output (via
stdout).

Arguments: Click + Add Argument to add each argument to the command. You can drag arguments
vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order, to the input data
stream. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default

Connection String Format

Result Settings

Custom Command

Event Breakers

Page 597 of 1835

10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), Cribl Stream will send events to normal routing and event
processing. Toggle to No to select a specific Pipeline/Destination combination. The No setting exposes these
two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

The default Yes setting instead exposes this field:

Pre-processing Pipeline: Pipeline to process results before sending to Routes. Optional.

This field is always exposed:

Throttling: Rate (in bytes per second) to throttle while writing to an output. Also takes values with
multiple-byte units, such as KB , MB , GB , etc. (Example: 42 MB .) Default value of 0 indicates no
throttling.

Advanced Settings enable you to customize post-processing and administrative options.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Fields

Result Routing

You might disable Send to Routes when configuring a Collector that will connect data from a specific
Source to a specific Pipeline and Destination. This keeps the Collector's configuration self‑contained
and separate from Cribl Stream's routing table for live data – potentially simplifying the Routes
structure.

Advanced Settings

Page 598 of 1835

Time to live: How long to keep the job's artifacts on disk a�er job completion. This also a�ects how long a
job is listed in Job Inspector. Defaults to 4h .

Remove Discover fields : List of fields to remove from the Discover results. This is useful when discovery
returns sensitive fields that should not be exposed in the Jobs user interface. You can specify wildcards (such
as aws*).

Resume job on boot: Toggle to Yes to resume ad hoc collection jobs if Cribl Stream restarts during the jobs'
execution.

See these resources that demonstrate how to replay data from object storage. Both are written around
Amazon S3-compatible stores, but the general principles apply to Azure blobs as well:

Data Collection & Replay sandbox: Step-by-step tutorial, in a hosted environment, with all inputs and
outputs preconfigured for you. Takes about 30 minutes.

Using S3 Storage and Replay: Guided walk-through on setting up your own replay.

In the Discover phase, the first available Worker returns the list of files to the Leader Node. In the Collect
phase, Cribl Stream spreads the list of files to process spread across 1..N Workers, based on file size, with the
goal of distributing tasks as evenly as possible across Workers. These Workers then stream in their assigned
files from the remote Azure Blob Storage location.

Last updated by: Dritan Bitincka

;

Replay

How the Collector Pulls Data

Page 599 of 1835

Cribl Stream supports collecting data from a locally mounted filesystem location that is available on all
Worker Nodes.

From the top nav of a Cribl Stream instance or Group, select Data > Sources, then select Collectors >
Filesystem from the Data Sources page's tiles or the Sources le� nav. Click + Add New to open the
Filesystem > New Collector modal, which provides the following options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., DysonV11Roomba960 .

Auto-populate from: Select a Destination with which to auto-populate Collector settings. Useful when
replaying data.

Directory: The directory from which to collect data. Templating is supported (e.g.,
/myDir/${host}/${year}/${month}/). You can also use templating to specify (e.g.) a Splunk bucket from
which to collect. Symlinks will not be followed. More on templates and Filters.

Path extractors: Extractors allow using template tokens as context for expressions that enrich discovery
results.

Click + Add Extractor to add each extractor as a key-value pair, mapping a Token name on the le� (of the
form /<path>/${<token>}) to a custom JavaScript Extractor expression on the right (e.g.,
{host: value.toLowerCase()}).

7.1.2. Filesystem/NFS

Configuring a Filesystem Collector

The sections described below are spread across several tabs. Click the tab links at le� to navigate
among tabs. Click Save when you've configured your Collector.

Collector Sources currently cannot be selected or enabled in the QuickConnect UI.

Collector Settings

Optional Settings

Page 600 of 1835

Each expression accesses its corresponding <token> through the value variable, and evaluates the token
to populate event fields. Here is a complete example:

TOKEN EXPRESSION MATCHED VALUE EXTRACTED RESULT

/var/log/${foobar}
foobar: {program:
value.split('.')[0]}

/
var/log/syslog.1

{program: syslog,
foobar: syslog.1}

Recursive: If set to Yes (the default), data collection will recurse through subdirectories.

Max batch size (files): Maximum number of lines written to the discovery results files each time. Defaults to
10 . To override this limit in the Collector's Schedule/Run modal, use Advanced Settings > Upper task bundle
size.

Destructive: If set to Yes , the Collector will delete files a�er collection. Defaults to No .

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

The Result Settings determine how Cribl Stream transforms and routes the collected data.

In this section, you can pass the data from this input to an external command for processing, before the data
continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will process its output (via
stdout).

Arguments: Click + Add Argument to add each argument to the command. You can drag arguments
vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete events.

Cribl Stream automatically detects gzip compression where a file name ends in .gz .

Result Settings

Custom Command

Event Breakers

Page 601 of 1835

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order, to the input data
stream. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), Cribl Stream will send events to normal routing and event
processing. Toggle to No to select a specific Pipeline/Destination combination. The No setting exposes these
two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

The default Yes setting instead exposes this field:

Pre-processing Pipeline: Pipeline to process results before sending to Routes. Optional.

This field is always exposed:

Throttling: Rate (in bytes per second) to throttle while writing to an output. Also takes values with
multiple-byte units, such as KB , MB , GB , etc. (Example: 42 MB .) Default value of 0 indicates no
throttling.

Pre-processing Pipeline: Pipeline to process results before sending to Routes. Optional, and available only
when Send to Routes is toggled to Yes .

Fields

Result Routing

You might disable Send to Routes when configuring a Collector that will connect data from a specific
Source to a specific Pipeline and Destination. This keeps the Collector's configuration self‑contained
and separate from Cribl Stream's routing table for live data – potentially simplifying the Routes
structure.

Page 602 of 1835

Throttling: Rate (in bytes per second) to throttle while writing to an output. Also takes values with multiple-
byte units, such as KB , MB , GB , etc. (Example: 42 MB .) Default value of 0 indicates no throttling.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Advanced Settings enable you to customize post-processing and administrative options.

Time to live: How long to keep the job's artifacts on disk a�er job completion. This also a�ects how long a
job is listed in Job Inspector. Defaults to 4h .

Remove Discover fields : List of fields to remove from the Discover results. This is useful when discovery
returns sensitive fields that should not be exposed in the Jobs user interface. You can specify wildcards (such
as aws*).

Resume job on boot: Toggle to Yes to resume ad hoc collection jobs if Cribl Stream restarts during the jobs'
execution.

When you run a Filesystem/NFS Collector in Discovery mode, the first available Worker returns the list of
available files to the Leader Node.

In Full Run mode, the Leader distributes the list of files to process across 1..N Workers as evenly as possible,
based on file size. These Workers then stream in their assigned files from the filesystem location.

Last updated by: Dritan Bitincka

;

Advanced Settings

How the Collector Pulls Data

Page 603 of 1835

Cribl Stream supports collecting data objects from Google Cloud Storage buckets. This page covers how to
configure the Collector.

From the top nav of a Cribl Stream instance or Group, select Data > Sources, then select Collectors >
Google Cloud Storage from the Data Sources page's tiles or the Sources le� nav. Click + Add New to open
the Google Cloud Storage > New Collector modal, which provides the following options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., gcs_24-7 .

Auto-populate from: Optionally, select a predefined Destination that will be used to auto-populate Collector
settings. Useful when replaying data.

Bucket name: Google Cloud Storage bucket to collect from. This value can be a constant, or a JavaScript
expression that can be evaluated only at init time. E.g., referencing a Global Variable:
myBucket-${C.vars.myVar} .

Use the Authentication method buttons to select one of these options:

Manual: Use this default option to enter your Google Cloud Storage connection string directly. Exposes a
Service account credentials field for this purpose.

7.1.3. Google Cloud Storage

Configuring a Google Cloud Storage Collector

The sections described below are spread across several tabs. Click the tab links at le� to navigate
among tabs. Click Save when you've configured your Collector.

Collector Sources currently cannot be selected or enabled in the QuickConnect UI.

Collector Settings

Authentication

Page 604 of 1835

The Service account credentials are the contents of a Google Cloud service account credentials (JSON
keys) file. To upload a file, click the upload button at this field's upper right.

Secret: This option exposes a Service account credentials (text secret) drop-down, in which you can
select a stored secret that references an Google Cloud Storage connection string. The secret can reside
in Cribl Stream's internal secrets manager or (if enabled) in an external KMS. A Create link is available if
you need to generate a new secret.

Path: The directory from which to collect data. Templating is supported (e.g.,
myDir/${datacenter}/${host}/${app}/). Time-based tokens are also supported (e.g.,
myOtherDir/${_time:%Y}/${_time:%m}/${_time:%d}/). More on templates and Filters.

Path extractors: Extractors allow using template tokens as context for expressions that enrich discovery
results.

Click + Add Extractor to add each extractor as a key-value pair, mapping a Token name on the le� (of the
form /<path>/${<token>}) to a custom JavaScript Extractor expression on the right (e.g.,
{host: value.toLowerCase()}).

Each expression accesses its corresponding <token> through the value variable, and evaluates the token
to populate event fields. Here is a complete example:

TOKEN EXPRESSION MATCHED VALUE EXTRACTED RESULT

/var/log/${foobar}
foobar: {program:
value.split('.')[0]}

/
var/log/syslog.1

{program: syslog,
foobar: syslog.1}

Endpoint: Google Cloud Storage service endpoint. If empty, the endpoint will be automatically constructed
using the service account credentials.

Disable time filter: Toggle to Yes if your Run or Schedule configuration specifies a date range and no events
are being collected. This will disable the Collector's event time filtering to prevent timestamp conflicts.

Recursive: If set to Yes (the default), data collection will recurse through subdirectories.

You can access service account credentials in the Google Cloud Console under Service Accounts >
<service account associated with bucket> > Keys. The key file must be in JSON format.

Optional Settings

Page 605 of 1835

Max batch size (objects): Maximum number of metadata objects to batch before recording as results.
Defaults to 10 . To override this limit in the Collector's Schedule/Run modal, use Advanced Settings >
Upper task bundle size.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

The Result Settings determine how Cribl Stream transforms and routes the collected data.

In this section, you can pass the data from this input to an external command for processing, before the data
continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will process its output (via
stdout).

Arguments: Click + Add Argument to add each argument to the command. You can drag arguments
vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order, to the input data
stream. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Result Settings

Custom Command

Event Breakers

Fields

Page 606 of 1835

Send to Routes: If set to Yes (the default), Cribl Stream will send events to normal routing and event
processing. Toggle to No to select a specific Pipeline/Destination combination. The No setting exposes these
two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

The default Yes setting instead exposes this field:

Pre-processing Pipeline: Pipeline to process results before sending to Routes. Optional.

This field is always exposed:

Throttling: Rate (in bytes per second) to throttle while writing to an output. Also takes values with
multiple-byte units, such as KB , MB , GB , etc. (Example: 42 MB .) Default value of 0 indicates no
throttling.

Pre-processing Pipeline: Pipeline to process results before sending to Routes. Optional, and available only
when Send to Routes is toggled to Yes .

Throttling: Rate (in bytes per second) to throttle while writing to an output. Also takes values with multiple-
byte units, such as KB , MB , GB , etc. (Example: 42 MB .) Default value of 0 indicates no throttling.

Advanced Settings enable you to customize post-processing and administrative options.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Time to live: How long to keep the job's artifacts on disk a�er job completion. This also a�ects how long a
job is listed in Job Inspector. Defaults to 4h .

Result Routing

You might disable Send to Routes when configuring a Collector that will connect data from a specific
Source to a specific Pipeline and Destination. This keeps the Collector's configuration self‑contained
and separate from Cribl Stream's routing table for live data – potentially simplifying the Routes
structure.

Advanced Settings

Page 607 of 1835

Remove Discover fields : List of fields to remove from the Discover results. This is useful when discovery
returns sensitive fields that should not be exposed in the Jobs user interface. You can specify wildcards (such
as aws*).

Resume job on boot: Toggle to Yes to resume ad hoc collection jobs if Cribl Stream restarts during the jobs'
execution.

Your Google Cloud service account will need, at a minimum, roles and permissions that enable you to set up
a new bucket or modify an existing one:

Storage Legacy Bucket Reader: roles/storage.legacyBucketReader

Storage Legacy Object Reader: roles/storage.legacyObjectReader

storage.buckets.get

storage.objects.get

storage.objects.list

Google Cloud Roles and Permissions

Roles

Permissions

Page 608 of 1835

Editing Google Cloud roles and permissions

For additional details, see the Google Cloud Access Control topic.

See these resources that demonstrate how to replay data from object storage. Both are written around
Amazon S3-compatible stores, but the general principles apply to Google Cloud buckets as well:

Data Collection & Replay sandbox: Step-by-step tutorial, in a hosted environment, with all inputs and
outputs preconfigured for you. Takes about 30 minutes.

Using S3 Storage and Replay: Guided walk-through on setting up your own replay.

Replay

How the Collector Pulls Data

Page 609 of 1835

In the Discover phase, the first available Worker returns the list of files to the Leader Node. In the Collect
phase, Cribl Stream spreads the list of files to process spread across 1..N Workers, based on file size, with the
goal of distributing tasks as evenly as possible across Workers. These Workers then stream in their assigned
files from the remote Google Cloud Storage location.

Last updated by: Dritan Bitincka

;

Page 610 of 1835

Cribl Stream supports collecting data from REST endpoints. This Collector provides multiple Discover types
and Collect options.

From the top nav of a Cribl Stream instance or Group, select Data > Sources, then select Collectors > REST
from the Data Sources page's tiles or the Sources le� nav. Click + Add New to open the REST >
New Collector modal, which provides the following options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., rest42json .

Within the Discover accordion, the Discover type drop-down provides four options, corresponding to
di�erent use cases. Each Discover type selection will expose a di�erent set of Collector Settings fields.
Below, we cover the Discover types from simplest to most-complex.

7.1.4. REST / API Endpoint

For usage examples, see Using REST / API Collectors and our adjacent guides.

Configuring a REST Collector

The sections described below are spread across several tabs, some of which contain collapsible
accordions. Click the tab links at le� to navigate among tabs. Click Save when you've configured your
Collector.

See Formatting Expressions below for guidance on this Collector's specific requirement to enter
JavaScript expressions as template literals.

Collector Sources currently cannot be selected or enabled in the QuickConnect UI.

Collector Settings

Discover Settings

Page 611 of 1835

Discover type: None matches cases where one simple API call will retrieve all the data you need. This
default option suppresses the Discover stage. Use the modal's Collect section to specify the endpoint
and other details. Cribl Stream will assign the Collect task to a single Worker. (Example: Collect a list of
configured Cribl Stream Pipelines.)

Discover type: Item List matches cases where you want to enumerate a known list of Discover items to
retrieve. (Examples: Collect network tra�ic data that's tagged with specific subnets; or collect weather
data for a known list of ZIP codes.) Discovery will return one Collect task per item in the list, and
Cribl Stream will spread each of those Collect tasks across all available Workers.

Discover type: JSON Response provides a Discover result field where you can (optionally) define
Discover tasks as a JSON array of objects. Each entry returned by Discover will generate a Collect task,
and Cribl Stream will spread each of those Collect tasks across all available Workers. (Example: Collect
data for specific geo locations in the National Weather Service API's stream of worldwide weather data.
This particular API requires multiple parameters in the request URL – latitude, longitude, etc. – so
Item List discovery would not work.)

Discover type: HTTP Request matches cases where you need to dynamically discover what you can
collect from a REST endpoint. This Discover type most fully exploits Cribl Stream's Discover-and-then-
Collect architecture. (Example: Make a REST call to get a list of available log files, then run Collect
against each of those files.) Each item returned will generate a Collect task, and Cribl Stream will spread
each of those Collect tasks across all available Workers. As of Cribl Stream 3.0.2, this Discover type
supports XML responses.

Within the Collect accordion, the following options appear for Discover type: None , as well as for all other
Discover type selections:

Collect URL: URL (constant or JavaScript expression) to use for the Collect operation.

Collect method: Select the HTTP verb to use for the Collect operation – GET , POST , or POST with body .

Collect Settings (Common)

Where a URL (path or parameters) includes variables that might contain unsafe ASCII characters,
encode these variables using C.Encode.uri(paramName) . (Examples of unsafe characters are:
space, $, / , = .) Example URL with encoding: 'http://localhost:9000/api/v1/system/logs/'
+ C.Encode.uri(`${id}`) .

Request parameters are not contained directly in the URL are automatically encoded. Cribl Stream
URLs/expressions specified in the Collect URL field follow redirects.

Page 612 of 1835

Collect POST body: Template for POST body to send with the Collect request. (This field is displayed only
when you set the Collect method to POST with body .) You can reference parameters from the Discover
response using template params of the form: `${variable}` .

Collect parameters: Optional HTTP request parameters to append to the request URL. These refine or
narrow the request. Click + Add Parameter to add parameters as key-value pairs:

Name: Field name.

Value: JavaScript expression to compute the field's value, normally enclosed in backticks
(e.g., `${earliest}`). Can also be a constant, enclosed in single quotes ('earliest'). Values without
delimiters (e.g., earliest) are evaluated as strings.

Collect headers:: Click + Add Header to (optionally) add collection request headers as key-value pairs:

Name: Header name.

Value: JavaScript expression to compute the header's value, normally enclosed in backticks
(e.g., `${earliest}`). Can also be a constant, enclosed in single quotes ('earliest'). Values without
delimiters (e.g., earliest) are evaluated as strings.

Pagination: For the options exposed by this drop-down list, see the Pagination section below.

Authentication: For the options within this accordion, see the Authentication Settings section below.

By adding the appropriate Collect headers, you can specify authentication based on API keys, as an
alternative to the Authentication: Basic or Login options below.

Time Range Variables

The following fields accept `${earliest}` and `${latest}` variables, which reference any
Time Range values that have been set in manual or scheduled collection jobs:

Collect URL, Collect parameters, Collect headers

Discover URL, Discover parameters, Discover headers.

As an example, here is a Collect URL entry using these variables:
http://localhost/path?from=${earliest}&to=${latest}

Both variables are formatted as UNIX epoch time, in seconds units. When using them in contexts that
require milliseconds resolution, multiply them by 1,000 to convert to ms.

Page 613 of 1835

Use this drop-down list to select the pagination scheme for collection results. Defaults to None . The other
options, expanded below, are:

Response Body Attribute / Response Header Attribute

RFC 5988 – Web Linking

O�set/Limit

Page/Size

Select Response Body Attribute to extract a value from the response body that identifies the next page of
data to retrieve.

Select Response Header Attribute to extract this next-page value from the response header. Either of
these selections exposes two additional fields:

Response attribute: The attribute name in the response payload that contains next-page information. If
you have multiple attributes with the same name, you can provide the path to the one you need, e.g.,
foo.0.bar .

Max pages: The maximum number of pages to retrieve. Set to 0 to retrieve all pages.

Select this option with APIs that follow RFC 5988 conventions to provide the next-page link in a header. This
selection exposes three additional fields:

Next page relation name: Header substring that refers to the next page in the result set. Defaults to next ,
corresponding to the following example link header:
<https://myHost/curPage>; rel="self" <https://myHost/nextPage>; rel="next"

Current page relation name: Optionally, specify the relation name within the link header that refers to the
current result set. In this same example, rel="self" refers to the current page of results:
<https://myHost/curPage>; rel="self" <https://myHost/nextPage>; rel="next"

Max pages: The maximum number of pages to retrieve. Defaults to 50 pages. Set to 0 to retrieve all pages.

Pagination

Response Body Attribute / Response Header Attribute

RFC 5988 – Web Linking

O�set/Limit

Page 614 of 1835

Select this option to receive data from APIs that use o�set/limit pagination. This selection exposes several
additional fields:

O�set field name: Query string parameter that sets the index from which to begin returning records. E.g.:
/api/v1/query?term=cribl&limit=100&offset=0 . Defaults to offset .

Starting o�set: (Optional) o�set index from which to start request. Defaults to undefined, which will start
collection from the first record.

Limit field name: Query string parameter to set the number of records retrieved per request. E.g.:
/api/v1/query?term=cribl&limit=100&offset=0 . Defaults to limit .

Limit: Maximum number of records to collect per request. Defaults to 50 .

Total record count field name: Identifies the attribute, within the response, that contains the total number
of records for the query.

Max pages: The maximum number of pages to retrieve. Defaults to 50 . Set to 0 to retrieve all pages.

Zero-based index: Toggle to Yes to indicate that the requested data's first record is at index 0 . The default
(No) indicates that the first record is at index 1 .

Select this option to receive data from APIs that use page/size pagination. This selection exposes several
additional fields:

Page number field name: Query string parameter that sets the page index to be returned. E.g.:
/api/v1/query?term=cribl&page_size=100&page_number=0 . Defaults to page .

Starting page number: (Optional) page number from which to start request. Defaults to undefined, which
will start collection from the first page.

Page size field name: Query string parameter to set the number of records retrieved per request. E.g.:
/api/v1/query?term=cribl&page_size=100&page_number=0 . Defaults to size .

Page size: Maximum number of records to collect per page. Defaults to 50 .

Total page count field name: Identifies the attribute, within the response, that contains the total number of
pages for the query.

Total record count field name: Identifies the attribute, within the response, that contains the total number
of records for the query.

Page/Size

Page 615 of 1835

Max pages: The maximum number of pages to retrieve. Defaults to 50 . Set to 0 to retrieve all pages.

Zero-based index: Toggle to Yes to indicate that the requested data's first record is at index 0 . The default
(No) indicates that the first record is at index 1 .

In the Authentication accordion, use the buttons to select one of these options:

None: Don't use authentication. Compatible with REST servers like AWS, where you embed a secret
directly in the request URL.

Basic: Displays Username and Password fields for you to enter HTTP Basic authentication credentials.

Basic (credentials secret): Provide username and password credentials referenced by a secret. Select a
stored text secret in the resulting Credentials secret drop-down, or click Create to configure a new
secret.

Login: Enables you to specify several credentials, then perform a POST to an endpoint during the
Discover operation. The POST response returns a token, which Cribl Stream uses for later Collect
operations. Exposes multiple extra fields – see Login Authentication below.

Login (credentials secret): Like Login, except that you specify a secret referencing the credentials,
rather than the credentials themselves. Exposes multiple extra fields – see Login Secret Authentication
below.

OAuth: Enables you to directly enter credentials for authentication via the OAuth protocol. Exposes
multiple extra fields – see OAuth Authentication below.

OAuth (text secret): Like the OAuth option, except that you specify a stored secret referencing the
credentials. Exposes multiple extra fields – see OAuth Secret Authentication below.

Selecting Login exposes the following additional fields:

Login URL: URL for the login API call, which is expected to be a POST call.

Username: Login username.

Password: Login password.

Authentication Settings

Login Authentication

Page 616 of 1835

POST body: Template for POST body to send with the login request. The ${username} and
${password} variables specify the corresponding credentials' locations in the message.

Token attribute: Path to the token attribute in the login response body. Supports nested attributes.

Authorize expression: JavaScript expression used to compute the Authorization header to pass in
Discover and Collect calls. Uses ${token} to reference the token obtained from the login POST request.

Authentication headers: Optionally, click + Add Header for each custom auth header you want to
define. In the resulting table, enter each header row's Name.

The corresponding Value is a JavaScript expression to compute the header's value. This can also
evaluate to a constant. Values not formatted as expressions – e.g., earliest instead of
`${earliest}` – will be evaluated as strings.

Selecting Login (credentials secret) exposes the following additional fields:

Login URL: Endpoint for the login API call, which is expected to be a POST call.

Credentials secret: Select a stored text secret in this drop-down, or click Create to configure a new
secret.

POST body: Template for POST body to send with the login request. The ${username} and
${password} variables specify the corresponding credentials' locations in the message.

Token attribute: Path to the token attribute in the login response body. Supports nested attributes.

Authorize expression: JavaScript expression used to compute the Authorization header to pass in
Discover and Collect calls. Uses ${token} to reference the token obtained from the login POST request.

Authentication headers: Optionally, click + Add Header for each custom auth header you want to
define. In the resulting table, enter each header row's Name.

The corresponding Value is a JavaScript expression to compute the header's value. This can also
evaluate to a constant. Values not formatted as expressions – e.g., earliest instead of
`${earliest}` – will be evaluated as strings.

Selecting OAuth exposes the following additional fields:

Login Secret Authentication

OAuth Authentication

Page 617 of 1835

Login URL: Endpoint for the OAuth API call, which is expected to be a POST call.

Client secret parameter: The name of the parameter to send with the Client secret value.

Client secret value: The OAuth access token to authorize requests.

Extra authentication parameters: Optionally, click + Add parameter for each additional OAuth request
parameter you want to send in the body of POST requests. Automatically sets the Content‐Type
header to application/x‐www‐form‐urlencoded .

In the resulting table, enter each parameter row's Name. The corresponding Value is a JavaScript
expression to compute the parameter's value. This can also evaluate to a constant. Values not formatted
as expressions – e.g., earliest instead of `${earliest}` – will be evaluated as strings.

Token attribute: Path to the token attribute in the login response body. Supports nested attributes.

Authorize expression: JavaScript expression used to compute the Authorization header to pass in
Discover and Collect calls. Uses ${token} to reference the token obtained from the login POST request.

Authentication headers: Optionally, click + Add Header for each custom auth header you want to
define. In the resulting table, enter each header row's Name.

The corresponding Value is a JavaScript expression to compute the header's value. This can also
evaluate to a constant. Values not formatted as expressions – e.g., earliest instead of
`${earliest}` – will be evaluated as strings.

Selecting OAuth (text secret) exposes the following additional fields:

Login URL: Endpoint for the OAuth API call, which is expected to be a POST call.

Client secret parameter: The name of the parameter to send with the Client secret value.

Client secret value (text secret): Select a stored text secret in this drop-down, or click Create to
configure a new secret.

Extra authentication parameters: Optionally, click + Add parameter for each additional OAuth request
parameter you want to send in the body of POST requests. Automatically sets the Content‐Type
header to application/x‐www‐form‐urlencoded .

In the resulting table, enter each parameter row's Name. The corresponding Value is a JavaScript
expression to compute the parameter's value. This can also evaluate to a constant. Values not formatted

OAuth Secret Authentication

Page 618 of 1835

as expressions – e.g., earliest instead of `${earliest}` – will be evaluated as strings.

Token attribute: Path to the token attribute in the login response body. Supports nested attributes.

Authorize expression: JavaScript expression used to compute the Authorization header to pass in
Discover and Collect calls. Uses ${token} to reference the token obtained from the login POST request.

Authentication headers: Optionally, click + Add Header for each custom auth header you want to
define. In the resulting table, enter each header row's Name.

The corresponding Value is a JavaScript expression to compute the header's value. This can also
evaluate to a constant. Values not formatted as expressions – e.g., earliest instead of
`${earliest}` – will be evaluated as strings.

Request Timeout (secs): Here, you can set a maximum time period (in seconds) for an HTTP request to
complete before Cribl Stream treats it as timed out. Defaults to 0 , which disables timeout metering.

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Disable time filter: Toggle to Yes if your Run or Schedule configuration specifies a date range and no events
are being collected. This will disable the Collector's event time filtering to prevent timestamp conflicts.

Safe headers: Optionally, list headers that you consider safe to log in plain text. Separate the header names
with tabs or hard returns.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

For Discover types other than None , Cribl Stream exposes additional fields specific to the selected Discover
type.

Setting the Discover type to Item List exposes this additional field above the Common Collector Settings:

Optional Settings

Settings By Discover Type

Discover Type: Item List

Page 619 of 1835

Discover items: List of items to return from the Discover task. Each returned item will generate a Collect task,
and can be referenced using ${id} in the Collect URL, the Collect parameters, or the Collect headers.

Setting the Discover type to JSON Response exposes these additional fields above the Common Collector
Settings:

Discover result: Allows hard-coding the Discover result. Must be a JSON object. Works with the Discover data
field.

Discover data field: Within the response, this is the name of the field that contains discovery results. (Leave
blank if the result is an array.) Sample JSON entry:

In an XML response, this is the name of the element that contains discovery results. Sample XML entry:

Setting the Discover type to HTTP Request exposes these additional fields above the Common Collector
Settings:

Discover URL: Enter the URL to use for the Discover operation. This can be a constant URL, or a JavaScript
expression to derive the URL.

Discover Type: JSON Response

items, json: { items: [{id: 'first'},{id: 'second'}] }

result.items
<response>
<items>
<element>
<id>first</id>
</element>
<element>
<id>second</id>
</element>
</items>
</response>

Discover Type: HTTP Request

Where a URL (path or parameters) includes variables that might contain unsafe ASCII characters,
encode these variables using C.Encode.uri(paramName) . (Examples of unsafe characters are:
space, $, / , = .) Example URL with encoding:
'http://localhost:9000/api/v1/system/logs/' + C.Encode.uri(`${id}`) .

Page 620 of 1835

Discover method: Select the HTTP verb to use for the Discover operation – GET , POST , or POST with
body .

Discover POST body: Template for POST body to send with the Discover request. (This field is displayed only
when you set the Discover method to POST with body .)

Discover parameters: Optional HTTP request parameters to append to the Discover request URL. These
refine or narrow the request. Click + Add Parameter to add parameters as key-value pairs:

Name: Parameter name.

Value: JavaScript expression to compute the parameter's value, normally enclosed in backticks
(e.g., `${earliest}`). Can also be a constant, enclosed in single quotes ('earliest'). Values without
delimiters (e.g., earliest) are evaluated as strings.

Discover headers: Optional Discover request headers.: Click + Add Header to add headers as key-value
pairs:

Name: Header name.

Value: JavaScript expression to compute the header's value, normally enclosed in backticks
(e.g., `${earliest}`). Can also be a constant, enclosed in single quotes ('earliest'). Values without
delimiters (e.g., earliest) are evaluated as strings.

Discover data field: Within the response JSON, name of the field that contains Discover results. Leave blank
if the result is an array.

The Result Settings determine how Cribl Stream transforms and routes the collected data.

In this section, you can pass the data from this input to an external command for processing, before the data
continues downstream.

Request parameters are not contained directly in the URL are automatically encoded. Cribl Stream
URLs/expressions specified in the Discover URL field follow redirects.

The following sections describe the Collector Settings' remaining tabs, whose settings and content
apply equally to all Discover type selections.

Result Settings

Custom Command

Page 621 of 1835

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will process its output (via
stdout).

Arguments: Click + Add Argument to add each argument to the command. You can drag arguments
vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order, to the input data
stream. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), Cribl Stream will send events to normal routing and event
processing. Toggle to No to select a specific Pipeline/Destination combination. The No setting exposes these
two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

The default Yes setting instead exposes this field:

Pre-processing Pipeline: Pipeline to process results before sending to Routes. Optional.

This field is always exposed:

Event Breakers

Fields

Result Routing

Page 622 of 1835

Throttling: Rate (in bytes per second) to throttle while writing to an output. Also takes values with
multiple-byte units, such as KB , MB , GB , etc. (Example: 42 MB .) Default value of 0 indicates no
throttling.

Pre-processing Pipeline: Pipeline to process results before sending to Routes. Optional, and available only
when Send to Routes is toggled to Yes .

Throttling: Rate (in bytes per second) to throttle while writing to an output. Also takes values with multiple-
byte units, such as KB , MB , GB , etc. (Example: 42 MB .) Default value of 0 indicates no throttling.

Advanced Settings enable you to customize post-processing and administrative options.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Time to live: How long to keep the job's artifacts on disk a�er job completion. This also a�ects how long a
job is listed in Job Inspector. Defaults to 4h .

Remove Discover fields : List of fields to remove from the Discover results. This is useful when discovery
returns sensitive fields that should not be exposed in the Jobs user interface. You can specify wildcards (such
as aws*).

Resume job on boot: Toggle to Yes to resume ad hoc collection jobs if Cribl Stream restarts during the jobs'
execution.

JavaScript expression fields in this REST/API Collector behave di�erently from those elsewhere in
Cribl Stream. Here, you must enter expressions as template literals, with placeholders referencing variables
and JS functions. Here are a few examples:

You might disable Send to Routes when configuring a Collector that will connect data from a specific
Source to a specific Pipeline and Destination. One use case might be a REST Collector that gathers a
known, simple type of data from a single endpoint. This approach keeps the Collector's configuration
self‑contained and separate from Cribl Stream's routing table for live data – potentially simplifying
the Routes structure.

Advanced Settings

Formatting Expressions

Page 623 of 1835

To reference the earliest time variable in a URL, header, or parameter (etc.), you would write the variable
as `${earliest}` .

To reference a function call: `${Date.now()` .

To call a function that references a variable: `${Math.floor(earliest)}` .

The Collector treats all non-200 responses from configured URL endpoints as errors. This includes 1xx, 3xx,
4xx, and 5xx responses.

On Discover, Preview, and most Collect jobs, it interprets these as fatal errors. On Collect jobs, a few
exceptions are treated as non-fatal:

Where a Collect job launches multiple tasks, and only a subset of those tasks fail, Cribl Stream places the
job in failed status, but treats the error as non-fatal. (Note that Cribl Stream does not retry the failed
tasks.)

Where a Collect job receives a 3xx redirection error code, it follows the error's treatment by the
underlying library, and does not necessarily treat the error as fatal.

Last updated by: Dritan Bitincka

;

Response Errors

Page 624 of 1835

Cribl Stream supports collecting data from Amazon S3 stores. This page covers how to configure the
Collector.

When you run an S3 Collector in Discovery mode, the first available Worker returns the list of available files to
the Leader Node.

In Full Run mode, the Leader distributes the list of files to process across 1..N Workers, as evenly as possible,
based on file size. Each Worker then streams the files from the S3 bucket/path to itself.

Cribl Stream can ingest compressed S3 files if they meet all the following conditions:

Compressed with the x-gzip MIME type.

End with the .gz extension.

Can be uncompressed using the zlib.gunzip algorithm.

7.1.5. S3

For a step-by-step tutorial on using Cribl Stream to replay data from an S3-compatible store, see our
Data Collection & Replay sandbox. The sandbox takes about 30 minutes. It provides a hosted
environment, with all inputs and outputs preconfigured for you.

Also see our Amazon S3 Better Practices and Using S3 Storage and Replay guides.

How the Collector Pulls Data

Compression

Incompatible Storage Classes

Cribl Stream does not support data preview, collection, or replay from S3 Glacier or Deep Glacier
storage classes, whose stated retrieval lags (variously minutes to 48 hours) cannot guarantee data
availability when the Collector needs it.

Configuring an S3 Collector

Page 625 of 1835

From the top nav of a Cribl Stream instance or Group, select Data > Sources, then select Collectors > S3 from
the Data Sources page's tiles or the Sources le� nav. Click + Add New to open the S3 > New Collector
modal, which provides the following options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., Attic42TreasureChest .

Auto-populate from: Select a Destination with which to auto-populate Collector settings. Useful when
replaying data.

S3 bucket: Simple Storage Service bucket from which to collect data.

Select an AWS authentication method.

The Auto option (default) will use environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY , or the attached IAM role. Will work only when running on AWS.

The Manual option presents these fields:

Access key: Enter your AWS access key. If not present, will fall back to the env.AWS_ACCESS_KEY_ID
environment variable, or to the metadata endpoint for IAM role credentials.

Secret key: Enter your AWS secret key. if not present, will fall back to the
env.AWS_SECRET_ACCESS_KEY environment variable, or to the metadata endpoint for IAM credentials.
Optional when running on AWS.

The Secret option swaps in this drop-down:

Secret key pair: Select a secret key pair that you've configured in Cribl Stream's internal secrets
manager or (if enabled) an external KMS. Follow the Create link if you need to configure a key pair.

The sections described below are spread across several tabs. Click the tab links at le� to navigate
among tabs. Click Save when you've configured your Collector.

Collector Sources currently cannot be selected or enabled in the QuickConnect UI.

Collector Settings

Authentication

Page 626 of 1835

Enable Assume Role: Slide to Yes to enable Assume Role behavior.

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role. Enter this if defined in your IAM policy's trust
relationship; otherwise, leave blank. (Usage example: AWS Cross-Account Data Collection.)

Region: S3 Region from which to retrieve data.

Path: Path, within the bucket, from which to collect data. Templating is supported
(e.g., /myDir/${host}/${year}/${month}/). More on templates and Filters.

Path extractors: Extractors allow using template tokens as context for expressions that enrich discovery
results.

Click + Add Extractor to add each extractor as a key-value pair, mapping a Token name on the le� (of the
form /<path>/${<token>}) to a custom JavaScript Extractor expression on the right (e.g.,
{host: value.toLowerCase()}).

Each expression accesses its corresponding <token> through the value variable, and evaluates the token
to populate event fields. Here is a complete example:

TOKEN EXPRESSION MATCHED VALUE EXTRACTED RESULT

/var/log/${foobar}
foobar: {program:
value.split('.')[0]}

/
var/log/syslog.1

{program: syslog,
foobar: syslog.1}

Endpoint: S3 service endpoint. If empty, Cribl Stream will automatically construct the endpoint from the
region.

Signature version: Signature version to use for signing S3 requests. Defaults to v4 .

Recursive: If set to Yes (the default), data collection will recurse through subdirectories.

Max batch size (files): Maximum number of lines written to the discovery results files each time. Defaults to
10 . To override this limit in the Collector's Schedule/Run modal, use Advanced Settings > Upper task bundle
size.

Assume Role

Optional Settings

Page 627 of 1835

Reuse connections: Whether to reuse connections between requests. The default setting (Yes) can improve
performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be verified against a valid
Certificate Authority (e.g., self-signed certificates). Defaults to Yes .

Verify bucket permissions: Toggle this to No if you can access files within the bucket, but not the bucket
itself. This resolves errors of the form: discover task initialization failed...error: Forbidden .

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

The Result Settings determine how Cribl Stream transforms and routes the collected data.

In this section, you can pass the data from this input to an external command for processing, before the data
continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will process its output (via
stdout).

Arguments: Click + Add Argument to add each argument to the command. You can drag arguments
vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order, to the input data
stream. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

Result Settings

Custom Command

Event Breakers

Fields

Page 628 of 1835

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), Cribl Stream will send events to normal routing and event
processing. Toggle to No to select a specific Pipeline/Destination combination. The No setting exposes these
two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

The default Yes setting instead exposes this field:

Pre-processing Pipeline: Pipeline to process results before sending to Routes. Optional.

This field is always exposed:

Throttling: Rate (in bytes per second) to throttle while writing to an output. Also takes values with
multiple-byte units, such as KB , MB , GB , etc. (Example: 42 MB .) Default value of 0 indicates no
throttling.

Pre-processing Pipeline: Pipeline to process results before sending to Routes. Optional, and available only
when Send to Routes is toggled to Yes .

Throttling: Rate (in bytes per second) to throttle while writing to an output. Also takes values with multiple-
byte units, such as KB , MB , GB , etc. (Example: 42 MB .) Default value of 0 indicates no throttling.

Advanced Settings enable you to customize post-processing and administrative options.

Result Routing

You might disable Send to Routes when configuring a Collector that will connect data from a specific
Source to a specific Pipeline and Destination. This keeps the Collector's configuration self‑contained
and separate from Cribl Stream's routing table for live data – potentially simplifying the Routes
structure.

Advanced Settings

Page 629 of 1835

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Time to live: How long to keep the job's artifacts on disk a�er job completion. This also a�ects how long a
job is listed in Job Inspector. Defaults to 4h .

Remove Discover fields : List of fields to remove from the Discover results. This is useful when discovery
returns sensitive fields that should not be exposed in the Jobs user interface. You can specify wildcards (such
as aws*).

Resume job on boot: Toggle to Yes to resume ad hoc collection jobs if Cribl Stream restarts during the jobs'
execution.

Last updated by: Dritan Bitincka

;

Page 630 of 1835

Cribl Stream supports flexible data collection configured by your custom scripts.

When you run a Script Collector in Discovery mode, the first available Worker returns one line of data per
discovered item. Each item (line) turns into a Collection task on the Leader Node.

In Full Run mode, the Leader passes the item to collect into the script in the $CRIBL_COLLECT_ARG variable,
and spreads collection across all available Workers.

From the top nav of a Cribl Stream instance or Group, select Data > Sources, then select Collectors > Script
from the Data Sources page's tiles or the Sources le� nav. Click + Add New to open the Script >
New Collector modal, which provides the following options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., sh2GetStuff .

Discover script: Script to discover which objects/files to collect. This script should output one task per line in
stdout . Discovery is especially important in a distributed deployment, where the Leader must track all
tasks, and must guarantee that each is run by a single Worker. See Examples below.

Collect script: Script to perform data collections. Pass in tasks from the Discover script as
$CRIBL_COLLECT_ARG . Should output results to stdout .

7.1.6. Script

How the Collector Pulls Data

Configuring a Script Collector

The sections described below are spread across several tabs. Click the tab links at le� to navigate
among tabs. Click Save when you've configured your Collector.

Collector Sources currently cannot be selected or enabled in the QuickConnect UI.

Collector Settings

Page 631 of 1835

Shell: Shell in which to execute scripts. Defaults to /bin/bash .

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

The Result Settings determine how Cribl Stream transforms and routes the collected data.

In this section, you can pass the data from this input to an external command for processing, before the data
continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will process its output (via
stdout).

Arguments: Click + Add Argument to add each argument to the command. You can drag arguments
vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order, to the input data
stream. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

Optional Settings

With Great Power Comes Great Responsibility!

Scripts will allow you to execute almost anything on the system where Cribl Stream is running. Make
sure you understand the impact of what you're executing before you do so! These scripts run as the
user running Cribl Stream, so if you are running it as root, these commands will run with root user
permissions. ☠ ☠

Result Settings

Custom Command

Event Breakers

Page 632 of 1835

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), Cribl Stream will send events to normal routing and event
processing. Toggle to No to select a specific Pipeline/Destination combination. The No setting exposes these
two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

The default Yes setting instead exposes this field:

Pre-processing Pipeline: Pipeline to process results before sending to Routes. Optional.

This field is always exposed:

Throttling: Rate (in bytes per second) to throttle while writing to an output. Also takes values with
multiple-byte units, such as KB , MB , GB , etc. (Example: 42 MB .) Default value of 0 indicates no
throttling.

Pre-processing Pipeline: Pipeline to process results before sending to Routes. Optional, and available only
when Send to Routes is toggled to Yes .

Throttling: Rate (in bytes per second) to throttle while writing to an output. Also takes values with multiple-
byte units, such as KB , MB , GB , etc. (Example: 42 MB .) Default value of 0 indicates no throttling.

Advanced Settings enable you to customize post-processing and administrative options.

Fields

Result Routing

You might disable Send to Routes when configuring a Collector that will connect data from a specific
Source to a specific Pipeline and Destination. This keeps the Collector's configuration self‑contained
and separate from Cribl Stream's routing table for live data – potentially simplifying the Routes
structure.

Advanced Settings

Page 633 of 1835

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Time to live: How long to keep the job's artifacts on disk a�er job completion. This also a�ects how long a
job is listed in Job Inspector. Defaults to 4h .

Remove Discover fields : List of fields to remove from the Discover results. This is useful when discovery
returns sensitive fields that should not be exposed in the Jobs user interface. You can specify wildcards (such
as aws*).

Resume job on boot: Toggle to Yes to resume ad hoc collection jobs if Cribl Stream restarts during the jobs'
execution.

In the Discover phase, the first available Worker returns one line of data per item discovered. Each item line
turns into a Collect task on the Leader Node. In the Collect phase, the items to collect are passed into the
script as the variable $CRIBL_COLLECT_ARG , and are spread across all available Workers.

You could define this Collector to check for Cribl Stream telemetry errors, which could cause license
validation to fail, eventually (a�er a delay) blocking data input.

Collector type: Script

Discover script: ls $CRIBL_HOME/log/cribl*

Collect script: grep 'Failed to send anonymized telemetry metadata' $CRIBL_COLLECT_ARG

In this example, the Discover script retrieves file names from a specified Amazon S3 bucket, and then writes
them (one per line) to the standard output. The Collect script processes each line as its
$CRIBL_COLLECT_ARG , and uses zcat to decompress the buckets' data.

Collector type: Script

How the Collector Pulls Data

Examples

Telemetry Collector

S3 Collector

Page 634 of 1835

Discover script:
aws s3api list-objects --bucket <bucket-name> --prefix <subfolder>/ --query

'Contents[].Key' --output text

Collect script: aws s3 cp s3://<bucket-name>/$CRIBL_COLLECT_ARG - | zcat ‐f

This example essentially spoofs the Discover script with an echo command, which simply announces what
the Collect script (itself simple) will do.

Collector type: Script

Discover script: echo "speedtest"

Collect script: speedtest --json

Last updated by: Dritan Bitincka

;

Simple Collector

Page 635 of 1835

Cribl Stream supports collecting search results from Splunk queries. The queries can be both simple and
complex, as well as real-time searches. This page covers how to configure the Collector.

From the top nav of a Cribl Stream instance or Group, select Data > Sources, then select Collectors >
Splunk Search from the Data Sources page's tiles or the Sources le� nav. Click + Add New to open the
Splunk Search > New Collector modal, which provides the following options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., splunk2search .

Search endpoint: Rest API used to conduct a search. Defaults to services/search/jobs/export .

Output mode: Format of the returned output. Defaults to JSON format.To parse the returned JSON, add the
Cribl event breaker which parses newline delimited events in the Event Breakers tab.

Events returned from Splunk search can also be returned in the more compact CSV format. To use CSV
format, set the Output mode to CSV and specify the CSV event breaker in the Event Breakers tab.

In the Search dropdown, type your query parameters:

Search: Enter the Splunk query. For example: index=myAppLogs level=error channel=myApp OR |
mstats avg(myStat) as myStat WHERE index=myStatsIndex .

7.1.7. Splunk Search

Configuring a Splunk Search Collector

The sections described below are spread across several tabs. Click the tab links at le� to navigate
among tabs. Click Save when you've configured your Collector.

Collector Sources currently cannot be selected or enabled in the QuickConnect UI.

Collector Settings

Search

Page 636 of 1835

Search head: Enter the search head base URL. The default is https://localhost:8089 .

Earliest: You can enter the earliest time boundary for the search. This maybe be an exact or relative time. For
example: 2022-01-14T12:00:00Z or -16m@m .

Latest: You can enter the latest time boundary for the search. This maybe be an exact or relative time. For
example: 2022-01-14T12:00:00Z or -16m@m .

In the Authentication drop-down, use the buttons to select one of these options:

None: Don't use authentication. Compatible with REST servers like AWS, where you embed a secret
directly in the request URL.

Basic: Displays Username and Password fields for you to enter HTTP Basic authentication credentials.

Basic (credentials secret): Provide username and password credentials referenced by a secret. Select a
stored text secret in the resulting Credentials secret drop-down, or click Create to configure a new
secret.

Extra parameters: Optional HTTP request parameters to append to the request URL. These refine or narrow
the request. Click + Add Parameter to add parameters as key-value pairs:

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Extra headers: Click + Add Header to (optionally) add collection request headers as key-value pairs:

Name: Header name.

Value: JavaScript expression to compute the header's value (can be a constant).

In the Request Timeout (secs) field, you can set a maximum time period (in seconds) for an HTTP request to
complete before Cribl Stream treats it as timed out. Defaults to 0 , which disables timeout metering.

Authentication

Optional Settings

When running a real-time search you must update the Request Timeout Parameter to avoid having
the collector stuck in a forever running state. Updating the Request Timeout Parameter stops the
search a�er the allocated period of time.

Page 637 of 1835

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Disable time filter: Toggle to Yes if your Run or Schedule configuration specifies a date range and no events
are being collected. This will disable the Collector's event time filtering to prevent timestamp conflicts.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

The Result Settings determine how Cribl Stream transforms and routes the collected data.

In this section, you can pass the data from this input to an external command for processing, before the data
continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will process its output (via
stdout).

Arguments: Click + Add Argument to add each argument to the command. You can drag arguments
vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order, to the input data
stream. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event, using Eval-like functionality.

Result Settings

Custom Command

Event Breakers

Fields

Page 638 of 1835

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), Cribl Stream will send events to normal routing and event
processing. Toggle to No to select a specific Pipeline/Destination combination. The No setting exposes these
two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

The default Yes setting instead exposes this field:

Pre-processing Pipeline: Pipeline to process results before sending to Routes. Optional.

This field is always exposed:

Throttling: Rate (in bytes per second) to throttle while writing to an output. Also takes values with
multiple-byte units, such as KB , MB , GB , etc. (Example: 42 MB .) Default value of 0 indicates no
throttling.

Pre-processing Pipeline: Pipeline to process results before sending to Routes. Optional, and available only
when Send to Routes is toggled to Yes .

Throttling: Rate (in bytes per second) to throttle while writing to an output. Also takes values with multiple-
byte units, such as KB , MB , GB , etc. (Example: 42 MB .) Default value of 0 indicates no throttling.

Advanced Settings enable you to customize post-processing and administrative options.

Result Routing

You might disable Send to Routes when configuring a Collector that will connect data from a specific
Source to a specific Pipeline and Destination. One use case might be a Splunk Search Collector that
gathers a known, simple type of data. This approach keeps the Collector's configuration
self‑contained and separate from Cribl Stream's routing table for live data – potentially simplifying
the Routes structure.

Advanced Settings

Page 639 of 1835

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Time to live: How long to keep the job's artifacts on disk a�er job completion. This also a�ects how long a
job is listed in Job Inspector. Defaults to 4h .

Remove Discover fields : List of fields to remove from the Discover results. This is useful when discovery
returns sensitive fields that should not be exposed in the Jobs user interface. You can specify wildcards (such
as aws*).

Resume job on boot: Toggle to Yes to resume ad hoc collection jobs if Cribl Stream restarts during the jobs'
execution.

This Collector will gather data from the specified Search head URL. If you enable scheduled collection,
searches will repeat on the interval specified in the Schedule modal's Cron schedule field.

A single Worker executes each collection job. If the Leader goes down, search jobs in progress will complete,
but future scheduled searches will not run until the Leader relaunches.

Last updated by: Dritan Bitincka

;

How Cribl Stream Pulls Data

Page 640 of 1835

Once you've configured a Collector, you can either run it immediately ("ad hoc") to collect data, or schedule
it to run on a recurring interval. Scheduling requires some extra configuration upfront, so we cover this
option first.

Click Schedule beside a configured Collector to display the Schedule configuration modal. This provides
the following controls.

Enabled: Slide to Yes to enable this collection schedule.

Cron schedule: A cron schedule on which to run this job.

The Estimated schedule below this field shows the next few collection runs, as examples of the cron
interval you've scheduled.

Max concurrent runs: Sets the maximum number of instances of this scheduled job that Cribl Stream will
simultaneously run.

Skippable: Skippable jobs can be delayed up to their next run time if the system is hitting concurrency limits.
Defaults to Yes . Toggling this to No displays this additional option:

7.1.8. Scheduling and Running

For ad hoc collection, you can configure whether a job interrupted by an unintended Cribl Stream
shutdown will automatically resume upon Cribl Stream restart.

But regardless of this configuration, if you explicitly restart or stop Cribl Stream, this will cancel any
currently running jobs. This applies to executing the ./cribl restart or ./cribl stop CLI
commands, as well as to selecting the UI's global ⚙ Settings (lower le�) > Controls > Restart option.

A scheduled job interrupted by a shutdown (whether explicit or unintended) will not resume upon
restart.

Schedule Configuration

The scheduled job will keep running on this schedule forever, unless you toggle Enabled back
to Off . The Off setting preserves the schedule's configuration, but prevents its execution.

Page 641 of 1835

Resume missed runs: Defaults to No . When toggled to Yes , if Cribl Stream's Leader (or single instance)
restarts, it will run all missed jobs according to their original schedules.

If set to Yes , the Skippable option obeys these concurrency limits configured separately in global
⚙ Settings (lower le�) > General Settings > Job Limits:

Concurrent Job Limit

Concurrent Scheduled Job Limit

When the above limits delay a Skippable job:

The Skippable job will be granted slightly higher priority than non-Skippable jobs.

If the job receives resources to run before its next scheduled run, Cribl Stream will run the delayed job,
then snap back to the original cron schedule.

If resources do not free up before the next scheduled run: Cribl Stream will skip the delayed run, and
snap back to the original cron schedule.

Set Skippable to No if you absolutely must have all your data, for compliance or other reasons. In this case,
Cribl Stream will build up a backlog of jobs to run.

You can think of Skippable: No as behaving more like the TCP protocol, with Skippable: Yes behaving
more like UDP.

Most of the remaining fields and options below are shared with the Run configuration modal, which you can
open by clicking Run beside a configured Collector.

Skippable Jobs and Concurrency Limits

See Job Limits for details on these and other limits that you can set in global ⚙ Settings.

All collection jobs are constrained by the following options in global ⚙ Settings (lower le�) >
General Settings > Job Limits:

Concurrent Task Limit

Max Task Usage Percentage

Run Configuration and Shared Settings

Page 642 of 1835

Depending on your requirements, you can schedule or run a collector in these modes:

Preview – default for Run, but not o�ered for Scheduled Jobs

Discovery – default for Scheduled Jobs

Full Run

In the Preview mode, a collection job will return only a sample subset of matching results (e.g., 100 events).
This is very useful in cases when users need a data sample to:

Ensure that the correct data comes in.

Iterate on Filter expressions.

Capture a sample to iterate on Pipelines.

In Preview mode, you can optionally configure these options:

Capture time (sec): Maximum time interval (in seconds) to collect data.

Capture up to N events: Maximum number of events to capture.

Where to capture: Select one of the options shown below. (Note that option 2. Before the Routes is
disabled.) If not specified, this will default to 1. Before pre‐processing Pipeline .

Mode

Preview

Schedule configuration omits the Preview option, because Preview is designed for immediate
analysis and decision making. To configure a Scheduled Job with high confidence, you can first
manually run Preview jobs with the same Collector, to verify that you're collecting the data you
expect.

Preview Settings

Page 643 of 1835

Preview capture options

In Discovery mode, a collection job will return only the list of objects/files to be collected, but none of the
data. This mode is typically used to ensure that the Filter expression and time range are correct before a
Full Run job collects unintended data.

In Discovery mode, this slider enables you to send discovery results to Cribl Stream Routes. Defaults to No .

In Full Run mode, the collection job is fully executed by Worker Nodes, and will return all data matching the
Run configuration.

Set an Absolute or Relative time range for data collection. The Relative option is the default, and is
particularly useful for configuring scheduled jobs.

Discovery

Send to Routes

This setting overrides the Collector configuration's Result Routing > Send to Routes setting.

Full Run

Time Range

You set dates and times here based on your browser's time zone, but Cribl Stream's backend uses
UTC. Set the Range Timezone drop-down to your o�set from UTC.

Page 644 of 1835

Select the Absolute button to set fixed collection boundaries in your browser's local time. Next, use the
Earliest and Latest controls to set the start date/time and end date/time.

Select the Relative button to set collection boundaries relative to your browser's current local time. Next,
use the Earliest and Latest to set start and end times like these:

Earliest example values: -1h , -42m , - 42m@h

Latest example values: now , -20m , +42m@h

For Relative times, the Earliest and Latest controls accept the following syntax:

[+|-]<time_integer><time_unit>@<snap-to_time_unit>

To break down this syntax:

SYNTAX ELEMENT VALUES SUPPORTED

O�set Specify: - for times in the past, + for times in the future, or omit with now .

<time_integer> Specify any integer, or omit with now .

<time_unit>
Specify the now constant, or one of the following abbreviations: s[econds] , m[inutes] , h[ours] ,
d[ays] , w[eeks] , mon[ths] , q[uarters] , y[ears] .

@<snap-
to_time_unit>

Optionally, you can append the @ modifier, followed by any of the above <time_unit> s, to round
down to the nearest instance of that unit. (See the next section for details.)

Cribl Stream validates relative time values using these rules:

Earliest must not be later than Latest.

Values without units get interpreted as seconds. (E.g., -1 = -1s .)

The @ snap modifier always rounds down (backwards) from any specified time. This is true even in relative
time expressions with + (future) o�sets. For example:

Absolute

Relative

Relative Time Syntax

Snap-to-Time Syntax

Page 645 of 1835

@d snaps back to the beginning of today, 12:00 AM (midnight).

+128m@h looks forward 128 minutes, then snaps back to the nearest round hour. (If you specified this in
the Latest field, and ran the Collector at 4:20 PM, collection would end at 6:00 PM. The expression
would look forward to 6:28 PM, but snap back to 6:00 PM.)

Other options:

@w or @w7 to snap back to the beginning of the week – defined here as the preceding Sunday.

To snap back to other days of a week, use w1 (Monday) through w6 (Saturday).

@mon to snap back to the 1st of a month.

@q to snap back to the beginning of the most recent quarter – Jan. 1, Apr. 1, Jul. 1, or Oct. 1.

@y to snap back to Jan. 1.

This is a JavaScript filter expression that is evaluated against token values in the provided collector path (see
below), and against the events being collected. The Filter value defaults to true , which matches all data,
but this value can be customized almost arbitrarily.

For example, if a Filesystem or S3 collector is run with this Filter:

host=='myHost' && source.endsWith('.log') || source.endsWith('.txt')

...then only files/objects with .log or .txt extensions will be fetched. And, from those, only those events
with host field myHost will be collected.

At the Filter field's right edge are a Copy button, an Expand button to open a validation modal, and a History
button. For more extensive options, see Tokens for Filtering below.

Log Level: Level at which to set task logging. More-verbose levels are useful for troubleshooting jobs and
tasks, but use them sparingly.

Lower task bundle size: Limits the bundle size for small tasks. E.g., bundle five 200KB files into one 1MB task
bundle. Defaults to 1MB .

Upper task bundle size: Limits the bundle size for files above the Lower task bundle size. E.g., bundle five
2MB files into one 10MB task bundle. Files greater than this size will be assigned to individual tasks. Defaults
to 10MB .

Filter

Advanced Settings

Page 646 of 1835

Reschedule tasks: Whether to automatically reschedule tasks that failed with non-fatal errors. Defaults to
Yes ; does not apply to fatal errors.

Max task reschedule: Maximum number of times a task can be rescheduled. Defaults to 1 .

Job timeout: Maximum time this job will be allowed to run. Units are seconds, if not specified. Sample
values: 30 , 45s , or 15m . Minimum granularity is 10 seconds, so a 45s value would round up to a 50-second
timeout. Defaults to 0 , meaning unlimited time (no timeout).

Let's look at the options for path-based (basic) and time-based token filtering.

In collectors with paths, such as Filesystem or S3, Cribl Stream supports path filtering via token notation.
Basic tokens' syntax follows that of JS template literals: ${<token_name>} – where token_name is the field
(name) of interest.

For example, if the path was set to /var/log/${hostname}/${sourcetype}/ , you could use a Filter such as
hostname=='myHost' && sourcetype=='mySourcetype' to collect data only from the
/var/log/myHost/mySourcetype/ subdirectory.

In paths with time partitions, Cribl Stream supports further filtering via time-based tokens. This has a direct
e�ect with earliest and latest boundaries. When a job runs against a path with time partitions, the job
traverses a minimal superset of the required directories to satisfy the time range, before subsequent event
_time filtering.

Cribl Stream processes time-based tokens as follows:

For each path, time partitions must be notated in descending order. So Year/Month/Day order is
supported, but Day/Month/Year is not.

Paths may contain more than one partition. E.g., /my/path/2020-04/20/ .

In a given path, each time component can be used only once.
So /my/path/${_time:%Y}/${_time:%m}/${_time:%d}/... is a valid expression format, but
/my/path/${_time:%Y}/${_time:%m}/${host}/${_time:%Y}/... (with a repeated Y) is not
supported.

Tokens for Filtering

Basic Tokens

Time-based Tokens

About Partitions and Tokens

Page 647 of 1835

For each path, all extracted dates/times are considered in UTC.

The following strptime format components are allowed:

'Yy' , for years

'mBbj' , for months

'dj' , for days

'HI' , for hours

'M' , for minutes

'S' , for seconds

Time-based token syntax follows that of a slightly modified JS template literal:
${_time: <some_strptime_format_component>} . Examples:

FILTER MATCHES

/my/path/${_time:%Y}/${_time:%m}/${_time:%d}/... /my/path/2020/04/20/...

/my/path/${_time:year=%Y}/${_time:month=%m}/${_time:date=%d}/... /my/path/year=2020/month=05/date

/my/path/${_time:%Y-%m-%d}/... /my/path/2020-05-20/...

Last updated by: Dritan Bitincka

;

Token Syntax

Page 648 of 1835

You can configure global limits that optimize the execution of all Collectors and scheduled jobs (including
Cribl Stream system tasks).

The following limits are available at global ⚙ Settings (lower le�) > System > General Settings > Job Limits:

7.1.9. Job Limits

Page 649 of 1835

Job Limits settings

Page 650 of 1835

The following controls are available at global ⚙ Settings (lower le�) > General Settings > Job Limits.

Concurrent Job Limit: The total number of jobs that can run concurrently. Defaults to 10 .

Concurrent System Job Limit: The total number of system jobs that can run concurrently. Defaults to 10 .

Concurrent Scheduled Job Limit: The total number of scheduled jobs that can run concurrently. This limit
is set as an o�set relative to the Concurrent Job Limit. Defaults to -2 .

Concurrent Task Limit: The total number of tasks that a Worker Process can run concurrently. Defaults to 2 .

Concurrent System Task Limit: The number of system tasks that a Worker Process can run concurrently.
Defaults to 1 .

Max Task Usage Percentage: Value, between 0 and 1 , representing the percentage of total tasks on a
Worker Process that any single job may consume. Defaults to 0.5 (i.e., 50%).

Task Poll Timeout: The number of milliseconds that a Worker's task handler will wait to receive a task,
before retrying a request for a task. Defaults to 60000 (i.e., 60 seconds).

Limits Available

In a distributed deployment, these limits are set on, and deployed from, the Leader. They are applied
at the Worker Group level (except where noted), and trickle down to individual Worker Processes in
the group. Task limits are applied at the Worker Process level.

In a single-instance deployment, these limits are set on the single instance, and apply to all its
Worker Processes.

Job Limits

If you see jobs being skipped, this indicates that the Concurrent Job Limit for this Group has been
reached or exceeded. Here, you need to increase this limit to reduce the number of skippable jobs.
Note that, for resource-intensive jobs, this might trigger a need to deploy more Worker Nodes.

Task Limits

Completion Limits

Page 651 of 1835

Artifact Reaper Period: Interval on which Cribl Stream attempts to reap jobs' stale disk artifacts. Defaults to
30m .

Finished Job Artifacts Limit: Maximum number of finished job artifacts to keep on disk. Defaults to 100 .

Finished Task Artifacts Limit: Maximum number of finished task artifacts to keep on disk, per job, on each
Worker Node. Defaults to 500 .

Manifest Flush Period: The rate (in milliseconds) at which a job's task manifest should be refreshed. Defaults
to 100 ms.

Manifest Max Bu�er Size: The maximum number of tasks that the task manifest can hold in memory before
flushing to disk. Defaults to 1,000 .

Manifest Reader Bu�er Size: The number of bytes that the task manifest reader should pull from disk.
Defaults to 4kb .

Job Dispatching: The method by which tasks are assigned to Worker Processes. Defaults to
Least In‐Flight Tasks , to optimize available capacity. Round Robin is also available.

Job Timeout: Maximum time a job is allowed to run. Defaults to 0 , for unlimited time. Units are seconds if
not specified. Sample entries: 30 , 45s , 15m .

Task Heartbeat Period: The heartbeat period (in seconds) for tasks to report back to the Leader/API.
Defaults to 60 seconds.

Last updated by: Dritan Bitincka

;

Task Manifest and Bu�ering Limits

Page 652 of 1835

7.2. Amazon

Cribl Stream supports receiving data from Amazon Kinesis Data Firehose delivery streams via Kinesis'
HTTP endpoint destination option.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] Amazon > Firehose. Next, click either + Add New or (if displayed) Select Existing. The drawer will
now provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] Amazon > Firehose. Next,
click + Add New to open an Amazon Firehose > New Source modal that provides the following options and
fields.

Input ID: Enter a unique name to identify this Source definition.

Address: Address to bind on. Defaults to 0.0.0.0 (all addresses).

Port: Enter the port number to listen on.

7.2.1. Amazon Kinesis Firehose

Type: Push | TLS Support: YES | Event Breaker Support: No

This Source supports gzip-compressed inbound data when the Content‐Encoding: gzip
connection header is set.

Configuring Cribl Stream to Receive Data over HTTP(S)
from Amazon Kinesis Firehose

General Settings

Authentication Settings

Page 653 of 1835

Auth tokens: Shared secrets to be provided by any client (Authorization: \<token>). Click Generate to create
a new secret. If empty, unauthenticated access will be permitted.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

Optional Settings

TLS Settings (Server Side)

Persistent Queue Settings

Page 654 of 1835

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only
if you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Processing Settings

Fields

Page 655 of 1835

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to
a constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Enable proxy protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2. This setting a�ects how the Source handles the field.

Capture request headers: Toggle this to Yes to add request headers to events, in the __headers field.

Max active requests: Maximum number of active requests allowed for this Source, per Worker Process.
Defaults to 256 . Enter 0 for unlimited.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Request timeout (seconds): How long to wait for an incoming request to complete before aborting it.
The default 0 value means wait indefinitely.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and functions can use them to make processing decisions.

Pre-Processing

Advanced Settings

__srcIpPort

Connected Destinations

Internal Fields

Page 656 of 1835

Fields for this Source:

__firehoseArn

__firehoseEndpoint

__firehoseReqId

__firehoseToken

__headers – Added only when Advanced Settings > Capture request headers is set to Yes .

__inputId

__srcIpPort – See details below.

The __srcIpPort field's value contains the IP address and (optionally) port of the Kinesis Firehose client
sending data to this Source.

When any proxies (including load balancers) lie between the Kinesis Firehose client and the Source, the last
proxy adds an X‐Forwarded‐For header whose value is the IP/port of the original client. With multiple
proxies, this header's value will be an array, whose first item is the original client IP/port.

If X‐Forwarded‐For is present, and Advanced Settings > Enable proxy protocol is set to No , the original
client IP/port in this header will override the value of __srcIpPort .

If Enable proxy protocol is set to Yes , the X‐Forwarded‐For header's contents will not override the
__srcIpPort value. (Here, the upstream proxy can convey the client IP/port without using this header.)

If you set the optional IntervalInSeconds and/or SizeInMBs parameters in the Kinesis Firehose
 API, beware of selecting extreme values (toward the ends of the API's supported ranges).

These can send more bytes than Cribl Stream can bu�er, causing Cribl Stream to send HTTP 500 error
responses to Kinesis Firehose.

;

Overriding __srcIpPort with Client IP/Port

Limitations/Troubleshooting

BufferingHints

Page 657 of 1835

Cribl Stream supports receiving data records from Amazon Kinesis Streams.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select [Pull >
] Amazon > Kinesis. Next, click either + Add New or (if displayed) Select Existing. The drawer will now
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Pull >] Amazon > Kinesis. Next,
click + Add New to open an Amazon Kinesis > New Source modal that provides the following options and
fields.

Input ID: Enter a unique name to identify this Kinesis Stream Source definition.

Stream name: Kinesis stream name (not ARN) to read data from.

Region: Region where the Kinesis stream is located. Required.

Shard iterator start: Location at which to start reading a shard for the first time. Defaults to Earliest
Record .

Record data format: Format of data inside the Kinesis Stream records. Gzip compression is automatically
detected. Options include:

7.2.2. Amazon Kinesis Streams

Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: No

Configuring Cribl Stream to Receive Data from Kinesis
Streams

General Settings

Optional Settings

Page 658 of 1835

Cribl (the default): Use this option if Cribl Stream wrote data to Kinesis in this format. This is a type of
NDJSON.

Newline JSON: Use if the records contain newline-delimited JSON (NDJSON) events – e.g., Kubernetes
logs ingested through Kinesis. This is a good choice if you don't know the records' format.

CloudWatch Logs: Use if you've configured CloudWatch to send logs to Kinesis.

Event per line: NDJSON can use this format when it fails to parse lines as valid JSON.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Use the Authentication Method buttons to select an AWS authentication method:

Auto: This default option uses the AWS instance's metadata service to automatically obtain short-lived
credentials from the IAM role attached to an EC2 instance. The attached IAM role grants Cribl Stream
Workers access to authorized AWS resources. Can also use the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY . Works only when running on AWS.

Manual: If not running on AWS, you can select this option to enter a static set of user-associated IAM
credentials (your access key and secret key) directly or by reference. This is useful for Workers not in an
AWS VPC, e.g., those running a private cloud.

Secret: If not running on AWS, you can select this option to supply a stored secret that references an
AWS access key and secret key.

When using an IAM role to authenticate with Kinesis Streams, the IAM policy statements must include the
following Actions:

kinesis:GetRecords

kinesis:GetShardIterator

kinesis:ListShards

For details, see AWS' Actions, Resources, and Condition Keys for Amazon Kinesis documentation.

The Manual option exposes these additional fields:

Authentication

Auto Authentication

Manual Authentication

Page 659 of 1835

Access key: Enter your AWS access key. If not present, will fall back to env.AWS_ACCESS_KEY_ID , or to the
metadata endpoint for IAM role credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to env.AWS_SECRET_ACCESS_KEY , or to
the metadata endpoint for IAM credentials.

The Secret option exposes this additional field:

Secret key pair: Use the drop-down to select a secret key pair that you've configured in Cribl Stream's
internal secrets manager or (if enabled) an external KMS. Follow the Create link if you need to configure a key
pair.

Enable for Kinesis Streams: Whether to use Assume Role credentials to access Kinesis Streams. Defaults
to No .

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to assume.

External ID: Enter the External ID to use when assuming role.

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to
a constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Secret Authentication

Assume Role

Processing Settings

Fields

Pre-Processing

Advanced Settings

Page 660 of 1835

Shard selection expression: A JavaScript expression to be called with each shardId for the stream. The
shard will be processed if the expression evaluates to a truthy value. Defaults to true .

Service Period: Time interval (in minutes) between consecutive service calls. Defaults to 1 minute.

Endpoint: Kinesis stream service endpoint. If empty, the endpoint will be automatically constructed from the
region.

Signature version: Signature version to use for signing Kinesis Stream requests. Defaults to v4 .

Verify KPL checksums: Enable this setting to verify Kinesis Producer Library (KPL) event checksums.

Reuse connections: Whether to reuse connections between requests. The default setting (Yes) can improve
performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be verified against a valid
Certificate Authority (e.g., self-signed certificates). Defaults to Yes .

Avoid duplicate records: If toggled to Yes , this Source will always start streaming at the next available
record in the sequence. (This can cause data loss a�er a Worker Node's unexpected shutdown or restart.)
With the default No , the Source will reread the last two batches of events at startup. (This prevents data loss,
but can ingest duplicate events.)

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Field for this Source:

Connected Destinations

Internal Fields

Page 661 of 1835

__inputId

Worker Processes get a list of available shards from Kinesis, and contact the Leader Node to fetch the latest
sequence numbers. Based on the sequence number's value, the Worker either resumes the shard reading
from where Cribl Stream previously le� o�, or starts reading from the beginning.

The Kinesis Streams Source stores shard state on disk, so that it can pick up where it le� o� across restarts.
The state file is located in Cribl Stream's state/ subdirectory; the path format looks like this:

.../state/kvstore/<groupId>/input_kinesis_<inputId>_<streamName>/state.json

For example:

state/kvstore/default/input_kinesis_kinesisIn_just-a-test/state.json

Worker Processes become Kinesis Consumers, and fetch the records for the assigned shards. Every
5 minutes, each Worker Process forwards to the Leader Node the latest sequence numbers for the shards that
Worker Process is responsible for. The Leader Node persists the shardId > sequenceNumber mapping to
disk.

;

How Cribl Stream Pulls Data

Page 662 of 1835

Cribl Stream supports receiving data from Amazon S3 buckets, using event notifications through SQS.

The source S3 bucket must be configured to send s3:ObjectCreated:* events to an SQS queue, either
directly (easiest) or via SNS (Amazon Simple Notification Service). See the event notification configuration
guidelines below.

SQS messages will be deleted a�er they're read, unless an error occurs, in which case Cribl Stream will retry.
This means that although Cribl Stream will ignore files not matching the Filename Filter, their SQS
events/notifications will still be read, and then deleted from the queue (along with those from files that
match).

These ignored files will no longer be available to other S3 Sources targeting the same SQS queue. If you still
need to process these files, we suggest one of these alternatives:

Using a di�erent, dedicated SQS queue. (Preferred and recommended.)

Applying a broad filter on a single Source, and then using pre-processing Pipelines an/or Route filters for
further processing.

Cribl Stream can ingest compressed S3 files if they meet all the following conditions:

Compressed with the x-gzip MIME type.

End with the .gz extension.

Can be uncompressed using the zlib.gunzip algorithm.

7.2.3. Amazon S3

Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: YES

Cribl Stream running on Linux (only) can use this Source to read Parquet files, identified by a
.parquet , .parq , or .pqt filename extension.

See our Amazon S3 Better Practices and Using S3 Storage and Replay guides.

S3 Setup Strategy

Compression

Page 663 of 1835

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select [Pull >
] Amazon > S3. Next, click either + Add New or (if displayed) Select Existing. The drawer will now provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Pull >] Amazon > S3. Next, click + Add New to
open an Amazon S3 > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this S3 Source definition.

Queue: The name, URL, or ARN of the SQS queue to read events from. When specifying a non-AWS URL, you
must use the format: {url}/<queueName> . (E.g., https://host:port/<queueName> .) This value must be a
JavaScript expression (which can evaluate to a constant), enclosed in single quotes, double quotes, or
backticks.

Filename filter: Regex matching file names to download and process. Defaults to .* , to match all
characters. This regex will be evaluated against the S3 key's full path.

Region: AWS Region where the S3 bucket and SQS queue are located. Required, unless the Queue entry is a
URL or ARN that includes a Region.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Incompatible Storage Classes

Cribl Stream does not support data ingestion from buckets saved to S3's Glacier or Deep Glacier
storage classes – whose stated retrieval lags (variously, minutes to 48 hours) cannot guarantee data
availability.

Configuring Cribl Stream to Receive Data from Amazon
S3

General Settings

Optional Settings

Page 664 of 1835

Use the Authentication Method buttons to select an AWS authentication method.

Auto: This default option uses the AWS instance's metadata service to automatically obtain short-lived
credentials from the IAM role attached to an EC2 instance. The attached IAM role grants Cribl Stream Workers
access to authorized AWS resources. Can also use the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY . Works only when running on AWS.

Manual: If not running on AWS, you can select this option to enter a static set of user-associated IAM
credentials (your access key and secret key) directly or by reference. This is useful for Workers not in an AWS
VPC, e.g., those running a private cloud. The Manual option exposes these corresponding additional fields:

Access key: Enter your AWS access key. If not present, will fall back to the env.AWS_ACCESS_KEY_ID
environment variable, or to the metadata endpoint for IAM role credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to the
env.AWS_SECRET_ACCESS_KEY environment variable, or to the metadata endpoint for IAM credentials.

Secret: If not running on AWS, you can select this option to supply a stored secret that references an AWS
access key and secret key. The Secret option exposes this additional field:

Secret key pair: Use the drop-down to select a secret key pair that you've configured in Cribl Stream's
internal secrets manager or (if enabled) an external KMS. Follow the Create link if you need to configure
a key pair.

Enable for S3: Whether to use Assume Role credentials to access S3. Defaults to Yes .

Enable for SQS: Whether to use Assume Role credentials when accessing SQS (Amazon Simple Queue
Service). Defaults to No .

AWS account ID: SQS queue owner's AWS account ID. Leave empty if the SQS queue is in the same AWS
account.

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to assume.

External ID: Enter the External ID to use when assuming role.

Authentication

Assume Role

Processing Settings

Page 665 of 1835

In this section, you can pass the data from this input to an external command for processing, before the data
continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will process its output (via
stdout).

Arguments: Click + Add Argument to add each argument to the command. You can drag arguments
vertically to resequence them.

This section defines event breaking rulesets that will be applied, in order.

Event Breaker Rulesets: A list of event breaking rulesets that will be applied to the input data stream before
the data is sent through the Routes. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Endpoint: S3 service endpoint. If empty, defaults to AWS's region-specific endpoint. Otherwise, used to point
to an S3-compatible endpoint.

Custom Command

Event Breakers

Fields

Pre-Processing

Advanced Settings

Page 666 of 1835

Signature version: Signature version to use for signing SQS requests. Defaults to v4 .

Max messages: The maximum number of messages that SQS should return in a poll request. Amazon SQS
never returns more messages than this value. (However, fewer messages might be returned.) Acceptable
values: 1 to 10. Defaults to 1 .

Visibility timeout seconds: The duration (in seconds) that the received messages are hidden from
subsequent retrieve requests, a�er being retrieved by a ReceiveMessage request. Defaults to 600 .

Num receivers: The number of receiver processes to run. The higher the number, the better the throughput,
at the expense of CPU overhead. Defaults to 1 .

Poll timeout (secs): The amount of time to wait for events before polling again. Acceptable values: 1
(default) to 20 . Short durations increase the number (and thus cost) of requests sent to AWS. Long durations
increase the time the Source takes to react to configuration changes and system restarts.

Socket timeout: Socket inactivity timeout (in seconds). Increase this value if retrievals time out during
backpressure. Defaults to 300 seconds.

Max Parquet chunk size (MB): Maximum size for each Parquet chunk. Defaults to 5 MB. Valid range is 1 to
100 MB. Cribl Stream stores chunks in the location specified by the CRIBL_TMP_DIR environment variable.
It removes the chunks immediately a�er reading them. See Environment Variables.

Parquet chunk download timeout (seconds): The maximum time to wait for a Parquet file's chunk to be
downloaded. If a required chunk cannot not be downloaded within this time limit, processing will end.
Defaults to 600 seconds. Valid range is 1 second to 3600 seconds (1 hour).

Skip file on error: Toggle to Yes to skip files that trigger a processing error. (E.g., corrupted files.) Defaults to
No, which enables retries a�er a processing error.

Reuse connections: Whether to reuse connections between requests. The default setting (Yes) can improve
performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be verified against a valid
Certificate Authority (e.g., self-signed certificates). Defaults to Yes .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Cribl Stream will automatically extend this timeout until the initial request's files have been
processed – notably, in the case of large files that require additional processing time.

Page 667 of 1835

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__inputId

__source

1. Create a Standard SQS Queue. Note its ARN.

2. Replace its access policy with one similar to the examples below. To do so, select the queue; and then, in
the Permissions tab, click: Edit Policy Document (Advanced). (These examples di�er only at line 9,
showing public access to the SQS queue versus S3-only access to the queue.)

3. In the Amazon S3 console, add a notification configuration to publish events of the
s3:ObjectCreated:* type to the SQS queue.

Permissive SQS access policy Restrictive SQS access policy

Connected Destinations

Internal Fields

How to Configure S3 to Send Event Notifications to SQS

For step-by-step instructions, see AWS' Walkthrough: Configure a Bucket for Notifications (SNS Topic
and SQS Queue).

Page 668 of 1835

The following permissions are required on the S3 bucket:

s3:GetObject

s3:ListBucket

The following permissions are required on the SQS queue:

sqs:ReceiveMessage

sqs:DeleteMessage

sqs:ChangeMessageVisibility

sqs:GetQueueAttributes

sqs:GetQueueUrl

Beyond these basics, also see our Amazon S3 Better Practices and Using S3 Storage and Replay guides:

When Cribl Stream instances are deployed on AWS, use IAM Roles whenever possible.

Not only is this safer, but it also makes the configuration simpler to maintain.

{
"Version": "example-2020-04-20",
"Id": "example-ID",
"Statement": [
{
"Sid": "<SID name>",
"Effect": "Allow",
"Principal": {
"AWS":"*"
},
"Action": [
"SQS:SendMessage"
],
"Resource": "example-SQS-queue-ARN",
"Condition": {

"ArnLike": { "aws:SourceArn": "arn:aws:s3:*:*:example-bucket-name" }
}
}
]
}

S3 and SQS Permissions

Best Practices

Page 669 of 1835

Although optional, we highly recommend that you use a Filename Filter.

This will ensure that Cribl Stream ingests only files of interest.

Ingesting only what's strictly needed improves latency, processing power, and data quality.

If higher throughput is needed, increase Advanced Settings > Number of Receivers and/or Max
messages. However, do note:

These are set at 1 by default. Which means, each Worker Process, in each Cribl Stream
Worker Node, will run 1 receiver consuming 1 message (i.e., S3 file) at a time.

Total S3 objects processed at a time per Worker Node = Worker Processes x Number of Receivers x
Max Messages

Increased throughput implies additional CPU utilization.

When ingesting large files, tune up the Visibility Timeout, or consider using smaller objects.

The default value of 600s works well in most cases, and while you certainly can increase it, we
suggest that you also consider using smaller S3 objects.

VPC endpoints for SQS and for S3 might need to be set up in your account. Check with your
administrator for details.

If you're having connectivity issues, but no problems with the CLI, see if the AWS CLI proxy is in use.
Check with your administrator for details.

Workers poll message from SQS. The call will return messages if they are available, or will time out a�er
1 second if no messages are available.

Each Worker gets its share of the load from S3. By default, S3 returns a maximum of 1 message in a single poll
request. You can change this default in Max messages.

;

Troubleshooting Notes

How Cribl Stream Pulls Data

Page 670 of 1835

Cribl Stream supports receiving events from Amazon Simple Queuing Service.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select [Pull >
] Amazon > SQS. Next, click either + Add New or (if displayed) Select Existing. The drawer will now provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Pull >] Amazon > SQS. Next, click + Add New
to open an Amazon SQS > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this SQS Source definition.

Queue: The name, URL, or ARN of the SQS queue to read events from. This value must be a JavaScript
expression (which can evaluate to a constant), enclosed in single quotes, double quotes, or backticks.
To specify a non-AWS URL, use the format: '{url}/<queueName>' . (E.g., ':port/<myQueueName>' .)

Queue type: The queue type used (or created). Defaults to Standard . FIFO (First In, First Out) is the other
option.

Create queue: If toggled to Yes , Cribl Stream will create the queue if it does not exist.

Region: AWS Region where the SQS queue is located. Required, unless the Queue entry is a URL or ARN that
includes a Region.

7.2.4. Amazon SQS

Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: No

Configuring Cribl Stream to Receive Data from Amazon
SQS

General Settings

Optional Settings

Page 671 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Use the Authentication Method buttons to select an AWS authentication method.

This default option uses the AWS instance's metadata service to automatically obtain short-lived credentials
from the IAM role attached to an EC2 instance. The attached IAM role grants Cribl Stream Workers access to
authorized AWS resources. Can also use the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY . Works only when running on AWS.

If not running on AWS, you can select this option to enter a static set of user-associated IAM credentials (your
access key and secret key) directly or by reference. This is useful for Workers not in an AWS VPC, e.g., those
running a private cloud. The Manual option exposes these corresponding additional fields:

Access key: Enter your AWS access key. If not present, will fall back to the env.AWS_ACCESS_KEY_ID
environment variable, or to the metadata endpoint for IAM role credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to the
env.AWS_SECRET_ACCESS_KEY environment variable, or to the metadata endpoint for IAM credentials.

If not running on AWS, you can select this option to supply a stored secret that references an AWS access key
and secret key. The Secret option exposes this additional field:

Secret key pair: Use the drop-down to select a secret key pair that you've configured in Cribl Stream's
internal secrets manager or (if enabled) an external KMS. Follow the Create link if you need to configure
a key pair.

Enable for SQS: Whether to use Assume Role credentials to access SQS. Defaults to No .

AWS account ID: SQS queue owner's AWS account ID. Leave empty if SQS queue is in same AWS account.

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to assume.

Authentication

Auto

Manual

Secret

Assume Role

Page 672 of 1835

External ID: Enter the external ID to use when assuming role.

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Endpoint: SQS service endpoint. If empty, the endpoint will be automatically constructed from the AWS
Region.

Signature version: Signature version to use for signing SQS requests. Defaults to v4 ; v2 is also available.

Max messages: The maximum number of messages that SQS should return in a poll request. Amazon SQS
never returns more messages than this value. (However, fewer messages might be returned.) Acceptable
values: 1 to 10 . Defaults to 10 .

Visibility timeout seconds: The duration (in seconds) that the received messages are hidden from
subsequent retrieve requests, a�er they're retrieved by a ReceiveMessage request. Defaults to 600 .

Num receivers: The number of receiver processes to run. The higher the number, the better the throughput,
at the expense of CPU overhead. Defaults to 3 .

Poll timeout (secs): The amount of time to wait for events before polling again. Acceptable values: 1
(default) to 20 . Short durations increase the number (and thus cost) of requests sent to AWS. Long durations
increase the time the Source takes to react to configuration changes and system restarts.

Reuse connections: Whether to reuse connections between requests. The default setting (Yes) can improve
performance.

Processing Settings

Fields

Pre-Processing

Advanced Settings

Page 673 of 1835

Reject unauthorized certificates: Whether to reject certificates that cannot be verified against a valid
Certificate Authority (e.g., self-signed certificates). Defaults to Yes , the restrictive option.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__inputId

__sqsSysAttrs

The _sqsSysAttrs field can take on the following properties, which are reported to Cribl Stream from SQS:

__sqsSysAttrs.ApproximateFirstReceiveTimestamp : Returns the time (epoch time in milliseconds)
the message was first received from the queue.

__sqsSysAttrs.ApproximateReceiveCount : Returns the number of times a message has been
received from the queue without being deleted.

__sqsSysAttrs.SenderId : For an IAM user, returns the IAM user ID (e.g.: ABCDEFGHI1JKLMNOPQ23R).
For an IAM role, returns the IAM role ID (e.g.: ABCDE1F2GH3I4JK5LMNOP:i-a123b456).

__sqsSysAttrs.SentTimestamp : Returns the time (epoch time in milliseconds) the message was sent
to the queue.

__sqsSysAttrs.MessageDeduplicationId : Returns the value provided by the producer that calls the
SendMessage action.

__sqsSysAttrs.MessageGroupId : Returns the value provided by the producer that calls the
SendMessage action – messages with the same MessageGroupId are returned in sequence.

__sqsSysAttrs.SequenceNumber : Returns the sequence-number value provided by Amazon SQS.

Connected Destinations

Internal Fields

Page 674 of 1835

__sqsSysAttrs.AWSTraceHeader : Returns the AWS X‑Ray trace header string.

For background on these message properties, see AWS' ReceiveMessage > Request Parameters
documentation.

The following permissions are needed on the SQS queue:

sqs:ReceiveMessage

sqs:DeleteMessage

sqs:GetQueueAttributes

sqs:GetQueueUrl

sqs:CreateQueue (optional, if and only if you want Cribl Stream to create the queue)

Workers poll messages from SQS. The call will return a message if one is available, or will time out a�er
1 second if no messages are available.

Each Worker gets its share of the load from SQS, and it receives a notification of a file newly added to an S3
bucket. By default, SQS returns a maximum of 10 messages in a single poll request.

;

SQS Permissions

Troubleshooting Notes

VPC endpoints for SQS might need to be set up in your account. Check with your administrator for
details.

How Cribl Stream Pulls Data

Page 675 of 1835

7.3. Azure

Cribl Stream supports receiving data from Azure Blob Storage buckets. Cribl Stream uses Azure Event Grid to
receive notifications, via a queue, when new blobs are added to a storage account.

Cribl Stream supports data ingestion from Azure's hot and cool access tiers, but not from the archive tier –
 whose stated retrieval lag, up to several hours, cannot guarantee data availability.

This Source supports block blobs, but not append blobs, which can change a�er they are initially created and
the create message is sent. Consider using a Cribl Stream Azure Event Hubs Source if you need to ingest
changeable Azure data.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select [Pull >
] Azure > Blob Storage. Next, click either + Add New or (if displayed) Select Existing. The drawer will now
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Pull >] Azure > Blob Storage. Next,
click + Add New to open an Azure Blob Storage > New Source modal that provides the following options
and fields.

7.3.1. Azure Blob Storage

Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: YES Available in: Cribl Stream
(LogStream) 2.4.4 and above.

Cribl Stream running on Linux (only) can use this Source to read Parquet files, identified by a
.parquet , .parq , or .pqt filename extension.

Restrictions

Configuring Cribl Stream to Receive Data from Azure
Blob Storage

Page 676 of 1835

Input ID: Enter a unique name to identify this Azure Blob Storage Source definition.

Queue: The queue name from which to read Blob notifications. Value must be a JavaScript expression (which
can evaluate to a constant value), enclosed in quotes or backticks. Can be evaluated only at init time. E.g.,
referencing a Global Variable: myQueue-${C.vars.myVar} .

Use the Authentication method buttons to select one of these options:

Manual: Use this default option to enter your Azure Storage connection string directly. Exposes a
Connection string field for this purpose. (If le� blank, Cribl Stream will fall back to
env.AZURE_STORAGE_CONNECTION_STRING .)

Secret: This option exposes a Connection string (text secret) drop-down, in which you can select a
stored secret that references an Azure Storage connection string. The secret can reside in Cribl Stream's
internal secrets manager or (if enabled) in an external KMS. A Create link is available if you need a new
secret.

Either authentication method uses an Azure Storage connection string in this format:
DefaultEndpointsProtocol=[http|https];AccountName=<your‐account‐name>;AccountKey=

<your‐account‐key>

A fictitious example, using Microso�'s recommended HTTPS option, is:
DefaultEndpointsProtocol=https;AccountName=storagesample;AccountKey=12345678...32

Filename filter: Regex matching file names to download and process. Defaults to .* , to match all
characters.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

General Settings

Authentication Settings

Connection String Format

Optional Settings

Processing Settings

Page 677 of 1835

In this section, you can pass the data from this input to an external command for processing, before the data
continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will process its output (via
stdout).

Arguments: Click + Add Argument to add each argument to the command. You can drag arguments
vertically to resequence them.

This section defines event breaking rulesets that will be applied, in order.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the input data stream before
the data is sent through the Routes. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Pipelines. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Max messages: The maximum number of messages to return in a poll request. Azure queues never return
more messages than this value (although they might return fewer messages). Acceptable values: 1 to 32 .

Custom Command

Event Breakers

Fields

Pre-Processing

Advanced Settings

Page 678 of 1835

Visibility timeout (secs): The duration (in seconds) that the received messages are hidden from subsequent
retrieve requests, a�er being retrieved by a ReceiveMessage request. Defaults to 600 seconds. Maximum
allowed value is 604800 seconds (7 days).

Num receivers: The number of receiver processes to run. The higher the number, the better the throughput,
at the expense of CPU overhead. Defaults to 1 .

Service period (secs): The interval (in seconds) at which pollers should be validated, and restarted if exited.
Defaults to 5 seconds.

Skip file on error: Toggle to Yes to skip files that trigger a processing error (e.g., corrupted files). Defaults to
No, which enables retries a�er a processing error.

Max Parquet chunk size (MB): Maximum size for each Parquet chunk. Defaults to 5 MB. Valid range is 1 to
100 MB. Cribl Stream stores chunks in the location specified by the CRIBL_TMP_DIR environment variable.
It removes the chunks immediately a�er reading them. See Environment Variables.

Parquet chunk download timeout (seconds): The maximum time to wait for a Parquet file's chunk to be
downloaded. If a required chunk cannot not be downloaded within this time limit, processing will end.
Defaults to 600 seconds. Valid range is 1 second to 3600 seconds (1 hour).

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Cribl Stream will automatically extend this timeout until the initial request's files have been
processed – notably, in the case of large files that require additional processing time.

Connected Destinations

Internal Fields

Page 679 of 1835

Fields for this Source:

__inputId

__source

This Source needs to receive Azure Event Grid notifications, via a queue, when new blobs are added to a
storage account. This queue approach enables Cribl Stream to manage backpressure conditions and retries
upon errors.

You will therefore need to enable notifications in the Azure portal. The basic flow is:

File upload → Blob container → Blob Created notification → Azure Queue Storage queue

To configure notifications from the Blob storage account in the Azure backend, there are three major steps,
outlined below:

1. Create an Event Grid system topic.

2. Create a queue.

3. Configure the generation of storage account notifications when new blobs are uploaded to the queue.

First, you must create a system topic, to which Azure will publish notifications. In the Azure portal, tart at
Event Grid System Topics:

The remainder of this topic covers required Azure-side configuration.

Configuring Azure Blob Notifications

Azure's UI will change over time. Please fall back to Microso�'s Azure Event Grid documentation for
up-to-date instructions and screenshots.

1. Create System Topic

Page 680 of 1835

Azure portal > System topics

Select +Create to create a new system topic, then set the Topic Type to Storage Account (Blob):

Creating a system topic

In Subscription > Resource Group > Resource, reference the storage account where you want to generate
notifications.

Give the topic an arbitrary name that is meaningful to you. (In this example, the name is the same as the
storage account.)

Next, navigate to your storage account to create a queue.

2. Create Storage Queue

Page 681 of 1835

Accessing your storage account

Select the storage account for which you would like to set up notifications. Then, in the submenu, select
Queue service > Queues:

Accessing queues

Select Create queue, and give the queue a name that is meaningful to you.

Adding a queue

3. Configure Storage Account Notifications

Page 682 of 1835

Next, set up the storage account that will publish Blob Create notifications to the queue, using the system
topic. From the Storage Accounts menu, select Events:

Accessing your storage account

Then click + Event Subscription to proceed:

Page 683 of 1835

Creating a subscription.

There are a few things to configure here:

Enter a Name for the subscription.

In System Topic Name, enter the name of the system topic you created in 1. Create System Topic above.

In Event Types, select Blob Created, and deselect Blob Deleted.

As the Endpoint Type, select Storage Queues.

Click Select an endpoint, and click the subscription to use (Pay‑As-You-Go).

Next, select the storage account on which to add the subscription:

Page 684 of 1835

Choosing the storage account

Select the queue you created in Create Storage Queue above, and click Confirm Selection to save the
settings.

Selecting the storage account

To complete the process, click Create.

Page 685 of 1835

Creating the subscription

Workers poll messages from Azure Blob Storage using the Azure Event Grid Queue. The call will return a
message if one is available, or will time out a�er 5 seconds if no messages are available.

Each Worker gets its share of the load from Azure Event Grid, and receives a notification of a new file added to
an Azure Blob Storage bucket.

How Cribl Stream Pulls Data

Page 686 of 1835

By default, the maximum number of messages Azure Event Grid returns in a single poll request is 1 per
Worker Process.

;

Page 687 of 1835

Cribl Stream supports receiving data records from Azure Event Hubs.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select [Pull >
] Azure > Event Hubs. Next, click either + Add New or (if displayed) Select Existing. The drawer will now
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Pull >] Azure > Event Hubs. Next,
click + Add New to open an Azure Event Hubs > New Source modal that provides the following options and
fields.

Input ID: Enter a unique name to identify this source definition.

Brokers: List of Event Hubs Kafka brokers to connect to, e.g.,
yourdomain.servicebus.windows.net:9093 . Get the hostname from the host portion of the primary or
secondary connection string in Shared Access Policies.

Event Hub name: The name of the Event Hub (a.k.a. Kafka Topic) to subscribe to.

7.3.2. Azure Event Hubs

Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: No

Azure Event Hubs uses a binary protocol over TCP. It does not support HTTP proxies, so Cribl Stream
must receive events directly from senders. You might need to adjust your firewall rules to allow this
tra�ic.

Configuring Cribl Stream to Receive Data from Azure
Event Hubs

General Settings

Optional Settings

Page 688 of 1835

Group ID: The name of the consumer group that includes this Cribl Stream instance. Defaults to Cribl .

From beginning: Whether to start reading from the earliest available data. Relevant only during initial
subscription. Defaults to Yes .

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Enabled: Defaults to Yes .

Validate server certs: Whether to reject connections to servers without signed certificates. Defaults to No –
and for Event Hubs, must always be disabled.

Enabled: With the default Yes setting, this section's remaining settings are displayed, and all are required
settings.

SASL mechanism: SASL (Simple Authentication and Security Layer) authentication mechanism to use.
Currently, PLAIN is the only mechanism supported for Event Hubs Kafka brokers.

Username: The username for authentication. For Event Hubs, this should always be $ConnectionString .

Authentication method: Use the buttons to select one of these options:

Manual: Use this default option to enter your Event Hubs connection string's primary or secondary key
from the Event Hubs workspace. Exposes a Password field for this purpose.

Secret: This option exposes a Password (text secret) drop-down, in which you can select a stored
secret that references an Event Hubs connection string. The secret can reside in Cribl Stream's internal

To prevent excessive Kafka rebalancing and reduced throughput, each Group ID that you specify here
should be subscribed to only one Kafka Topic – i.e., only to the single Topic you specify in Event Hub
name. This has two implications:

The Group ID should be something other than $Default , especially if Event Hubs are stored In
shared accounts, where the $Default group might be subscribed to other Topics.

You should configure a separate Azure Event Hubs Source for each Group:Topic pair whose
events you want to subscribe to.

TLS Settings (Client Side)

Authentication Settings

Page 689 of 1835

secrets manager or (if enabled) in an external KMS. A Create link is available if you need a new secret.

Either authentication method uses an Azure Event Hubs connection string in this format:

Endpoint=sb://<FQDN>/;SharedAccessKeyName=<your‐shared-access‐key-name>;SharedAccessKey=

<your‐shared-access‐key-value>

A fictitious example is:

Endpoint=sb://dummynamespace.servicebus.windows.net/;SharedAccessKeyName=DummyAccessKeyN

ame;SharedAccessKey=5dOntTRytoC24opYThisAsit3is2B+OGY1US/fuL3ly=

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Use these settings to fine-tune Cribl Stream's integration with Event Hubs Kafka brokers. For details, see
Azure Event Hubs' recommended configuration documentation. If you are unfamiliar with these parameters,
contact Cribl Support to understand the implications of changing the defaults.

Heartbeat interval (ms): Expected time between heartbeats to the consumer coordinator when using
Kafka's group management facilities. (Corresponds to heartbeat.interval.ms in the Kafka domain.) Value
must be lower than sessionTimeout , and typically should not exceed 1/3 of the sessionTimeout value.
Defaults to 3000 ms, i.e., 3 seconds.

Connection String Format

Processing Settings

Fields

Pre-Processing

Advanced Settings

Page 690 of 1835

Session timeout (ms): Timeout used to detect client failures when using Kafka's group management
facilities. (Corresponds to session.timeout.ms in the Kafka domain.) If the client sends the broker no
heartbeats before this timeout expires, the broker will remove this client from the group, and will initiate a
rebalance. Value must be lower than rebalanceTimeout . Defaults to 30000 ms, i.e., 30 seconds.

Rebalance timeout (ms): Maximum allowed time for each worker to join the group a�er a rebalance has
begun. (Corresponds to rebalance.timeout.ms in the Kafka domain.) If this timeout is exceeded, the
coordinator broker will remove the worker from the group. Defaults to 60000 ms, i.e., 1 minute.

Connection timeout (ms): Maximum time to wait for a successful connection. Defaults to 10000 ms, i.e.,
10 seconds. Valid range is 1000 to 3600000 ms, i.e., 1 second to 1 hour.

Request timeout (ms): Maximum time to wait for a successful request. Defaults to 60000 ms, i.e., 1 minute.

O�set commit interval (ms): How o�en, in milliseconds, to commit o�sets. If both this field and the
O�set commit threshold are empty, Cribl Stream will commit o�sets a�er each batch. If both fields are set,
Cribl Stream will commit o�sets when either condition is met.

O�set commit threshold: The number of events that will trigger an o�set commit. If both this field and the
O�set commit interval are empty, Cribl Stream will commit o�sets a�er each batch. If both fields are set,
Cribl Stream will commit o�sets when either condition is met.

Max bytes per partition: The maximum amount of data that the server will return per partition. Must equal
or exceed the maximum message size the server allows. (Otherwise, the producer will be unable to send
messages larger than the consumer can fetch.) If not specified, defaults to 1048576 .

Max bytes: Maximum amount of bytes to accumulate in the response. The default is 10485760 (10 MB) .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Minimize duplicates: Optionally, toggle to Yes to start only one consumer for each topic partition. This
reduces duplicates.

If you observe an excessive number of group rebalances, and/or you observe consumers not regularly
pulling messages, try increasing the values of Heartbeat interval, Session timeout, and Rebalance
timeout.

Connected Destinations

Page 691 of 1835

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__inputId

__topicIn (indicates the Kafka topic that the event came from)

__partition

__schemaId (when using Azure Schema Registry)

__key (when using Schema Registry)

__headers (when using Schema Registry)

__keySchemaIdIn (when using Schema Registry)

__valueSchemaIdIn (when using Schema Registry)

Azure Event Hubs treat all the Worker Nodes as members of a Consumer Group, and each Worker gets its
share of the load from Azure Event Hubs. This is the same process as normal Kafka. By default, Workers will
poll every 5 seconds. In the case of Leader failure, Worker Nodes will continue to receive data as normal.

;

Internal Fields

How Cribl Stream Pulls Data

Page 692 of 1835

7.4. Google Cloud

Cribl Stream supports receiving data records from Google Cloud Pub/Sub, a managed real-time messaging
service for sending and receiving messages between applications.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select [Pull >
] Google Cloud > Pub/Sub. Next, click either + Add New or (if displayed) Select Existing. The drawer will
now provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Pull >] Google Cloud > Pub/Sub. Next,
click + Add New to open a Google Cloud Pub/Sub > New Source modal that provides the following options
and fields.

Input ID: Enter a unique name to identify this Pub/Sub Source definition.

Topic ID: ID of the Pub/Sub topic from which to receive events.

Subscription ID: ID of the subscription to use when receiving events.

Create topic: If toggled to Yes , Cribl Stream will create the topic on Pub/Sub if it does not exist.

Create subscription: If set to Yes (the default), Cribl Stream will create the subscription on Pub/Sub if it
does not exist.

7.4.1. Google Cloud Pub/Sub

Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: No

Configuring Cribl Stream to Receive Data from Pub/Sub

General Settings

Optional Settings

Page 693 of 1835

Ordered delivery: If toggled to Yes , Cribl Stream will receive events in the order that they were added to the
queue. (For this to work correctly, the process sending events must have ordering enabled.)

Region: Region to retrieve messages from. Select default to allow Google to auto-select the nearest region.
(If you've enabled Ordered delivery, the selected region must be allowed by message storage policy.)

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Use the Authentication Method buttons to select a Google authentication method:

Auto: This option uses the environment variables PUBSUB_PROJECT and PUBSUB_CREDENTIALS , and
requires no configuration here.

Manual: With this default option, you use the Service account credentials field to enter the contents of your
service account credentials file (a set of JSON keys), as downloaded from Google Cloud.

To insert the file itself, click the upload button at this field's upper right. As an alternative, you can use
environment variables, as outlined here.

Secret: Use the drop-down to select a key pair that you've configured in Cribl Stream's internal secrets
manager or (if enabled) an external KMS.

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to
a constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Authentication

Processing Settings

Fields

Pre-Processing

Advanced Settings

Page 694 of 1835

Max backlog: When the Destination exerts backpressure, this setting limits the number of events that
Cribl Stream will queue for processing before it stops retrieving further events. Defaults to 1000 events.

Request timeout (ms): Pull request timeout, in milliseconds. Defaults to 60000 ms (i.e., 1 minute).

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__messageId – ID of the message from Google.

__projectId – ID of the Google project from which the data was received.

__publishTime – Time at which the event was originally published to the Pub/Sub topic.

__subscriptionIn – The subscription from which the event was received.

__topicIn – The topic from which the event was received.

Your Google Cloud service account should have at least the following roles on subscriptions:

roles/pubsub.subscriber

roles/pubsub.viewer or roles/viewer

To enable Cribl Stream's Create topic and/or Create subscription options, your service account should have
one of the following (or higher) roles:

Connected Destinations

Internal Fields

Google Cloud Roles and Permissions

Page 695 of 1835

roles/pubsub.editor

roles/editor

Either editor role confers multiple permissions, including those from the lower viewer , subscriber , and
publisher roles. For additional details, see the Google Cloud Access Control topic.

Pub/Sub treats all the Worker Nodes as members of a Consumer Group, and each Worker gets its share of the
load from Pub/Sub. This is the same process as normal Kafka. By default, Workers will poll every 1 minute. In
the case of Leader failure, Worker Nodes will continue to receive data as normal.

;

How Cribl Stream Pulls Data

Page 696 of 1835

7.5. Kafka

Cribl Stream supports receiving data records from a Kafka cluster. As of Cribl Stream v.3.3, this Source
automatically detects compressed data in Gzip , Snappy , or LZ4 format.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select [Pull >
] Kafka. Next, click either + Add New or (if displayed) Select Existing. The drawer will now provide the
following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Pull >] Kafka. Next, click + Add New to open a
Kafka > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Source definition.

Brokers: List of Kafka brokers to use, e.g., localhost:9092 .

Topics: Enter the name(s) of topics to subscribe to. Press Enter / Return between multiple entries.

7.5.1. Kafka

Type: Pull | TLS Support: YES | Event Breaker Support: No

Kafka uses a binary protocol over TCP. It does not support HTTP proxies, so Cribl Stream must receive
events directly from senders. You might need to adjust your firewall rules to allow this tra�ic.

Configuring Cribl Stream to Receive Data from Kafka
Topics

General Settings

To optimize performance, Cribl suggests subscribing each Kafka Source to only one topic. This
prevents excessive rebalancing. If you want to subscribe to multiple topics, consider creating a
dedicated Kafka Source for each one.

Page 697 of 1835

Group ID: The name of the consumer group to which this Cribl Stream instance belongs.

From beginning: Whether to start reading from the earliest available data. Relevant only during initial
subscription. Defaults to Yes .

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Enabled: defaults to No . When toggled to Yes :

Autofill?: This setting is experimental.

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension. This must be a host
name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to verify the server's cert.
Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

Optional Settings

TLS Settings (Client Side)

Authentication

Page 698 of 1835

This section governs SASL (Simple Authentication and Security Layer) authentication to use when
connecting to brokers.

Enabled: Defaults to No . When toggled to Yes :

SASL mechanism: Use this drop-down to select the SASL authentication mechanism to use. The mechanism
you select determines the controls displayed below.

With any of these authentication mechanisms, select one of the following buttons:

Manual: Displays Username and Password fields to enter your Kafka credentials directly.

Secret: This option exposes a Credentials secret drop-down in which you can select a stored text secret that
references your Kafka credentials. A Create link is available to store a new, reusable secret.

Selecting Kerberos as the authentication mechanism displays the following options:

Keytab location: Enter the location of the key table file for the authentication principal.

Principal: Enter the authentication principal, e.g.: kafka_user@example.com .

Broker service class: Enter the Kerberos service class for Kafka brokers, e.g.: kafka .

This section governs Kafka Schema Registry authentication for Avro‑encoded data with a schema stored in
the Confluent Schema Registry.

Enabled: defaults to No . When toggled to Yes , displays the following controls:

Schema registry URL: URL for access to the Confluent Schema Registry. (E.g., http://<hostname>:8081 .)

TLS enabled: When toggled to Yes, displays the following TLS settings for the Schema Registry.

PLAIN, SCRAM-256, or SCRAM-512

GSSAPI/Kerberos

Schema Registry

These have the same format as the TLS Settings (Client Side) above.

Page 699 of 1835

Validate server certs: Require client to reject any connection that is not authorized by a CA in the
CA certificate path, or by another trusted CA (e.g., the system's CA). Defaults to No.

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension. This must be a
host name, not an IP address.

Minimum TLS version: Optionally, select the minimum TLS version to use when connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use when connecting.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to verify the server's
cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM format) to use. Path
can reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Processing Settings

Fields

Pre-Processing

Advanced Settings

Page 700 of 1835

Use these settings to fine-tune Cribl Stream's integration with Kafka topics. If you are unfamiliar with these
parameters, contact Cribl Support to understand the implications of changing the defaults.

Heartbeat interval (ms): Expected time between heartbeats to the consumer coordinator when using
Kafka's group management facilities. Value must be lower than sessionTimeout , and typically should not
exceed 1/3 of the sessionTimeout value. Defaults to 3000 ms, i.e., 3 seconds. For details, see the Kafka
documentation.

Session timeout (ms): Timeout used to detect client failures when using Kafka's group management
facilities. If the client sends the broker no heartbeats before this timeout expires, the broker will remove this
client from the group, and will initiate a rebalance. Value must be between the broker's configured
group.min.session.timeout.ms and group.max.session.timeout.ms . Defaults to 30000 ms, i.e.,
30 seconds. For details, see the Kafka documentation.

Rebalance timeout (ms): Maximum allowed time for each worker to join the group a�er a rebalance has
begun. If the timeout is exceeded, the coordinator broker will remove the worker from the group. Defaults to
60000 ms, i.e., 1 minute. For details, see the Kafka documentation.

Connection timeout (ms): Maximum time to wait for a successful connection. Defaults to 10000 ms, i.e.,
10 seconds. Valid range is 1000 to 3600000 ms, i.e., 1 second to 1 hour. For details, see the Kafka
documentation.

Request timeout (ms): Maximum time to wait for a successful request. Defaults to 60000 ms, i.e., 1 minute.
For details, see the Kafka documentation.

O�set commit interval (ms): How o�en, in milliseconds, to commit o�sets. If both this field and the
O�set commit threshold are empty, Cribl Stream will commit o�sets a�er each batch. If both fields are set,
Cribl Stream will commit o�sets when either condition is met.

O�set commit threshold: The number of events that will trigger an o�set commit. If both this field and the
O�set commit interval are empty, Cribl Stream will commit o�sets a�er each batch. If both fields are set,
Cribl Stream will commit o�sets when either condition is met.

Max bytes per partition: The maximum amount of data that the server will return per partition. Must equal
or exceed the maximum message size the server allows. (Otherwise, the producer will be unable to send
messages larger than the consumer can fetch.) If not specified, defaults to 1048576 .

Max bytes: Maximum amount of bytes to accumulate in the response. The default is 10485760 (10 MB) .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Page 701 of 1835

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__inputId

__topicIn (indicates the Kafka topic that the event came from; see __topicOut in our Kafka
Destination documentation)

__partition

__schemaId (when using Schema Registry)

__key (when using Schema Registry)

__headers (when using Schema Registry)

__keySchemaIdIn (when using Schema Registry)

__valueSchemaIdIn (when using Schema Registry)

Kafka treats all the Worker Nodes as members of a Consumer Group, and Kafka manages each Nodeʼs data
load. By default, Workers will poll every 5 seconds. In the case of Leader failure, Worker Nodes will continue
to receive data as normal.

;

If you observe an excessive number of group rebalances, and/or you observe consumers not regularly
pulling messages, try increasing the values of Heartbeat interval, Session timeout, and Rebalance
timeout.

Connected Destinations

Internal Fields

How Cribl Stream Pulls Data

Page 702 of 1835

Cribl Stream supports receiving Kafka topics from the Confluent Cloud managed Kafka platform. As of
Cribl Stream v.3.3, this Source automatically detects compressed data in Gzip , Snappy , or LZ4 format.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select [Pull >
] Confluent Cloud. Next, click either + Add New or (if displayed) Select Existing. The drawer will now
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Pull >] Confluent Cloud. Next, click + Add New
to open a Confluent Cloud > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Source definition.

Brokers: List of Confluent Cloud brokers to use, e.g., myAccount.confluent.cloud:9092 .

Topics: Enter the name(s) of topics to subscribe to. Press Enter / Return between multiple entries.

7.5.2. Confluent Cloud

Type: Pull | TLS Support: YES | Event Breaker Support: No

Confluent Cloud uses a binary protocol over TCP. It does not support HTTP proxies, so Cribl Stream
must receive events directly from senders. You might need to adjust your firewall rules to allow this
tra�ic.

Your Confluent Cloud permissions should include Consumer Group: Read .

Ingesting Kafka Topics from Confluent Cloud

General Settings

To optimize performance, Cribl suggests subscribing each Confluent Cloud Source to only one topic.
This prevents excessive rebalancing. If you want to subscribe to multiple topics, consider creating a
dedicated Confluent Cloud Source for each one.

Page 703 of 1835

Group ID: The name of the consumer group to which this Cribl Stream instance belongs.

From beginning: Whether to start reading from the earliest available data. Relevant only during initial
subscription. Defaults to Yes .

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Enabled: defaults to No . When toggled to Yes :

Autofill?: This setting is experimental.

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to Yes .

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension. This must be a host
name, not an IP address.

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to verify the server's cert.
Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Enabled: Defaults to No . When toggled to Yes , all the settings in this section are required.

Optional Settings

TLS Settings (Client Side)

Authentication

Page 704 of 1835

SASL mechanism: SASL (Simple Authentication and Security Layer) authentication mechanism to use.
Currently, PLAIN is the only mechanism supported for Confluent Kafka brokers.

Username: The username for authentication. For Confluent, this should always be $ConnectionString .

Authentication method: Use the buttons to select one of these options:

Manual: Use this default option to enter your Confluent connection string. Exposes a Password field for
this purpose.

Secret: This option exposes a Connection string (text secret) drop-down, in which you can select a
stored secret that references a Confluent connection string. The secret can reside in Cribl Stream's
internal secrets manager or (if enabled) in an external KMS. A Create link is available if you need a new
secret.

This section governs Confluent Schema Registry Authentication for Avro-encoded data with a schema stored
in the Confluent Schema Registry.

Enabled: defaults to No . When toggled to Yes , displays the following controls:

Schema registry URL: URL for access to the Confluent Schema Registry. (E.g., http://<hostname>:8081 .)

TLS enabled: defaults to No . When toggled to Yes, displays the following TLS settings for the
Schema Registry (in the same format as the TLS Settings (Client Side) above):

Validate server certs: Require client to reject any connection that is not authorized by a CA in the
CA certificate path, or by another trusted CA (e.g., the system's CA). Defaults to No.

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension. This must be a
host name, not an IP address.

Minimum TLS version: Optionally, select the minimum TLS version to use when connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use when connecting.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to verify the server's
cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM format) to use. Path
can reference $ENV_VARS . Use only if mutual auth is required.

Schema Registry

Page 705 of 1835

Certificate path (mutual auth): Path on client containing certificates in (PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Use these settings to fine-tune Cribl Stream's integration with Kafka topics. If you are unfamiliar with these
parameters, contact Cribl Support to understand the implications of changing the defaults.

Heartbeat interval (ms): Expected time between heartbeats to the consumer coordinator when using
Kafka's group management facilities. Value must be lower than sessionTimeout , and typically should not
exceed 1/3 of the sessionTimeout value. Defaults to 3000 ms, i.e., 3 seconds. For details, see the Kafka
documentation.

Session timeout (ms): Timeout used to detect client failures when using Kafka's group management
facilities. If the client sends the broker no heartbeats before this timeout expires, the broker will remove this
client from the group, and will initiate a rebalance. Value must be between the broker's configured
group.min.session.timeout.ms and group.max.session.timeout.ms . Defaults to 30000 ms, i.e.,
30 seconds. For details, see the Kafka documentation.

Rebalance timeout (ms): Maximum allowed time for each worker to join the group a�er a rebalance has
begun. If the timeout is exceeded, the coordinator broker will remove the worker from the group. Defaults to
60000 ms, i.e., 1 minute. For details, see the Kafka documentation.

Processing Settings

Fields

Pre-Processing

Advanced Settings

Page 706 of 1835

Connection timeout (ms): Maximum time to wait for a successful connection. Defaults to 10000 ms, i.e.,
10 seconds. Valid range is 1000 to 3600000 ms, i.e., 1 second to 1 hour. For details, see the Kafka
documentation.

Request timeout (ms): Maximum time to wait for a successful request. Defaults to 60000 ms, i.e., 1 minute.
For details, see the Kafka documentation.

O�set commit interval (ms): How o�en, in milliseconds, to commit o�sets. If both this field and the
O�set commit threshold are empty, Cribl Stream will commit o�sets a�er each batch. If both fields are set,
Cribl Stream will commit o�sets when either condition is met.

O�set commit threshold: The number of events that will trigger an o�set commit. If both this field and the
O�set commit interval are empty, Cribl Stream will commit o�sets a�er each batch. If both fields are set,
Cribl Stream will commit o�sets when either condition is met.

Max bytes per partition: The maximum amount of data that the server will return per partition. Must equal
or exceed the maximum message size the server allows. (Otherwise, the producer will be unable to send
messages larger than the consumer can fetch.) If not specified, defaults to 1048576 .

Max bytes: Maximum amount of bytes to accumulate in the response. The default is 10485760 (10 MB) .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

If you observe an excessive number of group rebalances, and/or you observe consumers not regularly
pulling messages, try increasing the values of Heartbeat interval, Session timeout, and Rebalance
timeout.

Connected Destinations

Internal Fields

Page 707 of 1835

Fields for this Source:

__inputId

__topicIn (indicates the Confluent Cloud topic that the event came from; see __topicOut in our
[Confluent Cloud Destination](destinations-Confluent Cloud) documentation)

__partition

__schemaId (when using Schema Registry)

Confluent Cloud treats all the Worker Nodes as members of a Consumer Group, and Confluent Cloud
manages each Nodeʼs data load. By default, Workers will poll every 5 seconds. In the case of Leader failure,
Worker Nodes will continue to receive data as normal.

;

How Cribl Stream Pulls Data

Page 708 of 1835

7.6. O�ice 365

Cribl Stream supports receiving data from the O�ice 365 Management Activity API. This facilitates analyzing
actions and events on Azure Active Directory, Exchange, and SharePoint, along with global auditing and Data
Loss Prevention data.

TLS is enabled via the HTTPS protocol on this Source's underlying REST API.

In Azure Active Directory, the application representing your Cribl Stream instance must be granted the
following permissions to pull data. Each permission's Type must be Application – Delegated is not
su�icient:

ActivityFeed Read – Required for all Content Types except DLP.All .

ActivityFeed.ReadDlp – Required for the DLP.All Content Type.

Registered application permissions

Cribl Stream does not support starting/stopping O�ice 365 subscriptions. You can start subscriptions either
via another O�ice 365 API client, or simply via curl commands. We document the curl command method
below in Starting Content Subscriptions.

7.6.1. O�ice 365 Activity

Type: Pull | TLS Support: YES | Event Breaker Support: YES

Azure AD Permissions

O�ice 365 Subscriptions

Page 709 of 1835

In the QuickConnect UI: Click + New Source, or click + Add Source beside Sources. From the resulting
drawer's tiles, select [Pull >] O�ice 365 > Activity. Next, click + Add New to open a New Source modal that
provides the following options and fields.

From the top nav of a Cribl Stream instance or Group, select Data > Sources. From the top nav of a Cribl Edge
instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Pull >] O�ice 365 > Activity. Next,
click + Add New to open a O�ice 365 Activity > New Source modal that provides the following options and
fields.

Input ID: Enter a unique name to identify this O�ice 365 Activity definition.

Tenant ID: Enter the O�ice 365 Azure tenant ID.

App ID: Enter the O�ice 365 Azure application ID.

Subscription Plan: Select the O�ice 365 subscription plan for your organization. This is typically
Enterprise or GCC Government Plan .

Authentication method: Select one of the following buttons.

Manual: This default option provides a Client secret field, where you directly enter the required O�ice
365 Azure client secret.

Secret: This option instead exposes a Client secret (text secret) drop-down, from which you select a
stored text secret to authenticate with. Click Create to configure a new secret.

Publisher identifier: Use in API requests as described here. If not defined, defaults to Microso� O�ice 365
tenant ID.

Content Types: See the Content Types section below.

Configuring Cribl Stream to Receive Data from the
Activity API

General Settings

Authentication Settings

Optional Settings

Page 710 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Here, you can configure polling independently for the following types of audit data from the O�ice 365
Management Activity API:

Active Directory

Exchange

SharePoint

General: All workloads not included in the above content types

DLP.All: Data Loss Prevention events only, for all workloads

For each of these content types, the Content Types table provides the following controls:

Interval Description: This column is informational only.

Interval: Optionally, override the default polling interval. See About Polling Intervals below.

Log Level: Set the verbosity level to one of debug , info (the default), warn , or error .

Enabled: Toggle this to Yes for each service that you want to poll.

To poll the O�ice 365 Management Activity API, Cribl Stream uses the Interval field's value to establish the
search date range and the cron schedule (e.g.: */${interval} * * * *).

Therefore, intervals set in minutes must divide evenly into 60 minutes to create a predictable schedule.
Dividing 60 by intervals like 1 , 2 , 3 , 4 , 5 , 6 , 10 , 12 , 15 , 20 , or 60 itself yields an integer, so you can
enter any of these values.

Cribl Stream will reject intervals like 23 , 42 , or 45 , or 75 – which would yield non-integer results, meaning
unpredictable schedules.

In this section, you can add Fields to each event, using Eval-like functionality.

Content Types

About Polling Intervals

Processing Settings

Fields

Page 711 of 1835

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Keep Alive Time (seconds): How o�en Workers should check in with the scheduler to keep their job
subscription alive. Defaults to 60 .

Worker timeout (periods): The number of Keep Alive Time periods before an inactive Worker will have its
job subscription revoked. Defaults to 3 .

Timeout (secs): The maximum time period for an HTTP request to complete before Cribl Stream treats it as
timed out. Defaults to 300 (i.e., 5 minutes). Enter 0 to disable timeout metering.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__final

__inputId

__isBroken

__source

Pre-Processing

Advanced Settings

Internal Fields

Starting Content Subscriptions

Page 712 of 1835

Content subscriptions (a di�erent concept from the O365 subscription plans) are required in order for
Cribl Stream to be able to begin retrieving O365 data. There is a separate subscription required for each
Content Type. If you are using an existing Azure-registered application ID that already has subscriptions
started, then you can ignore this section. But if you are:

Using a newly registered application ID, and therefore never had any subscriptions started, or

Reusing an application ID that had subscriptions started, but are currently stopped

...then you will need to use this procedure to manually start the necessary subscriptions. Follow either of the
two methods below, using (respectively) PowerShell or curl .

This sample PowerShell script will enable all subscriptions for you. Update the appropriate variables as
required:

Using PowerShell

Create app of type Web app / API in Azure AD, generate a Client Secret, and update th
and client secret here
Get the tenant GUID from Properties | Directory ID under the Azure Active Directory s
$AppID = "<APP_ID>"
$ClientSecret = "<CLIENT_SECRET>"
$TenantID = "<TENANT_ID>"
$loginURL = "https://login.microsoftonline.com/"

For $resource, use one of these endpoint values based on your subscription plan:
* Enterprise - manage.office.com
* GCC - manage-gcc.office.com
* GCC High - manage.office365.us
* DoD - manage.protection.apps.mil
$resource = "https://manage.office.com"

$body =
@{grant_type="client_credentials";resource=$resource;client_id=$AppID;client_secret=$Cl
$oauth = Invoke-RestMethod -Method Post -Uri $loginURL/$TenantID/oauth2/token?api-versi
Body $body
$headerParams = @{'Authorization'="$($oauth.token_type) $($oauth.access_token)"}

Invoke-WebRequest -Headers $headerParams -Uri
"$resource/api/v1.0/$TenantID/activity/feed/subscriptions/list"

Invoke-WebRequest -Method Post -Headers $headerParams -Uri
"$resource/api/v1.0/$TenantID/activity/feed/subscriptions/start?
contentType=Audit.AzureActiveDirectory"
Invoke-WebRequest -Method Post -Headers $headerParams -Uri
"$resource/api/v1.0/$TenantID/activity/feed/subscriptions/start?contentType=Audit.Excha
Invoke-WebRequest -Method Post -Headers $headerParams -Uri
"$resource/api/v1.0/$TenantID/activity/feed/subscriptions/start?contentType=Audit.Share
Invoke-WebRequest -Method Post -Headers $headerParams -Uri
"$resource/api/v1.0/$TenantID/activity/feed/subscriptions/start?contentType=Audit.Gener
Invoke-WebRequest -Method Post -Headers $headerParams -Uri
"$resource/api/v1.0/$TenantID/activity/feed/subscriptions/start?contentType=DLP.All"

Page 713 of 1835

This is a two-step process. The first command obtains an auth token, which is used in the second command
to actually start the subscription. To execute these commands, you'll need the same information (i.e., client
secret, application ID, and tenant ID) that you already require to configure this Source in Cribl Stream's GUI.
Replace those three variables as appropriate in the commands below.

1. curl -d "client_secret=<client secret>&resource=https://manage.office.com&client_id=
<app id>&grant_type=client_credentials" -X POST https://login.windows.net/<tenant

id>/oauth2/token

2. curl -d "" -H "Authorization: Bearer <access token>" -X POST
https://manage.office.com/api/v1.0/<tenant id>/activity/feed/subscriptions/start?

contentType=<content_type_name>

Here is an example of each command executed and expected output:

$ curl -d

"client_secret=abcdefghijklmnopqrstuvwxyz12345678&resource=https://manage.office.com&cli

ent_id=00000000-ffff-ffff-ffff-aaaaaaaaaaaa&grant_type=client_credentials" -X POST

https://login.windows.net/12345678-aaaa-4233-cccc-160c6c30154a/oauth2/token

{"token_type":"Bearer","expires_in":"3599","ext_expires_in":"3599","expires_on":"1622089

429","not_before":"1622085529","resource":"https://manage.office.com","access_token":"ey

J0...long JWT here...MRDvw"}

$ curl -d "" -H "Authorization: Bearer eyJ0...long JWT here...MRDvw" -X POST

https://manage.office.com/api/v1.0/12345678-aaaa-4233-cccc-

160c6c30154a/activity/feed/subscriptions/start?contentType=Audit.AzureActiveDirectory

{"contentType":"Audit.AzureActiveDirectory","status":"enabled","webhook":null}

Note there is no output when executing this second command with a stop operation.

Using curl

Example Command #1

Output:

Example Command #2

Output:

Page 714 of 1835

You'll need to execute the second command for each Content Type whose logs you wish to collect. Use the
exact strings below to specify Content Types in that command:

Audit.AzureActiveDirectory

Audit.Exchange

Audit.SharePoint

Audit.General

DLP.All

The O�ice 365 Activity Source retrieves data using Cribl Stream scheduled Collection jobs, which include
Discover and Collection phases. The Discover phase task returns the URL of the content to collect.

In the Source's General Settings > Content Types > Interval column, you configure the polling schedule for
each Content Type independently.

The job scheduler spreads the Collection tasks across all available Workers. The collected content is
paginated, so the collection phase might include multiple calls to fetch data.

This Source executes Cribl Stream's scheduled collection jobs. Once you've configured and saved the Source,
you can view those jobs' results by reopening the Source's config modal and clicking its Job Inspector tab.

Each content type that you enabled gets its own separate scheduled job.

You can also view these jobs (among scheduled jobs for other Collectors and Sources) in the Monitoring >
System > Job Inspector > Currently Scheduled tab.

;

How Cribl Stream Pulls Data

Viewing Scheduled Jobs

Page 715 of 1835

Cribl Stream supports receiving O�ice 365 Message Trace data. This mail-flow metadata can be used to detect
and report on malicious activity including bulk emails, spoofed-domain emails, and data exfiltration.

TLS is enabled via the HTTPS protocol on this Source's underlying REST API.

At a minimum, your O�ice 365 service account should include a role with Message Tracking and
View‐Only Recipients permissions, assigned to the O�ice 365 user that will integrate with Cribl Stream.
Assign these permissions in the Exchange admin center (https://admin.exchange.microso�.com).

If you plan to use OAuth or OAuth Secret authentication, your O�ice 365 setup must include at least one role
with the corresponding required permissions:

1. In the Azure portal, create an Azure AD App Registration. (For details, see documentation from Microso�,
Splunk, or Splunkbase.)

2. Assign the application at least one Azure AD role that will enable it to access the Reporting Web Service:

Global Reader

Global Administrator

Exchange Administrator

For detailed steps, see Microso�'s Assign Azure AD Roles to Users topic.

In the QuickConnect UI: Click + New Source, or click + Add Source beside Sources. From the resulting
drawer's tiles, select [Pull >] O�ice 365 > Message Trace. Next, click + Add New to open a New Source

7.6.2. O�ice 365 Message Trace

Type: Pull | TLS Support: YES | Event Breaker Support: YES

O�ice 365 Setup

Modern Authentication (OAuth 2.0) Setup

Configuring Cribl Stream to Receive O�ice 365 Message
Trace Data

Page 716 of 1835

modal that provides the following options and fields.

From the top nav of a Cribl Stream instance or Group, select Data > Sources. From the top nav of a Cribl Edge
instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Pull >] O�ice 365 > Message Trace. Next,
click + Add New to open a O�ice 365 Message Trace > New Source modal that provides the following
options and fields.

Input ID: Enter a unique name to identify this O�ice 365 Message Trace definition.

Report URL: Enter the URL to use when retrieving report data. Defaults to:
https://reports.office365.com/ecp/reportingwebservice/reporting.svc/MessageTrace .

Poll interval: How o�en (in minutes) to run the report. Must divide evenly into 60 minutes to create a
predictable schedule, or Save will fail. See About Polling Intervals below.

In the Authentication section, use the buttons to select an Authentication method: Basic,
Basic (credentials secret), OAuth, or OAuth (text secret). The default is OAuth. Both OAuth options rely on the
OAuth 2.0 protocol.

Selecting Basic exposes Username and Password fields, where you directly enter the HTTP Basic credentials
to use on Message Trace API calls.

Selecting Basic (credentials secret) exposes a Credentials secret drop-down, where you select an existing
stored secret that references your credentials on the Message Trace API. You can use the adjacent Create
button to store a new, reusable secret.

The default OAuth authentication method exposes the following fields, all required:

Client secret: Directly enter the client_secret to pass in the OAuth request parameter.

General Settings

Authentication Settings

Basic Authentication

Basic Secret Authentication

OAuth Authentication

Page 717 of 1835

Tenant identifier: Directory ID (tenant identifier) in Azure Active Directory.

Client ID: The client_id to pass in the OAuth request parameter.

Resource: Resource parameter to pass in the OAuth request parameter. Defaults to:
https://outlook.o�ice365.com.

Selecting OAuth (text secret) exposes three of the same controls as the default OAuth method, but – as
you'd expect – you instead enter the Client secret by reference:

Client secret: Use the drop-down to select an existing stored client_secret to pass in the OAuth
request parameter. You can use the adjacent Create button to store a new, reusable secret.

Tenant identifier: Directory ID (tenant identifier) in Azure Active Directory.

Client ID: The client_id to pass in the OAuth request parameter.

Resource: Resource parameter to pass in the OAuth request parameter. Defaults to:
https://outlook.o�ice365.com.

Date range start: Backward o�set for the head of the search date range. (E.g., -3h@h .) Message Trace data is
delayed; this parameter (with Date range end) compensates for delay and gaps.

Date range end: Backward o�set for the tail of the search date range. (E.g., -2h@h .) Message Trace data is
delayed; this parameter (with Date range start) compensates for delay and gaps.

Log level: For data collection's runtime log, set the verbosity level to one of debug , info , warn , or error .
(If not selected, defaults to info .)

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

To poll the O�ice 365 Message Trace API, Cribl Stream uses the Poll interval field's value to establish the cron
schedule. (e.g.: */${interval} * * * *).

Because the interval is set in minutes, it must divide evenly into 60 minutes to create a predictable schedule.
Dividing 60 by intervals like 1 , 2 , 3 , 4 , 5 , 6 , 10 , 12 , 15 , 20 , or 60 itself yields an integer, so you can
enter any of these values.

OAuth Secret Authentication

Optional Settings

About Polling Intervals

Page 718 of 1835

Cribl Stream will reject intervals like 23 , 42 , or 45 , or 75 – which would yield non-integer results, meaning
unpredictable schedules.

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Keep Alive time (seconds): How o�en Workers should check in with the scheduler to keep their job
subscription alive. Defaults to 60 .

Worker timeout (periods): The number of Keep Alive Time periods before an inactive Worker will have its
job subscription revoked. Defaults to 3 .

Timeout (secs): Maximum time to wait for an individual Message Trace API request to complete. Defaults
to 600 seconds (10 minutes). Enter 0 to disable metering, allowing unlimited response time. Because there
is a single request to the Message Trace API per page of data, this timeout is applied at the page (request)
level.

Disable time filter: Disables Collector event time filtering when a date range is specified in General Settings.
Toggle to No to allow filtering.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Processing Settings

Fields

Pre-Processing

Advanced Settings

Internal Fields

Page 719 of 1835

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__final

__inputId

__isBroken

__source

The O�ice 365 Message Trace Source uses a scheduled REST Collector. It runs one collection task every
Poll interval, and a single Worker will process the collection. The data is paginated, so the Worker might
make multiple calls to fetch the data.

This Source executes Cribl Stream's scheduled collection jobs. Once you've configured and saved the Source,
you can view those jobs' results by reopening the Source's config modal and clicking its Job Inspector tab.

Each content type that you enabled gets its own separate scheduled job.

You can also view these jobs (among scheduled jobs for other Collectors and Sources) in the Monitoring >
System > Job Inspector > Currently Scheduled tab.

;

How Cribl Stream Pulls Data

Viewing Scheduled Jobs

Page 720 of 1835

Cribl Stream supports receiving data from the Microso� Graph service communications API. This facilitates
analyzing the status and history of service incidents on multiple Microso� cloud services, along with
associated incident and Message Center communications. For details, see Microso�'s Overview of the
Graph API.

In Azure Active Directory, the application representing your Cribl Stream instance must be granted the
following permissions to pull data. (The permission Type for both must be Application – Delegated is not
su�icient:)

ServiceHealth.Read.All

ServiceMessage.Read.All

Registered application permissions

7.6.3. O�ice 365 Services

Type: Pull | TLS Support: YES | Event Breaker Support: YES

TLS is enabled via the HTTPS protocol on this Source's underlying REST API.

Microso� has retired its prior O�ice 365 Service Communications API, forcing a switch to the
Graph API mentioned above. Due to a limitation in this new API, Cribl Stream (LogStream) 3.3 and
above can no longer collect the Historical Status content type that was available in this Source
through LogStream 3.2.2.

For more about the Microso� Graph API, see our Microso� Graph API Collection guide.

Azure AD Permissions

Page 721 of 1835

In the QuickConnect UI: Click + New Source, or click + Add Source beside Sources. From the resulting
drawer's tiles, select [Pull >] O�ice 365 > Services. Next, click + Add New to open a New Source modal that
provides the following options and fields.

From the top nav of a Cribl Stream instance or Group, select Data > Sources. From the top nav of a Cribl Edge
instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Pull >] O�ice 365 > Services. Next,
click + Add New to open a O�ice 365 Services > New Source modal that provides the following options and
fields.

Input ID: Enter a unique name to identify this O�ice 365 Services definition.

Tenant ID: Enter the O�ice 365 Azure tenant ID.

App ID: Enter the O�ice 365 Azure application ID.

Authentication method: Select one of the following buttons.

Manual: This default option provides a Client secret field, where you directly enter the required O�ice
365 Azure client secret.

Secret: This option instead exposes a Client secret (text secret) drop-down, from which you select a
stored text secret to authenticate with. Click Create to configure a new secret.

Content Types: See the Content Types section below.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Configuring Cribl Stream to Receive Data from the
Service API

General Settings

Authentication Settings

Optional Settings

Page 722 of 1835

Here, you can configure polling separately for the following types of data from the O�ice 365
Service Communications API:

Current Status: Get a real-time view of current and ongoing service incidents.

Messages: Find incident and Message Center communications.

As of this revision, this Microso� API provides data for O�ice 365, Yammer, Dynamics CRM, and
Microso� Intune cloud services. For each of these content types, this section provides the following controls:

Enabled: Toggle this to Yes for each service that you want to poll.

Interval: Optionally, override the default polling interval. See About Polling Intervals below.

Log level: Set the verbosity level to one of debug , info (the default), warn , or error .

To poll the O�ice 365 Service Communications API, Cribl Stream uses the Interval field's value to establish
the search date range and the cron schedule, for example: */${interval} * * * *

Therefore, intervals set in minutes – those for Current Status – must divide evenly into 60 minutes to create a
predictable schedule. Dividing 60 by intervals like 1 , 2 , 3 , 4 , 5 , 6 , 10 , 12 , 15 , 20 , or 60 itself yields an
integer, so you can enter any of these values.

Cribl Stream will reject intervals like 23 , 42 , or 45 , or 75 – which would yield non-integer results, meaning
unpredictable schedules.

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

Content Types

About Polling Intervals

Processing Settings

Fields

Pre-Processing

Page 723 of 1835

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Keep Alive Time (seconds): How o�en Workers should check in with the scheduler to keep their job
subscription alive. Defaults to 60 .

Worker timeout (periods): The number of Keep Alive Time periods before an inactive Worker will have its
job subscription revoked. Defaults to 3 .

Timeout (secs): The maximum time period for an HTTP request to complete before Cribl Stream treats it as
timed out. Defaults to 300 (i.e., 5 minutes). Enter 0 to disable timeout metering.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__final

__inputId

__isBroken

__source

The O�ice 365 Services Source retrieves data using Cribl Stream scheduled Collection jobs, which include
Discover and Collection phases. The Discover phase task returns the URL of the content to collect.

In the Source's General Settings > Content Types > Interval column, you configure the polling schedule for
each Content Type independently.

The job scheduler spreads the Collection tasks across all available Workers. The collected content is
paginated, so the collection phase might include multiple calls to fetch data.

Advanced Settings

Internal Fields

How Cribl Stream Pulls Data

Page 724 of 1835

This Source executes Cribl Stream's scheduled collection jobs. Once you've configured and saved the Source,
you can view those jobs' results by reopening the Source's config modal and clicking its Job Inspector tab.

Each content type that you enabled gets its own separate scheduled job.

You can also view these jobs (among scheduled jobs for other Collectors and Sources) in the Monitoring >
System > Job Inspector > Currently Scheduled tab.

;

Viewing Scheduled Jobs

Page 725 of 1835

7.7. Prometheus

Cribl Stream supports receiving batched data from Prometheus targets. This is a pull Source; to ingest
Prometheus streaming data, see Prometheus Remote Write.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select [Pull >
] Prometheus > Scraper. Next, click either + Add New or (if displayed) Select Existing. The drawer will now
provide the following options and fields.

From the top nav of a Cribl Stream instance or Group, select Data > Sources. From the top nav of a Cribl Edge
instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Pull >] Prometheus > Scraper. Next,
click + Add New to open a Prometheus Scraper > New Source modal that provides the following options
and fields.

Additional fields appear in this section depending on what discovery type you select.

Input ID: Enter a unique name to identify this Source definition.

Discovery type: Use this drop-down to select a discovery mechanism for targets. See Discovery Type below
for the options.

7.7.1. Prometheus Scraper

Type: Pull | TLS Support: No | Event Breaker Support: No

This Source assumes that incoming data is snappy-compressed. It does not currently support
Prometheus metadata.

Configuring Cribl Stream to Scrape Prometheus Data

General Settings

Some Discovery type options replace the Targets field with additional controls below the
Poll interval and Log level fields – while also adding an Assumre Role and/or Target Discovery le�

Page 726 of 1835

Poll interval: Specify how o�en (in minutes) to scrape targets for metrics. Defaults to 15 . This value must be
an integer that divides evenly into 60 .

Log level: Set the verbosity level to one of debug , info (the default), warn , or error .

Use this drop-down to select a discovery mechanism for targets. To manually enter a targets list, use Static
(the default). To enable dynamic discovery of endpoints to scrape, select DNS or AWS EC2. Each selection
exposes di�erent controls and/or tabs, listed below.

The Static option adds a General Settings > Targets field, in which you enter a list of specific Prometheus
targets from which to pull metrics.

Values can be in URL or host[:port] format, e.g.: http://localhost:9090/metrics , localhost:9090 , or
localhost . If you specify only host[:port] , the endpoint will resolve to: http://host[:port]/metrics .
For further options, see Target Discovery for DNS.

The DNS option adds a Target Discovery tab to the modal, and adds two extra fields to its General Settings
tab:

DNS names: Enter a list of DNS names to resolve.

Record type: Select the DNS record type to resolve. Defaults to SRV (Service). Other options are A or
AAAA .

The AWS EC2 option adds Assume Role and Target Discovery tabs to the modal, and adds one extra field to
the Optional Settings tab:

Region: Select the AWS region in which to discover EC2 instances with metrics endpoints to scrape.

This option also adds controls in the Advanced Settings tab, as described below.

tab to the modal.

Discovery Type

Static Discovery

DNS Discovery

AWS EC2 Discovery

Optional Settings

Page 727 of 1835

Extra dimensions: Specify the dimensions to include in events. Defaults to host and source .

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Use the Authentication Method buttons to select one of these authentication options for Prometheus:

Manual: In the resulting Username and Password fields, enter Basic authentication credentials
corresponding to your Prometheus targets.

Secret: This option exposes a Secret drop-down, in which you can select a stored secret that references
your credentials described above. The secret can reside in Cribl Stream's internal secrets manager or (if
enabled) in an external KMS. Click Create if you need to configure a new secret.

With the AWS EC2 target discovery type, you can configure AssumeRole behavior on AWS.

Enable for EC2: Toggle to Yes if you want to use AssumeRole credentials to access EC2.

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to assume.

External ID: Enter the External ID to use when assuming the role.

Setting the General Settings > Discovery type drop-down to DNS or AWS EC2 exposes this tab. These two
discovery types expose di�erent controls here.

Setting the Discovery type drop-down to DNS exposes the following Target Discovery fields.

Metrics protocol: Select http (the default) or https as the protocol to use when collecting metrics.

Metrics path: Specify a path to use when collecting metrics from discovered targets. Defaults to /metrics .

Authentication (Prometheus)

Assume Role

Target Discovery

Target Discovery for DNS

Target Discovery for AWS

Page 728 of 1835

Setting the Discovery type drop-down to AWS EC2 exposes the following Target Discovery controls. The first
controls is a special case:

Authentication method: Select the Auto, Manual, or Secret button to determine how Cribl Stream will
authenticate against AWS. Each selection changes the fields displayed on this tab – see
AWS Authentication Options for details.

These remaining controls are displayed for all Authentication method selections:

Metrics protocol: Select http (the default) or https as the protocol to use when collecting metrics.

Metrics port: Specify the port number to append to the metrics URL for discovered targets. Defaults to
9090 .

Metrics path: Specify a path to use when collecting metrics from discovered targets. Defaults to
/metrics .

Use public IP: The Yes default uses the public IP address for discovered targets. Toggle to No to use a
private IP address.

Search filter: Click + Add filter to apply filters when searching for EC2 instances. Each filter row
provides two columns:

Filter name: Select standard attributes from the drop-down, or type in custom attributes.

Filter values: Enter values to match within this row's attribute, Press Enter between values.
(If you specify no values, the search will return only running EC2 instances.)

Auto: This default option uses the AWS instance's metadata service to automatically obtain short-lived
credentials from the IAM role attached to an EC2 instance. The attached IAM role grants Cribl Stream Workers
access to authorized AWS resources. Can also use the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY . Works only when running on AWS.

Manual: If not running on AWS, you can select this option to enter a static set of user-associated IAM
credentials (your access key and secret key) directly or by reference. This is useful for Workers not in an AWS
VPC, e.g., those running a private cloud. This option displays the same fields as Auto, plus:

Access key: Enter your AWS access key. If not present, will fall back to the env.AWS_ACCESS_KEY_ID
environment variable, or to the metadata endpoint for IAM role credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to the
env.AWS_SECRET_ACCESS_KEY environment variable, or to the metadata endpoint for IAM credentials.

AWS Authentication Options

Page 729 of 1835

Secret: If not running on AWS, you can select this option to supply a stored secret that references an
AWS access key and secret key. This option displays the same fields as Auto, plus:

Secret key pair: Use the drop-down to select a secret key pair that you've configured in Cribl Stream's
internal secrets manager or (if enabled) an external KMS. Click Create if you need to configure a key pair.

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Keep alive time (seconds): How o�en workers should check in with the scheduler to keep job subscription
alive. Defaults to 60 seconds.

Worker timeout (periods) : How many Keep alive time periods before an inactive worker's job subscription
will be revoked. Defaults to 3 periods.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

These two additional settings appear only when Optional Settings > Discovery Type is set to AWS EC2 .

Reuse connections: Whether to reuse connections between requests. The default setting (Yes) can improve
performance.

Processing Settings

Fields

Pre-Processing

Advanced Settings

Advanced Settings for AWS

Page 730 of 1835

Reject unauthorized certificates: Whether to reject certificates that cannot be verified against a valid
Certificate Authority (e.g., self-signed certificates). Defaults to Yes , the restrictive option.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__source

__isBroken

__inputId

__final

__criblMetrics

__channel

__cloneCount

The Prometheus Source retrieves data using Cribl Stream scheduled Collection jobs. You determine the
schedule using your Poll interval entry.

With the DNS or AWS EC2 Discovery Type, these jobs include both Discover and Collection phases.
The Discover phase runs on a single Worker, and returns 1 collection task per discovered target.

The job scheduler spreads the Collection tasks across all available Workers.

This Source executes Cribl Stream's scheduled collection jobs. Once you've configured and saved the Source,
you can view those jobs' results by reopening the Source's config modal and clicking its Job Inspector tab.

Each content type that you enabled gets its own separate scheduled job.

You can also view these jobs (among scheduled jobs for other Collectors and Sources) in the Monitoring >
System > Job Inspector > Currently Scheduled tab.

Internal Fields

How Cribl Stream Pulls Data

Viewing Scheduled Jobs

Page 731 of 1835

;

Page 732 of 1835

Cribl Stream supports receiving metric data from Prometheus instances that are configured to send data via
the remote write protocol.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] Prometheus > Remote Write. Next, click either + Add New or (if displayed) Select Existing. The
drawer will now provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] Prometheus > Remote Write. Next,
click + Add New to open a Prometheus Remote Write > New Source modal that provides the following
options and fields.

Input ID: Enter a unique name to identify this Source definition.

Address: Enter the hostname/IP to listen to. Defaults to 0.0.0.0 .

Port: Enter the port number to listen on..

Remote Write API endpoint: Enter the absolute path on which to listen for Prometheus requests. Defaults to
/write , which will (in this example) expand as: http://<your‐upstream‐URL>:<your‐port>/write .

7.7.2. Prometheus Remote Write

Type: Push | TLS Support: YES | Event Breaker Support: No

This Source assumes that incoming data is snappy-compressed.

Configuring Cribl Stream to Receive Metrics from
Prometheus Remote Write Sources

General Settings

Optional Settings

Page 733 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Select one of the following options for authentication:

None: Don't use authentication.

Auth token: Use HTTP token authentication. In the resulting Token field, enter the bearer token that
must be included in the HTTP authorization header, or click Generate if you need a new token.

Auth token (text secret): Provide an HTTP token referenced by a secret. Select a stored text secret in
the resulting drop-down, or click Create to configure a new secret.

Basic: Displays Username and Password fields for you to enter HTTP Basic authentication credentials.
Click Generate if you need a new password.

Basic (credentials secret): Provide username and password credentials referenced by a secret. Select a
stored text secret in the resulting Credentials secret drop-down, or click Create to configure a new
secret.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Authentication

TLS Settings (Server Side)

Page 734 of 1835

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Persistent Queue Settings

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only
if you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Page 735 of 1835

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Enable proxy protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2. This setting a�ects how the Source handles the field.

Capture request headers: Toggle this to Yes to add request headers to events, in the __headers field.

Max active requests: Maximum number of active requests allowed for this Source, per Worker Process.
Defaults to 256 . Enter 0 for unlimited.

Keep alive timeout (seconds): Maximum time to keep a socket connection open to wait for additional data,
a�er the last response was sent. When the incoming request frequency is high, increase this from the default
5 seconds, to avoid creating a new connection per request. (By default, Prometheus will attempt to keep
connections open for up to 5 minutes.)

Processing Settings

Fields

Pre-Processing

Advanced Settings

__srcIpPort

Page 736 of 1835

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Request timeout (seconds): How long to wait for an incoming request to complete before aborting it.
The default 0 value means wait indefinitely.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__headers – Added only when Advanced Settings > Capture request headers is set to Yes .

__inputId

__srcIpPort – See details below.

The __srcIpPort field's value contains the IP address and (optionally) port of the Prometheus Remote
Write client sending data to this Source.

When any proxies (including load balancers) lie between the Prometheus Remote Write client and the
Source, the last proxy adds an X‐Forwarded‐For header whose value is the IP/port of the original client.
With multiple proxies, this header's value will be an array, whose first item is the original client IP/port.

If X‐Forwarded‐For is present, and Advanced Settings > Enable proxy protocol is set to No , the original
client IP/port in this header will override the value of __srcIpPort .

If Enable proxy protocol is set to Yes , the X‐Forwarded‐For header's contents will not override the
__srcIpPort value. (Here, the upstream proxy can convey the client IP/port without using this header.)

Connected Destinations

Internal Fields

Overriding __srcIpPort with Client IP/Port

Page 737 of 1835

Because Prometheus remote write requests donʼt specify metrics' types, Cribl Stream applies the following
rules to determine the type as we ingest them:

If the metricʼs name ends with _total , _sum , _count , or _bucket , the type is set to counter .

Otherwise, the metric's type is set to gauge .

This is consistent with the type detection practiced by other services implementing the remote write
protocol. See, for example, New Relic's and Elastic's documentation.

Note that Cribl Stream supports the timer type in addition to counter and gauge .

;

Detecting Metrics' Types

Page 738 of 1835

Cribl Stream supports receiving metric and log data from Grafana Agent instances via the Prometheus
remote write specification. The Grafana Agent uses Prometheus for metrics collection and Grafana Loki for
log collection.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] Grafana. Next, click either + Add New or (if displayed) Select Existing. The drawer will now provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] Grafana. Next, click + Add New to
open a Grafana > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Source definition.

Address: Enter the hostname/IP to listen to. Defaults to 0.0.0.0 .

Port: Enter the port number to listen on.

Remote Write API endpoint: Absolute path on which to listen for Grafana Agent's remote write requests.
Defaults to /api/prom/push , which will (in this example) expand as: http://<your‐upstream‐URL>:
<your‐port>/api/prom/push .

7.7.3. Grafana

Type: Push | TLS Support: YES | Event Breaker Support: No

This Source assumes that incoming data is snappy-compressed.

Configuring Cribl Stream to Receive Metrics and Logs
from Grafana Agent Sources

General Settings

Optional Settings

Page 739 of 1835

Logs API endpoint: Absolute path on which to listen for Loki logs requests. Defaults to /loki/api/v1/push ,
which will (in this example) expand as: http://<your‐upstream‐URL>:<your‐port>/loki/api/v1/push .

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

The Authentication tab provides separate Loki and Prometheus sections, enabling you to configure these
inputs separately. The two sections provide identical options.

Select one of the following options for authentication:

None: Don't use authentication.

Auth token: Enter the bearer token that must be included in the authorization header.

Auth token (text secret): Provide an HTTP token referenced by a secret. Select a stored text secret in
the resulting drop-down, or click Create to configure a new secret.

Basic: Displays Username and Password fields for you to enter HTTP Basic authentication credentials.

Basic (credentials secret): Provide username and password credentials referenced by a secret. Select a
stored text secret in the resulting Credentials secret drop-down, or click Create to configure a new
secret.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authentication

TLS Settings (Server Side)

Page 740 of 1835

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Persistent Queue Settings

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only
if you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Page 741 of 1835

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Enable proxy protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2. This setting a�ects how the Source handles the field.

Capture request headers: Toggle this to Yes to add request headers to events, in the __headers field.

Max active requests: Maximum number of active requests allowed for this Source, per Worker Process.
Defaults to 256 . Enter 0 for unlimited.

Processing Settings

Fields

Pre-Processing

Advanced Settings

__srcIpPort

Page 742 of 1835

Keep alive timeout (seconds): Maximum time to keep a socket connection open to wait for additional data,
a�er the last response was sent. When the incoming request frequency is high, increase this from the default
5 seconds, to avoid creating a new connection per request. (By default, Grafana Agent's embedded
Prometheus instance will attempt to keep connections open for up to 5 minutes.)

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Request timeout (seconds): How long to wait for an incoming request to complete before aborting it.
The default 0 value means wait indefinitely.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__headers – Added only when Advanced Settings > Capture request headers is set to Yes .

__inputId

__labels – For log events only – will contain all the labels found in each event's corresponding Loki
stream.

__srcIpPort – See details below.

The __srcIpPort field's value contains the IP address and (optionally) port of the Grafana client sending
data to this Source.

When any proxies (including load balancers) lie between the Grafana client and the Source, the last proxy
adds an X‐Forwarded‐For header whose value is the IP/port of the original client. With multiple proxies,
this header's value will be an array, whose first item is the original client IP/port.

Connected Destinations

Internal Fields

Overriding __srcIpPort with Client IP/Port

Page 743 of 1835

If X‐Forwarded‐For is present, and Advanced Settings > Enable proxy protocol is set to No , the original
client IP/port in this header will override the value of __srcIpPort .

If Enable proxy protocol is set to Yes , the X‐Forwarded‐For header's contents will not override the
__srcIpPort value. (Here, the upstream proxy can convey the client IP/port without using this header.)

Because Prometheus remote write requests donʼt specify metrics' types, Cribl Stream applies the following
rules to determine the type as we ingest them:

If the metricʼs name ends with _total , _sum , _count , or _bucket , the type is set to counter .

Otherwise, the metric's type is set to gauge .

This is consistent with the type detection practiced by other services implementing the remote write
protocol. See, for example, New Relic's and Elastic's documentation.

Note that Cribl Stream supports the timer type in addition to counter and gauge .

;

Detecting Metrics' Types

Page 744 of 1835

Cribl Stream supports receiving log data from Grafana Loki via an adaptation of the Protobuf
(Protocol Bu�ers) specification.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] Loki. Next, click either + Add New or (if displayed) Select Existing. The drawer will now provide the
following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] Loki. Next, click + Add New to open a
Loki > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Source definition.

Address: Enter the hostname/IP to listen to. Defaults to 0.0.0.0 .

Port: Enter the port number to listen on.

Logs API endpoint: Absolute path on which to listen for Loki logs requests. Defaults to /loki/api/v1/push ,
which will (in this example) expand as: http://<your‐upstream‐URL>:<your‐port>/loki/api/v1/push .

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

7.7.4. Loki

Type: Push | TLS Support: YES | Event Breaker Support: No

This Source assumes that incoming data is snappy-compressed.

Configuring Cribl Stream to Receive Loki Logs Data

General Settings

Optional Settings

Page 745 of 1835

Use the Authentication type drop-down to specify how Loki's Promtail agent will authenticate against
Cribl Stream:

None: Don't use authentication.

Auth token: Use HTTP token authentication. In the resulting Token field, enter the bearer token that
must be included in the HTTP authorization header.

Auth token (text secret): Provide an HTTP token referenced by a secret. Select a stored text secret in
the resulting drop-down, or click Create to configure a new secret.

Basic: Displays Username and Password fields for you to enter HTTP Basic authentication credentials.

Basic (credentials secret): Provide username and password credentials referenced by a secret. Select a
stored text secret in the resulting Credentials secret drop-down, or click Create to configure a new
secret.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal

Authentication

TLS Settings (Server Side)

Page 746 of 1835

characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Persistent Queue Settings

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only
if you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Page 747 of 1835

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Enable proxy protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2. This setting a�ects how the Source handles the field.

Capture request headers: Toggle this to Yes to add request headers to events, in the __headers field.

Max active requests: Maximum number of active requests allowed for this Source, per Worker Process.
Defaults to 256 . Enter 0 for unlimited.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Request timeout (seconds): How long to wait for an incoming request to complete before aborting it.
The default 0 value means wait indefinitely.

Processing Settings

Fields

Pre-Processing

Advanced Settings

__srcIpPort

Connected Destinations

Page 748 of 1835

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__headers – Added only when Advanced Settings > Capture request headers is set to Yes .

__inputId

__labels – Will contain all the labels found in each event's corresponding Loki stream.

__srcIpPort – See details below.

The __srcIpPort field's value contains the IP address and (optionally) port of the Loki client sending data
to this Source.

When any proxies (including load balancers) lie between the Loki client and the Source, the last proxy adds
an X‐Forwarded‐For header whose value is the IP/port of the original client. With multiple proxies, this
header's value will be an array, whose first item is the original client IP/port.

If X‐Forwarded‐For is present, and Advanced Settings > Enable proxy protocol is set to No , the original
client IP/port in this header will override the value of __srcIpPort .

If Enable proxy protocol is set to Yes , the X‐Forwarded‐For header's contents will not override the
__srcIpPort value. (Here, the upstream proxy can convey the client IP/port without using this header.)

;

Internal Fields

Overriding __srcIpPort with Client IP/Port

Page 749 of 1835

7.8. Splunk

Cribl Stream supports receiving data over HTTP/S using the Splunk HEC (HTTP Event Collector).

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] Splunk > HEC. Next, click either + Add New or (if displayed) Select Existing. The drawer will now
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] Splunk > HEC. Next, click + Add New
to open a Splunk HEC > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Splunk HEC Source definition.

Address: Enter the hostname/IP on which to listen for HTTP(S) data. (E.g., localhost or 0.0.0.0 .)

Port: Enter the port number.

7.8.1. Splunk HEC

Type: Push | TLS Support: YES | Event Breaker Support: YES

This Source supports gzip-compressed inbound data when the Content‐Encoding: gzip
connection header is set.

Configuring Cribl Stream to Receive Data over Splunk
HEC

Cribl Stream ships with a Splunk HEC Source preconfigured to listen on Port 8088. You can clone or
directly modify this Source to further configure it, and then enable it.

General Settings

Page 750 of 1835

Splunk HEC endpoint: Absolute path on which to listen for the Splunk HTTP Event Collector API requests.
Defaults to /services/collector .

Allowed Indexes: List the values allowed in the HEC event index field. Allows wildcards. Leave blank to skip
validation.

Splunk HEC acks: Whether to enable Splunk HEC acknowledgments. Defaults to No . Some sources may
require HEC acks to be enabled and, as a result, may keep TCP connections open while waiting for an ack.
This behavior can exhaust available file descriptors. Cribl does not maintain a comprehensive list of such
sources. Refer to your source's documentation for more information.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

This single endpoint supports both JSON events via /event and raw events via /raw . See the
examples below.

Optional Settings

TLS Settings (Server Side)

Page 751 of 1835

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the

Persistent Queue Settings

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only
if you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Page 752 of 1835

Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

This section defines event breaking rulesets that will be applied, in order, on the /raw endpoint.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the input data stream before
the data is sent through the Routes. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to determine field's value (can be a constant).

Processing Settings

Event Breakers

Fields

Fields specified on the Fields tab will normally override fields of the same name in events. But you
can specify that fields in events should override these fields' values.

E.g., consider the following expression: `${__e['index'] || 'myIndex'}` Its L‑>R and OR logic
specifies: If an inbound event includes an index field, use that field's value. Otherwise, fall back to
the myIndex constant defined in this expression.

Fields here are evaluated and applied a�er any fields specified in the Auth Tokens section.

Pre-Processing

Page 753 of 1835

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

If empty (the default), the Splunk HEC Source will permit client access without an auth token. To generate
and/or configure tokens, click + Add Token, which exposes the following fields:

Token: Shared secret to be provided by any client (Authorization: <token>). Click Generate to create a new
secret. If empty, unauthenticated access will be permitted.

Description: Optional description for this token.

Fields: Fields to add to events referencing this token. Each field is a Name/Value pair.

Enable proxy protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2. This setting a�ects how the Source handles the field.

Capture request headers: Toggle this to Yes to add request headers to events, in the __headers field.

Max active requests: Maximum number of active requests allowed for this Source, per Worker Process.
Defaults to 256 . Enter 0 for unlimited.

Activity log sample rate: Determines how o�en request activity is logged at the info level. The default 100
value logs every 100th value; a 1 value would log every request; a 10 value would log every 10th request;
etc.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Auth Tokens

Fields specified on the Auth Tokens tab will normally override fields of the same name in events.
But you can specify that fields in events should override these fields' values.

E.g., consider the following expression: `${__e['index'] || 'myIndex'}` Its L‑>R and OR logic
specifies: If an inbound event includes an index field, use that field's value. Otherwise, fall back to
the myIndex constant defined in this expression.

Fields here are evaluated and applied before any fields specified in the Fields section.

Advanced Settings

__srcIpPort

Page 754 of 1835

Request timeout (seconds): How long to wait for an incoming request to complete before aborting it.
The default 0 value means wait indefinitely.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__headers – Added only when Advanced Settings > Capture request headers is set to Yes .

__hecToken

__inputId

__srcIpPort – See details below.

The __srcIpPort field's value contains the IP address and (optionally) port of the Splunk HEC client
sending data to this Source.

When any proxies (including load balancers) lie between the Splunk HEC client and the Source, the last proxy
adds an X‐Forwarded‐For header whose value is the IP/port of the original client. With multiple proxies,
this header's value will be an array, whose first item is the original client IP/port.

If X‐Forwarded‐For is present, and Advanced Settings > Enable proxy protocol is set to No , the original
client IP/port in this header will override the value of __srcIpPort .

If Enable proxy protocol is set to Yes , the X‐Forwarded‐For header's contents will not override the
__srcIpPort value. (Here, the upstream proxy can convey the client IP/port without using this header.)

Connected Destinations

Internal Fields

Overriding __srcIpPort with Client IP/Port

Format and Endpoint Examples

Page 755 of 1835

Configure Cribl Stream to listen on port 10080 with an auth token of myToken42 .

Send a payload to your Cribl Stream receiver.

Note: Token specification can be either Splunk <token> or <token> .

Splunk HEC - JSON Event Examples Splunk HEC - Raw Event Example

Navigate to Cribl Cloudʼs Splunk HEC Source > Auth Tokens tab.

Copy your token out of the Token field.

From the command line, use https , your Cribl.Cloud portalʼs Ingest Endpoint and port, and the
token's value:

Splunk HEC to Cribl Stream

curl -k http://<myCriblHost>:10080/services/collector/event -H 'Authorization:
myToken42' -d '{"event":"this is a sample event ", "host":"myHost",
"source":"mySource", "fieldA":"valueA", "fieldB":"valueB"}'

curl -k http://<myCriblHost>:10080/services/collector -H 'Authorization: myToken42'
-d '{"event":"this is a sample event ", "host":"myHost", "source":"mySource",
"fieldA":"valueA", "fieldB":"valueB"}'

Multiple Events
curl -k http://<myCriblHost>:10080/services/collector -H 'Authorization: myToken42'
-d '{"event":"this is a sample event ", "host":"myHost", "source":"mySource",
"fieldA":"valueA", "fieldB":"valueB"}{"event":"this is a sample event 2",
"host":"myHost", "source":"mySource", "fieldA":"valueA", "fieldB":"valueB"}'

Metrics Events
curl -k http://<myCriblHost>:10080/services/collector/event -H 'Authorization:
myToken42' -d '{"event":"metric", "host":"myHost", "fields":
{"_value":3850,"metric_name":"kernel.entropy_avail"}}'

curl -k http://<myCriblHost>:10080/services/collector/event -H 'Authorization:
myToken42' -d '{"host":"myHost", "fields":
{"_value":3850,"metric_name":"kernel.entropy_avail"}}'

Send the auth token as a query parameter, with no additional configuration

curl -k "http://<myCriblHost>:10080/services/collector/event?token=mToken42" -d
'{"event":"this is a sample event ", "host":"myHost", "source":"mySource",
"fieldA":"valueA", "fieldB":"valueB"}'

Splunk HEC to Cribl Cloud

Page 756 of 1835

;

curl -k "https://in.logstream.<tenant‐ID>.cribl.cloud:8088/services/collector" \
 -H "Authorization: <token_value>" \
 -d '{"event": "Goats are better than ponies."}{"event": "Goats are better
climbers."}{"event": "Goats are great yoga buddies.", "nested": {"horns": "Two is
better than one!"}}'

Page 757 of 1835

Cribl Stream supports receiving Splunk search data from Splunk Search.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select [Pull >
] Splunk Search. Next, click either + Add New or (if displayed) Select Existing. The drawer will now provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Pull >] Splunk Search. Next, click + Add New
to open a Splunk Search > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Splunk Search Source definition.

Cron schedule: Enter a cron expression to define the schedule on which to run this job. Defaults to one run
every 15 minutes. The Estimated Schedule below this field shows the next few collection runs, as examples
of the cron interval you've scheduled.

Search: Enter the Splunk query. For example: index=myAppLogs level=error channel=myApp OR |
mstats avg(myStat) as myStat WHERE index=myStatsIndex .

Search head: Enter the search head base URL. The default is https://localhost:8089 .

7.8.2. Splunk Search

Type: Pull | TLS Support: Yes | Event Breaker Support: YES

Configuring Cribl Stream to Receive Splunk Search Data

General Settings

You enter the Cron schedule expression in UTC time, but the Estimated Schedule examples are
displayed in local time.

Search Settings

Page 758 of 1835

Earliest: You can enter the earliest time boundary for the search. This maybe be an exact or relative time. For
example: 2022-01-14T12:00:00Z or -16m@m .

Latest: You can enter the latest time boundary for the search. This maybe be an exact or relative time. For
example: 2022-01-14T12:00:00Z or -16m@m .

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

In the Authentication tab, use the buttons to select one of these options:

None: Don't use authentication. Compatible with REST servers like AWS, where you embed a secret
directly in the request URL.

Manual: Displays Username and Password fields for you to enter HTTP Basic authentication
credentials.

Secret: Provide username and password credentials referenced by a secret. Select a stored text secret in
the resulting Credentials secret drop-down, or click Create to configure a new secret.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the input data stream before
the data is sent through the Routes. Defaults to the Splunk Search Ruleset .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Optional Settings

Authentication

Processing Settings

Event Breakers

Fields

Page 759 of 1835

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Search endpoint: Rest API used to conduct a search. Defaults to services/search/jobs/export .

Output mode: Format of the returned output. Defaults to JSON format.To parse the returned JSON, add the
Cribl event breaker which parses newline delimited events in the Event Breakers tab.

Events returned from Splunk search can also be returned in the more compact CSV format. To use CSV
format, set the Output mode to CSV and specify the CSV event breaker in the Event Breakers tab.

Endpoint parameters: Optional HTTP request parameters to append to the request URL. These refine or
narrow the request. Click + Add Parameter to add parameters as key-value pairs:

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Endpoint headers:: Click + Add Header to (optionally) add request headers to send to the endpoint, as key-
value pairs:

Name: Header name.

Value: JavaScript expression to compute the header's value, normally enclosed in backticks
(e.g., `${earliest}`). Can also be a constant, enclosed in single quotes ('earliest'). Values without
delimiters (e.g., earliest) are evaluated as strings.

Log level: Set the verbosity level for the data collection's runtime log.

Keep Alive Time (Seconds): How o�en Workers should check in with the scheduler to keep their job
subscription alive. Defaults to 30 .

Worker timeout (periods): The number of Keep Alive Time periods before an inactive Worker will have its
job subscription revoked. Defaults to 3 .

Request Timeout (secs): Here, you can set a maximum time period (in seconds) for an HTTP request to
complete before Cribl Stream treats it as timed out. Defaults to 0 , which disables timeout metering.

Pre-Processing

Advanced Settings

Page 760 of 1835

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__inputId

__outputMode

This Collector-based Source will gather data from the specified Search head URL repeatedly, on the interval
specified in the Cron schedule field. A single Worker executes each collection job.

If the Leader goes down, search jobs in progress will complete, but future scheduled searches will not run
until the Leader relaunches.

;

Connected Destinations

Internal Fields

How Cribl Stream Pulls Data

Page 761 of 1835

Cribl Stream supports receiving Splunk data from Universal or Heavy Forwarders.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] Splunk > Splunk TCP. Next, click either + Add New or (if displayed) Select Existing. The drawer will
now provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] Splunk > Splunk TCP. Next,
click + Add New to open a Splunk TCP > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Splunk Source definition.

Address: Enter hostname/IP to listen for Splunk data. E.g., localhost or 0.0.0.0 .

Port: Enter port number.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

7.8.3. Splunk TCP

Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl Stream to Receive Splunk TCP Data

Cribl Stream ships with a Splunk TCP Source preconfigured to listen on Port 9997. You can clone or
directly modify this Source to further configure it, and then enable it.

General Settings

Optional Settings

TLS Settings (Server Side)

Page 762 of 1835

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Persistent Queue Settings

Page 763 of 1835

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the input data stream before
the data is sent through the Routes. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event, using Eval-like functionality.

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only if
you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Processing Settings

Event Breakers

Fields

Page 764 of 1835

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

+ Add Token : Click to add authorization tokens. Each token's section provides the fields listed below. If no
tokens are specified, unauthenticated access will be permitted.

Token: Shared secrets to be provided by any Splunk forwarder (Authorization: \<token>). Click Generate to
create a new secret.

Description: Optional description of this token.

Enable Proxy Protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2.

IP allowlist regex: Regex matching IP addresses that are allowed to establish a connection. Defaults to .*
(i.e., all IPs).

Max active connections: Maximum number of active connections allowed per Worker Process. Defaults to
1000 . Set a lower value if connection storms are causing the Source to hang. Set 0 for unlimited
connections.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Pre-Processing

Auth Tokens

Advanced Settings

Connected Destinations

Page 765 of 1835

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__inputId

__srcIpPort

__source

To configure a Splunk forwarder (UF, HF) use the following sample outputs.conf stanzas:

outputs.conf (on-prem) outputs.conf (Cribl Cloud)

;

Internal Fields

Configuring a Splunk Forwarder

[tcpout]
disabled = false
defaultGroup = cribl, <optional_clone_target_group>,

[tcpout:cribl]
server = [<cribl_ip>|<cribl_host>]:<port>, [<cribl_ip>|<cribl_host>]:<port>, ...
sendCookedData=true
As of Splunk 6.5, using forceTimebasedAutoLB is no longer recommended. Ensure this
is left at default for UFs
forceTimebasedAutoLB = false
negotiateProtocolLevel = 0

To avoid data loss, Cribl recommends that you use the negotiateProtocolLevel = 0 setting
shown above. Depending on your environment, enabling negotiateProtocolLevel could cause
Cribl to not accept data from the forwarder.

Page 766 of 1835

7.9. Internal

Cribl Stream supports generating data from datagen files, as detailed in Using Datagens. When a datagen is
enabled, each Worker Process uses the specified data generator file to generate events. These events
proceed through Routes and Pipelines, or through a QuickConnect configuration, to configured Destinations.
Whichever Worker Process generated an event from the file will also send the same event.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[System and Internal >] Datagen. Next, click either + Add New or (if displayed) Select Existing. The drawer
will now provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [System and Internal >] Datagen. Next,
click + Add New to open a Datagen > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Source definition.

Datagens: List of datagens.

Data generator file: Name of the datagen file.

Events per second per Worker Node: Maximum number of events to generate per second, per
Worker Node/Edge Node. Defaults to 10 .

7.9.1. Datagen

Type: System and Internal | TLS Support: N/A | Event Breaker Support: No

Configuring Cribl Stream to Generate Sample Data

General Settings

Optional Settings

Page 767 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__inputId

Processing Settings

Fields

Pre-Processing

Advanced Settings

Connected Destinations

Internal Fields

Page 768 of 1835

;

Page 769 of 1835

The Cribl Internal Source enables you to capture and send Cribl Stream's own internal logs and metrics
through Routes and Pipelines.

In distributed mode, only Worker Process internal logs can be processed through this Source. (Logs on the
Leader remain on the Leader, since the Leader Node is not part of any processing path.)

In both distributed and single-instance mode, this Source omits API Process logs, meaning that it omits
telemetry/license-validation tra�ic. You can, however, use a Script Collector to check for API Server (or
Worker Group) events.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[System and Internal >] Cribl Internal. Next, click Select Existing.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [System and Internal >] Cribl Internal.

Next, in either UI: On the CriblLogs and/or the CriblMetrics row, slide the Enabled slider to Yes . Confirm
your choice in the resulting message box.

7.9.2. Cribl Internal

Type: System and Internal | TLS Support: N/A | Event Breaker Support: No

Cribl Cloud instances omit this Source, because Cribl manages these instances' uptime and
diagnostics on your behalf.

Scope

Configuring Cribl Internal Logs/Metrics as a Data Source

Page 770 of 1835

Cribl Internal Sources – click to configure

Enabled: This duplicates the parent page's Enabled slider. Keep it at Yes to enable Cribl logs as a Source.

Input ID: Enter a unique name to identify this CriblLogs Source definition.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Enabled: This duplicates the parent page's Enabled slider. Keep it at Yes to enable Cribl metrics as a
Source.

Input ID: Enter a unique name to identify this CriblMetrics Source definition.

Metric name prefix: Enter an optional prefix that will be applied to metrics provided by Cribl Stream. The
prefix defaults to cribl.logstream.

CriblLogs – General Settings

CriblLogs – Optional Settings

See also Common Settings below.

CriblMetrics – General Settings

CriblMetrics – Optional Settings

If Cribl Stream detects source or host fields in metrics, it copies their values into new dimensions
with added event_ prefixes (e.g., event_source). This preserves the original fields' values if they're
overwritten in downstream services. For details, see Duplicated Fields/Dimensions.

Page 771 of 1835

Full fidelity: Toggle this to No to exclude granular metrics that can cause high CPU load.

The No option will drop the following metrics events:

cribl.logstream.host.(in_bytes,in_events,out_bytes,out_events)

cribl.logstream.index.(in_bytes,in_events,out_bytes,out_events)

cribl.logstream.source.(in_bytes,in_events,out_bytes,out_events)

cribl.logstream.sourcetype.(in_bytes,in_events,out_bytes,out_events)

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

In this section, you can add Fields to each event, using Eval-like functionality. E.g., here you could specify
adding an index field.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

You can disable metric collection for these and other fields by specifying them in Settings > System >
General > Limits > Metrics > Disable field metrics.

Processing Settings

Fields

Pre-Processing

Advanced Settings

Connected Destinations

Page 772 of 1835

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

By default, Cribl Stream generates internal metrics every 2 seconds. To consume metrics at longer intervals,
you can use or adapt the cribl_metrics_rollup Pipeline that ships with Cribl Stream.

Attach this Pipeline to your Cribl Internal Source as a pre‑processing Pipeline. The Pipeline's Rollup Metrics
Function has a default Time Window of 30 seconds, which you can adjust to a di�erent granularity as
needed. This provides a second lever to reduce granularity, in addition to the Full fidelity slider described
above.

You can easily drop the sourcetype attribute from metrics events, leaving only event_sourcetype . This
will prevent duplicate sourcetype events from being routed to Destinations.

To do this: In the same cribl_metrics_rollup pre-processing Pipeline (or a clone) that you attach to your
Source, enable the final Eval Function, which applies this Filter expression to remove the sourcetype field:
_metric && _metric.startsWith('cribl.logstream.sourcetype.')

The CriblMetrics Source operates on metrics that Worker Nodes report to their Leader Nodes. Typically
included are source and host fields.

Sending metrics from this Source to Splunk is one common use case. Because Splunk might overwrite these
two fields, the Source copies their values into new dimensions with added event_ prefixes: event_source
and event_host . This way, if Splunk does overwrite source and/or host , their original values remain
intact in the new dimensions with event_ prefixes.

Here's an example of how the added dimensions look in the Live Capture window:

Reporting Metrics Less Frequently

Omitting sourcetype

Duplicated Fields/Dimensions

Page 773 of 1835

Doubled fields

If you are not sending to a downstream service that overwrites source or host fields, you can use an
appropriate Function to drop the added dimensions. (You also have the option to suppress these fields
entirely, as covered above in Optional Settings.)

The following fields will be added to all events/metrics:

source : set to cribl .

host : set to the hostname of the Cribl instance.

Use these fields to guide these events/metrics through Cribl Routes.

Internal Fields

Page 774 of 1835

;

All Cribl internal fields are subject to change and modification. Cribl provides them to assist with
analytics and diagnostics, but does not guarantee that they will remain available.

Page 775 of 1835

The internal Cribl HTTP Source is available only in distributed deployments. It is provided to facilitate
sending data between Worker Nodes that are connected to the same Leader. You'll find this Source especially
valuable in a hybrid Cloud deployment.

You might choose this Source over the Cribl TCP Source in certain circumstances, such as when a firewall or
proxy blocks raw TCP egress. In single‑instance mode or for testing, you can substitute the Raw HTTP/S
Source. (However, this substitution will not provide the single-billing benefits described in the next section.)

You can use the Cribl HTTP Source to send data between Workers. In a hybrid Cloud deployment, using this
Source ensures that you're billed for ingress only once – when the data is originally received. All other data
transferred into Workers via the Cribl HTTP Source is not charged.

This use case is common in deployments where a customer-managed (on-prem) Worker or Edge node sends
data to a Worker in Cribl.Cloud, for additional processing and then routing to Destinations.

As one usage example, assume that you want to send data from one Worker Node/Edge Node deployed on-
prem, to another that is deployed in Cribl.Cloud. You could do the following:

Create an on-prem Filesystem Collector (or whatever Collector or Source is suitable) for the data you
want to send to Cribl.Cloud.

Create an on-prem Cribl HTTP Destination.

Create a Cribl HTTP Source, on the target Worker Group/Fleet in Cribl.Cloud.

For an on-prem Worker/Edge Node configure a Filesystem Collector to send data to the Cribl HTTP
Destination, and from there to the Cribl HTTP Source in Cribl.Cloud.

The key points about configuring this architecture are:

7.9.3. Cribl HTTP

Type: System and Internal | TLS Support: YES | Event Breaker Support: No

How It Works

Configuration Requirements

Page 776 of 1835

The Cribl HTTP Destination must be on a Worker Node that is connected to the same Leader as the
Cribl HTTP Source.

You must specify the same Leader Address on the Worker Nodes that host both the Destination and
Source. Otherwise, token verification will fail – breaking the connection and preventing data flow.

To get the Leader Address specifically for Cribl.Cloud hybrid Workers, see Hybrid Cribl HTTP/ Cribl TCP
Configuration.

To configure the Leader Address via the UI, log directly into each Worker Node's UI. Then select
⚙ Settings (lower le�) > Distributed Settings > Leader Settings > Address.

To configure the Leader Address via the instance.yml file, the host values on the connecting
Worker Nodes must be identical. In this example, both Worker Nodes must point to cribl-leader :

When you configure the Cribl HTTP Destination, its Cribl endpoint field must point to the Address and
Port you've configured on the Cribl HTTP Source.

Finally, it's important to understand the special way the Cribl HTTP Source handles internal fields.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[System and Internal >] Cribl HTTP. Next, click either + Add New or (if displayed) Select Existing.
The drawer will now provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [System and Internal >] Cribl HTTP. Next,
click + Add New to open a Cribl HTTP > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Cribl HTTP Source definition.

distributed:
mode: master
master:
host: cribl-leader
port: 4200

Configuring the Cribl HTTP Source

General Settings

Page 777 of 1835

Address: Enter the address to bind on. Defaults to 0.0.0.0 (all addresses).

Port: Enter the port number to listen on, e.g., 10200 .

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Enabled Defaults to No . When toggled to Yes , exposes this section's remaining fields.

Certificate name: Select a predefined certificate from the drop-down. A Create button is available to create
a new certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes , exposes these two additional fields:

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

Optional Settings

TLS Settings (Server Side)

Persistent Queue Settings

Page 778 of 1835

Enable Persistent Queue defaults to No . When toggled to Yes :

Mode: Choose a mode from the drop-down:

With Smart mode, PQ will write events to the filesystem only when it detects backpressure from the
processing engine.

With Always On mode, PQ will always write events directly to the queue before forwarding them to the
processing engine.

Max bu�er size: Maximum number of events to hold in-memory before dumping them to disk.

Commit frequency: Number of events to send before committing that Stream has read them.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Processing Settings

Fields

Pre–Processing

Page 779 of 1835

Enable proxy protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2. This setting a�ects how the Source handles the field.

Capture request headers: Toggle this to Yes to add request headers to events, in the __headers field.

Max active requests: Maximum number of active requests allowed for this Source, per Worker Process.
Defaults to 256 . Enter 0 for unlimited.

Activity log sample rate: Determines how o�en request activity is logged at the info level. The default 100
value logs every 100th value; a 1 value would log every request; a 10 value would log every 10th request;
etc.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Request timeout (seconds): How long to wait for an incoming request to complete before aborting it.
The default 0 value means wait indefinitely.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

The Cribl HTTP Source (and the Cribl TCP Source) treat internal fields di�erently than other Sources do.
That's because of the di�erence in the way that incoming data originates.

Other Sources ingest data that's not coming from Cribl Edge or Stream, meaning that no Cribl internal fields
can be present in that data when it arrives at the Source, and the Source is free to add internal fields without
clobbering (overwriting) anything that existed already.

Advanced Settings

__srcIpPort

Connected Destinations

Internal Fields

Page 780 of 1835

By contrast, the Cribl HTTP Source and the Cribl TCP Source ingest data that's coming from a Cribl HTTP or
Cribl TCP Destination. That data can contain internal fields when it arrives at the Source. This means that if
the Source adds internal fields, those could potentially clobber what existed before.

To avoid this problem, the Cribl HTTP Source and the Cribl TCP Source add a unique __forwardedAttrs
(i.e., "forwarded attributes") field. The nested structure of the __forwardedAttrs field contains any of the
following fields that are present in the arriving data:

INTERNAL FIELDS

__headers – Added only when Advanced Settings > Capture request headers is set to Yes .

__inputId

__outputId

__srcIpPort – See details below.

OTHER FIELDS

cribl_breaker

cribl_pipe

These fields are copied into __forwardedAttrs , not moved there. As the data (apart from
__forwardedAttrs) moves through the Source and any Pipelines, the values of these fields can be
overwritten. But the copies of these fields in __forwardedAttrs remain unchanged, so you can retrieve
them as necessary.

The __srcIpPort field's value contains the IP address and (optionally) port of the HTTP client sending data
to this Source.

When any proxies (including load balancers) lie between the HTTP client and the Source, the last proxy adds
an X‐Forwarded‐For header whose value is the IP/port of the original client. With multiple proxies, this
header's value will be an array, whose first item is the original client IP/port.

If X‐Forwarded‐For is present, and Advanced Settings > Enable proxy protocol is set to No , the original
client IP/port in this header will override the value of __srcIpPort .

Overriding __srcIpPort with Client IP/Port

Page 781 of 1835

If Enable proxy protocol is set to Yes , the X‐Forwarded‐For header's contents will not override the
__srcIpPort value. (Here, the upstream proxy can convey the client IP/port without using this header.)

;

Page 782 of 1835

The internal Cribl TCP Source is available only in distributed deployments. It is provided to facilitate sending
data between Worker Nodes that are connected to the same Leader. You'll find this Source especially
valuable in a hybrid Cloud deployment.

You might choose this Source over the Cribl HTTP Source in certain circumstances, such as when a firewall or
proxy allows raw TCP egress. In single‑instance mode or for testing, you can substitute the TCP JSON Source.
(However, this substitution will not provide the single-billing benefits described in the next section.)

You can use the Cribl TCP Source to send data between Workers. In a hybrid Cloud deployment, using this
Source ensures that you're billed for ingress only once – when the data is originally received. All other data
transferred into Workers via the Cribl TCP Source is not charged.

This use case is common in deployments where a customer-managed (on-prem) Worker or Edge node sends
data to a Worker in Cribl.Cloud, for additional processing and then routing to Destinations.

As one usage example, assume that you want to send data from one Worker Node/Edge Node deployed on-
prem, to another that is deployed in Cribl.Cloud. You could do the following:

Create an on-prem Filesystem Collector (or whatever Collector or Source is suitable) for the data you
want to send to Cribl.Cloud.

Create an on-prem Cribl TCP Destination.

Create a Cribl TCP Source, on the target Worker Group/Fleet in Cribl.Cloud.

For an on-prem Worker/Edge Node configure a Filesystem Collector to send data to the Cribl TCP
Destination, and from there to the Cribl TCP Source in Cribl.Cloud.

The key points about configuring this architecture are:

7.9.4. Cribl TCP

Type: System and Internal | TLS Support: YES | Event Breaker Support: No

How It Works

Configuration Requirements

Page 783 of 1835

The Cribl TCP Destination must be on a Worker Node that is connected to the same Leader as the
Cribl TCP Source.

You must specify the same Leader Address on the Worker Nodes that host both the Destination and
Source. Otherwise, token verification will fail – breaking the connection and preventing data flow.

To get the Leader Address specifically for Cribl.Cloud hybrid Workers, see Hybrid Cribl HTTP/ Cribl TCP
Configuration.

To configure the Leader Address via the UI, log directly into each Worker Node's UI. Then select
⚙ Settings (lower le�) > Distributed Settings > Leader Settings > Address.

To configure the Leader Address via the instance.yml file, the host values on the connecting
Worker Nodes must be identical. In this example, both Worker Nodes must point to cribl-leader :

When you configure the Cribl TCP Destination, its Cribl endpoint field must point to the Address and
Port you've configured on the Cribl TCP Source.

Finally, it's important to understand the special way the Cribl TCP Source handles internal fields.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[System and Internal >] Cribl TCP. Next, click either + Add New or (if displayed) Select Existing. The drawer
will now provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [System and Internal >] Cribl TCP. Next,
click + Add New to open a Cribl TCP > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Cribl TCP Source definition.

distributed:
mode: master
master:
host: cribl-leader
port: 4200

Configuring the Cribl TCP Source

General Settings

Page 784 of 1835

Address: Enter hostname/IP to listen for TCP JSON data. E.g., localhost or 0.0.0.0 .

Port: Enter the port number to listen on, e.g., 10300 .

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

Additional Settings

TLS Settings (Server Side)

Persistent Queue Settings

Page 785 of 1835

Enable Persistent Queue defaults to No . When toggled to Yes :

Mode: Choose a mode from the drop-down:

With Smart mode, PQ will write events to the filesystem only when it detects backpressure from the
processing engine.

With Always On mode, PQ will always write events directly to the queue before forwarding them to the
processing engine.

Max bu�er size: Maximum number of events to hold in memory before dumping them to disk. Defaults to
1000 .

Commit frequency: Number of events to send before committing that Cribl Stream has read them. Defaults
to 42 .

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

Processing Settings

Fields

Pre–Processing

Page 786 of 1835

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

The Cribl TCP Source (and the Cribl HTTP Source) treat internal fields di�erently than other Sources do.
That's because of the di�erence in the way that incoming data originates.

Other Sources ingest data that's not coming from Cribl Edge or Stream, meaning that no Cribl internal fields
can be present in that data when it arrives at the Source, and the Source is free to add internal fields without
clobbering (overwriting) anything that existed already.

By contrast, the Cribl TCP Source and the Cribl HTTP Source ingest data that's coming from a Cribl TCP or
Cribl HTTP Destination. That data can contain internal fields when it arrives at the Source. This means that if
the Source adds internal fields, those could potentially clobber what existed before.

To avoid this problem, the Cribl TCP Source and the Cribl HTTP Source add a unique __forwardedAttrs
(i.e., "forwarded attributes") field. The nested structure of the __forwardedAttrs field contains any of the
following fields that are present in the arriving data:

INTERNAL FIELDS

__srcIpPort

__inputId

__outputId

OTHER FIELDS

Connected Destinations

Internal Fields

Page 787 of 1835

OTHER FIELDS

cribl_breaker

cribl_pipe

These fields are copied into __forwardedAttrs , not moved there. As the data (apart from
__forwardedAttrs) moves through the Source and any Pipelines, the values of these fields can be
overwritten. But the copies of these fields in __forwardedAttrs remain unchanged, so you can retrieve
them as necessary.

;

Page 788 of 1835

The Cribl Stream internal Source is available only in distributed deployments. It is provided to facilitate
sending data between Worker Nodes that are connected to the same Leader. You'll find this Source especially
valuable in a hybrid Cloud deployment.

This Source can receive data only from a TCP JSON Destination, on a Worker Node that is connected to the
same Leader. The following instructions cover configuring such a TCP JSON Destination.

The replacement Sources, Cribl TCP and the Cribl HTTP, don't rely on IP filtering, for the following reasons:

Load balancers and/or proxies between the Cribl Destination and Cribl Source can change the IP
address, resulting in a bad match and rejected ingest.

A Lookup table of all IP addresses needed to be sent to each Worker Node/Edge Node from the Leader,
which is not scalable.

The Lookup table of IP addresses required constant communication between the
Worker Node/Edge Nodes and the Leader, making this fragile and placing an arbitrary reliance on the
Leader that shouldn't be there.

You can use the Cribl Stream Source to send data between Workers. In a hybrid Cloud deployment, using this
Source ensures that you're billed for ingress only once – when the data is originally received. All other data
transferred into Workers via the Cribl Stream Source is not charged.

This use case is common in deployments where a customer-managed (on-prem) Worker sends data to a
Worker in Cribl Cloud, for additional processing and then routing to Destinations.

7.9.5. Cribl Stream (Deprecated)

This Source is deprecated as of Cribl Stream 3.5. Please instead use the Cribl TCP or the Cribl HTTP
Source instead to enable Worker Nodes to send data to peer Nodes.

Type: System and Internal | TLS Support: YES | Event Breaker Support: No

Use New Sources Instead

How It Works

Page 789 of 1835

As one usage example, assume that you want to send data from one Worker Node/Edge Node deployed on-
prem, to another that is deployed in Cribl Cloud. You could do the following:

Create an on-prem Filesystem Collector (or whatever Collector or Source is suitable) for the data you
want to send to Cribl Cloud.

Create an on-prem TCP JSON Destination.

Create a "Cribl Stream" Source, on the target Worker Group/Fleet in Cribl Cloud.

Configure these to send data from the Filesystem Collector to the TCP JSON Destination, and from there
to the "Cribl Stream" Source in Cribl Cloud.

The key points about configuring this architecture are:

The TCP JSON Destination must be on a Worker Node/Edge Node that is connected to the same Leader
as the "Cribl Stream" Source.

The TCP JSON Destination's Address and Port must match the "Cribl Stream" Source's Address and
Port.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[System and Internal >] Cribl Stream. Next, click either + Add New or (if displayed) Select Existing. The
drawer will now provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the resulting page's tiles or the Sources le� nav, select [System and Internal >] Cribl Stream. Next,
click + Add New to open a Cribl Stream > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Cribl Stream Source definition.

Address: Enter hostname/IP to listen for TCP JSON data. E.g., localhost or 0.0.0.0 .

Port: Enter the port number to listen on.

Use the Authentication method buttons to select one of these options:

Configuring the Cribl Stream Source

General Settings

Authentication Settings

Page 790 of 1835

Manual: Use this default option to enter the shared secret that clients must provide in the authToken
header field. Exposes an Auth token field for this purpose. (If le� blank, unauthenticated access will be
permitted.) A Generate link is available if you need a new secret.

Secret: This option exposes an Auth token (text secret) drop-down, in which you can select a stored
secret that references the authToken header field value described above. The secret can reside in
Cribl Stream's internal secrets manager or (if enabled) in an external KMS. A Create link is available if
you need a new secret.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Optional Settings

TLS Settings (Server Side)

Page 791 of 1835

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

Persistent Queue Settings

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only
if you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Page 792 of 1835

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Enable Proxy Protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2.

IP Allowlist Regex: Regex matching IP addresses that are allowed to establish a connection. Although it
appears in the Advanced Settings UI, this is not a user-configurable setting. Its value is updated
automatically to match the IP addresses used in the deployment, and cannot be edited.

Max Active Connections: Maximum number of active connections allowed per Worker Process. Use 0 for
unlimited.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Processing Settings

Fields

Pre-Processing

Advanced Settings

Connected Destinations

Internal Fields

Page 793 of 1835

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Field for this Source:

__inputId

__srcIpPort

;

Page 794 of 1835

7.10. System

The Exec Source enables you to periodically execute a command and collect its stdout output. This is
typically used in cases when Cribl Stream cannot accomplish collection with native Collectors or other
Sources.

Especially for monitoring or polling, you'll need to receive the command or script's output periodically. For
this reason, the Exec Source lets you specify when the command or script should run, by time interval or by
cron-style schedule.

Here are a few examples of what you can run from an Exec Source:

Database queries.

Custom commands to poll databases or apps.

ping to check latency.

ps -ax to get a list of running processes.

SNMP GET requests to query an SNMP agent about network entities.

netstat -natp to get lists of sockets and TCP ports, and what they're doing.

mtr -c 1 --report --json 8.8.8.8 to run a traceroute on a location (here, 8.8.8.8), and
packaging up a report in JSON format.

In the QuickConnect UI: Click + New Source, or click + Add beside Sources. From the resulting drawer's
tiles, select [System and Internal >] Exec. Next, click Select Existing.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

7.10.1. Exec

Type: System and Internal | TLS Support: N/A | Event Breaker Support: Yes

This Source allows you to run almost anything on the host system. Make sure you understand the
security and other impacts of commands you plan to execute, before proceeding.

Configuring an Exec Source

Page 795 of 1835

From the resulting page's tiles or the Sources le� nav, select [System and Internal >] Exec.

Enabled: Defaults to Yes .

Input ID: Enter a unique name to identify this Exec Source definition.

Command: Command to execute; supports Bourne shell syntax.

Schedule type: Use the buttons to select either Interval or Cron . Customize the behavior in the
corresponding field below the button.

Interval: Specify how o�en, in seconds, the command should run. Defaults to 60 .

Schedule: Enter a cron expression. (You enter the cron expression in UTC time, but the resulting
Estimated Schedule displays in local time.)

Max retries: Maximum number of retry attempts in the event that the command fails.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the input data stream before
the data is sent through the Routes. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

General Settings

Optional Settings

Processing Settings

Event Breakers

Fields

Page 796 of 1835

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

;

Pre-Processing

Connected Destinations

Page 797 of 1835

The File Monitor Source collects log (text) files, and generates events from lines or records in those files. This
Source is available in both Stream and Edge. On Cribl.Cloud, it is available for all Edge Fleets, and for all
Stream Worker Groups except for default .

To produce its initial list of files to monitor, the File Monitor Source runs a discovery procedure at a
configurable Polling interval. The Source then applies a Filename allowlist to filter the initial list down into
its final form.

For any file that makes it past the allowlist, the File Monitor Source keeps track of how far into the file it has
read. For a given polling interval, this enables the Source to ignore inactive files, while watching active ones
(including newly created files). The state information that the Source maintains for all monitored files
appears in the Status tab, as explained in the Examples. When files are renamed (due to log rotation, for
example), the Source handles this gracefully, as explained in Monitoring Renamed Files' State.

How does the File Monitor Source discover files in the first place? You have the choice of two
Discovery modes:

In Auto mode, the Source automatically discovers files that running processes have open for writing.

This option's usefulness is limited to situations, such as demonstrations or testing, where you need to
discover all the files that it would be possible to monitor.

Use with caution if the extra costs of "grabbing everything" are a concern.

In Manual mode, you have fine-grained control over what to monitor and what to ignore. In this mode, the
Source can perform either or both of two actions:

Discovering the files within a directory, and to a depth, that you specify.

Monitoring a set of files where each needs to be handled in a unique way. Here, you'll typically create a
set of Sources, each of which monitors one file. See Monitoring Individual Files.

7.10.2. File Monitor

Type: System and Internal | TLS Support: N/A | Event Breaker Support: Yes

Discovering and Filtering Files to Monitor

Page 798 of 1835

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[System and Internal >] File Monitor. Next, click Add New.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [System and Internal >] File Monitor.

Enabled: Defaults to Yes .

Input ID: Enter a unique name to identify this File Monitor Source definition.

Discovery mode: Use the buttons to select one of these options.

Auto: Tells the Source to automatically discover files that running processes have open for writing.

Manual: Tells the Source to discover the files within the Search path that you specify, down to the Max
depth.

In Search path, if the files you want to match all reside within one directory (and/or its subdirectories),
you should enter that path, along with a Filename allowlist (as described in Optional Settings).

By default, the Max depth field is empty. This means that the Source will search subdirectories, and
their subdirectories, and so on, without limit. If you specify 0 , the Source will discover only the top-
level files within the Search path. For 1 , the Source will discover files one level down.

If you want the Source to monitor one file per Source, you should simply enter that file's complete path.
This makes the Filename allowlist irrelevant, and you should leave the Max depth empty.

Both modes allow you to set the Polling interval, which otherwise defaults to 10 seconds.

Filename allowlist: This field supports wildcard syntax, and supports the exclamation mark (!) for
negation. For example, you can use !*cribl*access.log to prevent the Source from discovering
Cribl Stream's own log files. The default filters are */log/* and *log .

Configuring a File Monitor Source

General Settings

Optional Settings

Page 799 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the input data stream before
the data is sent through the Routes. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

The Filename allowlist is really a blocklist combined with an allowlist. All the negation patterns
should be first – if you add a negation pattern, drag it towards the beginning with the other negations.
As long as the negation patterns are together, followed by all the match ("allow") patterns, the order
of the individual patterns within each group does not matter.

Processing Settings

Event Breakers

Fields

Pre-Processing

Advanced Settings

Connected Destinations

Page 800 of 1835

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Following the fine points in these examples, along with Monitoring Individual Files, will enable you to
monitor precisely what you want to (as opposed to monitoring too few or too many files).

Suppose you added a File Monitor Source on a Linux machine, set your Discovery mode to Manual, and
specified your home directory as the Search path (e.g., /home/bogart/). You're using the Chrome browser.

You do not want to monitor Cribl Stream's own log files, nor any log files generated by Chrome. To exclude
them, you add !*cribl*access.log and !*chrome* to your Filename allowlist. You do want to monitor
any other log files that the Source can discover, so you also add *log .

A�er a while, the Status tab looks like this:

The Status tab

This Source defaults to QuickConnect.

Examples

Monitoring a Subset of Log Files in a Directory

Page 801 of 1835

Suppose you want to explore the files on a particular host, in order to decide what to monitor. You can
 teleport into an Edge Node, select the desired host, and view the Files tab to see what files are being

written there.

Based on what you observe, you can then decide how to monitor the files that interest you. You'll set your
Discovery mode to Manual in order to appropriately configure file paths and allowlists, whether you use a
single Source or a set of multiple Sources. In the latter case, see Monitoring Individual Files.

The File Monitor Source uses a simple scheme to find "backlog" files corresponding to a matching file: Tell it
to tail foo.log , and it will look for foo.log.[0-9] and scrape those, too.

This Source keeps hashes that correspond to the start point within the file, and the last-read point. So if
Cribl Stream is stopped, files are rotated, and Cribl Stream is restarted, the File Monitor Source can find the
resume point in those backlog files.

Similarly, if you rename the file within the same backlog scheme (e.g., foo.log to foo.log.0), the
File Monitor Source can resume at the right place. However, if you renamed foo.log to bar.log (a
deviation from the expected naming scheme), this Source could not find its resume point.

Why monitor a set of individual files, as opposed to whatever files might exist in a specified directory? Your
purposes could include any or all of the following:

Sending data from each individual file to a di�erent Destination (or, from some files within the set to
di�erent Destinations).

Sending data from each individual file to a Pack that's appropriate for that file type.

Enriching the file's data with metadata required by the receiver. Here, metadata means fields such as
index and sourcetype , and receivers that might require it include Splunk and Elasticsearch.

In this kind of scenario, you'll configure a separate Source for each file you want to monitor, in the following
way:

Teleporting with Cribl Edge to Discover Files to Monitor

Monitoring Renamed Files' State

Monitoring Individual Files

Source per File

Page 802 of 1835

First, as the Discovery mode, select Manual.

Next, in the Search path field, specify the full path of the file you want to monitor. The Filename allowlist
will have no e�ect, and you should leave Max depth empty.

Then, choose one of the following options to complete the process:

Use QuickConnect to configure Pipelines and Destinations for each Source.

Set pre-processing Pipelines, or configure specific Packs, for each Source.

Use Processing Settings > Fields to set metadata for the file you want to monitor.

Cribl has found that this Source-per-file approach yields better performance, granularity, and supportability
than alternative approaches.

Suppose you need to configure both a set of Sources, each monitoring an individual file, and another Source
monitoring multiple files in the same directory path.

This works, but it requires the allowlist for the multiple-file-monitoring Source to exclude each of the files
that's been assigned its own Source. Otherwise, you risk seeing data from the same file show up both
Sources (which is redundant and can cause double-billing).

To sum up: Keep careful track of all the file paths and directory/wildcard patterns you're monitoring.
See Optional Settings for details about working with allowlists.

;

Monitoring Both Directories and Individual Files

Page 803 of 1835

Cribl Stream can collect metrics from the host on which it is running, and can populate some standard
metrics dashboards right out of the box.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[System and Internal >] System Metrics. Next, click either + Add New or (if displayed) Select Existing. The
drawer will now provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [System and Internal >] System Metrics. Next,
click + Add New to open a System Metrics > New Source modal that provides the following options and
fields.

Input ID: Enter a unique name to identify this Source definition.

Polling interval: How o�en to collect metrics, in seconds. Defaults to 10 .

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Use the buttons to select a level of detail.

7.10.3. System Metrics

Type: System and Internal | TLS Support: N/A | Event Breaker Support: No

Cribl Edge Workers support System Metrics only when running on Linux, not on Windows.

Configuring Cribl Stream to Collect System Metrics

General Settings

Optional Settings

Host Metrics

Page 804 of 1835

Basic enables minimal metrics, averaged or aggregated.

All enables full, detailed metrics, specified for individual CPUs, interfaces, and so on.

Custom displays sub-menus and buttons from which you can choose a level of detail (Basic, All,
Custom, or Disabled) for each type of event.

Disabled means that no metrics will be generated.

The meaning of All and Disabled are self-evident. Basic and Custom have di�erent meanings depending on
event type, as follows:

Basic level captures load averages, uptime, and CPU count.

Custom toggles Process metrics on or o�; these are metrics for the numbers of processes in various states.

Basic level captures active, user, system, idle, iowait percentages over all CPUs.

Custom toggles the following on or o�: Per CPU metrics, Detailed metrics (meaning, for all CPU states), and
CPU time metrics (meaning raw, monotonic CPU time counters).

Basic level captures captures total, used, available, swap_free , and swap_total .

Custom toggles Detailed metrics on or o�. Detailed means for all memory states.

Basic level captures bytes, packets, errors, connections over all interfaces.

Custom exposes the following:

The Interface filter, which specifies which network interfaces to include or exclude (all are included if
the filter is empty).

Per interface metrics, which toggle on or o�.

Detailed metrics, which toggle on or o�. If on, the Protocol metrics toggle appears, allowing you to
choose whether to generate metrics for ICMP, ICMPMsg, IP, TCP, UDP, and UDPLite.

System

CPU

Memory

Network

Disk

Page 805 of 1835

Basic level captures disk used in percent, bytes read and written, and read and write operations, over all
mounted disks.

Custom exposes the following:

The Device filter, which specifies which block devices to include or exclude (all are included if the filter
is empty). Wildcards and ! (not) operators are supported.

The Mountpoint filter, which specifies which filesystem mountpoints to include or exclude (all are
included if the filter is empty). Wildcards and ! (not) operators are supported.

The Filesystem type filter, which specifies which filesystem types to include or exclude (all are
included if the filter is empty). Wildcards and ! (not) operators are supported.

Per device metrics, which toggle on or o�.

Detailed metrics, which toggle on or o�. If on, the Enable inode metrics toggle appears, allowing you
to choose whether to generate metrics for filesystem inodes.

Use the buttons to select a level of detail.

Basic generates the server event and per running container events.

All adds per-device and detailed metrics.

Custom provides controls for customizing which containers to generate metrics from.

Disabled means that no metrics will be generated.

The Custom buttons displays additional controls, as follows:

Container Filters: Enter a filter expression to govern which containers to generate metrics from. Leave
empty (the default) to generate metrics from all containers.

All containers: Toggle to Yes to include stopped and paused containers.

Per device metrics: Toggle to Yes to generate separate metrics for each device.

Detailed metrics: Toggle to Yes to generate full container metrics.

The Basic, All, and Custom buttons provide the following Advanced Settings, which are di�erent from those
in the main Advanced Settings tab:

Docker socket: Enter the full path(s) for Docker's UNIX domain socket. Defaults to
/var/run/docker.sock and /run/docker.sock .

Docker timeout: Timeout, in seconds, for the Docker API. Defaults to 5 .

Container Metrics

Page 806 of 1835

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

If desired, choose a Pipeline from the drop-down if you want to process data from this Source before sending
it through the Routes.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Enable disk persistence: Whether to save metrics to disk. Defaults to No . When toggled to Yes , exposes
this section's remaining fields.

Bucket time span: What time range of events to hold in each bucket. Default value: 10m (10 minutes).

Max data size: Maximum disk space the persistent metrics can consume. Once reached, Cribl Stream will
delete older data. Example values: 420 MB , 4 GB . Default value: 100 MB .

Max data age: How long to retain data. Once reached, Cribl Stream will delete older data. Example values:
2h , 4d . Default value: 24h (24 hours).

Compression: Optionally compress the data before sending. Defaults to gzip compression. Select none to
send uncompressed data.

Path Location: Path to write metrics to. Default value is $CRIBL_HOME/state/system_metrics .

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Processing Settings

Fields

Pre-Processing

Advanced Settings

Connected Destinations

Page 807 of 1835

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl has configured a Prometheus dashboard to display Cribl Stream System Metrics, and shared the
dashboard in the Grafana library, which is public. This is a relatively simple dashboard suitable for showing
aggregate metrics. Try this dashboard if you prefer Basic mode for most of your metrics.

Another useful dashboard is the one that's commonly used with Prometheus and their Node Exporter agent,
found here. This dashboard can handle the highly detailed metrics. To use this dashboard, attach the
prometheus_metrics pre-processing pipeline, and choose All mode.

;

Populating Dashboards with System Metrics

Page 808 of 1835

AppScope is an open-source instrumentation utility from Cribl. It o�ers visibility into any Linux command or
application, regardless of runtime, with no code modification. For details about configuring the AppScope
CLI, loader, and library, see: https://appscope.dev/docs.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] AppScope. Next, click either + Add New or (if displayed) Select Existing. The drawer will now
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources. Or,
from the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] AppScope. Next, click + Add New to
open an AppScope > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this AppScope Source definition.

UNIX domain socket: When toggled to Yes , exposes the following two fields to specify a file-backed UNIX
domain socket connection to listen on.

UNIX socket path: Path to the UNIX domain socket. Defaults to $CRIBL_HOME/state/appscope.sock .

UNIX socket permissions: Permissions to set for this socket, e.g., 777 . If empty, Cribl Stream will use
the runtime user's default permissions.

When UNIX domain socket is set to No (the default), you instead see the following two fields to specify a
network host and port.

Address: Enter the hostname/IP on which to listen for AppScope data. (E.g., localhost .) Defaults to
0.0.0.0 , meaning all addresses.

Port: Enter the port number to listen on.

7.11. AppScope

Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl Stream to Receive AppScope Data

General Settings

Page 809 of 1835

Use the Authentication method buttons to select one of these options:

Manual: Use this default option to enter the shared secret clients must provide in the authToken
header field. Click Generate if you need a new auth token. If empty, unauthenticated access will be
permitted.

Secret: This option exposes an Auth token (text secret) drop-down, in which you can select a stored
secret that references the auth token described above. The secret can reside in Cribl Stream's internal
secrets manager or (if enabled) in an external KMS. Click Create if you need to configure a new secret.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

This le� tab is displayed only when the Optional Settings > UNIX domain socket slider is set to No . It
provides the following options.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Authentication Settings

Optional Settings

TLS Settings (Server Side)

Page 810 of 1835

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Persistent Queue Settings

Page 811 of 1835

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the input data stream before
the data is sent through the Routes. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Enable proxy protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2.

IP allowlist regex: Regex matching IP addresses that are allowed to establish a connection.

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only if
you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Processing Settings

Event Breakers

Fields

Pre-Processing

Advanced Settings

Page 812 of 1835

Max active connections: Maximum number of active connections allowed per Worker Process. Defaults to
1000 ; enter 0 to allow unlimited connections.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Field for this Source:

__inputId

__srcIpPort

An in_appscope TLS Source is preconfigured for you in Cribl Cloud, using port 10090 .

Send it AppScope data using this command:

Add a new AppScope Source and assign it Port: 10091 .

Connected Destinations

Internal Settings

Examples

Cribl Cloud – TLS

./scope run -c in.logstream.<tenant‐ID>.cribl.cloud:10090 -- ps -ef

Cribl Cloud – TCP

Page 813 of 1835

Send it AppScope data using this command:

;

./scope run -c tcp://in.logstream.<tenant‐ID>.cribl.cloud:10091 \
> -- curl -so /dev/null https://wttr.in/94105

Page 814 of 1835

Cribl Stream supports receiving data from the CrowdStrike Falcon platform. CrowdStrike data can then be
sent to SIEM, threat-hunting, and other security tools and platforms. This page covers how to configure the
Source. Because the Falcon platform pulls data from Amazon S3 buckets maintained by CrowdStrike, some
of the configuration described here actually involves S3.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select [Pull >
] CrowdStrike. Next, click either + Add New or (if displayed) Select Existing. The drawer will now provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Pull >] CrowdStrike. Next, click + Add New to
open a CrowdStrike > New Source modal that provides the following options and fields.

Input ID: Unique ID for this Source. E.g., Endpoint42Investigation .

Queue: The name, URL, or ARN of the SQS queue to read notifications from. When a non-AWS URL is
specified, format must be: '{url}/myQueueName' . E.g., 'https://host:port/myQueueName' . The value
must be a JavaScript expression (which can evaluate to a constant value), enclosed in quotes or backticks.
The expression can only be evaluated at init time, for example when referencing a Global Variable like this:
https://host:port/myQueue-${C.vars.myVar} .

7.12. CrowdStrike

Type: Pull | TLS Support: Yes | Event Breaker Support: Yes

Configuring a CrowdStrike Source

The sections described below are spread across several tabs. Click the tab links at le�, or the Next
and Prev buttons, to navigate among tabs. Click Save when you've configured your Source.

General Settings

Optional Settings

Page 815 of 1835

Filename filter: Regex matching file names to download and process. Defaults to: .* .

Region: AWS Region where the S3 bucket and SQS queue are located. Required, unless Queue is a URL or
ARN that includes a Region.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Use the buttons to select an authentication method.

Auto: This default option uses the AWS instance's metadata service to automatically obtain short-lived
credentials from the IAM role attached to an EC2 instance. The attached IAM role grants Cribl Stream Workers
access to authorized AWS resources. Can also use the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY . Works only when running on AWS.

Manual: If not running on AWS, you can select this option to enter a static set of user-associated IAM
credentials (your access key and secret key) directly or by reference. This is useful for Workers not in an AWS
VPC, e.g., those running a private cloud. The Manual option exposes these corresponding additional fields:

Access key: Enter your AWS access key. If not present, will fall back to the env.AWS_ACCESS_KEY_ID
environment variable, or to the metadata endpoint for IAM role credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to the
env.AWS_SECRET_ACCESS_KEY environment variable, or to the metadata endpoint for IAM credentials.

Secret: If not running on AWS, you can select this option to supply a stored secret that references an AWS
access key and secret key. The Secret option exposes this additional field:

Secret key pair: Use the drop-down to select a secret key pair that you've configured in Cribl Stream's
internal secrets manager or (if enabled) an external KMS. Follow the Create link if you need to configure
a key pair.

Enable for S3: Whether to use Assume Role credentials to access S3. Defaults to Yes .

Enable for SQS: Whether to use Assume Role credentials when accessing SQS (Amazon Simple Queue
Service). Defaults to No .

Authentication

Assume Role

Page 816 of 1835

AWS account ID: SQS queue owner's AWS account ID. Leave empty if the SQS queue is in the same AWS
account.

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to assume.

External ID: Enter the External ID to use when assuming role.

In this section, you can pass the data from this input to an external command for processing, before the data
continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will process its output (via
stdout).

Arguments: Click + Add Argument to add each argument to the command. You can drag arguments
vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order, to the input data
stream. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Processing Settings

Custom Command

Event Breakers

Fields

Pre-Processing

Page 817 of 1835

Optionally, use the drop-down to select an existing Pipeline to process data from this Source before sending
it through the Routes. Otherwise (by default), events will be sent to normal routing and event processing.

Advanced Settings enable you to customize post-processing and administrative options.

Endpoint: The S3 service endpoint you want CrowdStrike to use. If empty, Cribl Stream will automatically
construct the endpoint from the Region.

Signature version: Signature version to use for signing S3 requests. Defaults to v4 ; v2 is also available.

Num receivers: The number of receiver processes to run. The higher the number, the better the throughput,
at the expense of CPU overhead. Defaults to 1 .

Max messages: The maximum number of messages that SQS should return in a poll request. Amazon SQS
never returns more messages than this value. (However, fewer messages might be returned.) Acceptable
values: 1 to 10 . Defaults to 1 .

Visibility timeout seconds: The duration (in seconds) that the received messages are hidden from
subsequent retrieve requests, a�er being retrieved by a ReceiveMessage request. Defaults to 600 .

Socket timeout: Socket inactivity timeout (in seconds). Increase this value if retrievals time out during
backpressure. Defaults to 300 seconds.

Skip file on error: Toggle to Yes to skip files that trigger a processing error. (E.g., corrupted files.) Defaults to
No, which enables retries a�er a processing error.

Reuse connections: Whether to reuse connections between requests. The default setting (Yes) can improve
performance.

Reject unauthorized certificates: Whether to reject certificates that cannot be verified against a valid
Certificate Authority (e.g., self-signed certificates). Defaults to Yes , the restrictive option.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Advanced Settings

Cribl Stream will automatically extend this timeout until the initial request's files have been
processed – notably, in the case of large files that require additional processing time.

Connected Destinations

Page 818 of 1835

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Worker Processes poll for messages from SQS, using the AWS SDK S3 APIs. Each polling call will return (by
default) one message, if any are available. You can change this default using Max messages .

If no message is available, the call will time out a�er one second, and then polling will repeat.
All Worker Processes participate in polling, so as to disribute files' collection and processing evenly across
Workers.

;

How Cribl Stream Pulls Data

Page 819 of 1835

Datadog Agent is open-source so�ware that monitors the host on which it runs. Acting as a DogStatsD server,
Datadog Agent also aggregates metrics from other processes or containers on the host.

Cribl Stream can ingest the following from Datadog Agent, in bundled form:

Logs.

Metrics (gauge, rate, counter, and histogram).

Service checks.

Agent metadata and other events emitted from the /intake/ endpoint.

Datadog Agent also emits Application Performance Monitoring data, which it sends to Datadog. Cribl Stream
does not currently support ingesting this APM data.

On the system(s) that you want to monitor, you'll need to install Datadog Agent and configure it to send data
to Cribl Stream. Cribl Stream can parse, filter, and enrich that data, and then send it to any supported
Destination, including a Cribl Stream Datadog Destination. (By default, Datadog Agent sends data only to
Datadog.)

For inbound log data, this Source supports gzip -compression when the Content‐Encoding: gzip
connection header is set. For other data types, it assumes that all inbound data is compressed using
deflate .

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] Datadog Agent. Next, click either + Add New or (if displayed) Select Existing. The drawer will now
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

7.13. Datadog Agent

Type: Push | TLS Support: YES | Event Breaker Support: No

Configuring Cribl Stream to Ingest Datadog Agent
Output

Page 820 of 1835

From the resulting page's tiles or the Sources le� nav, select [Push >] Datadog Agent. Next, click + Add New
to open a Datadog Agent > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Datadog Agent Source definition.

Address: Enter hostname/IP to listen for Datadog Agent data. E.g., localhost or 0.0.0.0 .

Port: Enter the port number to listen on.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

General Settings

Optional Settings

TLS Settings (Server Side)

Page 821 of 1835

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Persistent Queue Settings

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only
if you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Page 822 of 1835

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Enable Proxy Protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2. This setting a�ects how the Source handles the field.

Capture request headers: Toggle this to Yes to add request headers to events, in the __headers field.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Max active requests: Maximum number of active requests per worker process. Use 0 for unlimited.

Extract metrics: Toggle to Yes to extract each incoming metric to multiple events, one per data point. This
works well when sending metrics to a statsd -type output. If sending metrics to DatadogHQ or any
destination that accepts arbitrary JSON, leave toggled to No (the default).

Forward API key validation requests: Toggle to Yes to send key validation requests from Datadog Agent to
the Datadog API. If toggled to No (the default), Stream handles key validation requests by always responding
that the key is valid.

Processing Settings

Fields

Pre-Processing

Advanced Settings

__srcIpPort

Connected Destinations

Page 823 of 1835

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__headers – Added only when Advanced Settings > Capture request headers is set to Yes .

__inputId

__srcIpPort – See details below.

The __srcIpPort field's value contains the IP address and (optionally) port of the Datadog Agent sending
data to this Source.

When any proxies (including load balancers) lie between the Datadog Agent and the Source, the last proxy
adds an X‐Forwarded‐For header whose value is the IP/port of the original client. With multiple proxies,
this header's value will be an array, whose first item is the original client IP/port.

If X‐Forwarded‐For is present, and Advanced Settings > Enable proxy protocol is set to No , the original
client IP/port in this header will override the value of __srcIpPort .

If Enable proxy protocol is set to Yes , the X‐Forwarded‐For header's contents will not override the
__srcIpPort value. (Here, the upstream proxy can convey the client IP/port without using this header.)

Before you begin this section, you should have Datadog Agent running on one or more hosts.

To enable Datadog Agent to send data to Cribl Stream, you'll set the following environment variables:

DD_DD_URL : The URL or IP address and port of your Datadog Agent Source in Cribl Stream.

Internal Fields

Overriding __srcIpPort with Client IP/Port

Sending Datadog Agent Data to Cribl Stream

Page 824 of 1835

DD_LOGS_CONFIG_LOGS_DD_URL : The same value as above, assuming log collection is enabled on
Datadog Agent.

DD_LOGS_CONFIG_USE_HTTP : Set to true . Cribl Stream ingests Datadog Agent logs over HTTP only;
ingesting logs over TCP is not supported.

Set these environment variables in one of two ways: (1) through a docker run command, or (2) by editing
the datadog.yaml configuration file that your Datadog Agent uses.

Here's an example docker run that sets the environment variables described above, along with others
required for Datadog Agent but not relevant to Cribl Stream. Replace the example values with values
appropriate for your environment.

Instead of using environment variables, you can set the Cribl Stream-related values in your Datadog Agent's
datadog.yaml config file.

See the documentation links in the example config file that Datadog maintains online; and, the docs that
describe filesystem locations relevant to getting Datadog Agent to configure itself with the desired
datadog.yaml file.

The di�erent kinds of information that Datadog Agents emit - logs, metrics, service checks, agent metadata,
and APM data - are not completely independent when you send them to Cribl Stream Datadog Agent Source.
The reference to "bundling" near the top of this page introduced this situation in simplified form. The table
below explains the relevant constraints for each type of information that Datadog Agents emit, along with
the Datadog environment variables that control them.

Using the docker run Command

docker run --rm --name dd-agent
 -e DD_API_KEY=6d1ephx1w55p978i6d1ephx1w55p978i \
 -e DD_SKIP_SSL_VALIDATION=true \
 -e DD_DD_URL="http://0.0.0.0:8080" \
 -e DD_LOGS_ENABLED=true \
 -e DD_LOGS_CONFIG_LOGS_DD_URL="0.0.0.0:8080" \
 -e DD_LOGS_CONFIG_USE_HTTP=true \
 -e DD_LOGS_CONFIG_LOGS_NO_SSL=true \
 -e DD_LOGS_CONFIG_CONTAINER_COLLECT_ALL=true \
 -e DD_DOGSTATSD_NON_LOCAL_TRAFFIC="true" \
 gcr.io/datadoghq/agent:7

Using a Config File

Managing What Data Goes Where

Page 825 of 1835

TYPE(S) OF INFORMATION DEPENDENCIES AND/OR LIMITATIONS ENVIRONMENT VARIABLETYPE(S) OF INFORMATION DEPENDENCIES AND/OR LIMITATIONS ENVIRONMENT VARIABLE

Logs Independent of other types. DD_LOGS_CONFIG_DD_URL

Metrics, Events, Service
Checks, and Metadata

Always sent together. DD_DD_URL

APM Data

Can only be sent to Datadog, e.g.,
https://trace.agent.datadoghq.com .

Cannot be sent to Cribl Stream even when you are
sending other types there.

DD_APM_DD_URL

Suppose your data flow runs from Datadog Agents, to Cribl Stream Datadog Agent Sources, to Cribl Stream
Datadog Destinations, to Datadog accounts. You'll need to decide how many of each of these elements there
are to define the data flow you want. You will also set (or override) Datadog API keys to support the desired
data flow. For some data flows, you'll need the General Settings > Allow API key from events toggle in the
Cribl Stream Datadog Destination.

Another possibility is that you want data to flow to some Destination other than a Cribl Stream Datadog
Destination. If that's the case, try adapting the examples below to your use case. Please connect with us on
the Cribl Community Slack if you have questions.

The examples which follow start simple and become more complex in terms of desired data flow, and,
consequently, of Cribl Stream configuration.

You're running one Datadog Agent on one host.

You want the output of the Agent sent to a single Datadog account.

You only need one API key.

You configure that single API key on your Cribl Stream Datadog Destination.

You're running Datadog Agents on a fleet of hosts.

You want to consolidate all the output of the Agents into a single Datadog account.

Managing API Keys

Data Flow Examples

One Agent to One Account

Many Agents to One Account

Page 826 of 1835

You only need one API key. This is no di�erent from the simpler one-to-one scenario above.

You configure that single API key on your Cribl Stream Datadog Destination.

No matter which host the data originates from, your Cribl Stream Datadog Destination sends it to
Datadog using that single API key.

You're running Datadog Agents on a fleet of hosts.

You want the output of the Agents from some hosts to flow into one Datadog account, and the output
from other hosts to flow into a di�erent Datadog account.

This may need to scale up to multiple accounts, if, for example, you are managing data from several
di�erent customers, or from several di�erent organizations within your company.

You need one API key for each Datadog account.

In the Cribl Stream Datadog Destination, toggle General Settings > Allow API key from events to Yes .

Here's what happens:
Datadog Agent always sends an API key when it communicates with the Cribl Stream Datadog
Agent Source. Agents within di�erent subgroups of hosts will send di�erent API keys, as described
above.

Cribl Stream Datadog Agent Source passes the API key from the Agent to the Cribl Stream Datadog
Destination as an internal field.

Cribl Stream Datadog Destination uses that API key to direct its output to the correct Datadog
account. If need be, you can configure the Destination to override the passed-in API key with a
di�erent one. This comes in handy when you know that your Agent(s) are using invalid API keys.
You can even override all passed-in API keys.

Once you have configured your Datadog Agent(s) as described above, and they have begun sending data:

Try viewing the incoming data in the Live Data tab in your Cribl Stream Datadog Agent Source.

If you have a Cribl Stream Datadog Destination set up, connect your Cribl Stream Datadog Agent Source
to it via a QuickConnect Passthru, and verify that the same data shows up in the Destination's Live
Data tab.

Another possibility is that you want your Cribl Stream Datadog Agent Source to connect to some
Destination other than a Cribl Stream Datadog Destination. That's beyond the scope of this
example, but verifying data flow should be similar.

Many Agents to Many Accounts

Verifying that Data is Flowing

Page 827 of 1835

If the Cribl Stream Datadog Destination is configured to send data to a Datadog instance, verify that the
same data shows up there, in the appropriate form, according to the transformations you've configured
in Cribl Stream.

If you have a many-to-many data flow as described above, verify that output is being correctly split
among the possible Datadog accounts at the end of the data flow.

Assuming that data is behaving as expected, you can proceed to the best part, namely adding one or more
Pipelines between Datadog Agent Source and Datadog Destination, to transform the data however you wish.
Given the varied nature of what Datadog Agents collect, there should be ample opportunities to make the
data leaner and more usable.

;

Page 828 of 1835

Cribl Stream supports receiving data over HTTP/S using the Elasticsearch Bulk API.

For examples of receiving data from popular senders via this API, see Configuring Elastic Beats below.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] Elasticsearch API. Next, click either + Add New or (if displayed) Select Existing. The drawer will
now provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] Elasticsearch API. Next,
click + Add New to open an Elasticsearch API > New Source modal that provides the following options and
fields.

Input ID: Enter a unique name to identify this Elasticsearch Source definition.

Address: Enter the hostname/IP on which to listen for Elasticsearch data. (E.g., localhost or 0.0.0.0 .)

Port: Enter the port number.

7.14. Elasticsearch API

Type: Push | TLS Support: YES | Event Breaker Support: No

This Source supports gzip-compressed inbound data when the Content‐Encoding: gzip
connection header is set.

Configuring Cribl Stream to Receive Elasticsearch Bulk
API Data over HTTP(S)

Cribl Stream ships with an Elasticsearch API Source preconfigured to listen on Port 9200. You can
clone or directly modify this Source to further configure it, and then enable it.

General Settings

Page 829 of 1835

Elasticsearch API endpoint (for Bulk API): Absolute path on which to listen for Elasticsearch API requests.
Defaults to / . Cribl Stream automatically appends _bulk , so (e.g.) /myPath becomes /myPath/_bulk .
Requests could then be made to either /myPath/_bulk or /myPath/<myIndexName>/_bulk . Other entries
are faked as success.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

In the Authentication type drop-down, select one of the following options:

None: Don't use authentication.

Basic: Displays Username and Password fields for you to enter HTTP Basic authentication credentials.
Click Generate if you need a new password.

Basic (credentials secret): Provide username and password credentials referenced by a secret. Select a
stored text secret in the resulting Credentials secret drop-down, or click Create to configure a new
secret.

Auth tokens: Use HTTP token authentication. Click + Add Token and, in the resulting Token field, enter
the bearer token that must be included in the HTTP authorization header. Click Generate if you need a
new token. Click + Add Token to display additional rows to specify more tokens.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

Optional Settings

Authentication

TLS Settings (Server Side)

Page 830 of 1835

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Persistent Queue Settings

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only
if you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Page 831 of 1835

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Enable proxy protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2. This setting a�ects how the Source handles the field.

Capture request headers: Toggle this to Yes to add request headers to events, in the __headers field.

Processing Settings

Fields

Pre-Processing

Advanced Settings

__srcIpPort

Page 832 of 1835

Max active requests: Maximum number of active requests allowed for this Source, per Worker Process.
Defaults to 256 . Enter 0 for unlimited.

Activity log sample rate: Determines how o�en request activity is logged at the info level. The default 100
value logs every 100th value; a 1 value would log every request; a 10 value would log every 10th request;
etc.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Request timeout (seconds): How long to wait for an incoming request to complete before aborting it.
The default 0 value means wait indefinitely.

Enable proxy mode: If you toggle this to Yes , see Proxy Mode below for the resulting options.

Extra HTTP Headers: Name/Value pairs to pass as additional HTTP headers. By default, Cribl Stream's
responses to HTTP requests include the X‐elastic‐product header, with an Elasticsearch value. (This
is required by certain clients, including some Elastic Beats.)

API Version: To upstream Elastic Beats, this Cribl Stream Source will appear as an Elasticsearch instance
matching the version that you set in this drop-down:

6.8.4 – Retained as the default for backward compatibility.

8.3.2 – Matches Elasticsearch's current 8.3.x versions.

Custom – Opens an HTTP response object in the Custom API Version editor. This object replicates what
an Elasticsearch server would send in its HTTP responses to a client. You can edit the
version : number , and any other fields, as required to satisfy the Elastic Beat sending data to this
Source. (This Custom option supports future Elasticsearch releases, as long as Elasticsearch keeps the
same response-object structure.)

Enabling proxy mode allows Cribl Stream to proxy non–Bulk API requests to a downstream Elasticsearch
server. This can be useful when integrating with Elasticsearch API senders like Elastic Endgame agents, which
send requests that Cribl Stream does not natively support. Sliding Enable proxy mode to Yes exposes the
following controls.

Proxy URL: URL of the Elasticsearch server that will proxy non-bulk requests, e.g.: http://elastic:9200 .

Remove headers: Enter any headers that you want removed from proxied requests. Press Tab or Return to
separate header names.

Proxy Mode

Page 833 of 1835

Proxy request timeout: How long, in seconds, to wait for a proxy request to complete before aborting it.
Defaults to 60 seconds; minimum timeout is 1 second.

To understand how Proxy request timeout interacts with the X‐Forwarded‐For header, see
Overriding with Client IP/Port.

Authentication method: Select one of the following options.

None: Don't use authentication.

Manual: Displays Username and Password fields for you to enter HTTP Basic authentication
credentials.

Secret: This option exposes a Credentials secret drop-down, in which you can select a stored secret
that references the credentials described above. A Create link is available to store a new, reusable
secret.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

The Elasticsearch API input normalizes the following fields:

@timestamp becomes _time at millisecond resolution.

host is set to host.name .

Original object host is stored in __host .

The Elasticsearch Destination does the reverse, and it also recognizes the presence of __host .

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

__srcIpPort

Connected Destinations

Field Normalization

Internal Settings

Page 834 of 1835

Fields for this Source:

__headers – Added only when Advanced Settings > Capture request headers is set to Yes .

__host

__id

__index

__inputId

__srcIpPort – See details below.

__type

The __srcIpPort field's value contains the IP address and (optionally) port of the Elasticsearch client
sending data to this Source.

When any proxies (including load balancers) lie between the Elasticsearch client and the Source, the last
proxy adds an X‐Forwarded‐For header whose value is the IP/port of the original client. With multiple
proxies, this header's value will be an array, whose first item is the original client IP/port.

If X‐Forwarded‐For is present, and Advanced Settings > Enable proxy protocol is set to No , the original
client IP/port in this header will override the value of __srcIpPort .

If Enable proxy protocol is set to Yes , the X‐Forwarded‐For header's contents will not override the
__srcIpPort value. (Here, the upstream proxy can convey the client IP/port without using this header.)

Beats are open-source data shippers that act as agents, sending data to Elasticsearch (or to other services, in
this case Cribl Stream). The Beats most popular with Cribl users are Filebeat and Winlogbeat.

To set up a Beat to send data to Cribl Stream, edit the Beat's YAML configuration file: filebeat.yml for
Filebeat, winlogbeat.yml for Winlogbeat, and so on. In the config file, you'll specify your Cribl Stream
Elasticsearch Source endpoint as the Beat's Elasticsearch output. To the Beat, Cribl Stream will appear as an
instance of Elasticsearch.

In Cribl Stream 3.5.2 and later, the Extra HTTP Headers and API Version settings facilitate working with
Beats. If you're on a pre-3.5.2 version of Cribl Stream, see alternate configuration procedures in the
next section.

Overriding __srcIpPort with Client IP/Port

Configuring Elastic Beats

Page 835 of 1835

If you're using HTTP token authentication (which is disabled by default, both on-prem and on Cribl.Cloud):
First, set the token. Then add the following to the Beat config file under output.elasticsearch.headers ,
substituting your token for myToken42 :

To an Elastic Beat sending data to this Source, the Source will appear as an instance of Elasticsearch. If you
are on Cribl Stream 3.5.1 or older, you must configure the Source as follows to successfully interact with an
Elastic Beat:

1. Set output.elasticsearch.allow_older_versions to true to prevent errors of the form:
Elasticsearch is too old. Please upgrade the instance . In general, Elasticsearch errors in
the Filebeat logs will actually be about Cribl Stream.

2. Disable the index lifecycle management (ILM) feature by setting setup.ilm.enabled to false . If ILM
is enabled, the Beat will probably be unable to send data to Cribl Stream. In this case, you will see
corresponding errors or warnings in the Beat's log.

To make these configuration changes, adapt the appropriate snippet below, and add it to the Beat config file:

filebeat.yml (on-prem) filebeat.yml (Cloud)

;

output.elasticsearch:
headers:
Authorization: "myToken42"

Configuring Elastic Beats with Pre‑3.5.2 Cribl Stream

These instructions configure current Beats versions (v.8.x or newer) with legacy Cribl Stream versions.
Some earlier Beats versions require di�erent configuration. For specific questions, please contact us
on Cribl's Community Slack.

setup.ilm.enabled: false
output.elasticsearch:
hosts: ["http://<instance_FQDN>:9200"]
allow_older_versions: true

Page 836 of 1835

Cribl Stream supports receiving data over HTTP/S from Cribl Bulk API, Splunk HEC, and Elastic Bulk API
endpoints.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] HTTP. Next, click either + Add New or (if displayed) Select Existing. The drawer will now provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] HTTP. Next, click + Add New to open a
HTTP > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this HTTP(S) Source definition.

Address: Enter the hostname/IP on which to listen for HTTP(S) data. (E.g., localhost or 0.0.0.0 .)

Port: Enter the port number.

7.15. HTTP/S (Bulk API)

Type: Push | TLS Support: YES | Event Breaker Support: No

This Source supports gzip-compressed inbound data when the Content‐Encoding: gzip
connection header is set.

Configuring Cribl Stream to Receive Data over HTTP(S)

Cribl Stream ships with an HTTP Source preconfigured to listen on Port 10080, and on several default
endpoints. You can clone or directly modify this Source to further configure it, and then enable it.

General Settings

Authentication Settings

Page 837 of 1835

Auth tokens: Shared secrets to be provided by any client (Authorization: <token>). Click Generate to
create a new secret. If empty, unauthenticated access will be permitted.

Cribl HTTP event API: Base path on which to listen for Cribl HTTP API requests. To construct the actual
endpoint, Cribl Stream will append /_bulk to this path. For example, with the default value of /cribl , your
senders should send events to a /cribl/_bulk path. Use an empty string to disable. Maximum payload size
is 2MB.

Elastic API endpoint (for Bulk API): Base path on which to listen for Elasticsearch API requests. Currently, the
only supported option is the default /elastic , to which Cribl Stream will append /_bulk . So, your senders
should send events to an /elastic/_bulk path. Other entries are faked as success. Use an empty string to
disable.

Splunk HEC endpoint: Absolute path on which to listen for Splunk HTTP Event Collector (HEC) API requests.
Use an empty string to disable. Default entry is /services/collector .

Splunk HEC Acks: Whether to enable Splunk HEC acknowledgements. Defaults to No .

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Enabled defaults to No . When toggled to Yes :

Optional Settings

Cribl generally recommends that you use the dedicated Elasticsearch API Source instead of this
endpoint. The Elastic API implementation here is provided for backward compatibility, and for users
who want to ingest multiple inputs on one HTTP/S port.

This Splunk HEC implementation is an event (i.e., not raw) endpoint. For details, see Splunk's
documentation. To send data to it from a HEC client, use either /services/collector or
/services/collector/event . (See the examples below.)

Cribl generally recommends that you use the dedicated Splunk HEC Source instead of this endpoint.
The Splunk HEC implementation here is provided for backward compatibility, and for users who want
to ingest multiple inputs on one HTTP/S port.

TLS Settings (Server Side)

Page 838 of 1835

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Persistent Queue Settings

Page 839 of 1835

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only
if you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Processing Settings

Fields

Pre-Processing

Page 840 of 1835

Enable proxy protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2. This setting a�ects how the Source handles the field.

Capture request headers: Toggle this to Yes to add request headers to events, in the __headers field.

Max active requests: Maximum number of active requests allowed for this Source, per Worker Process.
Defaults to 256 . Enter 0 for unlimited.

Activity log sample rate: Determines how o�en request activity is logged at the info level. The default 100
value logs every 100th value; a 1 value would log every request; a 10 value would log every 10th request;
etc.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Request timeout (seconds): How long to wait for an incoming request to complete before aborting it.
The default 0 value means wait indefinitely.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__headers – Added only when Advanced Settings > Capture request headers is set to Yes .

__inputId

__srcIpPort – See details below.

__host (Elastic In)

__id (Elastic In)

Advanced Settings

__srcIpPort

Connected Destinations

Internal Fields

Page 841 of 1835

__index (Elastic In)

__type (Elastic In)

The __srcIpPort field's value contains the IP address and (optionally) port of the client sending data to this
Source.

When any proxies (including load balancers) lie between the HTTP client and the Source, the last proxy adds
an X‐Forwarded‐For header whose value is the IP/port of the original HTTP client. With multiple proxies,
this header's value will be an array, whose first item is the original client IP/port.

If X‐Forwarded‐For is present, and Advanced Settings > Enable proxy protocol is set to No , the original
client IP/port in this header will override the value of __srcIpPort .

If Enable proxy protocol is set to Yes , the X‐Forwarded‐For header's contents will not override the
__srcIpPort value. (Here, the upstream proxy can convey the client IP/port without using this header.)

Cribl Stream expects HTTP(S) events to be formatted as one JSON record per event. Here are two event
records:

Sample Event Format

Note 1: Events can be sent as separate POSTs, but Cribl highly recommends combining multiple events in
newline-delimited groups, and POSTing them together.

Note 2: If an HTTP(S) source is routed to a Splunk destination, fields within the JSON payload are mapped to
Splunk fields. Fields that do not have corresponding (native) Splunk fields become index-time fields. For
example, let's assume we have a HTTP(S) event like this:

{"_time":1541280341, "host":"myHost", "source":"mySource", "_raw":"this is a sample

event ", "fieldA":"valueA"}

Overriding __srcIpPort with Client IP/Port

Format and Endpoint

{"_time":1541280341, "_raw":"this is a sample event ", "host":"myHost",
"source":"mySource", "fieldA":"valueA", "fieldB":"valueB"}
{"_time":1541280341, "host":"myOtherHost", "source":"myOtherSource", "_raw": "
{\"message\":\"Something informative happened\", \"severity\":\"INFO\"}"}

Page 842 of 1835

Here, _time , host and source become their corresponding fields in Splunk. The value of _raw becomes
the actual body of the event, and fieldA becomes an index-time field. (fieldA :: valueA).

The examples in this section demonstrate sending HTTP data into a Cribl Stream binary that you manage on-
prem, or on a VM. To set up these examples:

1. Configure Cribl to listen on port 10080 for HTTP (default). Set authToken to myToken42 .

2. Send a payload to your Cribl Stream receiver.

Cribl Single Event Example:

Examples

Cribl Stream

Cribl Endpoint – Single Event

curl -k http://<myCriblHost>:10080/cribl/_bulk -H 'Authorization: myToken42' -d
'{"_raw":"this is a sample event ", "host":"myHost", "source":"mySource",
"fieldA":"valueA", "fieldB":"valueB"}'

Cribl Endpoint – Multiple Events

curl -k http://<myCriblHost>:10080/cribl/_bulk -H 'Authorization: myToken42' -d
$'{"_raw":"this is a sample event ", "host":"myHost", "source":"mySource",
"fieldA":"valueA", "fieldB":"valueB"} \n {"_raw":"this is another sample event ",
"host":"myOtherHost", "source":"myOtherSource", "fieldA":"valueA",
"fieldB":"valueB"}'

Splunk HEC Event Endpoint

curl -k http://<myCriblHost>:10080/services/collector/event -H 'Authorization:
myToken42' -d '{"event":"this is a sample event ", "host":"myHost",
"source":"mySource", "fieldA":"valueA", "fieldB":"valueB"}'

curl -k http://<myCriblHost>:10080/services/collector -H 'Authorization: myToken42'
-d '{"event":"this is a sample event ", "host":"myHost", "source":"mySource",
"fieldA":"valueA", "fieldB":"valueB"}'

Page 843 of 1835

1. Generate and copy a token in your Cribl Cloud instance's HTTP Source > General Settings.

2. From the command line, use https , your Cribl.Cloud portalʼs Ingest Endpoint and port, and the
token's value:

;

For Splunk HEC, the token specification can be either Splunk <token> or <token> .

Cribl Cloud – Single Event

curl -k https://in.logstream.<tenant‐ID>.cribl.cloud:10080/cribl/_bulk -H
'Authorization: <token_value>' -d '{"_raw":"this is a sample event ",
"host":"myHost", "source":"mySource", "fieldA":"valueA", "fieldB":"valueB"}'

Page 844 of 1835

Cribl Stream supports receiving raw HTTP data. The Raw HTTP Source listens on a specific port, captures
every HTTP request to that port, and creates a corresponding event that it pushes to its configured
Event Breakers.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] Raw HTTP. Next, click either + Add New or (if displayed) Select Existing. The drawer will now
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] Raw HTTP. Next, click + Add New to
open a Raw HTTP > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Raw HTTP Source definition.

Address: Enter the address to bind on. Defaults to 0.0.0.0 (all addresses).

Port: Enter the port number to listen on.

Auth tokens: Shared secrets to be provided by any client. Click Generate to create a new secret. If empty,
permits open access.

7.16. Raw HTTP/S

Type: Push | TLS Support: YES | Event Breaker Support: YES

This Source supports gzip-compressed inbound data when the Content‐Encoding: gzip
connection header is set.

Configuring Cribl Stream to Receive Raw HTTP Data

General Settings

Authentication Settings

Page 845 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Optional Settings

TLS Settings (Server Side)

Persistent Queue Settings

Page 846 of 1835

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the input data stream before
the data is sent through the Routes. Defaults to System Default Rule .

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only
if you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Processing Settings

Event Breakers

Page 847 of 1835

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to
a constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Enable Proxy Protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2. This setting a�ects how the Source handles the field.

Allowed URI paths: List of URI paths accepted by this input. Supports wildcards, e.g., /api/v*/hook .
Defaults to * , which allows all paths.

Allowed HTTP methods: List of HTTP methods accepted by this input. Supports wildcards, e.g., P*, GET .
Defaults to * , which allows all methods.

Max active requests: Maximum number of active requests allowed for this Source, per Worker Process.
Defaults to 256 . Enter 0 for unlimited.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Request timeout (seconds): How long to wait for an incoming request to complete before aborting it.
The default 0 value means wait indefinitely.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Fields

Pre-Processing

Advanced Settings

__srcIpPort

Connected Destinations

Page 848 of 1835

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and functions can use them to make processing decisions.

Fields for this Source:

__channel

__headers – Automatically includes any headers sent with request.

__inputId

__srcIpPort – See details below.

The __srcIpPort field's value contains the IP address and (optionally) port of the HTTP client sending data
to this Source.

When any proxies (including load balancers) lie between the HTTP client and the Source, the last proxy adds
an X‐Forwarded‐For header whose value is the IP/port of the original client. With multiple proxies, this
header's value will be an array, whose first item is the original client IP/port.

If X‐Forwarded‐For is present, and Advanced Settings > Enable proxy protocol is set to No , the original
client IP/port in this header will override the value of __srcIpPort .

If Enable proxy protocol is set to Yes , the X‐Forwarded‐For header's contents will not override the
__srcIpPort value. (Here, the upstream proxy can convey the client IP/port without using this header.)

;

Internal Fields

Overriding __srcIpPort with Client IP/Port

Page 849 of 1835

Cribl Stream supports receiving metrics in these wire formats/protocols: StatsD, StatsD Extended, and
Graphite. Automatic protocol detection happens on the first line received over a TCP connection or a UDP
packet. Lines not matching the detected protocol are dropped.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] Metrics. Next, click either + Add New or (if displayed) Select Existing. The drawer will now provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] Metrics. Next, click + Add New to open
a Metrics > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Source definition.

Address: Enter the hostname/IP to listen to. Defaults to 0.0.0.0 .

UDP port: Enter the UDP port number to listen on. Not required if listening on TCP.

TCP port: Enter the TCP port number to listen on. Not required if listening on UDP.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

7.17. Metrics

Type: Push | TLS Support: No | Event Breaker Support: No

Cribl Edge Workers support System Metrics only when running on Linux, not on Windows.

Configuring Cribl Stream to Receive Metrics

General Settings

Optional Settings

Page 850 of 1835

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

TLS Settings (TCP Only)

Persistent Queue Settings

Page 851 of 1835

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only if
you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Processing Settings

Fields

Pre-Processing

Page 852 of 1835

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Enable Proxy Protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2.

IP allowlist regex: Regex matching IP addresses that are allowed to send data. Defaults to .* (i.e., all IPs.)

Max bu�er size (events) : Maximum number of events to bu�er when downstream is blocking. Defaults to
1000 .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__srcIpPort

__metricsInType

Metric data is read into the following event schema:

Advanced Settings

Connected Destinations

Internal Fields

Metric Event Schema and Destination Support

Page 853 of 1835

Cribl Stream places su�icient information into a field called __criblMetric to enable these events to be
properly serialized out to any metric outputs (independent of the input type).

The following Destinations natively support the __criblMetric field:

Splunk

Splunk HEC

InfluxDB

Statsd

Statsd Extended

Graphite

Format: MetricName:value|type

StatsD Example

See the StatsD repo.

Format: MetricName:value|type|#dim=value,dim2=value

StatsD Extended Example

_metric - the metric name
_metric_type - the type of the metric (gauge, counter, timer)
_value - the value of the metric
_time - metric_time or Date.now()/1000
dim1 - value of dimension1
dim3 - value of dimension2
....

Data Format/ Protocol Examples

StatsD

metric1:100|g
metric2:200|ms
metric.dot.3:300.16|c

StatsD Extended

Page 854 of 1835

Format: MetricName[;dim1=val1[;dim2=val2]] value time

Graphite Example with Dimensions

Graphite Example without Dimensions

See the Graphite (also known as Carbon) plaintext protocol.

;

metric1:100|g|#dim1:val1,dim2:val2,dim3:val3
metric2:200|ms|#dim1:val1,dim2:val2,dim3:val3
metric.dot.3:300.16|c|#dim1:val1,dim2:val2,dim3:val3

Graphite

metric1;dim1=val1;dim2=val2 100 9999
metric2;dim1=val1;dim2=val2 200 9999
metric.dot.3;dim1=val1;dim2=val2 300.16 9999.16

metric1 100 9999
metric2 200 9999
metric.dot.3 300.16 9999.16

Page 855 of 1835

Cribl Stream supports receiving trace and metric events from OTLP-compliant senders. (Cribl plans to add
support for log events once logs support in the OpenTelemetry protocol graduates from experimental status.)

The OpenTelemetry Project's Data Sources documentation provides these hierarchical definitions of
Cribl Stream's supported trace and metric event types:

A trace tracks the progression of a single request.

Each trace is a tree of spans.

A span object represents the work being done by the individual services, or components, involved in a
request as that request flows through a system.

A metric provides aggreggated statistical information.

A metric contains individual measurements called data points.

This Source does not support currently compressed inbound data. Therefore, in your OTEL Exporter, pass the
compression: none parameter as shown in this example:

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] OpenTelemetry. Next, click either + Add New or (if displayed) Select Existing. The drawer will now

7.18. OpenTelemetry (OTel)

Type: Push | TLS Support: YES | Event Breaker Support: No

Supported and Unsupported Input Data

Don't Compress Inbound Data

exporters:
otlp:
endpoint: "https://<Cribl_IP_address>:4317"
compression: none
tls:
insecure: false
insecure_skip_verify: true

Configuring an OTel Source

Page 856 of 1835

provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] OpenTelemetry. Next,
click + Add New to open a OpenTelemetry > New Source modal that provides the following options and
fields.

Input ID: Unique ID for this Source. E.g., OTel042 .

Address: Enter the hostname/IP to listen to. Defaults to 0.0.0.0 .

Port: By default, OTel applications send output to port 4317 . Do not change this setting unless the OTel
application whose data you want Cribl Stream to collect is using a di�erent port.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Select one of the following options for authentication:

None: Don't use authentication.

Auth token: Enter the bearer token that must be included in the authorization header.

Auth token (text secret): Provide an HTTP token referenced by a secret. Select a stored text secret in
the resulting drop-down, or click Create to configure a new secret.

Basic: Displays Username and Password fields for you to enter HTTP Basic authentication credentials.

The sections described below are spread across several tabs. Click the tab links at le�, or the Next
and Prev buttons, to navigate among tabs. Click Save when you've configured your Source.

General Settings

Optional Settings

Authentication

Page 857 of 1835

Basic (credentials secret): Provide username and password credentials referenced by a secret. Select a
stored text secret in the resulting Credentials secret drop-down, or click Create to configure a new
secret.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

TLS Settings (Server Side)

In OTel terminology, your Cribl Stream OTel Source will receive OTel data from a Collector running on
a local agent. In Cribl Stream's terminology, the Collector is the client and the OTel Source is the
server. This is why this Source's UI identifies the Source's TLS Settings as "server-side."

For more about this client-server relationship, see the TLS Configuration Example below.

Persistent Queue Settings

Page 858 of 1835

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only if
you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Processing Settings

Fields

Pre-Processing

Page 859 of 1835

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Max active connections: Maximum number of active connections allowed per Worker Process. Defaults to
1000 . Set a lower value if connection storms are causing the Source to hang. Set 0 for unlimited
connections.

The Extract spans and Extract metrics settings are unique to OTel. Their default No settings allow
Cribl Stream to essentially function as a bump on the wire, generating a single event for each incoming OTel
event. This can be useful when, for example, you want to send whole OTel events to persistent storage.

Extract spans: Toggle to Yes if you want Cribl Stream to generate an individual event for each span. (Recall
that traces contain multiple spans.)

Extract metrics: Toggle to Yes if you want Cribl Stream to generate an individual event for each data point.
(Recall that OTel metric events contain multiple data points.)

Environment: Optionally, specify a single Git branch on which to enable this configuration. If this field is
empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Source's data to one or more Destinations via independent, direct
connections.

Here's a simple example for using TLS to secure the communication between an OpenTelemetry client and
your Cribl Stream OTel Source.

1. Choose or generate a certificate and key. If you need to generate a certificate/key pair, you can adapt the
following OpenSSL command:

Advanced Settings

Connected Destinations

TLS Configuration Example

openssl req -nodes -new -x509 -newkey rsa:2048 -keyout myKey.pem -out myCert.pem
-days 420

Page 860 of 1835

This example command will generate both a self-signed cert named myCert.pem (certified for 420
days), and an unencrypted, 2048-bit RSA private key named myKey.pem .

2. Configure the TLS Settings (Server Side). Toggle Enabled to Yes , then:

Enter the appropriate values in the Certificate name, Private key path, and Certificate path
fields. A Create link is available if you need a new certificate, and Certificate name also works as a
drop-down to allow you to choose from any existing certificates.

Leave the CA certificate path field empty.

Leave Authenticate client (mutual auth) toggled to No .

3. Configure the OTel client. See the OTel Collector TLS Configuration Settings README for an explanation
of the relevant settings. The config file might be named otel-config.yaml , otel-local-
config.yaml , or just config.yaml , depending on your environment. This YAML file will have an
exporters section, which you must edit to include an otlp sub-section, as follows:

Add an endpoint whose value is the IP address of either (a) the Cribl Stream Worker Node on
which your OTel Source is running, or (b) the IP address of the load balancer for the relevant
Worker Group. In the example snippet below, this is the <Cribl_IP_address> . Specify the port on
which Cribl Streamʼs OTel Source is listening; port 4317 is the default.

Set tls > insecure to false . This matches your setting TLS Settings (Server Side) > Enabled
to Yes on the Cribl Stream OTel Source.

Set tls > insecure_skip_verify to true . This matches your setting TLS Settings
(Server Side) > Authenticate client (mutual auth) to No on the Cribl Stream OTel Source. Setting
insecure_skip_verify to true is also required if you're using a self-signed certificate.

Here's how the section you edited should look:

;

exporters:
otlp:
endpoint: "https://<Cribl_IP_address>:4317"
tls:
insecure: false
insecure_skip_verify: true

Page 861 of 1835

Cribl Stream supports receiving data from SNMP Traps.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] SNMP Trap. Next, click either + Add New or (if displayed) Select Existing. The drawer will now
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] SNMP Trap. Next, click + Add New to
open a SNMP Trap > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Source definition.

Address: Address to bind on. Defaults to 0.0.0.0 (all addresses).

UDP Port: Port on which to receive SNMP traps. Defaults to 162 .

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

7.19. SNMP Trap

Type: Push | TLS Support: NO | Event Breaker Support: No

Configuring Cribl Stream to Receive SNMP Traps

Cribl Stream ships with an SNMP Trap Source preconfigured to listen on Port 9162. You can clone or
directly modify this Source to further configure it, and then enable it.

General Settings

Optional Settings

Persistent Queue Settings

Page 862 of 1835

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only if
you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Processing Settings

Fields

Page 863 of 1835

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

IP allowlist regex: Regex matching IP addresses that are allowed to send data. Defaults to .* , i.e., all IPs.

Max bu�er size (events) : Maximum number of events to bu�er when downstream is blocking. Defaults to
1000 .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__inputId

__srcIpPort : In this particular Source, this field uses a pipe (|) symbol to separate the source IP
address and the port, in this format: event.__srcIpPort = ${rInfo.address}|${rInfo.port};

Pre-Processing

Advanced Settings

Connected Destinations

Internal Fields

Page 864 of 1835

__snmpVersion : Acceptable values are 0 , 2 , or 3 . These respectively indicate SNMP v1, v2c, and v3.

__snmpRaw : Bu�er containing Raw SNMP packet

It's possible to work with SNMP metadata (i.e., we'll decode the packet). Options include dropping,
routing, etc.

SNMP packets can be forwarded to other SNMP destinations. However, the contents of the incoming
packet cannot be modified – i.e., we'll forward the packets verbatim as they came in.

SNMP packets can be forwarded to non-SNMP destinations (e.g., Splunk, Syslog, S3, etc.).

Non-SNMP input data cannot be sent to SNMP destinations.

;

Considerations for Working with SNMP Trap Data

Page 865 of 1835

Cribl Stream supports receiving syslog data, whether structured according to RFC 3164 or RFC 5424. This
Source supports message-length prefixes according to RFC 5425 or RFC 6587.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] Syslog. Next, click either + Add New or (if displayed) Select Existing. The drawer will now provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] Syslog. Next, click + Add New to open
a Syslog > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this Syslog Source definition.

Address: Enter the hostname/IP on which to listen for data., E.g. localhost or 0.0.0.0 .

UDP port: Enter the UDP port number to listen on. Not required if listening on TCP.

TCP port: Enter the TCP port number to listen on. Not required if listening on UDP.

7.20. Syslog

Type: Push | TLS Support: YES | Event Breaker Support: No

For details on how to replace your syslog server with Cribl Stream, see Syslog Best Practices.

Configuring Cribl Stream to Receive Data over Syslog

Cribl Stream ships with a Syslog Source preconfigured to listen for both UDP and TCP tra�ic on
Port 9514. You can clone or directly modify this Source to further configure it, and then enable it.

General Settings

The maximum supported inbound UDP message size is 16,384 bytes.

Page 866 of 1835

Fields to keep: List of fields from source data to retain and pass through. Supports wildcards. Defaults to *
wildcard, meaning keep all fields. Fields not specified here (by wildcard or specific name) will be removed
from the event.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

Optional Settings

TLS Settings (TCP Only)

Persistent Queue Settings

Page 867 of 1835

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only if
you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Processing Settings

Fields

Page 868 of 1835

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Enable Proxy Protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2.

Single msg per UDP: Enable this to treat received UDP packet data as a full syslog message. With the No
default, Cribl Stream will treat newlines within the packet as event delimiters.

Octet count framing: Enable this if messages are prefixed with a byte length, according to RFC 5425 or
RFC 6587.

IP whitelist regex: Regex matching IP addresses that are allowed to send data. Defaults to .* (i.e., all IPs).

Max bu�er size (events) : Maximum number of events to bu�er when downstream is blocking. The bu�er is
only in memory. (This setting is applicable only to UDP syslog.)

Default timezone: Timezone to assign to timestamps that omit timezone info. Accept the default Local
value, or use the drop-down list to select a specific timezone by city name or GMT/UTC o�set.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Pre-Processing

Advanced Settings

Connected Destinations

Page 869 of 1835

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but are accessible and Functions can use them to make processing decisions.

Fields for this Source:

__inputId

__srcIpPort

__syslogFail : true for data that fails RFC 3164/5424 validation as syslog format.

;

Internal Fields

Page 870 of 1835

Cribl Stream can receive newline-delimited JSON data over TCP.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] TCP JSON. Next, click either + Add New or (if displayed) Select Existing. The drawer will now
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] TCP JSON. Next, click + Add New to
open a TCP JSON > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this TCP JSON Source definition.

Address: Enter hostname/IP to listen for TCP JSON data. E.g., localhost or 0.0.0.0 .

Port: Enter the port number to listen on.

Use the Authentication method buttons to select one of these options:

Manual: Use this default option to enter the shared secret that clients must provide in the authToken
header field. Exposes an Auth token field for this purpose. (If le� blank, unauthenticated access will be
permitted.) A Generate link is available if you need a new secret.

7.21. TCP JSON

Type: Push | TLS Support: YES | Event Breaker Support: No

Configuring Cribl Stream to Receive TCP JSON Data

Cribl Stream ships with a TCP JSON Source preconfigured to listen on Port 10070. You can clone or
directly modify this Source to further configure it, and then enable it.

General Settings

Authentication Settings

Page 871 of 1835

Secret: This option exposes an Auth token (text secret) drop-down, in which you can select a stored
secret that references the authToken header field value described above. The secret can reside in
Cribl Stream's internal secrets manager or (if enabled) in an external KMS. A Create link is available if
you need a new secret.

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

Optional Settings

TLS Settings (Server Side)

Page 872 of 1835

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

Persistent Queue Settings

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only if
you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Processing Settings

Page 873 of 1835

In this section, you can add Fields to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to a
constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Enable Proxy Protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2.

IP allowlist regex: Regex matching IP addresses that are allowed to establish a connection. Defaults to .*
(i.e., all IPs).

Max active connections: Maximum number of active connections allowed per Worker Process. Defaults to
1000 . Set a lower value if connection storms are causing the Source to hang. Set 0 for unlimited
connections.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Fields

Pre-Processing

Advanced Settings

Connected Destinations

Internal Fields

Page 874 of 1835

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Field for this Source:

__inputId

__srcIpPort

Cribl Stream expects TCP JSON events in newline-delimited JSON format:

1. A header line. Can be empty – e.g., {} . If authToken is enabled (see above) it should be included here
as a field called authToken . When authToken is not set, the header line is optional. In this case, the
first line will be treated as an event if does not look like a header record.

In addition, if events need to contain common fields, they can be included here under fields . In the
example below, region and AZ will be automatically added to all events.

2. A JSON event/record per line.

Sample TCP JSON Events

If a TCP JSON Source is routed to a Splunk destination, fields within the JSON payload are mapped to Splunk
fields. Fields that do not have corresponding (native) Splunk fields become index-time fields. For example,
let's assume we have a TCP JSON event as below:

{"_time":1541280341, "host":"myHost", "source":"mySource", "_raw":"this is a sample

event ", "fieldA":"valueA"}

Here, _time , host , and source become their corresponding fields in Splunk. The value of _raw becomes
the actual body of the event, and fieldA becomes an index-time field (fieldA ::`valueA``).

Format

{"authToken":"myToken42", "fields": {"region": "us-east-1", "AZ":"az1"}}

{"_raw":"this is a sample event ", "host":"myHost", "source":"mySource",
"fieldA":"valueA", "fieldB":"valueB"}
{"host":"myOtherHost", "source":"myOtherSource", "_raw": "
{\"message\":\"Something informative happened\", \"severity\":\"INFO\"}"}

TCP JSON Field Mapping to Splunk

Page 875 of 1835

This first example simply tests that data is flowing in through the Source:

1. Configure Cribl Stream to listen on port 10001 for TCP JSON. Set authToken to myToken42 .

2. Create a file called test.json with the payload above.

3. Send it over to your Cribl Stream host: cat test.json | nc <myCriblHost> 10001

This second example demonstrates using TCP JSON to send data from one Cribl Stream instance to a
downstream Cribl Cloud instance. We assume that the downstream Cloud instance uses Cribl Cloud's default
TCP JSON Source configuration.

So all the configuration happens on the upstream instance's TCP JSON Destination. Replace the
<tenant‐ID> placeholder with the tenant ID from your Cribl Cloud portal.

On the upstream Cribl Stream instance's Destination, set the following field values to match the target Cloud
instance's defaults:

Address: in.logstream.<tenant‐ID>.cribl.cloud – you can simply copy/paste your Cribl Cloud portal's
Ingest Endpoint here

Port: 10070

Enabled: Yes

Validate server certs: Yes

;

Examples

Testing TCP JSON In

Cribl Stream to Cribl Cloud

TCP JSON Destination Configuration

General Settings

TLS Settings (Client Side)

Page 876 of 1835

Cribl Stream supports receiving of data over TCP. (See examples and header options below.)

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] TCP . Next, click either + Add New or (if displayed) Select Existing. The drawer will now provide the
following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] TCP. Next, click + Add New to open a
TCP > New Source modal that provides the following options and fields.

Input ID: Enter a unique name to identify this TCP Source definition.

Address: Enter hostname/IP to listen for raw TCP data. E.g., localhost or 0.0.0.0 .

Port: Enter port number.

Enable Header: Toggle to Yes to indicate that client will pass a header record with every new connection.
The header can contain an authToken , and an object with a list of fields and values to add to every event.
These fields can be used to simplify Event Breaker selection, routing, etc. Header format: { "authToken" :
"myToken", "fields": { "field1": "value1", "field2": "value2" }} .

Shared secret (authToken): Shared secret to be provided by any client (in authToken header field).
Click Generate to create a new secret. If empty, unauthenticated access will be permitted.

7.22. TCP (Raw)

Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl Stream to Receive TCP Data

Cribl Stream ships with a TCP Source preconfigured to listen on Port 10060. You can clone or directly
modify this Source to further configure it, and then enable it.

General Settings

Page 877 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform mutual
authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Optional Settings

TLS Settings (Server Side)

Persistent Queue Settings

Page 878 of 1835

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

In this section, you can pass the data from this input to an external command for processing before the data
continues downstream.

Enabled: Defaults to No . When toggled to Yes :

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only if
you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Processing Settings

Custom Command

Page 879 of 1835

Command: Enter the command that will consume the data (via stdin) and will process its output (via
stdout).

Arguments: Click + Add Argument to add each argument for the command. You can drag arguments
vertically to resequence them.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the input data stream before
the data is sent through the Routes. Defaults to System Default Rule .

Event Breaker bu�er timeout: How long (in milliseconds) the Event Breaker will wait for new data to be sent
to a specific channel, before flushing out the data stream, as-is, to the Routes. Minimum 10 ms, default
10000 (10 sec), maxiumum 43200000 (12 hours).

In this section, you can add Fields to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value, enclosed in quotes or backticks. (Can evaluate to
a constant.)

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Enable Proxy Protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2.

IP allowlist regex: Regex matching IP addresses that are allowed to establish a connection. Defaults to .*
(i.e,. all IPs).

Max active connections: Maximum number of active connections allowed per Worker Process. Defaults to
1000 . Set a lower value if connection storms are causing the Source to hang. Set 0 for unlimited
connections.

Event Breakers

Fields

Pre-Processing

Advanced Settings

Page 880 of 1835

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and functions can use them to make processing decisions.

Fields accessible for this Source:

__inputId

__srcIpPort

__channel

Every new TCP connection may contain an optional header line, with an authToken and a list of fields and
values to add to every event. To use the Cribl Stream Cloud sample, copy the <token_value> out of your
Cribl Stream Cloud TCP Source.

Sample test.raw (on-prem) Sample test.raw (Cribl Cloud)

1. Configure Cribl Stream to listen on port 7777 for raw TCP. Set authToken to myToken42 .

Connected Destinations

Internal Fields

TCP Source Examples

{"authToken":"myToken42", "fields": {"region": "us-east-1", "AZ":"az1"}}

this is event number 1
this is event number 2

Enabling the Example – Cribl Stream

Page 881 of 1835

2. Create a file called test.raw , with the payload above.

3. Send it over to your Cribl Stream host, using this command: cat test.raw | nc <myCriblHost>
7777

Use netcat with --ssl and --ssl-verify :

;

Enabling the Example – Cribl Cloud

cat test.raw | nc --ssl --ssl-verify in.logstream.<tenant‐ID>.cribl.cloud 10060

Page 882 of 1835

Cribl Stream supports receiving Windows events from the Windows Event Forwarding mechanism built into
modern versions of Microso� Windows (including Windows 10, Windows Server 2012, and more-recent
releases).

Currently, this Source supports only client certificate (mutual TLS) authentication. Cribl plans to add
Kerberos authentication support in a future release.

This page assumes that:

You already have Windows Event Forwarding set up;

Pointed to one or more Windows Event Collectors (WECs);

Using client certificate authentication over HTTPS.

We also assume that you have – or will generate – a server certificate for this Source, issued by the same
Certificate Authority as the client certs.

In the QuickConnect UI: Click + New Source or + Add Source. From the resulting drawer's tiles, select
[Push >] Windows Event Forwarder. Next, click either + Add New or (if displayed) Select Existing. The
drawer will now provide the following options and fields.

7.23. Windows Event Forwarder

Type: Push | TLS Support: YES | Event Breaker Support: No

Upstream Prerequisites

For details, see Configuring Upstream Clients/Senders.

For a complete walk-through of generating certificates, setting permissions and policies, and
ingesting Windows Event subscriptions and data through Cribl.Cloud, see our Configuring WEF for
Cribl Stream topic.

Configuring Cribl Stream to Receive Windows Events

Page 883 of 1835

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the top nav of a Cribl Edge instance or Fleet, select More > Sources.

From the resulting page's tiles or the Sources le� nav, select [Push >] Windows Event Forwarder. Next,
click + Add New to open a Windows Event Forwarder > New Source modal that provides the following
options and fields.

Input ID: Enter a unique name to identify this Windows Event Forwarder Source definition.

Address: Enter the hostname/IP on which to listen for Windows events data. (E.g., localhost or 0.0.0.0 .)

Port: Enter the port number. The default, 5986, is the port used by Windows Event Collector for HTTPS-based
subscriptions.

Certificate name: Name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path can reference
$ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates (in PEM format) to use. Path can reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use. Path can reference
$ENV_VARS .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match literal
characters. E.g., to match the subject CN=worker.cribl.local , you would enter: worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

General Settings

The CA certificate that generated the Cribl Stream server certificate must be the same root CA that
signed all client certificates that will be forwarding Windows events to this Source.

Optional Settings

Page 884 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Click on + Add Subscription to define a new subscription. At least one subscription is required, and has the
following options:

Name: A friendly name for the subscription, and is only used to help you identify it.

Version: A read-only field which will be populated when the Source is saved, and will be assigned a new
value any time new changes are made to the subscription that a�ect how a client interprets the subscription.

Format: You can choose Raw to receive only XML data about the subscribed events, or RenderedText to
additionally include amplifying information generated by the client about the event's contents.

Heartbeat: The maximum allowable time, in seconds, before the client will check in with Cribl Stream even if
it has no new events to send.

Batch timeout: The maximum time, in seconds, that the client should aggregate new events before sending
them to Cribl Stream.

Read existing events: Control whether historical events should be sent by the client when it first connects. If
set to No , only events generated by the client a�er the subscription is received will be forwarded. If set to
Yes , the behavior depends on the Use bookmarks setting:

If Use bookmarks is set to No , then each time a client forcibly renews its subscription (e.g., a�er group
policy update), all events matching the query will be sent. Restarting Cribl Stream or restarting the client
will not cause all events to be re-sent.

If Use bookmarks is set to Yes , then when the client receives a subscription for the first time, it will
send all historical events matching the query, but on subsequent (even forced) resubscriptions, it will
only send events later than the saved bookmark.

Subscriptions

Windows Event Collector defines two delivery modes of "Event Delivery Optimization":

The "Minimize Bandwidth" mode corresponds to a Heartbeat and Batch timeout of 6 hours
(21,600 seconds).

The "Minimize Latency" mode corresponds to a Heartbeat of 1 hour (3,600 seconds) and a
Batch timeout of 30 seconds.

Page 885 of 1835

In either case, if a subscription is changed and saved, the saved bookmarks are no longer valid (they are
tied to a specific subscription version), and all events matching the updated subscription will be sent.

Use bookmarks: If toggled to Yes , Cribl Stream will keep track of which events have been received,
resuming from that point even if the client forcibly re-subscribes. If set to No , a client (re)subscribing will
either send all historical events, or only events subsequent to the subscription, depending on the setting of
Read existing events.

Compression: Sets whether Windows clients compress the events sent to Cribl Stream, using the
Streaming Lossless Data Compression (SLDC) algorithm. Defaults to Yes .

Query builder mode: See the explanation in Configuring Queries below.

Queries: See the explanation in Configuring Queries below.

Targets: Set the DNS names of the clients that should receive this subscription. Wildcard-matching is
supported.

Queries determine which events to send from the clients. At least one query is required. The format is
derived from the XPath implementation used by Windows Event Collector.

You have two mode options for providing queries: Simple or Raw XML.

Select Simple if you need to manually build queries. Click + Add query to define a new query. A query has
the following properties:

Path: Set this to the Path attribute of a Select XPath element. See the example below.

Query expression: Set this to the value inside a Select XPath element. See the example below.

Select Raw XML if you already have an XPath query.

When creating a subscription in a Windows Event Collector, you can view the generated XML/XPath query.
Consider a subscription that returns all events from the Security log that are of severities Critical, Error, or
Warning, and that occurred within the last 24 hours. This subscription would generate XML like this:

Configuring Queries

Example

Page 886 of 1835

To use this subscription in a Cribl Stream Windows Event Forwarder Source, you would either use the
Raw XML option and paste the above XML, or use Simple mode and set the following query properties:

Path: Security

Query expression: *[System[(Level=1 or Level=2 or Level=3) and
TimeCreated[timediff(@SystemTime) <= 86400000]]]

In this section, you can optionally specify persistent queue storage, using the following controls. This will
bu�er and preserve incoming events when a downstream Destination is down, or exhibiting backpressure.

Enable Persistent Queue: Defaults to No . When toggled to Yes :

Mode: Select a condition for engaging persistent queues.

Smart : This default option will engage PQ only when the Source detects backpressure from the
Cribl Stream data processing engine.

Always On : This option will always write events into the persistent queue, before forwarding them to
the Cribl Stream data processing engine.

Max bu�er size: The maximum number of events to hold in memory before reporting backpressure to the
Source. Defaults to 1000 .

Commit frequency: The number of events to send downstream before committing that Stream has read
them. Defaults to 42 .

Max file size: The maximum data volume to store in each queue file before closing it and (optionally)
applying the configured Compression. Enter a numeral with units of KB, MB, etc. If not specified,
Cribl Stream applies the default 1 MB .

<QueryList>
 <Query Id="0" Path="Security">
 <Select Path="Security">*[System[(Level=1 or Level=2 or Level=3) and
TimeCreated[timediff(@SystemTime) <= 86400000]]]</Select>
 </Query>
</QueryList>

You do not need to use the <Query> element's Id or Path attributes anywhere in the Cribl Stream
subscription config.

Persistent Queue Settings

Page 887 of 1835

Max queue size: The maximum amount of disk space that the queue is allowed to consume, on each
Worker Process. Once this limit is reached, Cribl Stream will stop queueing data, and will apply the
Queue‑full behavior. Enter a numeral with units of KB, MB, etc. If not specified, the implicit 0 default will
enable Cribl Stream to fill all available disk space on the volume.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this field's specified path, Cribl Stream will append /<worker-id>/inputs/<input-id> .

Compression: Optional codec to compress the persisted data a�er a file is closed. Defaults to None ; Gzip is
also available.

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from this
input before the data is sent through the Routes.

Allow MachineID mismatch: Set this to Yes if you do not want to verify that the events sent by a client
match the client's certificate Common Name (Subject CN). If set to No , events where the MachineID (by
default the client's machine name, like CLIENT1.domainName.com) do not match the CN will be rejected.

Enable proxy protocol: Toggle to Yes if the connection is proxied by a device that supports Proxy Protocol
v1 or v2. This setting a�ects how the Source handles the field.

Capture request headers: Toggle this to Yes to add request headers to events, in the __headers field.

Max active requests: Maximum number of active requests allowed for this Source, per Worker Process.
Defaults to 256 . Enter 0 for unlimited.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Setting the PQ Mode to Always On can degrade throughput performance. Select this mode only if
you want guaranteed data durability. As a trade-o�, you might need to either accept slower
throughput, or provision more machines/faster disks.

Processing Settings

Pre-Processing

Advanced Settings

__srcIpPort

Page 888 of 1835

CA fingerprint override: If the top–level Intermediate Authority (IA) certificate in a certificate chain does not
match the first certificate in the chain, enter the IA cert's SHA1 fingerprint here. (By default, Cribl Stream
calculates and uses the fingerprint of the first cert found in the CA cert file. If the IA directly signing the client
and server certs is in a di�erent position, this overrides that default to prevent a mismatch.)

Select Send to Routes to enable conditional routing, filtering, and cloning of this Source's data via the
Routing table.

Select QuickConnect to send this Sourceʼs data to one or more Destinations via independent, direct
connections.

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

__inputId

__srcIpPort – See details below.

__subscriptionName

__subscriptionVersion

__headers – Added only when Advanced Settings > Capture request headers is set to Yes .

The __srcIpPort field's value contains the IP address and (optionally) port of the WEF client sending data
to this Source.

When any proxies (including load balancers) lie between the WEF client and the Source, the last proxy adds
an X‐Forwarded‐For header whose value is the IP/port of the original client. With multiple proxies, this
header's value will be an array, whose first item is the original client IP/port.

If X‐Forwarded‐For is present, and Advanced Settings > Enable proxy protocol is set to No , the original
client IP/port in this header will override the value of __srcIpPort .

If Enable proxy protocol is set to Yes , the X‐Forwarded‐For header's contents will not override the
__srcIpPort value. (Here, the upstream proxy can convey the client IP/port without using this header.)

Connected Destinations

Internal Fields

Overriding __srcIpPort with Client IP/Port

Page 889 of 1835

This section summarizes how to configure Windows endpoints/senders to forward events to this Cribl Stream
Source. You can find basic instructions for setting up WEF (in a traditional Windows environment) in
this Microso� guide. You can generally follow that guide's "non-domain" section to correctly configure the
endpoints/senders.

1. Set up Cribl Stream's Windows Event Forwarder Source as outlined above. The CA certificate you use
should be the issuing authority both for the server certificate, and for all client certs you plan to have
forwarding events to this Source.

2. Ensure that your existing Windows Event Collector is receiving events correctly from whatever endpoints
and subscriptions you already have in place.

3. Find the fingerprint of the CA cert you are using for this Source, via a tool like certutil or certlm on
Windows, or openssl on other operating systems. You'll need this in the next step.

4. Edit the group policy for endpoints you want to forward to this Source:

Under Computer Configuration > Administrative Templates > Windows Components >
Event Forwarding, modify the Configure target Subscription Manager setting.

Add a Subscription Manager with a value like: Server=https://<cribl-instance>:<wef-
source-port>/wsman/SubscriptionManager/WEC,Refresh=<desired refresh

interval>,IssuerCA=<CA cert fingerprint from above>

Note that the path portion is the same as required for a WEC subscription, and is not configurable in
Cribl Stream.

Ensure that the protocol is https . (This Source does not currently support http with Kerberos.)

When complete, save the policy and apply it to a�ected endpoints.

5. Check that events are flowing into Cribl Stream now according to the configured subscriptions. If they
are not:

Configuring Upstream Clients/Senders

For a complete walk-through of generating certificates, setting permissions and policies, and
ingesting Windows Event subscriptions and data through Cribl.Cloud, see Cribl's Configuring WEF for
Cribl Stream topic.

Page 890 of 1835

Verify that the clients can reach the Cribl Stream instance through the network to port 5986 (or
other configured port) via TLS/HTTP. If clients are connecting to Cribl Stream via a proxy, you may
need to enable the Proxy Protocol setting in the Advanced section of the Source configuration.
Ensure that the correct outbound firewall port is opened on the client.

Verify all of the following: that the certificate chain is correct; that the endpoints have a valid CRL
encompassing the CA cert; that the CA cert is a trusted root on the clients; and that the server and
client certs are issued by the same CA. The CAPI2 Windows event log might reveal any errors here.

Check Cribl Stream for any errors, as well as the EventForwarding-Plugin and Windows Remote
Management event logs on the clients.

When using auto-enroll, the Eventlog-ForwardingPlugin Operational logs might display an error of this
form:
If Kerberos mechanism is used, verify that the client computer and the destination

computer are joined to a domain.

To resolve this: In your auto-enroll template's Client‑Server Authentication Properties, make sure the
Subject Name format is set to Common name.

;

Troubleshooting

Page 891 of 1835

Cribl Stream can send data to various Destinations, including Splunk, Kafka, Kinesis, InfluxDB, Snowflake,
Databricks, TCP JSON, and many others.

Destinations that accept events in real time are referred to as streaming Destinations:

Splunk Single Instance

Splunk Load Balanced

Splunk HEC

Amazon Kinesis Streams

Amazon CloudWatch Logs

Amazon SQS

Azure Monitor Logs

Azure Event Hubs

Google Chronicle

Google Cloud Pub/Sub

StatsD

StatsD Extended

Graphite

TCP JSON

8. Destinations

Streaming Destinations

Page 892 of 1835

Syslog

Kafka

Confluent

Cribl HTTP

Cribl TCP

Elasticsearch

Honeycomb

New Relic Logs & Metrics

New Relic Events

SNMP Trap

InfluxDB

Wavefront

SignalFx

Sumo Logic

Datadog

Webhook

Prometheus

Grafana Cloud

Loki

OpenTelemetry (OTel)

DataSet

Humio HEC

Cribl Stream

Destinations that accept events in groups or batches are referred to as non-streaming Destinations:

Amazon S3 Compatible Stores

Azure Blob Storage

Google Cloud Storage

Filesystem/NFS

MinIO

Non-Streaming Destinations

Page 893 of 1835

These special-purpose Destinations route data within your Cribl Stream deployment, or among Workers
across distributed or hybrid Cloud deployments:

Default: Specify a default output from among your configured Destinations.

Output Router: A "meta-Destination." Configure rules that route data to multiple configured
Destinations.

DevNull: Simply drops events. Preconfigured and active when you install Cribl Stream, so it requires no
configuration. Useful for testing.

Cribl HTTP: Send data among peer Worker Nodes over HTTP.

Cribl TCP: Send data among peer Worker Nodes over TCP.

Cribl Stream (Deprecated): Use either Cribl HTTP or Cribl TCP instead.

SpaceOut: This experimental Destination is undocumented. Be careful!

Cribl Stream uses a staging directory in the local filesystem to format and write outputted events before
sending them to configured Destinations. A�er a set of conditions is met – typically file size and number of
files, further details below – data is compressed and then moved to the final Destination.

An inventory of open, or in-progress, files is kept in the staging directory's root, to avoid having to walk that
directory at startup. This can get expensive if staging is also the final directory. At startup, Cribl Stream will
check for any le�over files in progress from prior sessions, and will ensure that they're moved to their final
Destination. The process of moving to the final Destination is delayed a�er startup (default delay: 30
seconds). Processing of these files is paced at one file per service period (which defaults to 1 second).

Several conditions govern when files are closed and rolled out:

1. File reaches its configured maximum size.

2. File reaches its configured maximum open time.

The Amazon S3 Compatible Stores Destination can be adapted to send data to downstream services
like Databricks and Snowflake, for which Cribl Stream currently has no preconfigured Destination. For
details, please contact Cribl Support.

Internal and Peer-to-Peer Destinations

How Does Non-Streaming Delivery Work

Batching Conditions

Page 894 of 1835

3. File reaches its configured maximum idle time.

If a new file needs to be open, Cribl Stream will enforce the maximum number of open files, by closing files in
the order in which they were opened.

Cribl Stream attempts to deliver data to all Destinations on an at-least-once basis. When a Destination is
unreachable, there are three possible behaviors:

Block - Cribl Stream will block incoming events.

Drop - Cribl Stream will drop events addressed to that Destination.

Queue - To prevent data loss, Cribl Stream will write events to a Persistent Queue disk bu�er, then
forward them when a Destination becomes available. (Available on several streaming Destinations.)

You can configure your desired behavior through a Destination's Backpressure Behavior drop-down.
Where other options are not displayed, Cribl Stream's default behavior is Block. For details about all the
above behaviors and options, see Persistent Queues.

For each Destination type, you can create multiple definitions, depending on your requirements.

To configure Destinations, select Data > Destinations from Cribl Stream's global top nav (single-instance
deployments), or from a Worker Group's/Fleet's top nav (distributed deployments). On the resulting
Data Destinations page's tiles or le� menu, select the desired type, then click + Add New.

To capture data from a single enabled Destination, you can bypass the Preview pane, and instead capture
directly from a Manage Destinations page. Just click the Live button beside the Destination you want to
capture.

Destination > Live button

Data Delivery and Persistent Queues

Configuring Destinations

Capturing Outgoing Data

Page 895 of 1835

You can also start an immediate capture from within an enabled Destination's config modal, by clicking the
modal's Live Data tab.

Destination modal > Live Data tab

;

Page 896 of 1835

8.1. Amazon

Cribl Stream supports sending data to Amazon CloudWatch Logs. Cribl Stream does not have to run on AWS
in order to deliver data to CloudWatch Logs.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Amazon >
CloudWatch Logs. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Amazon > CloudWatch Logs.
Next, click + Add New to open an Amazon CloudWatch Logs > New Destination modal that provides the
following options and fields.

Output ID: Enter a unique name to identify this CloudWatch definition.

Log group name: CloudWatch log group to associate events with.

Log stream prefix: Prefix for CloudWatch log stream name. This prefix will be used to generate a unique
log stream name per Cribl Stream instance. (E.g., myStream_myHost_myOutputId .)

Region: AWS region where the CloudWatch Logs group is located.

8.1.1. Amazon CloudWatch Logs

Type: Streaming | TLS Support: Yes | PQ Support: Yes

Configuring Cribl Stream to Output to Amazon
CloudWatch Logs

General Settings

Optional Settings

Page 897 of 1835

Backpressure behavior: Select whether to block, drop, or queue events when all receivers are exerting
backpressure. (Causes might include a broken or denied connection, or a rate limiter.) Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Use the Authentication Method buttons to select an AWS authentication method.

Auto: This default option uses the AWS instance's metadata service to automatically obtain short-lived
credentials from the IAM role attached to an EC2 instance. The attached IAM role grants Cribl Stream Workers
access to authorized AWS resources. Can also use the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY . Works only when running on AWS.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Authentication

Page 898 of 1835

Manual: If not running on AWS, you can select this option to enter a static set of user-associated IAM
credentials (your access key and secret key) directly or by reference. This is useful for Workers not in an AWS
VPC, e.g., those running a private cloud. The Manual option exposes these corresponding additional fields:

Access key: Enter your AWS access key. If not present, will fall back to the env.AWS_ACCESS_KEY_ID
environment variable, or to the metadata endpoint for IAM role credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to the
env.AWS_SECRET_ACCESS_KEY environment variable, or to the metadata endpoint for IAM credentials.

Secret: If not running on AWS, you can select this option to supply a stored secret that references an AWS
access key and secret key. The Secret option exposes this additional field:

Secret key pair: Use the drop-down to select an API key/secret key pair that you've configured in
Cribl Stream's secrets manager. A Create link is available to store a new, reusable secret.

Enable for CloudWatch Logs: Toggle to Yes to use Assume Role credentials to access CloudWatch Logs.

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to assume.

External ID: Enter the External ID to use when assuming role.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Assume Role

Processing Settings

Post‑Processing

Advanced Settings

Page 899 of 1835

Endpoint: CloudWatch Logs service endpoint. If empty, defaults to AWS' Region-specific endpoint.
Otherwise, use this field to point to a CloudWatchLogs-compatible endpoint.

Signature version: Signature version to use for signing CloudWatch Logs requests. Defaults to v4 .

Max queue size: Maximum number of queued batches before blocking. Defaults to 5 .

Max record size (KB, uncompressed): Maximum size of each individual record before compression. For non-
compressible data, 1MB (the default) is the maximum recommended size.

Flush period (sec): Maximum time between requests. Low settings could cause the payload size to be
smaller than its configured maximum.

Reuse connections: Whether to reuse connections between requests. The default setting (Yes) can improve
performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be verified against a valid
Certificate Authority (e.g., self-signed certificates). Defaults to Yes .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

;

Page 900 of 1835

Cribl Stream can output events to Amazon Kinesis Data Streams records of up to 1MB uncompressed.
Cribl Stream does not have to run on AWS in order to deliver data to a Kinesis Data Stream.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Amazon >
Kinesis. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the
following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Amazon > Kinesis. Next, click + Add New
to open an Amazon Kinesis > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Kinesis definition.

Stream name: Enter the name of the Kinesis Data Stream to which to send events.

Region: Select the AWS Region where the Kinesis Data Stream is located.

Backpressure behavior: Select whether to block, drop, or queue events when all receivers are exerting
backpressure. (Causes might include a broken or denied connection, or a rate limiter.) Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

8.1.2. Amazon Kinesis Streams

Type: Streaming | TLS Support: Yes | PQ Support: Yes

Configuring Cribl Stream to Output to Amazon Kinesis
Data Streams

General Settings

Optional Settings

Page 901 of 1835

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data drops the newest events from being sent
out of Cribl Stream, and throws away incoming data, while leaving the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Use the Authentication Method buttons to select an AWS authentication method.

Auto: This default option uses the AWS instance's metadata service to automatically obtain short-lived
credentials from the IAM role attached to an EC2 instance. The attached IAM role grants Cribl Stream Workers
access to authorized AWS resources. Can also use the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY . Works only when running on AWS.

Manual: If not running on AWS, you can select this option to enter a static set of user-associated IAM
credentials (your access key and secret key) directly or by reference. This is useful for Workers not in an AWS
VPC, e.g., those running a private cloud. The Manual option exposes these corresponding additional fields:

Access key: Enter your AWS access key. If not present, will fall back to the env.AWS_ACCESS_KEY_ID
environment variable, or to the metadata endpoint for IAM role credentials.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Authentication

Page 902 of 1835

Secret key: Enter your AWS secret key. If not present, will fall back to the
env.AWS_SECRET_ACCESS_KEY environment variable, or to the metadata endpoint for IAM credentials.

Secret: If not running on AWS, you can select this option to supply a stored secret that references an AWS
access key and secret key. The Secret option exposes this additional field:

Secret key pair: Use the drop-down to select an API key/secret key pair that you've configured in
Cribl Stream's secrets manager. A Create link is available to store a new, reusable secret.

Enable for Kinesis Streams: Toggle to Yes to use Assume Role credentials to access Kinesis Streams.

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to assume.

External ID: Enter the External ID to use when assuming role.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards.
Other options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Endpoint: Kinesis Stream service endpoint. If empty, the endpoint will be automatically constructed from
the region.

Signature version: Signature version to use for signing Kinesis stream requests. Defaults to v4 .

Put request concurrency: Maximum number of ongoing put requests before blocking. Defaults to 5 .

Assume Role

Processing Settings

Post‑Processing

Advanced Settings

Page 903 of 1835

Max record size (KB, uncompressed): Maximum size of each individual record before compression. For non-
compressible data, 1MB (the default) is the maximum recommended size.

Flush period (sec): Maximum time between requests. Low settings could cause the payload size to be
smaller than its configured maximum.

Reuse connections: Whether to reuse connections between requests. The default setting (Yes) can improve
performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be verified against a valid
Certificate Authority (e.g., self-signed certificates). Defaults to Yes .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Currently, outputted events use the following record format:

Header line containing information about the payload (currently supports one type, as shown below).

Newline-Delimited JSON (that is, each Kinesis record will contain multiple events, in ndjson format).

Record payloads (including header and body) will be gzip-compressed, and then Kinesis will base64-encode
them.

Sample Kinesis Record

Format

{"format":"ndjson","count":8,"size":3960}
{"_raw":"07-03-2018 18:33:51.136 -0700 ERROR TcpOutputFd - Read error. Connection
reset by peer","_meta":"timestartpos::0 timeendpos::29 _subsecond::.136
date_second::51 date_hour::18 date_minute::33 date_year::2018 date_month::july
date_mday::3 date_wday::tuesday date_zone::-420 punct::--_::._-___-
__.____","_time":"1530668031","source":"/mnt-
big/ledion/hwf/var/log/foo/food.log","host":"ledion-
hwf","sourcetype":"food","index":"_internal","cribl_pipe":"foo2"}
{"_raw":"07-03-2018 18:33:51.136 -0700 INFO TcpOutputProc - Connection to
127.0.0.1:10000 closed. Read error. Connection reset by
peer","_meta":"timestartpos::0 timeendpos::29 _subsecond::.136 date_second::51
date_hour::18 date_minute::33 date_year::2018 date_month::july date_mday::3
date_wday::tuesday date_zone::-420 punct::--_::._-____-
___...:_.__.____","_time":"1530668031","source":"/mnt-
big/ledion/hwf/var/log/foo/food.log","host":"ledion-
hwf","sourcetype":"food","index":"_internal","cribl_pipe":"foo2"}
...

Page 904 of 1835

;

Page 905 of 1835

S3 is a non-streaming Destination type. Cribl Stream does not have to run on AWS in order to deliver data to
S3.

Stores that are S3-compatible will also work with this Destination type. For example, the S3 Destination can
be adapted to send data to services like Databricks and Snowflake, for which Cribl Stream currently has no
preconfigured Destination. For these integrations, please contact Cribl Support.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Amazon >
S3. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the
following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Amazon > S3. Next, click + Add New to
open an Amazon S3 > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this S3 definition.

S3 bucket name: Name of the destination S3 Bucket. This value can be a constant, or a JavaScript expression
that will be evaluated only at init time. E.g., referencing a Global Variable: myBucket-${C.vars.myVar} .

8.1.3. Amazon S3 Compatible Stores

Type: Non-Streaming | TLS Support: Yes | PQ Support: No

Configuring Cribl Stream to Output to S3 Destinations

General Settings

Event-level variables are not available for JavaScript expressions. This is because the bucket name is
evaluated only at Destination initialization. If you want to use event-level variables in file paths, Cribl
recommends specifying them in the Partitioning Expression field (described below), because this is
evaluated for each file.

Page 906 of 1835

Staging location: Filesystem location in which to locally bu�er files before compressing and moving to final
destination. Cribl recommends that this location be stable and high-performance. (This field is not displayed
or available on Cribl.Cloud-managed Worker Nodes.)

Key prefix: Root directory to prepend to path before uploading. Enter either a constant, or a JS expression
(enclosed in single quotes, double quotes, or backticks) that will be evaluated only at init time.

Data format: The output data format defaults to JSON . Raw and Parquet are also available.
Selecting Parquet (supported only on Linux, not Windows) exposes a Parquet Settings le� tab, where you
must configure certain options in order to export data in Parquet format.

Region: Region where the S3 bucket is located.

Partitioning expression: JavaScript expression that defines how files are partitioned and organized. Default
is date-based. If blank, Cribl Stream will fall back to the event's __partition field value (if present); or
otherwise to the root directory of the Output Location and Staging Location.

Compress: Data compression format used before moving to final destination. Defaults to none . Cribl
recommends setting this to gzip . This setting is not available when Data format is set to Parquet .

File name prefix expression: The output filename prefix. Must be a JavaScript expression (which can
evaluate to a constant), enclosed in quotes or backticks. Defaults to CriblOut .

File name su�ix expression: The output filename su�ix. Must be a JavaScript expression (which can
evaluate to a constant), enclosed in quotes or backticks. Defaults to
`.${C.env["CRIBL_WORKER_ID"]}.${__format}${__compression === "gzip" ? ".gz" : ""}` , where
__format can be json or raw , and __compression can be none or gzip .

Backpressure behavior: Select whether to block or drop events when all receivers are exerting
backpressure. (Causes might include an accumulation of too many files needing to be closed.) Defaults to
Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Use the Authentication Method buttons to select one of these options:

Optional Settings

Authentication

Page 907 of 1835

Auto: This default option uses the AWS instance's metadata service to automatically obtain short-lived
credentials from the IAM role attached to an EC2 instance. The attached IAM role grants Cribl Stream Workers
access to authorized AWS resources. Can also use the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY . Works only when running on AWS.

Manual: If not running on AWS, you can select this option to enter a static set of user-associated IAM
credentials (your access key and secret key) directly or by reference. This is useful for Workers not in an AWS
VPC, e.g., those running a private cloud. The Manual option exposes these corresponding additional fields:

Access key: Enter your AWS access key. If not present, will fall back to the env.AWS_ACCESS_KEY_ID
environment variable, or to the metadata endpoint for IAM role credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to the
env.AWS_SECRET_ACCESS_KEY environment variable, or to the metadata endpoint for IAM credentials.

Secret: If not running on AWS, you can select this option to supply a stored secret that references an AWS
access key and secret key. The Secret option exposes this additional field:

Secret key pair: Use the drop-down to select an API key/secret key pair that you've configured in
Cribl Stream's secrets manager. A Create link is available to store a new, reusable secret.

Enable for S3: Toggle to Yes to use Assume Role credentials to access S3.

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to assume.

External ID: Enter the External ID to use when assuming role. This is required only when assuming a role that
requires this ID in order to delegate third-party access. For details, see AWS' documentation.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports c* wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

Assume Role

Processing Settings

Post‑Processing

Page 908 of 1835

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

To write out Parquet files, note that:

Cribl Edge Workers support Parquet only when running on Linux, not on Windows.

See Working with Parquet for pointers on how to avoid problems such as data mismatches.

The S3 Collector currently does not support ingesting data in the Parquet format. Therefore, data that
you export in Parquet format cannot be replayed.

Parquet schema: Select a schema from the drop-down. The default sample_parquet schema is always
available.

Row group size: Set the target memory size for row group segments. Modify this value to optimize memory
use when writing. Value must be a positive integer smaller than the File size value, with appropriate units.
Defaults to 16 MB .

Page size: Set the target memory size for page segments. Generally, set lower values to improve reading
speed, or set higher values to improve compression. Value must be a positive integer smaller than the
Row group size value, with appropriate units. Defaults to 1 MB .

Max file size (MB): Maximum uncompressed output file size. Files of this size will be closed and moved to
final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open for longer than this limit will
be closed and moved to final output location. Defaults to 300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open. Files open for longer than this
limit will be closed and moved to final output location. Defaults to 30 .

Parquet Settings

Cribl recommends that you add a new schema – or clone the sample schema and modify it to suit
your needs – via Processing > Knowledge > Parquet Schemas. Schemas that you add there will
become available in this drop-down. For details, see Parquet Schemas.

Advanced Settings

Page 909 of 1835

Max open files: Maximum number of files to keep open concurrently. When this limit is exceeded, on any
individual Worker Process, Cribl Stream will close the oldest open files, and move them to the final output
location. Defaults to 100 .

Add Output ID: When set to Yes (the default), adds the Output ID field's value to the staging location's file
path. This ensures that each Destination's logs will write to its own bucket.

Remove staging dirs: Toggle to Yes to delete empty staging directories a�er moving files. This prevents the
proliferation of orphaned empty directories. When enabled, exposes this additional option:

Staging cleanup period: How o�en (in seconds) to delete empty directories when Remove staging dirs
is enabled. Defaults to 300 seconds (every 5 minutes). Minimum configurable interval is 10 seconds;
maximum is 86400 seconds (every 24 hours).

Endpoint: S3 service endpoint. If empty, the endpoint will be automatically constructed from the region.

Object ACL: Object ACL (Access Control List) to assign to uploaded objects.

Storage class: Select a storage class for uploaded objects. Defaults to Standard . The other options are:
Reduced Redundancy Storage ; Standard, Infrequent Access ; One Zone, Infrequent Access ;
Intelligent Tiering ; Glacier ; or Deep Archive .

Server-side encryption: Encryption type for uploaded objects – used to enable encryption on data at rest.
Defaults to no encryption; the other options are Amazon S3 Managed Key or AWS KMS Managed Key .

Cribl Stream will close files when any of the four above conditions is met.

For a Destination originally configured in a Cribl Stream version below 2.4.0, the Add Output ID
behavior will be switched o� on the backend, regardless of this slider's state. This is to avoid losing
any files pending in the original staging directory, upon Cribl Stream upgrade and restart. To enable
this option for such Destinations, Cribl's recommended migration path is:

Clone the Destination.

Redirect the Routes referencing the original Destination to instead reference the new, cloned
Destination.

This way, the original Destination will process pending files (a�er an idle timeout), and the new,
cloned Destination will process newly arriving events with Add output ID enabled.

Page 910 of 1835

Signature version: Signature version to use for signing S3 requests. Defaults to v4 .

Reuse connections: Whether to reuse connections between requests. The default setting (Yes) can improve
performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be verified against a valid
Certificate Authority (e.g., self-signed certificates). Defaults to Yes .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

The following permissions are needed to write to an Amazon S3 bucket:

s3:ListBucket

s3:GetBucketLocation

s3:PutObject

Cribl Stream uses a set of internal fields to assist in forwarding data to a Destination.

Field for this Destination:

__partition

;

AWS S3 always encrypts data in transit using HTTPS, with default one-way authentication from server
to clients. With other S3-compatible stores (such as our native MinIO Destination), use an https://
URL to invoke in-transit encryption. Two-way authentication is not required to get encryption, and
requires clients to possess a certificate.

Amazon S3 Permissions

Internal Fields

Page 911 of 1835

Cribl Stream supports sending events to Amazon Simple Queuing Service.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Amazon >
SQS. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the
following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Amazon > SQS. Next, click + Add New to
open an Amazon SQS > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this SQS Destination.

Queue name: The name, URL, or ARN of the SQS queue to send events to. This value must be a JavaScript
expression (which can evaluate to a constant), enclosed in single quotes, double quotes, or backticks.
To specify a non-AWS URL, use the format: '{url}/<queueName>' . (E.g., ':port/<myQueueName>' .)

Queue type: The queue type used (or created). Defaults to Standard . FIFO (First In, First Out) is the other
option.

Message group ID: This parameter applies only to queues of type FIFO. Enter the tag that specifies that a
message belongs to a specific message group. (Messages belonging to the same message group are
processed in FIFO order.) Defaults to cribl . Use event field __messageGroupId to override this value.

Create queue: Specifies whether to create the queue if it does not exist. Defaults to Yes .

8.1.4. Amazon SQS

Type: Streaming | TLS Support: Yes | PQ Support: Yes

Configuring Cribl Stream to Send Data to Amazon SQS

General Settings

Optional Settings

Page 912 of 1835

Region: Region where SQS queue is located.

Backpressure behavior: Select whether to block, drop, or queue events when all receivers are exerting
backpressure. (Causes might include a broken or denied connection, or a rate limiter.) Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Use the Authentication Method buttons to select an AWS authentication method.

Auto: This default option uses the AWS instance's metadata service to automatically obtain short-lived
credentials from the IAM role attached to an EC2 instance. The attached IAM role grants Cribl Stream Workers
access to authorized AWS resources. Can also use the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY . Works only when running on AWS.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Authentication

Page 913 of 1835

Manual: If not running on AWS, you can select this option to enter a static set of user-associated IAM
credentials (your access key and secret key) directly or by reference. This is useful for Workers not in an AWS
VPC, e.g., those running a private cloud. The Manual option exposes these corresponding additional fields:

Access key: Enter your AWS access key. If not present, will fall back to the env.AWS_ACCESS_KEY_ID
environment variable, or to the metadata endpoint for IAM role credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to the
env.AWS_SECRET_ACCESS_KEY environment variable, or to the metadata endpoint for IAM credentials.

Secret: If not running on AWS, you can select this option to supply a stored secret that references an AWS
access key and secret key. The Secret option exposes this additional field:

Secret key pair: Use the drop-down to select an API key/secret key pair that you've configured in
Cribl Stream's secrets manager. A Create link is available to store a new, reusable secret.

Enable for SQS: Toggle to Yes to use Assume Role credentials to access SQS.

AWS account ID: Enter the SQS queue owner's AWS account ID. Leave empty if the SQS queue is in the same
AWS account where this Cribl Stream instance is located.

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to assume.

External ID: Enter the External ID to use when assuming role.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Assume Role

Processing Settings

Post‑Processing

Page 914 of 1835

Endpoint: SQS service endpoint. If empty, the endpoint will be automatically constructed from the region.

Signature version: Signature version to use for signing SQS requests. Defaults to v4 .

Max queue size: Maximum number of queued batches before blocking. Defaults to 100 .

Max record size (KB): Maximum size of each individual record. Per the SQS spec, the maximum allowed
value is 256 KB. (the default).

Flush period (sec): Maximum time between requests. Low settings could cause the payload size to be
smaller than its configured maximum. Defaults to 1 .

Max concurrent requests: The maximum number of in-progress API requests before backpressure is
applied. Defaults to 10 .

Reuse connections: Whether to reuse connections between requests. The default setting (Yes) can improve
performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be verified against a valid
Certificate Authority (e.g., self-signed certificates). Defaults to Yes .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

The following permissions are needed to write to an SQS queue:

sqs:ListQueues

sqs:SendMessage

sqs:SendMessageBatch

sqs:CreateQueue

sqs:GetQueueAttributes

sqs:SetQueueAttributes

sqs:GetQueueUrl

Advanced Settings

SQS Permissions

Internal Fields

Page 915 of 1835

Cribl Stream uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an
event, but they are accessible, and functions can use them to make processing decisions.

Fields for this Destination:

__messageGroupId

__sqsMsgAttrs

__sqsSysAttrs

;

Page 916 of 1835

8.2. Azure

Azure Blob Storage is a non-streaming Destination type. Cribl Stream does not have to run on Azure in order
to deliver data to it. Azure Data Lake Storage Gen2 (hierarchical namespace) is also supported.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Azure >
Blob Storage. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Azure > Blob Storage. Next, click + Add
New to open an Azure Blob Storage > New Destination modal that provides the following options and
fields.

Output ID: Enter a unique name to identify this Destination definition.

Container name: Enter the container name. (A container organizes a set of blobs, similar to a directory in a
file system.)

Blob prefix: Root directory to prepend to path before uploading.

8.2.1. Azure Blob Storage

Type: Non-Streaming | TLS Support: Yes | PQ Support: No

Configuring Cribl Stream to Output to Azure Blob
Storage

General Settings

Container names can include only lowercase letters, numbers, and/or hyphens (-). This restriction is
imposed by Azure.

Page 917 of 1835

Staging location: Local filesystem location in which to bu�er files before compressing and moving them to
the final destination. Cribl recommends that this location be stable and high-performance. (This field is not
displayed or available on Cribl.Cloud-managed Worker Nodes.)

Data format: The output data format defaults to JSON . Raw and Parquet are also available.
Selecting Parquet (supported only on Linux, not Windows) exposes a Parquet Settings le� tab, where you
must configure certain options in order to export data in Parquet format.

Use the Authentication method buttons to select one of these options:

Manual: Use this default option to enter your Azure Storage connection string directly. Exposes a
Connection string field for this purpose. (If le� blank, Cribl Stream will fall back to
env.AZURE_STORAGE_CONNECTION_STRING .)

Secret: This option exposes a Connection string (text secret) drop-down, in which you can select a
stored secret that references an Azure Storage connection string. A Create link is available to store a
new, reusable secret.

Either authentication method uses an Azure Storage connection string in this format:
DefaultEndpointsProtocol=[http|https];AccountName=<your‐account‐name>;AccountKey=

<your‐account‐key>

A fictitious example, using Microso�'s recommended HTTPS option, is:
DefaultEndpointsProtocol=https;AccountName=storagesample;AccountKey=12345678...32

Create container: Toggle to Yes to create the configured container in Azure Blob Storage if one does not
already exist.

Partitioning expression: JavaScript expression that defines how files are partitioned and organized. Default
is date-based. If blank, Cribl Stream will fall back to the event's __partition field value (if present); or
otherwise to the root directory of the Output Location and Staging Location.

Compress: Data compression format used before moving to final destination. Defaults to none . Cribl
recommends setting this to gzip . This setting is not available when Data format is set to Parquet .

Authentication Settings

Connection String Format

Optional Settings

Page 918 of 1835

File name prefix expression: The output filename prefix. Must be a JavaScript expression (which can
evaluate to a constant), enclosed in quotes or backticks. Defaults to CriblOut .

File name su�ix expression: The output filename su�ix. Must be a JavaScript expression (which can
evaluate to a constant), enclosed in quotes or backticks. Defaults to
`.${C.env["CRIBL_WORKER_ID"]}.${__format}${__compression === "gzip" ? ".gz" : ""}` , where
__format can be json or raw , and __compression can be none or gzip .

Backpressure behavior: Whether to block or drop events when all receivers are exerting backpressure.
(Causes might include an accumulation of too many files needing to be closed.) Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

To write out Parquet files, note that:

Cribl Edge Workers support Parquet only when running on Linux, not on Windows.

See Working with Parquet for pointers on how to avoid problems such as data mismatches.

Parquet schema: Select a schema from the drop-down. The default sample_parquet schema is always
available.

Processing Settings

Post‑Processing

Parquet Settings

Page 919 of 1835

Row group size: Set the target memory size for row group segments. Modify this value to optimize memory
use when writing. Value must be a positive integer smaller than the File size value, with appropriate units.
Defaults to 16 MB .

Page size: Set the target memory size for page segments. Generally, set lower values to improve reading
speed, or set higher values to improve compression. Value must be a positive integer smaller than the
Row group size value, with appropriate units. Defaults to 1 MB .

Log invalid rows: Toggle to Yes to output up to 20 unique rows that were skipped due to data format
mismatch. Log level must be set to debug for output to be visible.

Max file size (MB): Maximum uncompressed output file size. Files reaching this size will be closed and
moved to the final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open for longer than this limit will
be closed and moved to final output location. Defaults to 300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open. Files open for longer than this
limit will be closed and moved to final output location. Default: 30 .

Max open files: Maximum number of files to keep open concurrently. When exceeded, the oldest open files
will be closed and moved to final output location. Default: 100 .

Add Output ID: When set to Yes (the default), adds the Output ID field's value to the staging location's file
path. This ensures that each Destination's logs will write to its own bucket.

Cribl recommends that you add a new schema – or clone the sample schema and modify it to suit
your needs – via Processing > Knowledge > Parquet Schemas. Schemas that you add there will
become available in this drop-down. For details, see Parquet Schemas.

Advanced Settings

Cribl Stream will close files when either of the Max file size (MB) or the
Max file open time (sec) conditions are met.

For a Destination originally configured in a Cribl Stream version below 2.4.0, the Add Output ID
behavior will be switched o� on the backend, regardless of this slider's state. This is to avoid losing
any files pending in the original staging directory, upon Cribl Stream upgrade and restart. To enable
this option for such Destinations, Cribl's recommended migration path is:

Page 920 of 1835

Remove staging dirs: Toggle to Yes to delete empty staging directories a�er moving files. This prevents the
proliferation of orphaned empty directories. When enabled, exposes this additional option:

Staging cleanup period: How o�en (in seconds) to delete empty directories when Remove staging dirs
is enabled. Defaults to 300 seconds (every 5 minutes). Minimum configurable interval is 10 seconds;
maximum is 86400 seconds (every 24 hours).

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Cribl Stream uses a set of internal fields to assist in forwarding data to a Destination.

Field for this Destination:

__partition

;

Clone the Destination.

Redirect the Routes referencing the original Destination to instead reference the new, cloned
Destination.

This way, the original Destination will process pending files (a�er an idle timeout), and the new,
cloned Destination will process newly arriving events with Add output ID enabled.

Internal Fields

Page 921 of 1835

Cribl Stream supports sending data to Azure Event Hubs.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Azure >
Event Hubs. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Azure > Event Hubs. Next, click + Add New
to open an Azure Event Hubs > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Azure Event Hubs definition.

Brokers: List of Event Hub Kafka brokers to connect to. (E.g.,
yourdomain.servicebus.windows.net:9093 .) Find the hostname in Shared Access Policies, in the host
portion of the primary or secondary connection string.

Event Hub name: The name of the Event Hub (a.k.a., Kafka Topic) on which to publish events. Can be
overwritten using the __topicOut field.

Acknowledgments: Control the number of required acknowledgments. Defaults to Leader .

8.2.2. Azure Event Hubs

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Azure Event Hubs uses a binary protocol over TCP. It does not support HTTP proxies, so Cribl Stream
must send events directly to receivers. You might need to adjust your firewall rules to allow this
tra�ic.

Configuring Cribl Stream to Output to Azure Event Hubs

General Settings

Optional Settings

Page 922 of 1835

Record data format: Format to use to serialize events before writing to the Event Hub Kafka brokers.
Defaults to JSON .

Backpressure behavior: Whether to block, drop, or queue events when all receivers are exerting
backpressure. Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Enabled Defaults to Yes .

Validate server certs: Defaults to No – and for Event Hubs, this must always be disabled.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

TLS Settings (Client Side)

Page 923 of 1835

Authentication parameters to use when connecting to brokers. Using TLS is highly recommended.

Enabled: Defaults to Yes . (Toggling to No hides the remaining settings in this group.)

SASL mechanism: SASL (Simple Authentication and Security Layer) authentication mechanism to use,
PLAIN is the only mechanism currently supported for Event Hub Kafka brokers.

Username: The username for authentication. For Event Hub, this should always be $ConnectionString .

Use the Authentication method buttons to select one of these options:

Manual: Displays Username and Password fields for you to enter HTTP Basic authentication
credentials. The password is your Event Hubs primary or secondary connection string.
From Microso�'s documentation, the format is:
Endpoint=sb://<FQDN>/;SharedAccessKeyName=<KeyName>;SharedAccessKey=<KeyValue>

Example entry:
Endpoint=sb://dummynamespace.servicebus.windows.net/;SharedAccessKeyName=dummyaccess

keyname;SharedAccessKey=5dOntTRytoC24opYThisAsit3is2B+OGY1US/fuL3ly=

Secret: This option exposes a Password (text secret) drop-down, in which you can select a stored
secret that references the credentials described above. A Create link is available to store a new, reusable
secret.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Authentication

Processing Settings

Post‑Processing

Page 924 of 1835

Max record size (KB, uncompressed): Maximum size (KB) of each record batch before compression. Setting
should be < message.max.bytes settings in Kafka brokers. Defaults to 768 .

Max events per batch: Maximum number of events in a batch before forcing a flush. Defaults to 1000 .

Flush period (sec): Maximum time between requests. Low settings could cause the payload size to be
smaller than its configured maximum. Defaults to 1 .

Connection timeout (ms): Maximum time to wait for a successful connection. Defaults to 10000 ms, i.e.,
10 seconds. Valid range is 1000 to 3600000 ms, i.e., 1 second to 1 hour.

Request timeout (ms): Maximum time to wait for a successful request. Defaults to 60000 ms, i.e., 1 minute.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Cribl Stream uses a set of internal fields to assist in forwarding data to a Destination.

Fields for this Destination:

__topicOut

__key

__headers

__keySchemaIdOut

__valueSchemaIdOut

;

Advanced Settings

Internal Fields

Page 925 of 1835

Cribl Stream supports sending data to Azure Monitor Logs.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Azure >
Monitor Logs. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Azure > Monitor Logs. Next, click + Add
New to open an Azure Monitor Logs > New Destination modal that provides the following options and
fields.

Output ID: Enter a unique name to identify this Azure Monitor Logs definition.

Log type: The Record Type of events sent to this LogAnalytics workspace. Defaults to Cribl .

Authentication method: Use the buttons to select one of these options:

Manual: Displays fields in which to enter your Azure Log Analytics Workspace ID and your Primary or
Secondary Shared Workspace key. See the Azure Monitor documentation.

Secret: This option exposes a Secret key pair drop-down, in which you can select a stored secret that
references the credentials described above. A Create link is available to store a new, reusable secret.

8.2.3. Azure Monitor Logs

Type: Streaming | TLS Support: Yes | PQ Support: Yes

Configuring Cribl Stream to Output to Azure Monitor
Logs

General Settings

Authentication Settings

Page 926 of 1835

Resource ID: Resource ID of the Azure resource to associate the data with. This populates the _ResourceId
property, and allows the data to be included in resource-centric queries. (Optional, but if this field is not
specified, the data will not be included in resource-centric queries.)

Backpressure behavior: Whether to block, drop, or queue events when all receivers are exerting
backpressure. Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Optional Settings

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Processing Settings

Post‑Processing

Page 927 of 1835

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it. Defaults
to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 .

Max events per request: Maximum number of events to include in the request body. The 0 default allows
unlimited events.

Flush period (sec): Maximum time between requests. Low settings could cause the payload size to be
smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers to declare them as safe to log in plaintext. (Sensitive headers such as
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header

Advanced Settings

Page 928 of 1835

names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

The Azure Monitor Logs architecture limits the number of columns per table, characters per column name,
and other parameters. For details, see Microso�'s Azure Monitor Service Limits topic.

Azure will drop logs if your data exceeds these limits. To diagnose this, you can search in the Azure Data
Explorer console with a query like this:

Operation | summarize count() by Detail

...for error messages of this form:

Data of type <type> was dropped: The number of custom fields <number> is above the limit

of 500 fields per data type.

Cribl Stream will attempt to use keepalives to reuse a connection for multiple requests. A�er 2 minutes
of the first use, the connection will be thrown away, and a new one will be reattempted. This is to
prevent sticking to a particular Destination when there is a constant flow of events.

If keepalives are not supported by the server (or if the server closes a pooled connection while idle), a
new connection will be established for the next request.

When resolving the Destination's hostname, Cribl Stream will pick the first IP in the list for use in the
next connection. Enable Round-robin DNS to better balance distribution of events between destination
cluster nodes.

;

Azure Monitor Limitations

Notes on HTTP-based Outputs

Page 929 of 1835

8.3. Google Cloud

Cribl Stream supports sending data to Google Chronicle, a cloud service for retaining, analyzing, and
searching enterprise security and network telemetry data.

To define a Google Chronicle Destination, you need to obtain an API key from Google. If you want
Cribl Stream or an external KMS to manage the API key, configure a key pair that references the API key.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
Google Cloud > Chronicle. Next, click either + Add New or (if displayed) Select Existing. The resulting
drawer will provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Google Cloud > Chronicle.
Next, click + Add New to open a Google Cloud Chronicle > New Destination modal that provides the
following options and fields.

Output ID: Enter a unique name to identify this Chronicle output definition.

Log type: Select an application log type to send to Chronicle. (Google Chronicle expects all batches for a
given Destination to have the same log type.) Can be overwritten by the __logType event field.

Send events as: Unstructured is the only currently supported format. Cribl plans to add UDM (Unified Data
Model) support in a future release.

8.3.1. Google Chronicle

Type: Streaming | TLS Support: Yes | PQ Support: Yes

Configuring Cribl Stream to Output to Chronicle

General Settings

Optional Settings

Page 930 of 1835

Log text field: Specify the event field that contains the log text to send. If you do not specify a log text field,
Cribl Stream sends a JSON representation of the whole event.

Region: From the drop-down, choose the Google Chronicle regional endpoint to send events to.

Backpressure behavior: Whether to block, drop, or queue events when all receivers are exerting
backpressure. (Causes might include a broken or denied connection, or a rate limiter.) Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

The Google Chronicle API key is required to complete this part of the Destination definition.

Use the Authentication Method buttons to select one of these options:

Manual: In the resulting API key field, enter your Google Chronicle API key.

Secret: This option exposes a Secret drop-down, in which you can select a stored secret that references
your Google Chronicle API key. A Create link is available to store a new, reusable secret.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB , MB , etc. Defaults to 1 MB.

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, queueing is stopped and data blocking is applied. Enter a numeral with units of KB , MB , etc.

Queue file path: The location for the persistent queue files. This will be of the form:
your/path/here/<worker-id>/<output-id> . Defaults to: $CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block

Authentication

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Page 931 of 1835

option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data
from this input before the data is sent through the Routes.

System fields: Specify any fields you want Cribl Stream to automatically add to events using this output.
Wildcards are supported. By default, includes cribl_pipe (identifying the Cribl Stream Pipeline that
processed the event).

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Compress: Toggle to Yes if you want Cribl Stream to compress the payload body before sending.

Request timeout: Enter an amount of time, in seconds, to wait for a request to complete before aborting it.

Request concurrency: Enter the maximum number of ongoing requests to allow before blocking.

Max body size (KB): Enter a maximum size, in KB, for the request body.

Max events per request: Enter the maximum number of events to include in the request body. Defaults to 0
(unlimited).

Flush period (sec): Enter the maximum time to allow between requests. Be aware that small values could
cause the payload size to be smaller than the configured Max body size.

Extra HTTP Headers: Click + Add Header to insert extra headers as Name/Value pairs.

Processing Settings

Post-Processing

Advanced Settings

Page 932 of 1835

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers to declare them as safe to log in plaintext. (Sensitive headers such as
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header
names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

;

Page 933 of 1835

Google Cloud Storage is a non-streaming Destination type.

For Cribl Stream to send data to Google Cloud Storage buckets, the following access permissions must be set
on the Cloud Storage side:

Fine-grained access control must be enabled on the buckets.

The Google service account or user must have the Storage Admin or Owner role.

For details, see the Cloud Storage Overview of Access Control and Understanding Roles documentation.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
Google Cloud > Cloud Storage. Next, click either + Add New or (if displayed) Select Existing. The resulting
drawer will provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Google Cloud > Cloud Storage.
Next, click + Add New to open a Google Cloud > Cloud Storage > New Destination modal that provides the
following options and fields.

Output ID: Enter a unique name to identify this Cloud Storage definition.

Bucket name: Name of the destination bucket. This value can be a constant. or a JavaScript expression that
can be evaluated only at init time. E.g., referencing a Global Variable: myBucket-${C.vars.myVar} .

8.3.2. Google Cloud Storage

Type: Non-Streaming | TLS Support: Yes | PQ Support: No

Configuring Cloud Storage Permissions

Configuring Cribl Stream to Output to Cloud Storage
Destinations

General Settings

Page 934 of 1835

Region: Region where the bucket is located.

Staging location: Filesystem location in which to locally bu�er files before compressing and moving to final
destination. Cribl recommends that this location be stable and high-performance. (This field is not displayed
or available on Cribl.Cloud-managed Worker Nodes.)

Key prefix: Root directory to prepend to path before uploading. Enter a constant, or a JS expression
enclosed in single quotes, double quotes, or backticks.

Data format: The output data format defaults to JSON . Raw and Parquet are also available.
Selecting Parquet (supported only on Linux, not Windows) exposes a Parquet Settings le� tab, where you
must configure certain options in order to export data in Parquet format.

Partitioning expression: JavaScript expression that defines how files are partitioned and organized. Default
is date-based. If blank, Cribl Stream will fall back to the event's __partition field value (if present); or
otherwise to the root directory of the Output Location and Staging Location.

Compress: Data compression format used before moving to final destination. Defaults to none . Cribl
recommends setting this to gzip . This setting is not available when Data format is set to Parquet .

File name prefix expression: The output filename prefix. Must be a JavaScript expression (which can
evaluate to a constant), enclosed in quotes or backticks. Defaults to CriblOut .

File name su�ix expression: The output filename su�ix. Must be a JavaScript expression (which can
evaluate to a constant), enclosed in quotes or backticks. Defaults to
`.${C.env["CRIBL_WORKER_ID"]}.${__format}${__compression === "gzip" ? ".gz" : ""}` , where
__format can be json or raw , and __compression can be none or gzip .

Backpressure behavior: Select whether to block or drop events when all receivers are exerting
backpressure. (Causes might include an accumulation of too many files needing to be closed.) Defaults to
Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Use the Authentication Method buttons to select one of these options:

Optional Settings

Authentication

Page 935 of 1835

Manual: With this default option, authentication is via HMAC (Hash-based Message Authentication
Code). To create a key and secret, see Google Cloud's Managing HMAC Keys for Service Accounts
documentation. This option exposes these two fields:

Access key: Enter the HMAC access key.

Secret key: Enter the HMAC secret.

Secret: This option exposes a Secret key pair drop-down, in which you can select a stored secret that
references the secret key pair described above. A Create link is available to store a new, reusable secret.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports c* wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

To write out Parquet files, note that:

Cribl Edge Workers support Parquet only when running on Linux, not on Windows.

See Working with Parquet for pointers on how to avoid problems such as data mismatches.

Parquet schema: Select a schema from the drop-down. The default sample_parquet schema is always
available.

Processing Settings

Post‑Processing

Parquet Settings

Cribl recommends that you add a new schema – or clone the sample schema and modify it to suit
your needs – via Processing > Knowledge > Parquet Schemas. Schemas that you add there will
become available in this drop-down. For details, see Parquet Schemas.

Page 936 of 1835

Row group size: Set the target memory size for row group segments. Modify this value to optimize memory
use when writing. Value must be a positive integer smaller than the File size value, with appropriate units.
Defaults to 16 MB .

Page size: Set the target memory size for page segments. Generally, set lower values to improve reading
speed, or set higher values to improve compression. Value must be a positive integer smaller than the
Row group size value, with appropriate units. Defaults to 1 MB .

Log invalid rows: Toggle to Yes to output up to 20 unique rows that were skipped due to data format
mismatch. Log level must be set to debug for output to be visible.

Max file size (MB): Maximum uncompressed output file size. Files of this size will be closed and moved to
final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open for longer than this limit will
be closed and moved to final output location. Defaults to 300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open. Files open for longer than this
limit will be closed and moved to final output location. Defaults to 30 .

Max open files: Maximum number of files to keep open concurrently. When exceeded, the oldest open files
will be closed and moved to final output location. Defaults to 100 .

Add Output ID: Whether to append output's ID to staging location. Defaults to Yes .

Remove staging dirs: Toggle to Yes to delete empty staging directories a�er moving files. This prevents the
proliferation of orphaned empty directories. When enabled, exposes this additional option:

Staging cleanup period: How o�en (in seconds) to delete empty directories when Remove staging dirs
is enabled. Defaults to 300 seconds (every 5 minutes). Minimum configurable interval is 10 seconds;
maximum is 86400 seconds (every 24 hours).

Endpoint: The Google Cloud Storage service endpoint. Typically, there is no reason to change the default
https://storage.googleapis.com endpoint.

Object ACL: Select an Access Control List to assign to uploaded objects. Defaults to private .

Advanced Settings

Cribl Stream will close files when either of the Max file size (MB) or the Max file open time

(sec) conditions are met.

Page 937 of 1835

Storage class: Select a storage class for uploaded objects.

Signature version: Signature version to use for signing requests. Defaults to v4 .

Reuse connections: Whether to reuse connections between requests. The default setting (Yes) can improve
performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be verified against a valid
Certificate Authority (e.g., self-signed certificates). Defaults to Yes .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Cribl Stream uses a set of internal fields to assist in forwarding data to a Destination.

Field for this Destination:

__partition

Nonspecific messages from Google Cloud of the form Error: failed to close file can indicate
problems with the permissions listed above.

;

Internal Fields

Troubleshooting

Page 938 of 1835

Cribl Stream supports sending data to Google Cloud Pub/Sub, a managed real-time messaging service for
sending and receiving messages between applications.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
Google Cloud > Pub/Sub. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer
will provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Google Cloud > Pub/Sub. Next, click + Add
New to open a Google Cloud Pub/Sub > New Destination modal that provides the following options and
fields.

Output ID: Enter a unique name to identify this Pub/Sub output definition.

Topic ID: ID of the Pub/Sub topic to send events to.

Create topic: Toggle to Yes if you want Cribl Stream to create the topic on Pub/Sub if it does not exist.

Ordered delivery: Toggle to Yes if you want Cribl Stream to send events in the order that they arrived in the
queue. (For this to work correctly, the process receiving events must have ordering enabled.)

Region: Region to publish messages to. Select default to allow Google to auto-select the nearest region. (If
you've enabled Ordered delivery, the selected region must be allowed by message storage policy.)

8.3.3. Google Cloud Pub/Sub

Type: Streaming | TLS Support: Yes | PQ Support: Yes

Configuring Cribl Stream to Output to Pub/Sub

General Settings

Optional Settings

Page 939 of 1835

Backpressure behavior: Whether to block, drop, or queue events when all receivers are exerting
backpressure. Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Use the Authentication Method buttons to select one of these options:

Auto: This option uses the environment variables PUBSUB_PROJECT and PUBSUB_CREDENTIALS , and
requires no configuration here.

Manual: This default option displays a Service account credentials field for you to enter the contents of
your service account credentials file (a set of JSON keys), as downloaded from Google Cloud.
To insert the file itself, click the upload button at this field's upper right. As an alternative, you can use
environment variables, as outlined here.

Secret: This option exposes a drop-down in which you can select a stored secret that references the
service account credentials described above. A Create link is available to store a new, reusable secret.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block

Authentication

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Page 940 of 1835

option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Batch size: The maximum number of items the Google API should batch before it sends them to the topic.
Defaults to 10 items.

Batch timeout (ms): The maximum interval (in milliseconds) that the Google API should wait to send a batch
(if the configured Batch size limit has not been reached).. Defaults to 100 ms.

Max queue size: Maximum number of queued batches before blocking. Defaults to 100 .

Max batch size (KB): Maximum size for each sent batch. Defaults to 256 KB.

Max concurrent requests: The maximum number of in-progress API requests before Cribl Stream applies
backpressure. Defaults to 10 .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Processing Settings

Post‑Processing

Advanced Settings

Google Cloud Roles and Permissions

Page 941 of 1835

Your Google Cloud service account should have at least the following roles on topics:

roles/pubsub.publisher

roles/pubsub.viewer or roles/viewer

To enable Cribl Stream's Create topic option, your service account should have one of the following (or
higher) roles:

roles/pubsub.editor

roles/editor

Either editor role confers multiple permissions, including those from the lower viewer , subscriber , and
publisher roles. For additional details, see the Google Cloud Access Control topic.

The Pub/Sub Destination supports alternate topics specified at the event level in the __topicOut field. So
(e.g.) if a Pub/Sub Destination is configured to send to main topic topic1 , and Cribl Stream receives an
event with __topicOut: topic2 , then Cribl Stream will override the main topic and send this event to
topic2 .

However, a topic specified in the event's __topicOut field must already exist on Pub/Sub. If it does not,
Cribl Stream cannot dynamically create the topic, and will drop the event. On the Destination's Status tab,
the Dropped metric tracks the number of events dropped because a specified alternate topic did not exist.

;

Let's Change the Topic

Page 942 of 1835

8.4. Kafka

Cribl Stream supports sending data to a Kafka topic.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Kafka.
Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the following
options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Kafka. Next, click + Add New to open a
Kafka > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Kafka definition.

Brokers: List of Kafka brokers to connect to. (E.g., localhost:9092 .)

Topic: The topic on which to publish events. Can be overwritten using event's __topicOut field.

Acknowledgments: Select the number of required acknowledgments. Defaults to Leader .

Record data format: Format to use to serialize events before writing to Kafka. Defaults to JSON .

8.4.1. Kafka

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Kafka uses a binary protocol over TCP. It does not support HTTP proxies, so Cribl Stream must send
events directly to receivers. You might need to adjust your firewall rules to allow this tra�ic.

Configuring Cribl Stream to Output to Kafka

General Settings

Optional Settings

Page 943 of 1835

Compression: Codec to compress the data before sending to Kafka. Select None , Gzip Snappy , or LZ4 .

Backpressure behavior: Select whether to block, drop, or queue incoming events when all receivers are
exerting backpressure. Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, queueing is stopped and data blocking is applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:
your/path/here/<worker‐id>/<output‐id> . Defaults to: $CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down.Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Enabled Defaults to No . When toggled to Yes :

Cribl strongly recommends enabling compression. Doing so improves Cribl Stream's performance,
enabling faster data transfer using less bandwidth.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

TLS Settings (Client Side)

Page 944 of 1835

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension. This must be a host
name, not an IP address.

Minimum TLS version: Optionally, select the minimum TLS version to use when connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use when connecting.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to verify the server's cert.
Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

This section governs SASL (Simple Authentication and Security Layer) authentication to use when
connecting to brokers. Using TLS is highly recommended.

Enabled: Defaults to No . When toggled to Yes :

SASL mechanism: Use this drop-down to select the SASL authentication mechanism to use. The mechanism
you select determines the controls displayed below.

With any of these authentication mechanisms, select one of the following buttons:

Manual: Displays Username and Password fields to enter your Kafka credentials directly.

Secret: This option exposes a Credentials secret drop-down in which you can select a stored text secret that
references your Kafka credentials. A Create link is available to store a new, reusable secret.

Authentication

PLAIN, SCRAM-256, or SCRAM-512

Page 945 of 1835

Selecting Kerberos as the authentication mechanism displays the following options:

Keytab location: Enter the location of the key table file for the authentication principal.

Principal: Enter the authentication principal, e.g.: kafka_user@example.com .

Broker service class: Enter the Kerberos service class for Kafka brokers, e.g.: kafka .

This section governs Kafka Schema Registry Authentication for Avro-encoded data with a schema stored in
the Confluent Schema Registry.

Enabled: defaults to No . When toggled to Yes , displays the following controls:

Schema registry URL: URL for access to the Confluent Schema Registry. (E.g., http://<hostname>:8081 .)

Default key schema ID: Used when __keySchemaIdOut is not present to transform key values. Leave blank
if key transformation is not required by default.

Default value schema ID: Used when __valueSchemaIdOut not present to transform _raw . Leave blank if
value transformation is not required by default.

TLS enabled: defaults to No . When toggled to Yes, displays the following TLS settings for the
Schema Registry (in the same format as the TLS Settings (Client Side) above):

Validate server certs: Require client to reject any connection that is not authorized by a CA in the
CA certificate path, or by another trusted CA (e.g., the system's CA). Defaults to No.

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension. This must be a
host name, not an IP address.

Minimum TLS version: Optionally, select the minimum TLS version to use when connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use when connecting.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to verify the server's
cert. Path can reference $ENV_VARS .

GSSAPI/Kerberos

Schema Registry

Page 946 of 1835

Private key path (mutual auth): Path on client containing the private key (in PEM format) to use. Path
can reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Max record size (KB, uncompressed): Maximum size (KB) of each record batch before compression. Setting
should be < message.max.bytes settings in Kafka brokers. Defaults to 768 .

Max events per batch: Maximum number of events in a batch before forcing a flush. Defaults to 1000 .

Flush period (sec): Maximum time between requests. Low values could cause the payload size to be smaller
than its configured maximum. Defaults to 1 .

Connection timeout (ms): Maximum time to wait for a successful connection. Defaults to 10000 ms, i.e.,
10 seconds. Valid range is 1000 to 3600000 ms, i.e., 1 second to 1 hour.

Request timeout (ms): Maximum time to wait for a successful request. Defaults to 60000 ms, i.e., 1 minute.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Processing Settings

Post‑Processing

Advanced Settings

Page 947 of 1835

Cribl Stream uses a set of internal fields to assist in forwarding data to a Destination.

Fields for this Destination:

__topicOut

__key

__headers

__keySchemaIdOut

__valueSchemaIdOut

;

Internal Fields

Page 948 of 1835

Cribl Stream supports sending data to Kafka topics on the Confluent Cloud managed Kafka platform.

In the QuickConnect UI: Click + Add beside Destinations. From the resulting drawer's tiles, select
Confluent Cloud. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Confluent Cloud. Next, click + Add New to
open a New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Destination definition.

Brokers: List of Confluent Cloud brokers to connect to. (E.g., myAccount.confluent.cloud:9092 .)

Topic: The topic on which to publish events. Can be overwritten using event's __topicOut field.

Acknowledgments: Select the number of required acknowledgments. Defaults to Leader .

Record data format: Format to use to serialize events before writing to Kafka. Defaults to JSON .

Compression: Codec to use to compress the data before sending to Kafka. Select None , Gzip , or Snappy .

8.4.2. Confluent Cloud

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Confluent Cloud uses a binary protocol over TCP. It does not support HTTP proxies, so Cribl Stream
must send events directly to receivers. You might need to adjust your firewall rules to allow this
tra�ic.

Sending Kafka Topic Data to Confluent Cloud

General Settings

Optional Settings

Page 949 of 1835

Backpressure behavior: Select whether to block, drop, or queue incoming events when all receivers are
exerting backpressure. Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, queueing is stopped and data blocking is applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:
your/path/here/<worker‐id>/<output‐id> . Defaults to: $CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip ,
Snappy , and LZ4 are also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Enabled When toggled to Yes (the default):

Autofill?: This setting is experimental.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Cribl strongly recommends enabling compression. Doing so improves Cribl Stream's performance,
enabling faster data transfer using less bandwidth.

TLS Settings (Client Side)

Page 950 of 1835

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension. This must be a host
name, not an IP address.

Minimum TLS version: Optionally, select the minimum TLS version to use when connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use when connecting.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to verify the server's cert.
Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Authentication parameters to use when connecting to brokers. Using TLS is highly recommended.

Enabled: Defaults to No . When toggled to Yes :

SASL mechanism: Select the SASL (Simple Authentication and Security Layer) authentication
mechanism to use. Defaults to PLAIN . SCRAM‐SHA‐256 and SCRAM‐SHA‐512 are also available.

Use the Authentication method buttons to select one of these options:

Manual: Displays Username and Password fields for you to enter HTTP Basic authentication
credentials.

Secret: This option exposes a Credentials secret drop-down, in which you can select a stored secret
that references the credentials described above. A Create link is available to store a new, reusable

With a dedicated Confluent Cloud cluster hosted in Microso� Azure, be sure to specify the
Server name (SNI). If this is omitted, Confluent Cloud might reset the connection to Cribl Stream.

Authentication

Page 951 of 1835

secret.

This section governs Kafka Schema Registry Authentication for Avro-encoded data with a schema stored in
the Confluent Schema Registry.

Enabled: Defaults to No . When toggled to Yes , displays the following controls:

Schema registry URL: URL for access to the Confluent Schema Registry. (E.g., http://localhost:8081 .)

Default key schema ID: Used when __keySchemaIdOut is not present to transform key values. Leave blank
if key transformation is not required by default.

Default value schema ID: Used when __valueSchemaIdOut not present to transform _raw . Leave blank if
value transformation is not required by default.

TLS enabled: defaults to No . When toggled to Yes, displays the following TLS settings for the
Schema Registry (in the same format as the TLS Settings (Client Side) above):

Validate server certs: Require client to reject any connection that is not authorized by a CA in the
CA certificate path, or by another trusted CA (e.g., the system's CA). Defaults to No.

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension. This must be a
host name, not an IP address.

Minimum TLS version: Optionally, select the minimum TLS version to use when connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use when connecting.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to verify the server's
cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM format) to use. Path
can reference $ENV_VARS . Use only if mutual auth is required.

Schema Registry

With a dedicated Confluent Cloud cluster hosted in Microso� Azure, be sure to specify the
Server name (SNI). If this is omitted, Confluent Cloud might reset the connection to
Cribl Stream.

Page 952 of 1835

Certificate path (mutual auth): Path on client containing certificates in (PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data before it is
sent through this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Max record size (KB, uncompressed): Maximum size (KB) of each record batch before compression. Setting
should be < message.max.bytes settings in Kafka brokers. Defaults to 768 .

Max events per batch: Maximum number of events in a batch before forcing a flush. Defaults to 1000 .

Flush period (sec): Maximum time between requests. Low values could cause the payload size to be smaller
than its configured maximum. Defaults to 1 .

Connection timeout (ms): Maximum time to wait for a successful connection. Defaults to 10000 ms, i.e.,
10 seconds. Valid range is 1000 to 3600000 ms, i.e., 1 second to 1 hour.

Request timeout (ms): Maximum time to wait for a successful request. Defaults to 60000 ms, i.e., 1 minute.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Processing Settings

Post‑Processing

Advanced Settings

Internal Fields

Page 953 of 1835

Cribl Stream uses a set of internal fields to assist in forwarding data to a Destination.

Fields for this Destination:

__topicOut

__key

__headers

__keySchemaIdOut

__valueSchemaIdOut

;

Page 954 of 1835

8.5. Metrics

Cribl Stream supports sending data to a Graphite backend Destination.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Metrics >
Graphite. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the
following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Metrics > Graphite. Next, click + Add New
to open a Metrics > Graphite > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Graphite definition.

Destination protocol: Protocol to use when communicating with the Destination. Defaults to UDP .

Host: The hostname of the Destination.

Port: Destination port. Defaults to 8125 .

Throttling: Displayed only when General Settings > Destination protocol is set to TCP . Rate (in bytes per
second) at which at which to throttle while writing to an output. Also takes numerical values in multiples of
bytes (KB, MB, GB, etc.). Default value of 0 indicates no throttling.

8.5.1. Graphite

Type: Streaming | TLS Support: No | PQ Support: Yes

Configuring Cribl Stream to Output to a Graphite
Backend

General Settings

Optional Settings

Page 955 of 1835

Backpressure behavior: Displayed only when General Settings > Destination protocol is set to TCP . Select
whether to block, drop, or queue events when all receivers are exerting backpressure. (Causes might include
a broken or denied connection, or a rate limiter.) Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Connection timeout: Amount of time (in milliseconds) to wait for the connection to establish, before
retrying. Defaults to 10000 .

Persistent Queue Settings

This section is displayed only when General Settings > Destination protocol is set to TCP , and only
when Backpressure behavior is set to Persistent Queue.

Timeout Settings

This section is displayed only when General Settings > Destination protocol is set to TCP .

Page 956 of 1835

Write timeout: Amount of time (milliseconds) to wait for a write to complete, before assuming connection is
dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Max record size (bytes): Used when Protocol is UDP. Specifies the maximum size of packets sent to the
Destination. (Also known as the MTU – maximum transmission unit – for the network path to the destination
system.) Defaults to 512 .

Flush period (sec): Used when Protocol is TCP. Specifies how o�en bu�ers should be flushed, sending
records to the Destination. Defaults to 1 .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

;

Processing Settings

Post‑Processing

Advanced Settings

Page 957 of 1835

Cribl Stream supports sending data to a StatsD Destination.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Metrics >
StatsD. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the
following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Metrics > StatsD. Next, click + Add New to
open a Metrics > StatsD > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this StatsD definition.

Destination protocol: Protocol to use when communicating with the Destination. Defaults to UDP .

Host: The hostname of the Destination.

Port: Destination port. Defaults to 8125 .

Throttling: Displayed only when General Settings > Destination protocol is set to TCP . Rate (in bytes per
second) at which at which to throttle while writing to an output. Also takes numerical values in multiples of
bytes (KB, MB, GB, etc.). Default value of 0 indicates no throttling.

Backpressure behavior: Displayed only when General Settings > Destination protocol is set to TCP . Select
whether to block, drop, or queue events when all receivers are exerting backpressure. (Causes might include
a broken or denied connection, or a rate limiter.) Defaults to Block .

8.5.2. StatsD

Type: Streaming | TLS Support: No | PQ Support: Yes

Configuring Cribl Stream to Output via StatsD

General Settings

Optional Settings

Page 958 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue fallback behavior: Whether to block or drop events when the queue is exerting backpressure
(because disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the
Block option on the Backpressure behavior drop-down. Drop new data drops the newest events from
being sent out of Cribl Stream, and throws away incoming data, while leaving the contents of the PQ
unchanged.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to establish, before
retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete, before assuming connection is
dead. Defaults to 60000 .

Persistent Queue Settings

This section is displayed only when General Settings > Destination protocol is set to TCP , and only
when Backpressure behavior is set to Persistent Queue.

Timeout Settings

This section is displayed only when General Settings > Destination protocol is set to TCP .

Processing Settings

Page 959 of 1835

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Max record size (bytes): Used when Protocol is UDP. Specifies the maximum size of packets sent to the
Destination. (Also known as the MTU – maximum transmission unit – for the network path to the Destination
system.) Defaults to 512 .

Flush period (sec): Used when Protocol is TCP. Specifies how o�en bu�ers should be flushed, sending
records to the Destination. Defaults to 1 .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

;

Post‑Processing

Advanced Settings

Page 960 of 1835

Cribl Stream's StatsD Extended Destination supports sending out data in expanded StatsD format.

The output is an expanded StatsD metric protocol that supports dimensions, along with a sample rate for
counter metrics. As with StatsD, downstream components listen for application metrics over UDP or TCP, can
aggregate and summarize those metrics, and can relay them to virtually any graphing or monitoring
backend.

For details about the syntax expected by one common downstream service, see Splunk's Expanded StatsD
Metric Protocol documentation.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Metrics >
StatsD Extended. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Metrics > StatsD Extended.
Next, click + Add New to open a Metrics > StatsD Extended > New Destination modal that provides the
following options and fields.

Output ID: Enter a unique name to identify this StatsD Extended definition.

Destination protocol: Protocol to use when communicating with the Destination. Defaults to UDP .

Host: The hostname of the Destination.

Port: Destination port. Defaults to 8125 .

8.5.3. StatsD Extended

Type: Streaming | TLS Support: No | PQ Support: Yes

Configuring Cribl Stream to Output via StatsD Extended

General Settings

Page 961 of 1835

Throttling: Displayed only when General Settings > Destination protocol is set to TCP . Rate (in bytes per
second) at which at which to throttle while writing to an output. Also takes numerical values in multiples of
bytes (KB, MB, GB, etc.). Default value of 0 indicates no throttling.

Backpressure behavior: Displayed only when General Settings > Destination protocol is set to TCP . Select
whether to block, drop, or queue events when all receivers are exerting backpressure. (Causes might include
a broken or denied connection, or a rate limiter.) Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue fallback behavior: Whether to block or drop events when the queue is exerting backpressure
(because disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the
Block option on the Backpressure behavior drop-down. Drop new data drops the newest events from
being sent out of Cribl Stream, and throws away incoming data, while leaving the contents of the PQ
unchanged.

Optional Settings

Persistent Queue Settings

This section is displayed only when General Settings > Destination protocol is set to TCP , and only
when Backpressure behavior is set to Persistent Queue.

Timeout Settings

Page 962 of 1835

Connection timeout: Amount of time (in milliseconds) to wait for the connection to establish, before
retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete, before assuming connection is
dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Max record size (bytes): Used when Protocol is UDP. Specifies the maximum size of packets sent to the
Destination. (Also known as the MTU – maximum transmission unit – for the network path to the Destination
system.) Defaults to 512 .

Flush period (sec): Used when Protocol is TCP. Specifies how o�en bu�ers should be flushed, sending
records to the Destination. Defaults to 1 .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

;

This section is displayed only when General Settings > Destination protocol is set to TCP .

Processing Settings

Post‑Processing

Advanced Settings

Page 963 of 1835

8.6. New Relic Ingest

Cribl Stream supports sending events to New Relic via the New Relic Event API. Use this Destination to export
ad hoc events that New Relic ingestion treats as custom events.

To export structured log and/or metric events, use Cribl Stream's New Relic Logs & Metrics Destination.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
New Relic Ingest > Events. Next, click either + Add New or (if displayed) Select Existing. The resulting
drawer will provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select New Relic Ingest > Events.
Next, click + Add New to open a New Relic Ingest > Events > New Destination modal that provides the
following options and fields.

Output ID: Enter a unique name to identify this Destination.

Region: Select which New Relic region endpoint to use.

Account ID: Enter your New Relic account ID. (You can access this ID from New Relic's account drop-down, by
selecting Manage your plan.)

Event type: Default eventType to apply when not specified in an event. You can use arbitrary values, as
long as they do not conflict with New Relic reserved words.

8.6.1. New Relic Events

Type: Streaming | TLS Support: Yes | PQ Support: Yes

Configuring Cribl Stream to Output Events to New Relic

General Settings

Where an eventType is specified in an event, it will override this value.

Page 964 of 1835

Authentication method: Select one of the following buttons.

Manual: This default option exposes an API key field. Directly enter your New Relic Ingest License API
key, as you created or accessed it from New Relic's account drop-down. (For details, see the New Relic
API Keys documentation.)

Secret: This option exposes an API key (text secret) drop-down, in which you can select a stored secret
that references a New Relic Ingest License API key. A Create link is available to store a new, reusable
secret.

Backpressure behavior: Select whether to block, drop, or queue events when all receivers are exerting
backpressure. (Causes might include a broken or denied connection, or a rate limiter.) Defaults to Block . For
the Persistent Queue option, see the section just below.

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Authentication Settings

If an incoming event contains an internal field named __newRelic_apiKey , the New Relic Events
Destination uses that field's value as the API key when sending the event to New Relic.

For events that do not contain a __newRelic_apiKey field, the Destination uses whatever API key
you have configured in the Authentication method settings.

Optional Settings

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue .

Page 965 of 1835

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: Pipeline to process data before sending the data out via this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Compress: Defaults to Yes , meaning compress the payload body before sending.

Processing Settings

Post‑Processing

Advanced Settings

Page 966 of 1835

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it.
Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 1000 KB.

Max events per request: Maximum number of events to include in the request body. Defaults to 0 , allowing
unlimited events.

Flush period (sec): Maximum time between requests. Low values can cause the payload size to be smaller
than the configured Max body size. Defaults to 1 second.

Extra HTTP headers: Click + Add Header to insert extra headers as Name/Value pairs.

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers to declare them as safe to log in plaintext. (Sensitive headers such as
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header
names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Once you've configured event sources, create one or more Routes to send data to New Relic.

In New Relic, you can create visualizations incorporating the Cribl Stream-supplied data, then add them to
new or existing dashboards as widgets.

Alternatively, in the New Relic backend, you can select Query you data (top nav) > Events (le� tab), and then
select the event type you exported from Cribl Stream.

To view more events, change the time frame at the upper right. To see raw events, click Raw data on the
right.

;

Verifying the New Relic Events Destination

Page 967 of 1835

Cribl Stream supports sending events to the New Relic Log API and the New Relic Metric API.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
New Relic Ingest > Logs & Metrics. Next, click either + Add New or (if displayed) Select Existing. The
resulting drawer will provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select New Relic Ingest > Logs & Metrics.
Next, click + Add New to open a New Relic Ingest > Logs & Metrics > New Destination modal that provides
the following options and fields.

Output ID: Enter a unique name to identify this New Relic definition.

Region: Select which New Relic region endpoint to use.

8.6.2. New Relic Logs & Metrics

Type: Streaming | TLS Support: Yes | PQ Support: Yes

As of Cribl Stream v.3.1.2, this Destination now authenticates using New Relic's Ingest License API key.
(New Relic will retire the Insights Insert API keys, which this Destination previously used for
authentication.)

Also as of v.3.1.2, Cribl Stream provides a separate New Relic Events Destination that you can use to
send ad hoc (loosely structured) events to New Relic via the New Relic Event API.

Within New Relic's platform, you can monitor Cribl Stream's performance and data flow by installing
New Relic's Cribl dashboard.

Configuring Cribl Stream to Output to New Relic

General Settings

Authentication Settings

Page 968 of 1835

Authentication method: Select one of the following buttons.

Manual: This default option exposes an API key field. Directly enter your New Relic Ingest License API
key, as you created or accessed it from New Relic's account drop-down. (For details, see the New Relic
API Keys documentation.)

Secret: This option exposes an API key (text secret) drop-down, in which you can select a stored secret
that references a New Relic Ingest License API key. A Create link is available to store a new, reusable
secret.

Log type: Name of the logType to send with events. E.g., observability or access_log .

Log message field: Name of the field to send as the log message value. If not specified, the event will be
serialized and sent as JSON.

Fields: Additional fields to (optionally) add, as Name-Value pairs. Click + Add Field to add more.

Name: Enter the field name.

Value:JavaScript expression to compute fieldʼs value, enclosed in single quotes, double quotes, or
backticks. (Can evaluate to a constant.)

Backpressure behavior: Select whether to block, drop, or queue events when all receivers are exerting
backpressure. (Causes might include a broken or denied connection, or a rate limiter.) Defaults to Block . For
the Persistent Queue option, see the section just below.

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

If an incoming event contains an internal field named __newRelic_apiKey , the New Relic
Logs & Metrics Destination uses that field's value as the API key when sending the event to New Relic.

For events that do not contain an __newRelic_apiKey field, the Destination uses whatever API key
you have configured in the Authentication method settings.

Optional Settings

This sets a default. Where a sourcetype is specified in an event, it will override this value.

Persistent Queue Settings

Page 969 of 1835

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

This section is displayed when the Backpressure behavior is set to Persistent Queue .

Processing Settings

Post‑Processing

Advanced Settings

Page 970 of 1835

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Compress: Toggle to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it.
Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 1000 KB.

Max events per request: Maximum number of events to include in the request body. The 0 default allows
unlimited events.

Flush period (sec): Maximum time between requests. Low values can cause the payload size to be smaller
than the configured Max body size. Defaults to 1 second.

Extra HTTP headers: Click + Add Header to insert extra headers as Name/Value pairs.

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers to declare them as safe to log in plaintext. (Sensitive headers such as
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header
names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Once you've configured log and/or metrics sources, create one or more Routes to send data to New Relic.

In New Relic, you can create visualizations incorporating the Cribl Stream-supplied data, then add them to
new or existing dashboards as widgets.

Verifying the New Relic Destination

Page 971 of 1835

Logs and metrics land in two di�erent places in New Relic.

To access and query log data:

Navigate to the New Relic home screen's Logs header option, and click the (+) button at right.

Then to build your queries, use the Find logs where input field, and add desired columns to the table
view below the graph,.

To access and query metrics data:

From the New Relic home screen, *Click Browse Data > Metrics > Can Search for metricNames.

Then, customize time range and dimensions to build the desired logic for your queries.

Alternatively, you can use NRQL to build your own query searches.

;

Log Queries

Metrics Queries

Page 972 of 1835

8.7. Prometheus

Cribl Stream can send metric events to targets and third-party platforms that support Prometheus'
remote write specification (overview here).

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
Prometheus. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Prometheus. Next, click + Add New to
open a Prometheus > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Prometheus output definition.

Remote Write URL: The endpoint to send events to, e.g.: http://localhost:9200/write

Backpressure behavior: Whether to block, drop, or queue events when all receivers are exerting
backpressure.

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

8.7.1. Prometheus

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Configuring Cribl Stream to Output to Prometheus

General Settings

Optional Settings

Authentication

Page 973 of 1835

Select one of the following options for authentication:

None: Don't use authentication.

Auth token: Use HTTP token authentication. In the resulting Token field, enter the bearer token that
must be included in the HTTP authorization header.

Auth token (text secret): This option exposes a Token (text secret) drop-down, in which you can select
a stored text secret that references the bearer token described above. A Create link is available to store a
new, reusable secret.

Basic: Displays Username and Password fields for you to enter HTTP Basic authentication credentials.

Basic (credentials secret): This option exposes a Credentials secret drop-down, in which you can
select a stored text secret that references the Basic authentication credentials described above. A
Create link is available to store a new, reusable secret.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, queueing is stopped and data blocking is applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:
your/path/here/<worker-id>/<output-id> . Defaults to: $CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Page 974 of 1835

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_host (Cribl Stream Node that processed the event) and cribl_wp (Cribl Stream Worker Process that
processed the event). Supports wildcards. Other options include:

cribl_pipe – Cribl Stream Pipeline that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it. Defaults
to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Max events per request: Maximum number of events to include in the request body. The 0 default allows
unlimited events.

Flush period (sec): Maximum time between requests. Low values could cause the payload size to be smaller
than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Metric renaming expression: A JavaScript expression that can be used to rename metrics.
The default expression – name.replace(/\\./g, \'_\') – replaces all . characters in a metric's name

Processing Settings

Post‑Processing

Advanced Settings

Page 975 of 1835

with the Prometheus-supported _ character. Use the name global variable to access the metric's name. You
can access event fields' values via __e.<fieldName> .

Send metadata: Whether to generate and send metrics' metadata (type and metricFamilyName) along
with the metrics. The default Yes value displays this additional field:

Metadata flush period (sec): How frequently metrics metadata is sent out. Value must at least equal the
base Flush period (sec). (In other words, metadata cannot be flushed on a shorter interval.) Defaults to
60 seconds.

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers to declare them as safe to log in plaintext. (Sensitive headers such as
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header
names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Cribl Stream uses a set of internal fields to assist in forwarding data to a Destination.

If an event contains the internal field __criblMetrics , Cribl Stream will send it to the HTTP endpoint as a
metric event. Otherwise, Cribl Stream will drop the event.

Unlike other HTTP-based Destinations, Prometheus does not display an Advanced Settings > Compress
option. The Prometheus remote_write spec assumes that payloads are snappy-compressed by
default.

Cribl Stream will attempt to use keepalives to reuse a connection for multiple requests. A�er 2 minutes
of the first use, the connection will be thrown away, and a new one will be reattempted. This is to
prevent sticking to a particular destination when there is a constant flow of events.

If the server does not support keepalives (or if the server closes a pooled connection while idle), a new
connection will be established for the next request.

Internal Fields

Notes on HTTP-based Outputs

Page 976 of 1835

When resolving the Destination's hostname, Cribl Stream will pick the first IP in the list for use in the
next connection. Enable Round-robin DNS to better balance distribution of events between Prometheus
cluster nodes.

;

Page 977 of 1835

Cribl Stream can send data to two of the services available in Grafana Cloud: Loki for logs and Prometheus for
metrics. The Grafana Cloud Destination shapes events appropriately for Loki and Prometheus, and routes
events to the correct endpoint for each service.

To define a Grafana Cloud Destination, you need a Grafana Cloud account.

While logged in to your Grafana account, navigate to the Grafana Cloud Portal, which should be located at
https://grafana.com/orgs/<your-organization-name> , and complete the following steps.

Obtain an API key, setting its Role to MetricsPublisher . If you want Cribl Stream or an external KMS to
manage the API key, configure a key pair that references the API key.

In the Prometheus tile, click Send Metrics to open the Prometheus configuration page. Write down:

Your Remote Write Endpoint URL, for example:
https://prometheus-blocks-prod-us-central1.grafana.net/api/prom/push .

Your Prometheus Username.

In the Loki tile, click Send Logs to open the Loki configuration page. Write down:

Your Grafana Data Source settings URL, for example:
https://logs-prod-us-central1.grafana.net .

Your Loki User ID.

Decide what type of authentication to use and prepare accordingly:

If you choose Basic authentication, the username (Username in Prometheus, User in Loki) and
password (simply your Grafana API key) will remain separate.

8.7.2. Grafana Cloud

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Preparing Prometheus and Loki to Receive Data from
Cribl Stream

Page 978 of 1835

If you choose token-based authentication, construct your tokens by concatenating username, colon (:),
and password, for example 12345:cOQvDj6sJGFS3Bk2MguBW== . Because the Prometheus and Loki
usernames di�er, you need to construct a separate token for each service.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
Grafana Cloud. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Grafana Cloud. Next, click + Add New to
open a Grafana Cloud > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Grafana Cloud output definition.

Loki URL: The endpoint to send log events to, e.g.: https://logs-prod-us-central1.grafana.net . This
is the Grafana Data Source settings URL you wrote down earlier.

Prometheus URL: The endpoint to send metric events to, e.g.:
https://prometheus-blocks-prod-us-central1.grafana.net/api/prom/push . This is the Remote
Write Endpoint URL you wrote down earlier.

Backpressure behavior: Whether to block, drop, or queue events when all receivers are exerting
backpressure.

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Configuring Cribl Stream to Output to Grafana Cloud

General Settings

Optional Settings

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Page 979 of 1835

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, queueing is stopped and data blocking is applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:
your/path/here/<worker-id>/<output-id> . Defaults to: $CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None . Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

The Authentication tab provides separate Loki and Prometheus sections, enabling you to configure these
inputs separately. The two sections provide identical options.

Select one of the following options for authentication:

Auth token: Enter the bearer token that must be included in the authorization header. Use the token
that you constructed earlier. In Grafana Cloud, the bearer token is generally built by concatenating the
username and the API key, separated by a colon. E.g.: <your-username>:<your-api-key> .

Auth token (text secret): This option exposes a drop-down in which you can select a stored text secret
that references the bearer token described above. A Create link is available to store a new, reusable
secret.

Basic: This default option displays fields for you to enter HTTP Basic authentication credentials.
Username is the Loki User or Prometheus Username that you wrote down earlier. Password is your API
key in the Grafana Cloud domain.

Basic (credentials secret): This option exposes a Credentials secret drop-down, in which you can
select a stored text secret that references the Basic authentication credentials described above. A
Create link is available to store a new, reusable secret.

Authentication

Page 980 of 1835

Metric events can have dimensions, and log events have labels. Dimensions, labels, and their values are
determined by several di�erent settings in Cribl Stream. This section explains how that works, along with
other kinds of settings.

Loki uses labels to define separate streams of logging data. This is a key concept. Cribl recommends that you
familiarize yourself with the information and documentation Grafana provides about labels in Loki.

One canonical example is processing logs from servers in three environments: production, staging, and
testing. You could create a label named env whose possible values are prod , staging , and test .

One basic principle is that if you set too many labels, you can end up with too many streams.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output—both metric events, as
dimensions; and, log events, as labels. Supports wildcards.

By default, includes cribl_host (Cribl Stream Node that processed the event) and cribl_wp (Cribl Stream
Worker Process that processed the event). On the Loki side, this creates di�erent streams, which prevents
Loki from rejecting some events as being out of order when di�erent Nodes or Worker Processes are emitting
at di�erent rates.

Other options include:

cribl_pipe – Cribl Stream Pipeline that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Validate server certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to Yes .

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Processing Settings

Post‑Processing

Advanced Settings

Page 981 of 1835

Compress: When the Message format is JSON , you can toggle this slider to Yes to GZIP-compress the data
before sending to Grafana Cloud. (Applies only to Loki's JSON payloads. This slider is hidden when the
Message format is Protobuf , because both Prometheus' and Loki's Protobuf implementations are Snappy-
compressed by default.)

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it. Defaults
to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Max events per request: Maximum number of events to include in the request body. The 0 default allows
unlimited events.

Flush period (sec): Maximum time between requests. Low values could cause the payload size to be smaller
than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Metric renaming expression: A JavaScript expression that can be used to rename metrics.
The default expression – name.replace(/\\./g, \'_\') – replaces all . characters in a metric's name
with the Prometheus-supported _ character. Use the name global variable to access the metric's name. You
can access event fields' values via __e.<fieldName> .

Message format: Whether to send events as Protobuf (the default) or JSON .

Logs message field: The event field to send as log output, for example: _raw . All other event fields are
discarded. If le� blank, Cribl Stream sends a JSON representation of the whole event.

Logs labels: Name/value pairs where the value can be a static or dynamic expression that has access to all
log event fields.

Failed request logging mode: Determines which data is logged when a request fails. Use the drop-down to
select one of these options:

None (default).

Loki and Prometheus might complain about entries being delivered out of order when
Request concurrency is set > 1 and any of Flush period (sec), Max body size (KB), or Max events
per request are set to low values.

Page 982 of 1835

Payload .

Payload + Headers . Use the Safe Headers field below to specify the headers to log. If you leave that
field empty, all headers are redacted, even with this setting.

Safe headers: List the headers you want to log, in plain text.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Cribl Stream uses a set of internal fields to assist in forwarding data to a Destination.

If an event contains the internal field __criblMetrics , Cribl Stream will send it Prometheus as a metric
event. If __criblMetrics is absent, Cribl Stream will treat the event as a log and send it to Loki.

The internal field __labels specifies labels to add to log events. If a label is set in both the __labels field
and in Logs labels and/or System fields, Cribl Stream sends the value from __labels to Loki. Setting the
__labels field in a Pipeline gives you a quick way to experiment with the logs being sent.

If there are no labels set (this would happen when System fields, Logs labels, and __labels are all empty),
Cribl Stream adds a default source label, which prevents Loki from rejecting events. The source label the
concatenation of cribl , underscore (_), source type, colon (:), source-name, where source name and type
are values in the __inputId event field, for example: cribl_metrics:in_prometheus_rw . If __inputId is
missing, source is set to cribl .

The Advanced Settings > Compress toggle determines whether to compress the payload body before
sending to Loki only. The toggle setting does not apply to Prometheus payloads, which are always
compressed using Snappy.

Cribl Stream will attempt to use keepalives to reuse a connection for multiple requests. A�er 2 minutes
of the first use, the connection will be thrown away, and a new one will be reattempted. This is to
prevent sticking to a particular destination when there is a constant flow of events.

If the server does not support keepalives (or if the server closes a pooled connection while idle), a new
connection will be established for the next request.

Internal Fields

Notes on HTTP-based Outputs

Page 983 of 1835

When resolving the Destination's hostname, Cribl Stream will pick the first IP in the list for use in the
next connection. Enable Round-robin DNS to better balance distribution of events between Grafana
Cloud nodes.

;

Page 984 of 1835

Cribl Stream can send log events to Grafana's Loki log aggregation system.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Loki. Next,
click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the following
options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Loki. Next, click + Add New to open a
Loki > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Loki output definition.

Loki URL: The endpoint to send events to, e.g.: https://logs-prod-us-central1.grafana.net .

Backpressure behavior: Whether to block, drop, or queue events when all receivers are exerting
backpressure.

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Select one of the following options for authentication:

None: Don't use authentication.

8.7.3. Loki

Type: Streaming | TLS Support: Yes | PQ Support: Yes

Configuring Cribl Stream to Output to Loki

General Settings

Optional Settings

Authentication

Page 985 of 1835

Auth token: Use HTTP token authentication. In the resulting Token field, enter the bearer token that
must be included in the HTTP authorization header.

Auth token (text secret): This option exposes a drop-down in which you can select a stored text secret
that references the bearer token described above. A Create link is available to store a new, reusable
secret.

Basic: This default option displays fields for you to enter HTTP Basic authentication credentials.
Username is the Loki User. Password is your API key in the Grafana Cloud domain.

Basic (credentials secret): This option exposes a Credentials secret drop-down, in which you can
select a stored text secret that references the Basic authentication credentials described above. A
Create link is available to store a new, reusable secret.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, queueing is stopped and data blocking is applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:
your/path/here/<worker-id>/<output-id> . Defaults to: $CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None . Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Processing Settings

Page 986 of 1835

Loki uses labels to define separate streams of logging data. This is a key concept. Cribl recommends that you
familiarize yourself with the information and documentation Grafana provides about labels in Loki.

One canonical example is processing logs from servers in three environments: production, staging, and
testing. You could create a label named env whose possible values are prod , staging , and test .

One basic principle is that if you set too many labels, you can end up with too many streams.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to log events as labels. Supports wildcards.

By default, includes cribl_host (Cribl Stream Node that processed the event) and cribl_wp (Cribl Stream
Worker Process that processed the event). On the Loki side, this creates di�erent streams, which prevents
Loki from rejecting some events as being out of order when di�erent Nodes or Worker Processes are emitting
at di�erent rates.

Other options include:

cribl_pipe – Cribl Stream Pipeline that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Compress: When the Message format is JSON , you can toggle this slider to Yes to GZIP-compress the data
before sending to Loki. (When the Message format is Protobuf , data is always Snappy-compressed, so this
slider is hidden.)

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Validate server certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it. Defaults
to 30 .

Post‑Processing

Advanced Settings

Page 987 of 1835

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 1 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Max events per request: Maximum number of events to include in the request body. The 0 default allows
unlimited events.

Flush period (sec): Maximum time between requests. Low values could cause the payload size to be smaller
than its configured maximum. Defaults to 15 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Message format: Whether to send events as Protobuf (the default) or JSON .

Logs message field: The event field to send as log output, for example: _raw . All other event fields are
discarded. If le� blank, Cribl Stream sends a JSON or Protobuf representation of the whole event.

Logs labels: Name/value pairs where the value can be a static or dynamic expression that has access to all
log event fields.

Failed request logging mode: Determines which data is logged when a request fails. Use the drop-down to
select one of these options:

None (default).

Payload .

Payload + Headers . Use the Safe Headers field below to specify the headers to log. If you leave that
field empty, all headers are redacted, even with this setting.

Safe headers: List the headers you want to log, in plain text.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

;

Page 988 of 1835

8.8. Splunk

The Splunk HEC Destination can stream data to a Splunk HEC (HTTP Event Collector) receiver through the
event endpoint. The data arrives to Splunk cooked and parsed, so it enters at the Splunk data pipeline's
indexing segment.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
Splunk > HEC. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Splunk > HEC. Next, click + Add New to
open a Splunk HEC > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Splunk HEC definition.

Load balancing: Set to No by default. When toggled to Yes , see Load Balancing Settings below.

Splunk HEC endpoint: URL of a Splunk HEC endpoint to send events to
(e.g., http://myhost.example.com:8088/services/collector/event). This setting appears only when
Optional Settings > Load balancing is toggled to Off .

8.8.1. Splunk HEC

Type: Streaming | TLS Support: Yes | PQ Support: Yes

Events sent to the Splunk HEC Destination will show higher outbound data volume than the same
events sent to the Splunk Single Instance or Splunk Load Balanced Destinations, which use the S2S
binary protocol.

Configuring Cribl Stream to Output to Splunk HEC
Destinations

General Settings

Page 989 of 1835

Use the Authentication method buttons to select one of these options:

Manual: Displays an HEC Auth token field for you to enter your Splunk HEC API access token.

Secret: This option exposes an HEC Auth token (text secret) drop-down, in which you can select a
stored secret that references the API access token described above. A Create link is available to store a
new, reusable secret.

Backpressure behavior: Select whether to block, drop, or queue events when all receivers are exerting
backpressure. (Causes might include a broken or denied connection, or a rate limiter.) Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Enabling the Load balancing slider displays the following controls:

This slider determines whether to exclude all IPs of the current host from the list of any resolved hostnames.
Defaults to No .

The Splunk HEC Endpoints table is where you specify a known set of receivers on which to load-balance
data. Click + Add Endpoint to specify more receivers on new rows. Each row provides the following fields:

For Splunk Cloud endpoints, change the default http: prefix to: https: .

Authentication Settings

Optional Settings

For Splunk Cloud endpoints, change the Splunk HEC endpoint's default http: prefix to: https:

This Destination does not support Mutual TLS (mTLS).

Load Balancing Settings

Exclude Current Host IPs

Splunk HEC Endpoints

Page 990 of 1835

HEC Endpoint: Specify the URL to a Splunk HEC endpoint to send events to – e.g.,
http://localhost:8088/services/collector/event .

Load weight: Specify a weight to apply to the receiver for load-balancing purposes.

The final column provides an X button to delete any row from the table.

See the explanation of how load balancing works below.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

When you first enable load balancing, or if you edit the load weight once your data is load–balanced,
give the logic time to settle. The changes might take a few seconds to register.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Processing Settings

Page 991 of 1835

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Output multi–metrics: Toggle to Yes to output multiple-measurement metric data points. (Supported in
Splunk 8.0 and above, this format enables sending multiple metrics in a single event, improving the
e�iciency of your Splunk capacity.)

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the
CA certificate path, or by another trusted CA (e.g., the system's CA).

Round–robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned. (This setting is available only when General Settings > Load balancing is set to No .)

Compress: Toggle to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it. Defaults
to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 . Each request can potentially hit a di�erent HEC receiver.

Max body size (KB): Maximum size, in KB, of the request body. Defaults to 4096 . Lowering the size can
potentially result in more parallel requests and also cause outbound requests to be made sooner.

Max events per request: Maximum number of events to include in the request body. The 0 default allows
unlimited events.

Flush period (sec): Maximum time between requests. Low values can cause the payload size to be smaller
than the configured Max body size. Defaults to 1 .

Post‑Processing

Advanced Settings

Page 992 of 1835

Extra HTTP headers: Click + Add Header to add Name/Value pairs to pass as additional HTTP headers.

Next processing Queue: Specify the next Splunk processing queue to send the events to, a�er HEC
processing. Defaults to indexQueue .

Default _TCP_ROUTING: Specify the value of the _TCP_ROUTING field for events that do not have
_ctrl._TCP_ROUTING set. Defaults to nowhere .This is useful only when you expect the HEC receiver to
route this data on to another destination.

DNS resolution period (seconds): Re-resolve any hostnames a�er each interval of this many seconds, and
pick up destinations from A records. Defaults to 600 seconds.

Load balance stats period (seconds): Lookback tra�ic history period. Defaults to 300 seconds. (Note that if
multiple receivers are behind a hostname – i.e., multiple A records – all resolved IPs will inherit the weight of
the host, unless each IP is specified separately. In Cribl Stream load balancing, IP settings take priority over
those from hostnames.)

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers to declare them as safe to log in plaintext. (Sensitive headers such as
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header
names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Retries happen on this flush interval.

Any HTTP response code in the 2xx range is considered success.

Any response code in the 5xx range is considered a retryable error, which will not trigger
Persistent Queue (PQ) usage.

Any other response code will trigger PQ (if PQ is configured as the Backpressure behavior).

The next two fields appear only when the General Settings > Load balancing option is set to Yes .

How Does Load Balancing Work

Page 993 of 1835

Cribl Stream will attempt to load-balance outbound data as fairly as possibly across all HEC endpoints. For
example, if FQDNs/hostnames are used as the Destination addresses, and each resolves to 5 (unique) IPs,
then each Worker Process will have its # of outbound connections = {# of IPs x # of FQDNs} for purposes of the
Destination.

Data is sent by all Worker Processes to all endpoints simultaneously, and the amount sent to each receiver
depends on these parameters:

1. Respective destination weight.

2. Respective destination historical data.

By default, historical data is tracked for 300s. Cribl Stream uses this data to influence the tra�ic sent to each
destination, to ensure that di�erences decay over time, and that total ratios converge towards configured
weights.

Suppose we have two receivers, A and B, each with weight of 1 (i.e., they are configured to receive equal
amounts of data). Suppose further that the load-balance stats period is set at the default 300s and – to
make things easy – for each period, there are 200 events of equal size (Bytes) that need to be balanced.

INTERVAL TIME RANGE EVENTS TO BE DISPENSED

1 time=0s ---> time=300s 200

Both A and B start this interval with 0 historical stats each.

Let's assume that, due to various circumstances, 200 events are "balanced" as follows: A = 120 events
and B = 80 events – a di�erence of 40 events and a ratio of 1.5:1.

INTERVAL TIME RANGE EVENTS TO BE DISPENSED

2 time=300s ---> time=600s 200

At the beginning of interval 2, the load-balancing algorithm will look back to the previous interval stats and
carry half of the receiving stats forward. I.e., receiver A will start the interval with 60 and receiver B with 40.
To determine how many events A and B will receive during this next interval, Cribl Stream will use their
weights and their stats as follows:

Total number of events: events to be dispensed + stats carried forward = 200 + 60 + 40 =
300 . Number of events per each destination (weighed): 300/2 = 150 (they're equal, due to equal weight).
Number of events to send to each destination A: 150 - 60 = 90 and B: 150 - 40 = 110 .

Example

Page 994 of 1835

Totals at end of interval 2: A=120+90=210 , B=80+110=190 , a di�erence of 20 events and a ratio of 1.1:1.

Over the subsequent intervals, the di�erence becomes exponentially less pronounced, and eventually
insignificant. Thus, the load gets balanced fairly.

Cribl Stream will attempt to use keepalives to reuse a connection for multiple requests. A�er 2 minutes
of the first use, the connection will be thrown away, and a new connection will be reattempted. This is to
prevent sticking to a particular Destination when there is a constant flow of events.

If the server does not support keepalives – or if the server closes a pooled connection while idle – a new
connection will be established for the next request.

When resolving the Destination's hostname with load balancing disabled, Cribl Stream will pick the first
IP in the list for use in the next connection. Enable Round-robin DNS to better balance distribution of
events between Splunk HEC servers.

See Splunk's documentation on editing fields.conf to ensure the visibility of index-time fields sent to
Splunk by Cribl Stream.

;

If a request fails, Cribl Stream will resend the data to a di�erent endpoint. Cribl Stream will block only
if all endpoints are experiencing problems.

Notes on HTTP-based Outputs

Page 995 of 1835

The Splunk Enterprise Destination can stream data to a free Splunk Cloud instance. From the perspective of
the receiving Splunk Cloud instance, the data arrives cooked and parsed.

For a Standard Splunk Cloud instance whose ../default/outputs.conf file contains multiple indexer
entries, you must instead use Cribl Stream's Splunk Load Balanced Destination.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Splunk >
Single Instance. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Splunk > Single Instance. Next, click + Add
New to open a Splunk Single Instance > New Destination modal that provides the following options and
fields.

Output ID: Enter a unique name to identify this Splunk Single Instance definition.

Address: Hostname of the Splunk receiver.

Port: The port number on the host.

Backpressure behavior: Select whether to block, drop, or queue events when all receivers are exerting
backpressure. (Causes might include a broken or denied connection, or a rate limiter.) Defaults to Block .

8.8.2. Splunk Single Instance

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Configuring Cribl Stream to Output to Splunk
Destinations

General Settings

Optional Settings

Page 996 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data drops the newest events from being sent
out of Cribl Stream, and throws away incoming data, while leaving the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Enabled defaults to No . When toggled to Yes :

Validate server certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension. This must be a host
name, not an IP address.

Minimum TLS version: Optionally, select the minimum TLS version to use when connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use when connecting.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

TLS Settings (Client Side)

Page 997 of 1835

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to verify the server's cert.
Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to establish, before
retrying. Defaults to 10000 .

Write timeout: Amount of time (in milliseconds) to wait for a write to complete, before assuming connection
is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

Single .pem File

If you have a single .pem file containing cacert , key , and cert sections, enter it in all of these
fields above: CA certificate path, Private key path (mutual auth), and Certificate path (mutual
auth).

Timeout Settings

Processing Settings

Post‑Processing

Page 998 of 1835

cribl_output – Cribl Stream Destination that processed the event.

Output multi metrics: Toggle to Yes to output multiple-measurement metric data points. (Supported in
Splunk 8.0 and above, this format enables sending multiple metrics in a single event, improving the
e�iciency of your Splunk capacity.)

Minimize in-flight data loss: Directs Cribl Stream to check whether the indexer is shutting down, and if so, to
stop sending data. This helps minimize data loss during shutdown. Toggle to No to disable this feature.

Throttling: Throttle rate, in bytes per second. Defaults to 0 , meaning no throttling. Multiple-byte units such
as KB, MB, GB etc. are also allowed, e.g., 42 MB . When throttling is engaged, your Backpressure behavior
selection determines whether Cribl Stream will handle excess data by blocking it, dropping it, or queueing it
to disk.

Nested field serialization: Specifies how to serialize nested fields into index-time fields. Defaults to None .

Authentication method: Use the buttons to select one of these options:

Manual: In the resulting Auth token field, enter the shared secret token to use when establishing a
connection to a Splunk indexer.

Secret: This option exposes an Auth token (text secret) drop-down, in which you can select a stored
secret that references the auth token described above. A Create link is available to store a new, reusable
secret.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Data sent to Splunk is not compressed.

The only ack from indexers that Cribl Stream listens for and acts upon is the shutdown signal described
in Minimize in-flight data loss above.

If events have a Cribl Stream internal field called __criblMetrics , they'll be forwarded to Splunk as
metric events.

If events do not have a _raw field, they'll be serialized to JSON prior to sending to Splunk.

Advanced Settings

Notes about Forwarding to Splunk

Page 999 of 1835

See Splunk's documentation on editing fields.conf to ensure the visibility of index-time fields sent to
Splunk by Cribl Stream.

;

Page 1000 of 1835

The Splunk Load Balanced Destination can load-balance the data it streams to multiple Splunk receivers.
Downstream Splunk instances receive the data cooked and parsed.

Cribl Stream will attempt to load-balance outbound data as fairly as possibly across all receivers (listed as
Destinations in the GUI). If FQDNs/hostnames are used as the Destination address and each resolves to, for
example, 5 (unique) IPs, then each Worker Process will have its # of outbound connections = # of IPs x # of
FQDNs for purposes of the SplunkLB output. Data is sent by all Worker Processes to all receivers
simultaneously, and the amount sent to each receiver depends on these parameters:

1. Respective destination weight.

2. Respective destination historical data.

By default, historical data is tracked for 300s. Cribl Stream uses this data to influence the tra�ic sent to each
destination, to ensure that di�erences decay over time, and that total ratios converge towards configured
weights.

Suppose we have two receivers, A and B, each with weight of 1 (i.e., they are configured to receive equal
amounts of data). Suppose further that the load-balance stats period is set at the default 300s and – to
make things easy – for each period, there are 200 events of equal size (Bytes) that need to be balanced.

INTERVAL TIME RANGE EVENTS TO BE DISPENSED

1 time=0s ---> time=300s 200

Both A and B start this interval with 0 historical stats each.

8.8.3. Splunk Load Balanced

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

For additional details about sending to Splunk Cloud, see Splunk Cloud and BYOL Integrations.

How Does Load Balancing Work

Example

Page 1001 of 1835

Let's assume that, due to various circumstances, 200 events are "balanced" as follows: A = 120 events
and B = 80 events – a di�erence of 40 events and a ratio of 1.5:1.

INTERVAL TIME RANGE EVENTS TO BE DISPENSED

2 time=300s ---> time=600s 200

At the beginning of interval 2, the load-balancing algorithm will look back to the previous interval stats and
carry half of the receiving stats forward. I.e., receiver A will start the interval with 60 and receiver B with 40.
To determine how many events A and B will receive during this next interval, Cribl Stream will use their
weights and their stats as follows:

Total number of events: events to be dispensed + stats carried forward = 200 + 60 + 40 =
300 . Number of events per each destination (weighed): 300/2 = 150 (they're equal, due to equal weight).
Number of events to send to each destination A: 150 - 60 = 90 and B: 150 - 40 = 110 .

Totals at end of interval 2: A=120+90=210 , B=80+110=190 , a di�erence of 20 events and a ratio of 1.1:1.

Over the subsequent intervals, the di�erence becomes exponentially less pronounced, and eventually
insignificant. Thus, the load gets balanced fairly.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Splunk >
Load Balanced. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Splunk > Load Balanced. Next, click + Add
New to open a Splunk Load Balanced > New Destination modal that provides the following options and
fields.

If a request fails, Cribl Stream will resend the data to a di�erent endpoint. Cribl Stream will block only
if all endpoints are experiencing problems.

Configuring Cribl Stream to Load-Balance to Multiple
Splunk Destinations

General Settings

Page 1002 of 1835

Output ID: Enter a unique name to identify this Splunk LB Destination definition.

Toggling Indexer discovery to Yes enables automatic discovery of indexers in an indexer clustering
environment. This hides both Exclude current host IPs and the Destinations section, and displays the
following fields:

Site: Clustering site from which indexers need to be discovered. In the case of a single site cluster, default
is the default entry.

Cluster Manager URI: Full URI of Splunk cluster manager, in the format: scheme://host:port .
(Worker Nodes/Edge Nodes normally access the cluster manager on port 8089 to get the list of currently
online indexers.)

Refresh period: Time interval (in seconds) between two consecutive fetches of indexer list from cluster
manager. Defaults to 300 seconds, i.e., 5 minutes.

Authentication method: Use the buttons to select one of these options for authenticating to cluster
Manager for indexer discovery:

Manual: In the resulting Auth token field, enter the required token.

Secret: This option exposes a Auth token (text secret) drop-down, in which you can select a stored
secret that references the auth token. A Create link is available to store a new, reusable secret.

The Destinations section appears only when Indexer discovery is set to its No default. Here, you specify a
known set of Splunk receivers on which to load-balance data.

Click + Add Destination to specify more receivers on new rows. Each row provides the following fields:

Address: Hostname of the Splunk receiver. Optionally, you can paste in a comma-separated list, in
<host>:<port> format.

Port: Port number to send data to.

TLS: Whether to inherit TLS configs from group setting, or disable TLS. Defaults to inherit .

TLS servername: Servername to use if establishing a TLS connection. If not specified, defaults to
connection host (if not an IP). Otherwise, uses the global TLS settings.

Each Worker Process performs its own indexer discovery according to the above settings.

Destinations

Page 1003 of 1835

Load weight: The weight to apply to this Destination for load-balancing purposes.

The final column provides an X button to delete any row from the Destinations table.

Toggle Exclude current host IPs to Yes if you want to exclude all the current host's IP addresses from the
list of resolved hostnames.

Backpressure behavior: Select whether to block, drop, or queue events when all receivers in this group are
exerting backpressure. (Causes might include a broken or denied connection, or a rate limiter.) Defaults to
Block . When toggled to Persistent Queue , adds the Persistent Queue Settings section (le� tab) to the
modal.

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

To enable token authentication on the Splunk cluster manager, you can find complete instructions in
Splunk's Enable or Disable Token Authentication documentation. This option requires Splunk 7.3.0 or higher,
and requires the following capabilites: list_indexer_cluster and list_indexerdiscovery .

For details on creating the token, see Splunk's Create Authentication Tokens topic – especially its section on
how to Configure Token Expiry and "Not Before" Settings.

If you have a failover site configured on Splunk's cluster manager, Cribl respects this configuration, and
forwards the data to the failover site in case of site failure.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Optional Settings

Enabling Cluster Manager Authentication

Be sure to give the token an Expiration setting well in the future, whether you use Relative Time or
Absolute Time. Otherwise, the token will inherit Splunk's default expiration time of +30d (30 days in
the future), which will cause indexer discovery to fail.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Page 1004 of 1835

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down.. Drop new data drops the newest events being sent out
of Cribl Stream, throws away incoming data, and leaves the contents of the PQ unchanged.

Enabled defaults to No . When toggled to Yes :

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension. This must be a host
name, not an IP address.

Minimum TLS version: Optionally, select the minimum TLS version to use when connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use when connecting.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to verify the server's cert.
Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

TLS Settings (Client Side)

Page 1005 of 1835

Connection timeout: Amount of time (in milliseconds) to wait for the connection to establish, before
retrying. Defaults to 10000 ms.

Write timeout: Amount of time (in milliseconds) to wait for a write to complete, before assuming
connection is dead. Defaults to 60000 ms.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Output Multi Metrics: Toggle this slider to Yes to output multiple-measurement metric data points.
(Supported in Splunk 8.0 and above, this format enables sending multiple metrics in a single event,
improving the e�iciency of your Splunk capacity.)

Minimize in-flight data loss: If set to Yes (the default), Cribl Stream will check whether the indexer is
shutting down and, if so, stop sending data. This helps minimize data loss during shutdown.

Single PEM File

If you have a single .pem file containing cacert , key , and cert sections, enter this file's path in all
of these fields above: CA certificate path, Private key path (mutual auth), and Certificate path
(mutual auth).

Timeout Settings

Processing Settings

Post-Processing

Advanced Settings

Page 1006 of 1835

DNS resolution period (seconds): Re-resolve any hostnames a�er each interval of this many seconds, and
pick up destinations from A records. Defaults to 600 seconds.

Load balance stats period (seconds): Lookback tra�ic history period. Defaults to 300 seconds. (Note that If
multiple receivers are behind a hostname – i.e., multiple A records – all resolved IPs will inherit the weight of
the host, unless each IP is specified separately. In Cribl Stream load balancing, IP settings take priority over
those from hostnames.)

Max connections: Constrains the number of concurrent indexer connections, per Worker Process, to limit
memory utilization. If set to a number > 0 , then on every DNS resolution period (or indexer discovery),
Cribl Stream will randomly select this subset of discovered IPs to connect to. Cribl Stream will rotate IPs in
future resolution periods – monitoring weight and historical data, to ensure fair load balancing of events
among IPs.

Nested field serialization: Specifies whether and how to serialize nested fields into index-time fields. Select
None (the default) or JSON .

Authentication method: Use the buttons to select one of these options:

Manual: In the resulting Auth token field, enter the shared secret token to use when establishing a
connection to a Splunk indexer.

Secret: This option exposes an Auth token (text secret) drop-down, in which you can select a stored
secret that references the auth token described above. A Create link is available to store a new, reusable
secret.

Throttling: Throttle rate, in bytes per second. Multiple byte units such as KB, MB, GB, etc., are also allowed.
E.g., 42 MB . Default value of 0 indicates no throttling. When throttling is engaged, excess data will be
dropped only if Backpressure behavior is set to Drop events. (Data will be blocked for all other
Backpressure behavior settings.)

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

To connect to Splunk Cloud, you will need to extract the private and public keys from the Splunk-provided
Splunk Cloud Universal Forwarder credentials package. You will also need to reference the CA Certificate
located in the same package.

SSL Configuration for Splunk Cloud – Special Note

Page 1007 of 1835

You can reuse many of the settings in this Splunk Cloud package to set up Splunk Cloud Destinations. Use the
following steps:

Step 1. Extract the splunkclouduf.spl package on the Cribl Stream instance that you will be connecting to
Splunk Cloud. You will have a folder that looks something like this:

Step 2. (optional) Test connectivity to Splunk Cloud, using the Root CA certificate:

To test the connection, you can use any of the URLs listed in the [tcpout:splunkcloud] stanza's
outputs.conf section.

Step 3. Extract the private key from the Splunk Cloud certificate. At the prompt, you will need the
sslPassword value from the outputs.conf . Using Elliptic Curve keys:

If you are using RSA keys, instead use:

Step 4. Extract the public key for the Server Certificate:

100_my-splunk-cloud_splunkcloud
 /default/
 outputs.conf
 limits.conf
 your-splunk-cloud_server.pem
 your-splunk-cloud_cacert.pem

openssl s_client -CA 100_<your-splunk-cloud>_splunkcloud/default/my-splunk-
cloud_cacert.pem -connect inputs1.<your-splunk-cloud>.splunkcloud.com:9997

You can simplify Steps 3 and 4 below by dragging and dropping (or uploading) the .pem files into
Cribl Stream's New Certificates modal. See SSL Certificate Configuration.

openssl ec -in 100_<your-splunk-cloud>_splunkcloud/default/<your-splunk-
cloud>_server_cert.pem -out private.pem

openssl rsa -in 100_<your-splunk-cloud>_splunkcloud/default/<your-splunk-
cloud>_server_cert.pem -out private.pem

openssl x509 -in 100_<your-splunk-cloud>_splunkcloud/default/<your-splunk-
cloud>_server_cert.pem -out server.pem

Page 1008 of 1835

Step 5. In the Splunk Load Balanced Destination's TLS Settings (Client Side) section, enter the following:

CA Certificate Path: Path to <your-splunk-cloud>_cacert.pem .

Private Key Path (mutual auth): Path to private.pem (Step 3 above).

Certificate Path (mutual auth): Path to server.pem (Step 4 above).

Step 6. In a distributed deployment, enable Worker UI access, and verify that the Certificate files have been
distributed to individual workers. If they are not present, copy the Certificate files to the Workers, using
exactly the same paths you used at the Group level.

Data sent to Splunk is not compressed.

The only ack from indexers that Cribl Stream listens for and acts upon is the shutdown signal described
in Minimize in-flight data loss above.

If events have a Cribl Stream internal field called __criblMetrics , they'll be forwarded to Splunk as
metric events.

If events do not have a _raw field, they'll be serialized to JSON prior to sending to Splunk.

You can copy and paste the Splunk Cloud servers from the [tcpout:splunkcloud] stanza into the
Splunk Load Balanced Destination's General Settings > Destinations section. E.g., from the example
stanza below, you would copy only the bolded contents:

[tcpout:splunkcloud]

server = inputs1.your�splunk�cloud.splunkcloud.com:9997, inputs2.your�splunk�

cloud.splunkcloud.com:9997, inputs3.your�splunk�cloud.splunkcloud.com:9997,

inputs4.your�splunk�cloud.splunkcloud.com:9997, inputs5.your�splunk�

cloud.splunkcloud.com:9997, inputs6.your�splunk�cloud.splunkcloud.com:9997,

inputs7.your�splunk�cloud.splunkcloud.com:9997, inputs8.your�splunk�

cloud.splunkcloud.com:9997, inputs9.your�splunk�cloud.splunkcloud.com:9997,

inputs10.your�splunk�cloud.splunkcloud.com:9997, inputs11.your�splunk�

cloud.splunkcloud.com:9997, inputs12.your�splunk�cloud.splunkcloud.com:9997,

In a distributed deployment, enter this Destination configuration on each Worker Group/Fleet that
forwards to Splunk Cloud. Then commit and deploy your changes.

Notes About Forwarding to Splunk

Page 1009 of 1835

inputs13.your�splunk�cloud.splunkcloud.com:9997, inputs14.your�splunk�

cloud.splunkcloud.com:9997, inputs15.your�splunk�cloud.splunkcloud.com:9997

compressed = false

From limits.conf , copy the [thruput] value, and paste it into the Splunk Load Balanced
Destination's Advanced Settings tab > Throttling setting.

If you enable TLS including cert validation, indexer discovery might trigger errors. This is because by
default, Cribl will get the indexers' IPs from their certs, not their fully qualified domain names (FQDNs).

As a workaround, use server.conf on each indexer, setting register_forwarder_address =
<your.idx.fqdn> . Cribl will now get that value, and the certs will match.

;

Page 1010 of 1835

8.9. Internal

The Cribl HTTP Destination is available only in distributed deployments. It enables Worker Nodes to send
data to peer Nodes, as long as all Nodes are connected to the same Leader.

You'll find this Destination especially valuable in a hybrid Cloud deployment. In single‑instance mode or for
testing, you can substitute the Webhook Destination. (However, this substitution will not facilitate sending
all internal fields, as described below.)

You might choose this Destination over the Cribl TCP Destination in certain circumstances, such as when a
firewall or proxy blocks raw TCP egress.

Configuring Cribl HTTP flow between peer Worker Nodes imposes some particular requirements:

The Cribl HTTP Destination must be on a Worker Node that is connected to the same Leader as the
Cribl HTTP Source(s).

You must specify the same Leader Address on the Worker Nodes that host both the Destination and
Source. Otherwise, token verification will fail – breaking the connection and preventing data flow.

To get the Leader Address specifically for Cribl.Cloud hybrid Workers, see Hybrid Cribl HTTP/ Cribl TCP
Configuration.

To configure the Leader Address via the UI, log directly into each Worker Node's UI. Then select
⚙ Settings (lower le�) > Distributed Settings > Leader Settings > Address.

To configure the Leader Address via the instance.yml file, the host values on the connecting
Worker Nodes must be identical. In this example, both Worker Nodes must point to cribl-leader :

8.9.1. Cribl HTTP

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Configuration Requirements

Page 1011 of 1835

This Destination's Cribl endpoint field must point to the Address and Port you've configured on its peer
Cribl HTTP Source(s).

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
Cribl HTTP. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Cribl HTTP. Next, click + Add New to open
a Cribl HTTP > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Destination definition.

Load balancing: Set to No by default. When toggled to Yes , see Load Balancing Settings below.

Cribl endpoint: URL of a Cribl Worker to send events to, e.g., http://localhost:10200 .

Compression: Codec to use to compress the data before sending. Defaults to Gzip .

Backpressure behavior: Specifies whether to block, drop, or queue events when all receivers are exerting
backpressure. Defaults to Block . See Persistent Queue Settings below.

distributed:
mode: master
master:
host: cribl-leader
port: 4200

Configuring a Cribl HTTP Destination

General Settings

The Cribl endpoint field appears only when Load balancing is toggled to Off . Its value must point
to the Address and Port you've configured on the peer Cribl HTTP Source to which you're sending.

Optional Settings

Page 1012 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Enabling the Load balancing slider displays the following controls.

Exclude Current Host IPs: This slider determines whether to exclude all IPs of the current host from the list
of any resolved hostnames. Defaults to No .

Cribl Worker Endpoints: In this table, you specify a set of Cribl Workers on which to load-balance data.
To specify more Workers on new rows, click + Add Endpoint. Each row provides the following fields.

Cribl Endpoint: Enter the URL of a Worker to send events to.

Load Weight: Specify a weight to apply to this Worker, for load-balancing purposes.

The final column provides an X button to delete any row from the table.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Load Balancing Settings

Must point to the Address and Port configured on a peer Cribl HTTP Source to which you're
sending.

Persistent Queue Settings

This section displays when the Backpressure behavior is set to Persistent Queue.

Page 1013 of 1835

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Validate server certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to Yes .

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned. Only displayed when the General Settings tab's Load balancing option is disabled.

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it. Defaults
to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Processing Settings

Post‑Processing

Advanced Settings

Page 1014 of 1835

Max events per request: Maximum number of events to include in the request body. The 0 default allows
unlimited events.

Flush period (sec): Maximum time between requests. Low values could cause the payload size to be smaller
than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers to declare them as safe to log in plaintext. (Sensitive headers such as
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header
names.

Exclude fields: Fields to exclude from the event. By default, this Destination forwards all useful internal
fields.

Auth Token TTL minutes: The number of minutes before the internally generated authentication token
expires, valid values between 1 and 60.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

The following options are added if you enable the General Settings tab's Load balancing option:

DNS resolution period (seconds): Re-resolve any hostnames a�er each interval of this many seconds, and
pick up destinations from A records. Defaults to 600 seconds.

Load balance stats period (seconds): Lookback tra�ic history period. Defaults to 300 seconds. (Note that If
multiple receivers are behind a hostname – i.e., multiple A records – all resolved IPs will inherit the weight of
the host, unless each IP is specified separately. In Cribl Stream load balancing, IP settings take priority over
those from hostnames.)

The Cribl HTTP and Cribl TCP Destinations di�er from all other Destinations in the way they handle internal
fields: They normally send data back to their respective Cribl Sources – where Cribl internal fields, metrics,
and sender-generated fields can all be useful.

Internal Fields Loopback to Sources

Page 1015 of 1835

These Destinations forward all internal fields by default, except for any that you exclude in
Advanced Settings > Exclude fields.

As examples, if the following fields are present on an event forwarded by a Cribl HTTP or Cribl TCP
Destination, they'll be accessible in the ingesting Cribl HTTP/TCP Source: __criblMetrics , __srcIpPort ,
__inputId , and __outputId .

;

Page 1016 of 1835

The Cribl TCP Destination is available only in distributed deployments. It enables Worker Nodes to send data
to peer Nodes, as long as all Nodes are connected to the same Leader. You'll find this Destination especially
valuable in a hybrid Cloud deployment.

You might choose this Destination over the Cribl HTTP Destination in certain circumstances, such as when a
firewall or proxy allows raw TCP egress. In single‑instance mode or for testing, you can substitute the
TCP JSON Destination. (However, this substitution will not facilitate sending all internal fields, as described
below.)

Configuring Cribl TCP flow between peer Worker Nodes imposes some particular requirements:

The Cribl TCP Destination must be on a Worker Node that is connected to the same Leader as the
Cribl TCP Source(s).

You must specify the same Leader Address on the Worker Nodes that host both the Destination and
Source. Otherwise, token verification will fail – breaking the connection and preventing data flow.

To get the Leader Address specifically for Cribl.Cloud hybrid Workers, see Hybrid Cribl HTTP/ Cribl TCP
Configuration.

To configure the Leader Address via the UI, log directly into each Worker Node's UI. Then select
⚙ Settings (lower le�) > Distributed Settings > Leader Settings > Address.

To configure the Leader Address via the instance.yml file, the host values on the connecting
Worker Nodes must be identical. In this example, both Worker Nodes must point to cribl-leader :

8.9.2. Cribl TCP

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Configuration Requirements

distributed:
mode: master
master:
host: cribl-leader
port: 4200

Page 1017 of 1835

This Destination's Address and Port values must match the Address and Port you've configured on its
peer Cribl TCP Source(s).

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Cribl TCP.
Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the following
options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Cribl TCP. Next, click + Add New to open a
Cribl TCP > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Destination definition.

Load balancing: When toggled to Yes , see Load Balancing Settings below.

Address: Hostname of the receiver.

Port: Port number to connect to on the host, e.g., 10300 .

Compression: Codec to use to compress the data before sending. Defaults to None .

Throttling: Throttle rate, in bytes per second. Defaults to 0 , meaning no throttling. Multiple-byte units such
as KB, MB, GB etc. are also allowed, e.g., 42 MB . When throttling is engaged, your Backpressure behavior
selection determines whether Cribl Stream will handle excess data by blocking it, dropping it, or queueing it
to disk.

Backpressure behavior: Specifies whether to block, drop, or queue events when all receivers are exerting
backpressure. Defaults to Block . See Persistent Queue Settings below.

Configuring a Cribl TCP Destination

General Settings

The following two fields appear only with Load balancing's default No setting, and must match the
Address and Port you've configured on the peer Cribl TCP Source to which you're sending.

Optional Settings

Page 1018 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Enabling the Load balancing silder displays the following controls:

This slider determines whether to exclude all IPs of the current host from the list of any resolved hostnames.
Defaults to No .

The Destinations table is where you specify a set of receivers on which to load-balance data.
Click + Add Destination to specify more receivers on new rows. Each row provides the following fields:

Address: Hostname of a receiver. Optionally, you can paste in a comma-separated list, in <host>:<port>
format.

Port: Port number to send data to on the host.

TLS: Whether to inherit TLS configs from group setting, or disable TLS. Defaults to inherit .

TLS servername: Servername to use if establishing a TLS connection. If not specified, defaults to connection
host (if not an IP); otherwise, uses the global TLS settings.

Load Weight: Specify a weight to apply to the receiver for load-balancing purposes.

The final column provides an X button to delete any row from the table.

Load Balancing Settings

Exclude Current Host IPs

Destinations

Each Address/Port combination must match the Address and Port configured on a peer Cribl HTTP
Source to which you're sending.

Persistent Queue Settings

This section displays when the Backpressure behavior is set to Persistent Queue.

Page 1019 of 1835

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Use TLS defaults to No . When toggled to Yes :

Autofill?: This setting is experimental.

Validate server certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension. This must be a host
name, not an IP address.

Minimum TLS version: Optionally, select the minimum TLS version to use when connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use when connecting.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to verify the server's cert.
Path can reference $ENV_VARS .

TLS Settings (Client Side)

Page 1020 of 1835

Private key path (mutual auth): Path on client containing the private key (in PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to establish before
retrying. Defaults to 10000 .

Write timeout: Amount of time (in milliseconds) to wait for a write to complete before assuming connection
is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Auth Token TTL minutes: The number of minutes before the internally generated authentication token
expires, valid values between 1 and 60.

Exclude fields: Fields to exclude from the event. By default, this Destination forwards all useful internal
fields.

Timeout Settings

Processing Settings

Post‑Processing

Advanced Settings

Page 1021 of 1835

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

The following options are added if you enable the General Settings tab's Load balancing option:

DNS resolution period (seconds): Re-resolve any hostnames a�er each interval of this many seconds, and
pick up destinations from A records. Defaults to 600 seconds.

Load balance stats period (seconds): Lookback tra�ic history period. Defaults to 300 seconds. (Note that If
multiple receivers are behind a hostname – i.e., multiple A records – all resolved IPs will inherit the weight of
the host, unless each IP is specified separately. In Cribl Stream load balancing, IP settings take priority over
those from hostnames.)

Max connections: Constrains the number of concurrent receiver connections, per Worker Process, to limit
memory utilization. If set to a number > 0 , then on every DNS resolution period, Cribl Stream will randomly
select this subset of discovered IPs to connect to. Cribl Stream will rotate IPs in future resolution periods –
monitoring weight and historical data, to ensure fair load balancing of events among IPs.

The Cribl TCP and Cribl HTTP Destinations di�er from all other Destinations in the way they handle internal
fields: They normally send data back to their respective Cribl Sources – where Cribl internal fields, metrics,
and sender-generated fields can all be useful.

These Destinations forward all internal fields by default, except for any that you exclude in
Advanced Settings > Exclude fields.

As examples, if the following fields are present on an event forwarded by a Cribl HTTP or Cribl TCP
Destination, they'll be accessible in the ingesting Cribl HTTP/TCP Source: __criblMetrics , __srcIpPort ,
__inputId , and __outputId .

;

Internal Fields Loopback to Sources

Page 1022 of 1835

The Cribl Stream Destination enables Edge Nodes, and/or Cribl Stream instances, to send data to one or
multiple Cribl Stream instances.

The replacement Destinations, Cribl TCP and Cribl HTTP, don't rely on IP filtering, for the following reasons:

Load balancers and/or proxies between the Cribl Destination and Cribl Source can change the IP
address, resulting in a bad match and rejected ingest.

A Lookup table of all IP addresses needed to be sent to each Worker Node/Edge Node from the Leader,
which is not scalable.

The Lookup table of IP addresses required constant communication between the
Worker Node/Edge Nodes and the Leader, making this fragile and placing an arbitrary reliance on the
Leader that shouldn't be there.

In the QuickConnect UI: Click + Add Destination beside Destinations. From the resulting drawer's tiles,
select Cribl Stream. Next, click + Add New to open a New Cribl Stream drawer.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Cribl Stream. Next, click + Add New to
open a Cribl Stream > New Destination modal that provides the following options and fields.

8.9.3. Cribl Stream (Deprecated)

This Destination is deprecated as of Cribl Stream 3.5. Please instead use the Cribl TCP or the
Cribl HTTP Destination to enable Worker Nodes to send data to peer Nodes.

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Use New Destinations Instead

Configuring a Cribl Stream Destination

Page 1023 of 1835

Output ID: Enter a unique name to identify this Destination definition.

Address: Hostname of the receiver.

Port: Port number to connect to on the host.

Use the Authentication method buttons to select one of these options:

Manual: In the resulting Auth token field, you can optionally enter an auth token to use in the
connection header.

Secret: This option exposes an Auth token (text secret) drop-down, in which you can select a stored
secret that references the authToken header field value described above. A Create link is available to
store a new, reusable secret.

Compression: Codec to use to compress the data before sending. Defaults to None .

Throttling: Throttle rate, in bytes per second. Defaults to 0 , meaning no throttling. Multiple-byte units such
as KB, MB, GB etc. are also allowed, e.g., 42 MB . When throttling is engaged, your Backpressure behavior
selection determines whether Cribl Stream will handle excess data by blocking it, dropping it, or queueing it
to disk.

Backpressure behavior: Specifies whether to block, drop, or queue events when all receivers are exerting
backpressure. Defaults to Block . See Persistent Queue Settings below.

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

General Settings

Authentication Settings

Optional Settings

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Page 1024 of 1835

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Enabled defaults to No . When toggled to Yes :

Autofill?: This setting is experimental.

Validate server certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension. This must be a host
name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to verify the server's cert.
Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

TLS Settings (Client Side)

Page 1025 of 1835

Minimum TLS version: Optionally, select the minimum TLS version to use when connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use when connecting.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to establish before
retrying. Defaults to 10000 .

Write timeout: Amount of time (in milliseconds) to wait for a write to complete before assuming connection
is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

;

Timeout Settings

Processing Settings

Post‑Processing

Advanced Settings

Page 1026 of 1835

The Default Destination simply enables you to specify a default output from among your already-configured
Destinations.

In the QuickConnect UI, a Default Destination is preconfigured and ready to use in the right Destinations
column. Hover over the tile and click its Configure button to proceed.

In the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations, then
select Default from the Data Destinations page's tiles or the Destinations le� nav. From the resulting
Manage Default Destination page, click anywhere on the default row to proceed.

Default Destination – click to configure

In the resulting Destinations > Default drawer or modal, use the Default Output ID drop-down to select one
of your configured Destinations. A�er you click Save, this will become Cribl Stream's default Destination.

The only other field here is the Output ID, whose value is locked to default .

If you've configured an Output Router Destination with a branch that points to this Default Destination
(default:default), you cannot select that Output Router here. This restriction prevents a circular
dependency.

;

8.9.4. Default

Type: Internal | TLS Support: N/A | PQ Support: N/A

Configuring Cribl Stream's Default Destination

Preventing Circular References

Page 1027 of 1835

The DevNull Destination simply drops events. Cribl provides this as a basic output to test Pipelines and
Routes.

DevNull requires no configuration: A DevNull Destination is preconfigured and active as soon as you install
Cribl Stream.

To verify this, from the top nav of a Cribl Stream instance or Group, select Data > Destinations, then select
DevNull from the Data Destinations page's tiles or the Destinations le� nav. Look for the Live indicator at
the top right.

In the QuickConnect UI, a DevNull Destination is preconfigured and ready to use in the right Destinations
column.

;

8.9.5. DevNull

Type: Internal | TLS Support: N/A | PQ Support: N/A

Configuring Cribl Stream to Forward to DevNull

Page 1028 of 1835

Output Routers are meta-destinations that allow for output selection based on rules. Rules are evaluated in
order, top‑down, with the first match being the winner.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
Output Router. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Output Router. Next, click + Add New to
open an Output Router > New Destination modal that provides the following options and fields.

Router name: Enter a unique name to identify this Router definition.

Rules: A list of event routing rules. Each provides the following settings:

Filter expression: JavaScript expression to select events to send to output.

Output: Output to send matching events to.

Description: Optionally, enter a description of this rule's purpose.

Final: Toggle to No if you want the event to be checked against other rules lower in the stack.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

8.9.6. Output Router

Type: Internal | TLS Support: N/A | PQ Support: N/A

Configuring Cribl Stream to Send to an Output Router

General Settings

Optional Settings

Page 1029 of 1835

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

An Output Router cannot reference another. This is by design, so as to avoid circular references.

Also to avoid circular references, an Output Router cannot reference a Default Destination that points
back to Output Router.

Events that do not match any of the rules are dropped. Use a catchall rule to change this behavior.

No post-processing (conditioning) can be done here. Instead, use pre-processing Pipelines on the
Source tier.

Data can be cloned by toggling the Final flag to No . (The default is Yes , i.e., no cloning.)

Scenario:

Send all events where host starts with 66 to Destination San Francisco .

From the rest of the events:
Send all events with method field POST or GET to both Seattle and Los Angeles (i.e., clone).

Send the remaining events to New York City .

Router Name: router66

FILTER EXPRESSION OUTPUT FINAL

host.startsWith('66') San Francisco Yes

Advanced Settings

Limitations/Options

Example

Page 1030 of 1835

FILTER EXPRESSION OUTPUT FINAL

method=='POST' || method=='GET Seattle No

method=='POST' || method=='GET' Los Angeles Yes

true New York Yes

;

Page 1031 of 1835

Cribl Stream can send log and metric events to Datadog. (Datadog supports metrics only of type gauge ,
counter , and rate via its REST API.)

Cribl Stream sends events to the following Datadog endpoints in the US region. Use a DNS lookup to discover
and include the corresponding IP addresses in your firewall rules' allowlist.

Logs: https://http-intake.logs.datadoghq.com/v1/input

Metrics: https://api.datadoghq.com/api/v1/series

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Datadog.
Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the following
options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Datadog. Next, click + Add New to open a
Datadog > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Destination definition.

Use the Authentication method buttons to select one of these options:

Manual: Displays a field for you to enter an API key that is available in your Datadog profile.

Secret: This option exposes an API key (text secret) drop-down, in which you can select a stored secret
that references the API access token described above. A Create link is available to store a new, reusable

8.10. Datadog

Type: Streaming | TLS Support: Yes | PQ Support: Yes

Configuring Cribl Stream to Output to Datadog

General Settings

Authentication Settings

Page 1032 of 1835

secret.

API key: Enter your Datadog organization's API key.

Datadog site: Select the US (default) or Europe region.

Send logs as: Specify the content type to use when sending logs. Defaults to application/json , where
each log message is represented by a JSON object. The alternative text/plain option sends one message
per line, with newline \n delimiters.

Message field: Name of the event field that contains the message to send. If not specified, Cribl Stream
sends a JSON representation of the whole event (regardless of whether Send logs as is set to JSON or plain
text).

Source: Name of the source to send with logs. If you're sending logs as JSON objects (i.e., you've selected
Send logs as: application/json), the event's source field (if set) will override this value.

Host: Name of the host to send with logs. If you're sending logs as JSON objects, the event's host field (if
set) will override this value.

Service: Name of the service to send with logs. If you're sending logs as JSON objects, the event's
__service field (if set) will override this value.

Datadog tags: List of tags to send with logs (e.g., env:prod , env_staging:east).

Severity: Default value for message severity. If you're sending logs as JSON objects, the event's __severity
field (if set) will override this value. Defaults to info ; the drop-down o�ers many other severity options.

Allow API key from events: If toggled to Yes , any API key in the __agent_api_key internal field will
override the API key field's value. This option is useful if events originate from multiple Datadog
Agent Sources, each configured with a di�erent API key. (For further details, see Managing API Keys.)

Backpressure behavior: Specify whether to block, drop, or queue events when all receivers are exerting
backpressure. Defaults to Block .

Optional Settings

Datadog uses the above five fields (source , host , __service , tags , and __severity) to
enhance searches and UX.

Page 1033 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None . Select
Gzip to enable compression.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Processing Settings

Post‑Processing

Page 1034 of 1835

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Compress: Toggle this slider to Yes to compress log events' payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it. Defaults
to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Max events per request: Maximum number of events to include in the request body. The 0 default allows
unlimited events.

Flush period (s): Maximum time between requests. Low values could cause the payload size to be smaller
than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers to declare them as safe to log in plaintext. (Sensitive headers such as
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header
names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Advanced Settings

Page 1035 of 1835

Cribl Stream uses a set of internal fields to assist in forwarding data to a Destination.

If an event contains the internal field __criblMetrics , Cribl Stream will send it to Datadog as a metric
event. Otherwise, Cribl Stream will send it as a log event.

You can use these fields to override outbound event values for log events:

__service

__severity

No internal fields are supported for metric events.

You might find these Datadog references helpful:

Submit Metrics

Send Logs

Metrics Types

;

Internal Fields

For More Information

Page 1036 of 1835

Cribl Stream can send log events to DataSet. This Destination sends batches of events, as JSON, to the
DataSet API's addEvent method.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select DataSet.
Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the following
options and fields.

Or, from the top nav of a Cribl Stream instance or Group, select Data > Destinations. From the top nav of a
Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select DataSet. Next, click + Add New to open a
New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Destination definition.

Use the Authentication method buttons to select one of these options:

Manual: Displays a field for you to enter an API key that is available in your DataSet profile.

Secret: This option exposes an API key (text secret) drop-down to select a stored secret that references
an API key. A Create link is available to store a new, reusable secret.

API key: Enter your DataSet API key that has Log Write Access .

8.11. DataSet

Type: Streaming | TLS Support: Yes | PQ Support: Yes

Configuring Cribl Stream to Output to DataSet

General Settings

Authentication Settings

Optional Settings

Page 1037 of 1835

DataSet site: Select the US (default), Europe , or Custom region. If you select Custom , enter your custom
endpoint URL.

Message field: Name of the event field that contains the message to send. If not specified, Cribl Stream
sends all non-internal fields of events passing through the Destination. If specified, we follow this logic:

If an event does not contain the specified field, send the whole event (except internal fields).

If an event has the specified field, and the field's value is a non-object, send the event in the format:
{ message: <value from event> } .

If an event has the specified field, and the field's value is an object, send the event in the format:
{ <all fields from the object> } .

Exclude fields: Fields to exclude from the event if the Message field either is unspecified or refers to an
object. Ignored if the Message field is a string, number, or boolean. If empty, Cribl Stream sends all non-
internal fields.

Default exclude fields are sev , _time , ts , and thread . We automatically send these fields as metadata of
the event, in DataSet's required format. This is to avoid charges for field bytes – metadata bytes do not count
toward ingestion.

Server/host field: Name of the event field that contains the server or host that generated the event.
Cribl Stream groups events by the value of this field, and gives them a unique session token to conform to the
DataSet API. Each group is sent out as a separate batch; therefore, Cribl recommends specifying a field with a
low cardinality, to avoid queuing up many di�erent batches at the Destination. If not specified, or not a
string, the implicit default value is cribl_<outputId> .

Timestamp field: Name of the event field that contains the event timestamp. Cribl Stream sends this value
as part of each event's metadata, not as an attribute field on the event.

Severity: Use the drop-down to assign a default value to the severity field (which is sent as event
metadata, not as an attribute field). Cribl Stream falls back to this value when an event contains no valid sev
or __severity field. DataSet's severity model ranges from 0 least-severe (finest) to 6 most-severe (fatal).

Where an event's sev field contains an integer in this range, Cribl Stream passes it through as the
severity.

Timestamps are automatically converted to a nanosecond-precision string. If an event does not
contain the field specified Timestamp field, or if the value cannot be converted into a nanosecond-
precision string, Cribl Stream assigns a timestamp using the first valid output returned from ts ,
_time , or Date.now() , in that order.

Page 1038 of 1835

Where the sev field contains a string matching DataSet's enum (finest , finer , fine , info ,
warning , error , fatal), Cribl Stream converts it to the corresponding integer.

Backpressure behavior: Specify whether to block, drop, or queue events when all receivers are exerting
backpressure. Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None . Select
Gzip to enable compression.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: Pipeline to process data before sending the data out using this output.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Processing Settings

Post‑Processing

Page 1039 of 1835

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Validate server certs: Defaults to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Compress: Defaults to Yes , to compress log events' payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it. Defaults
to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Max events per request: Maximum number of events to include in the request body. The 0 default allows
unlimited events.

Flush period (sec): Maximum time between requests. Low values could cause the payload size to be smaller
than its configured maximum. Defaults to 1 .

Extra HTTP headers: Click + Add header to define Name/Value pairs to pass as additional HTTP headers.

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers here to declare them as safe to log in plaintext. (Sensitive headers like
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header

Advanced Settings

Page 1040 of 1835

names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

The __severity field is included in the severity assignment order, a�er the sev field. The order is sev ,
__severity , then the configured default Severity.

;

Internal Fields

Page 1041 of 1835

Cribl Stream can send events to an Elasticsearch cluster using the Bulk API. As of v.3.3, Cribl Stream supports
Elastic data streams.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
Elasticsearch. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Elasticsearch. Next, click + Add New to
open an Elasticsearch > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Elasticsearch Destination definition.

Load balancing: Set to No by default. When toggled to Yes , see Load Balancing Settings below.

Bulk API URL or Cloud ID: Specify either an Elasticsearch cluster or Elastic Cloud deployment to send events
to. For an Elasticsearch cluster, enter a URL (e.g., http://<myElasticCluster>:9200/_bulk). For an
Elastic Cloud deployment, enter its Cloud ID. This setting is not available when Load balancing is enabled.

Index or data stream: Enter a JavaScript expression that evaluates to the name of the Elastic data stream or
Elastic index where you want events to go. The expression is evaluated for each event; can evaluate to a
constant value; and must be enclosed in quotes or backticks. An event's __index field can overwrite the
index or data stream name.

8.12. Elasticsearch

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Configuring Cribl Stream to Output to Elasticsearch

General Settings

Authentication Settings

Page 1042 of 1835

Authentication enabled: Set to No by default. When toggled to Yes , use the Authentication method
buttons to select one of these options:

Manual: Enter your credentials directly in the resulting Username and Password fields.

Secret: Exposes a Credentials secret drop-down, in which you can select a stored secret that references the
credentials described above. A Create link is available to store a new, reusable secret.

Type: Specify document type to use for events. An event's __type field can overwrite this value.

Backpressure behavior: Specify whether to block, drop, or queue events when all receivers are exerting
backpressure. Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Enabling the Load balancing slider displays the following controls:

This slider determines whether to exclude all IPs of the current host from the list of any resolved hostnames.
Defaults to No .

The Bulk API URLs table is where you specify a known set of receivers on which to load-balance data.
Click + Add URL to specify more receivers on new rows. Each row provides the following fields:

URL: Specify the URL to an Elastic node to send events to – e.g., http://elastic:9200/_bulk

Load weight: Specify a weight to apply to the receiver for load-balancing purposes.

The final column provides an X button to delete any row from the table.

Optional Settings

Load Balancing Settings

Exclude Current Host IPs

Bulk API URLs

When you first enable load balancing, or if you edit the load weight once your data is load–balanced,
give the logic time to settle. The changes might take a few seconds to register.

Page 1043 of 1835

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Processing Settings

Post‑Processing

Page 1044 of 1835

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned. (This option is visible only when the General Settings > Load balancing option is set to No .)

Compress: Toggle to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it. Defaults
to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (s): Maximum time between requests. Low values could cause the payload size to be smaller
than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Extra parameters: Name/Value pairs to pass as additional parameters. If you are using Elastic ingest
pipelines, specify an extra parameter whose name is pipeline and whose value is the name of your
pipeline, similar to these examples.

Elastic version: Determines how to format events. For Elastic Cloud, you must explicitly set version 7.x . For
other Elasticsearch clusters, the Auto default will discover the downstream Elasticsearch version
automatically, but you have the option to explicitly set version 6.x or 7.x .

Elastic pipeline: To send data to an Elastic Ingest pipeline, optionally enter that pipeline's name as a
constant. Or, enter a JavaScript expression that evaluates outgoing events, and sends matching events to the
desired Elastic Ingest pipeline(s). For example, the expression
sourcetype=='access_common'?'cribl_pipeline':undefined matches events whose sourcetype is
access_common , and sends them to an Elastic Ingest pipeline named cribl_pipeline .

DNS resolution period (seconds): Re-resolve any hostnames each time this interval recurs, and pick up
destinations from the A records. Defaults to 600 seconds.

Advanced Settings

The next two fields appear only when the General Settings > Load balancing option is set to Yes .

Page 1045 of 1835

Load balance stats period (seconds): Lookback tra�ic history period. Defaults to 300 seconds.

Failed request logging mode: Determines which data is logged when a request fails. Use the drop-down to
select one of these options:

None (default).

Payload .

Payload + Headers . Use the Safe Headers field below to specify the headers to log. If you leave that
field empty, all headers are redacted, even with this setting.

Safe headers: List the headers you want to log, in plain text.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

This Destination normalizes the following fields:

_time becomes @timestamp at millisecond resolultion.

host.name is set to host .

See also our Elasticsearch Source documentation's Field Normalization section.

Cribl Stream uses a set of internal fields to assist in forwarding data to a Destination.

Fields for this Destination:

__id

__type

__index

Cribl Stream will attempt to load-balance outbound data as fairly as possibly across all URLs. For example, if
FQDNs/hostnames are used as the Destination addresses, and each resolves to 5 (unique) IPs, then each

Field Normalization

Internal Fields

How Does Load Balancing Work

Page 1046 of 1835

Worker Process will have its # of outbound connections = {# of IPs x # of FQDNs} for purposes of the
Destination.

Data is sent by all Worker Processes to all URLs simultaneously, and the amount sent to each URL depends
on these parameters:

1. Respective destination weight.

2. Respective destination historical data.

By default, historical data is tracked for 300s. Cribl Stream uses this data to influence the tra�ic sent to each
destination, to ensure that di�erences decay over time, and that total ratios converge towards configured
weights.

Suppose we have two receivers, A and B, each with weight of 1 (i.e., they are configured to receive equal
amounts of data). Suppose further that the load-balance stats period is set at the default 300s and – to
make things easy – for each period, there are 200 events of equal size (Bytes) that need to be balanced.

INTERVAL TIME RANGE EVENTS TO BE DISPENSED

1 time=0s ---> time=300s 200

Both A and B start this interval with 0 historical stats each.

Let's assume that, due to various circumstances, 200 events are "balanced" as follows: A = 120 events
and B = 80 events – a di�erence of 40 events and a ratio of 1.5:1.

INTERVAL TIME RANGE EVENTS TO BE DISPENSED

2 time=300s ---> time=600s 200

If multiple receivers are behind a hostname – i.e., multiple A records – then all resolved IPs will inherit
the weight of the host, unless each IP is specified separately. In Cribl Stream load balancing, IP
settings take priority over those from hostnames.

If a request fails, Cribl Stream will resend the data to a di�erent endpoint. Cribl Stream will block only
if all endpoints are experiencing problems.

Example

Page 1047 of 1835

At the beginning of interval 2, the load-balancing algorithm will look back to the previous interval stats and
carry half of the receiving stats forward. I.e., receiver A will start the interval with 60 and receiver B with 40.
To determine how many events A and B will receive during this next interval, Cribl Stream will use their
weights and their stats as follows:

Total number of events: events to be dispensed + stats carried forward = 200 + 60 + 40 =
300 . Number of events per each destination (weighed): 300/2 = 150 (they're equal, due to equal weight).
Number of events to send to each destination A: 150 - 60 = 90 and B: 150 - 40 = 110 .

Totals at end of interval 2: A=120+90=210 , B=80+110=190 , a di�erence of 20 events and a ratio of 1.1:1.

Over the subsequent intervals, the di�erence becomes exponentially less pronounced, and eventually
insignificant. Thus, the load gets balanced fairly.

Cribl Stream will attempt to use keepalives to reuse a connection for multiple requests. A�er 2 minutes
of the first use, the connection will be thrown away, and a new one will be reattempted. This is to
prevent sticking to a particular destination when there is a constant flow of events.

If the server does not support keepalives (or if the server closes a pooled connection while idle), a new
connection will be established for the next request.

When resolving the Destination's hostname with load balancing disabled, Cribl Stream will pick the first
IP in the list for use in the next connection. Enable Round-robin DNS to better balance distribution of
events between Elasticsearch cluster nodes.

;

Notes on HTTP-based Outputs

Page 1048 of 1835

Filesystem is a non-streaming Destination type that Cribl Stream can use to output files to a local file system
or a network-attached file system (NFS).

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
Filesystem. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Filesystem. Next, click + Add New to open
a Filesystem > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Filesystem definition.

Output location: Final destination for the output files.

Data format: The output data format defaults to JSON . Raw and Parquet are also available.
Selecting Parquet (supported only on Linux, not Windows) exposes a Parquet Settings le� tab, where you
must configure certain options in order to export data in Parquet format.

Staging location: Local filesystem location in which to bu�er files before compressing and moving them to
the final destination. Cribl recommends that this location be stable and high-performance. (This field is not
displayed or available on Cribl.Cloud-managed Worker Nodes.)

8.13. Filesystem/NFS

Type: Non-Streaming | TLS Support: N/A | PQ Support: N/A

Configuring Cribl Stream to Output to Filesystem
Destinations

General Settings

Optional Settings

Page 1049 of 1835

Partitioning expression: JavaScript expression that defines how files are partitioned and organized. Default
is date-based. If blank, Cribl Stream will fall back to the event's __partition field value (if present); or
otherwise to the root directory of the Output Location and Staging Location.

Compress: Data compression format used before moving to final destination. Defaults to none . Cribl
recommends setting this to gzip . This setting is not available when Data format is set to Parquet .

File name prefix expression: The output filename prefix. Must be a JavaScript expression (which can
evaluate to a constant), enclosed in quotes or backticks. Defaults to CriblOut .

File name su�ix expression: The output filename su�ix. Must be a JavaScript expression (which can
evaluate to a constant), enclosed in quotes or backticks. Defaults to
`.${C.env["CRIBL_WORKER_ID"]}.${__format}${__compression === "gzip" ? ".gz" : ""}` , where
__format can be json or raw , and __compression can be none or gzip .

Backpressure Behavior: Select whether to block or drop events when all receivers are exerting
backpressure. (Causes might include an accumulation of too many files needing to be closed.) Defaults to
Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

To write out Parquet files, note that:

Processing Settings

Post‑Processing

Parquet Settings

Page 1050 of 1835

Cribl Edge Workers support Parquet only when running on Linux, not on Windows.

See Working with Parquet for pointers on how to avoid problems such as data mismatches.

Parquet schema: Select a schema from the drop-down. The default sample_parquet schema is always
available.

Row group size: Set the target memory size for row group segments. Modify this value to optimize memory
use when writing. Value must be a positive integer smaller than the File size value, with appropriate units.
Defaults to 16 MB .

Page size: Set the target memory size for page segments. Generally, set lower values to improve reading
speed, or set higher values to improve compression. Value must be a positive integer smaller than the
Row group size value, with appropriate units. Defaults to 1 MB .

Log invalid rows: Toggle to Yes to output up to 20 unique rows that were skipped due to data format
mismatch. Log level must be set to debug for output to be visible.

Max file size (MB): Maximum uncompressed output file size. Files of this size will be closed and moved to
final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open for longer than this will be
closed and moved to final output location. Defaults to 300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open. Files open for longer than this
will be closed and moved to final output location. Defaults to 30 .

Max open files: Maximum number of files to keep open concurrently. When exceeded, the oldest open files
will be closed and moved to final output location. Defaults to 100 .

Add Output ID: When set to Yes (the default), adds the Output ID field's value to the staging location's file
path. This ensures that each Destination's logs will write to its own bucket.

Cribl recommends that you add a new schema – or clone the sample schema and modify it to suit
your needs – via Processing > Knowledge > Parquet Schemas. Schemas that you add there will
become available in this drop-down. For details, see Parquet Schemas.

Advanced Settings

Cribl Stream will close files when either of the Max file size (MB) or the Max file open time
(sec) conditions are met.

Page 1051 of 1835

Remove staging dirs: Toggle to Yes to delete empty staging directories a�er moving files. This prevents the
proliferation of orphaned empty directories. When enabled, exposes this additional option:

Staging cleanup period: How o�en (in seconds) to delete empty directories when Remove staging dirs
is enabled. Defaults to 300 seconds (every 5 minutes). Minimum configurable interval is 10 seconds;
maximum is 86400 seconds (every 24 hours).

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Cribl Stream uses a set of internal fields to assist in forwarding data to a Destination.

Field for this Destination:

__partition

;

For a Destination originally configured in a Cribl Stream version below 2.4.0, the Add Output ID
behavior will be switched o� on the backend, regardless of this slider's state. This is so that upon
Cribl Stream upgrade and restart, any files pending in the original staging directory will not be lost.
To enable this option for such Destinations, Cribl's recommended migration path is:

Clone the Destination.

Where Routes reference the original Destination, redirect them to instead reference the new,
cloned Destination.

This way, the original Destination will process pending files (a�er an idle timeout), and the new,
cloned Destination will process newly arriving events with Add output ID enabled.

Internal Fields

To export events from an intermediate stage within a Pipeline to a file, see the Tee Function.

Page 1052 of 1835

Cribl Stream supports sending events to a Honeycomb dataset.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
Honeycomb. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Honeycomb. Next, click + Add New to
open a Honeycomb > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Honeycomb definition.

Dataset name: Name of the dataset to send events to. (E.g., iLoveObservabilityDataset .)

Use the Authentication method buttons to select one of these options:

Manual: Displays a field for you to enter the API key for the team to which the dataset belongs.

Secret: This option exposes an API key (text secret) drop-down, in which you can select a stored secret
that references the API key described above. A Create link is available to store a new, reusable secret.

Backpressure behavior: Select whether to block, drop, or queue events when all receivers are exerting
backpressure. (Causes might include a broken or denied connection, or a rate limiter.) Defaults to Block .

8.14. Honeycomb

Type: Streaming | TLS Support: Yes | PQ Support: Yes

Configuring Cribl Stream to Output to Honeycomb

General Settings

Authentication Settings

Optional Settings

Page 1053 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Processing Settings

Post‑Processing

Page 1054 of 1835

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Compress: Toggle to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it. Defaults
to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Max events per request: Maximum number of events to include in the request body. The 0 default allows
unlimited events.

Flush period (sec): Maximum time between requests. Low values could cause the payload size to be smaller
than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers to declare them as safe to log in plaintext. (Sensitive headers such as
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header
names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Advanced Settings

Page 1055 of 1835

Cribl Stream will attempt to use keepalives to reuse a connection for multiple requests. A�er 2 minutes
of the first use, the connection will be thrown away, and a new one will be reattempted. This is to
prevent sticking to a particular Destination when there is a constant flow of events.

If the server does not support keepalives (or if the server closes a pooled connection while idle), a new
connection will be established for the next request.

When resolving the Destination's hostname, Cribl Stream will pick the first IP in the list for use in the
next connection. Enable Round-robin DNS to better balance distribution of events between destination
cluster nodes.

;

Notes on HTTP-based Outputs

Page 1056 of 1835

The Humio HEC Destination can stream data to a Humio HEC (HTTP Event Collector) in JSON or Raw format.

To load-balance, Cribl recommends following Humio's Cluster Setup – place a load balancer in front of
cluster nodes.

We recommend sending events with the sourceType field set to a Humio parser. This tells Humio which
parser to use to extract fields (e.g., "sourceType":"json").

If Humio cannot match the sourceType value to a parser, it will use the kv parser, and you will get an error
that Humio could not resolve the specified parser. Alternatively, you can assign a parser to the ingest token
that you use to authenticate this Destination.

In the QuickConnect UI: Click + Add Destination on the right. From the resulting drawer's tiles, select
Humio HEC. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide
the following options and fields.

Or, from the top nav of a Cribl Stream instance or Group, select Data > Destinations. From the top nav of a
Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Humio HEC. Next, click + Add New to open
a New Destination modal that provides the following options and fields.

8.15. Humio HEC

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Recommendations

The fields element does not support Nested JSON. Any nested elements will be dropped.

Configuring Cribl Stream to Output to Humio HEC
Destinations

General Settings

Page 1057 of 1835

Output ID: Enter a unique name to identify this Humio HEC definition.

Humio HEC endpoint: URL of a Humio HEC endpoint to send events to
(e.g., https://cloud.us.humio.com:443/api/v1/ingest/hec).

JSON-formatted events normally go to /api/v1/ingest/hec or /services/collector .

Raw (simple line-delimited) events normally go to /api/v1/ingest/hec/raw or
/services/collector/raw .

Request format: Select how you want events formatted, either JSON or Raw . Make sure your selection here
matches the Humio HEC endpoint you specify above.

Use the Authentication method buttons to select one of these options:

Manual: Displays a HEC Auth token field for you to enter your Humio HEC API token.

Secret: Displays a HEC Auth token (text secret) drop-down, in which you can select a stored secret that
references the API token described above. A Create link is available to store a new, reusable secret.

Backpressure behavior: Select whether to block, drop, or queue events when all receivers are exerting
backpressure. (Causes might include a broken or denied connection, or a rate limiter.) Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Authentication Settings

Optional Settings

Persistent Queue Settings

This tab is displayed when the Backpressure behavior is set to Persistent Queue.

Page 1058 of 1835

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Validate server certs: Defaults to Yes to reject certificates that are not authorized by a CA in the
CA certificate path, or by another trusted CA (e.g., the system's CA).

Round–robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned. (This setting is available only when General Settings > Load balancing is set to No .)

Compress: Defaults to Yes to compress the payload body before sending.

Processing Settings

Post‑Processing

Advanced Settings

Page 1059 of 1835

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it. Defaults
to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 . Each request can potentially hit a di�erent HEC receiver.

Max body size (KB): Maximum size, in KB, of the request body. Defaults to 4096 . Lowering the size can
potentially result in more parallel requests and also cause outbound requests to be made sooner.

Max events per request: Maximum number of events to include in the request body. The 0 default allows
unlimited events.

Flush period (sec): Maximum time between requests. Low values can cause the payload size to be smaller
than the configured Max body size. Defaults to 1 .

Extra HTTP headers: Click + Add Header to add Name/Value pairs to pass as additional HTTP headers.

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers that you want to declare as safe to log in plaintext. (Sensitive headers such as
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header
names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Cribl Stream will attempt to use keepalives to reuse a connection for multiple requests. A�er 2 minutes
of the first use, the connection will be thrown away, and a new connection will be reattempted. This is to
prevent sticking to a particular Destination when there is a constant flow of events.

Retries happen on this flush interval.

Any HTTP response code in the 2xx range is considered success.

Any response code in the 5xx range is considered a retryable error, which will not trigger
Persistent Queue (PQ) usage.

Any other response code will trigger PQ (if PQ is configured as the Backpressure behavior).

Notes on HTTP-based Outputs

Page 1060 of 1835

If the server does not support keepalives – or if the server closes a pooled connection while idle – a new
connection will be established for the next request.

Cribl Stream will pick the first IP in the list for use in the next connection. Enable Round-robin DNS to
better balance distribution of events between Humio HEC servers.

;

Page 1061 of 1835

Cribl Stream supports sending data to InfluxDB (versions 1.x and 2.0.x) and InfluxDB Cloud.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select InfluxDB.
Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the following
options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select InfluxDB. Next, click + Add New to open an
InfluxDB > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this InfluxDB definition.

Write API URL: The URL of an InfluxDB cluster to send events to. (E.g., http://localhost:8086/write .)

Use v2 API: You can enable the InfluxDB v2 API with InfluxDB version 1.8 or later. This toggle defaults to No –
which falls back to the v1 API, and displays a Database field.

If you toggle Use v2 API to Yes , Cribl Stream communicates using InfluxDB's v2 API, and instead displays
these two fields:

Bucket: Enter the bucket to write to. (Required.)

Organization: The Organization ID corresponding to the specified Bucket. (Required in this
configuration, although InfluxDB v.1.8 will ignore it.)

Database: Name of the database on which to write data points. (Required.)

8.16. InfluxDB

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Configuring Cribl Stream to Output to InfluxDB

General Settings

Optional Settings

Page 1062 of 1835

Timestamp precision: Sets the precision for the supplied UNIX time values. Defaults to Milliseconds .

Dynamic value fields: When enabled, Cribl Stream will pull the value field from the metric name. (E.g.,
db.query.user will use db.query as the measurement and user as the value field). Defaults to Yes .

Value field name: Name of the field in which to store the metric when sending to InfluxDB. This will be used
as a fallback if dynamic name generation is enabled but fails. Defaults to value .

Backpressure behavior: Select whether to block, drop, or queue events when all receivers are exerting
backpressure. (Causes might include a broken or denied connection, or a rate limiter.) Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Use the Authentication type drop-down to select one of these options:

None: This default setting does not use authentication.

Auth token: Use HTTP token authentication. In the resulting Token field, enter the bearer token that must be
included in the HTTP authorization header.

Auth token (text secret): This option exposes a Token (text secret) drop-down, in which you can select a
stored text secret that references the bearer token described above. A Create link is available to store a new,
reusable secret.

Basic: Displays Username and Password fields for you to enter HTTP Basic authentication credentials.

Basic (credentials secret): This option exposes a Credentials secret drop-down, in which you can select a
stored text secret that references the Basic authentication credentials described above. A Create link is
available to store a new, reusable secret.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Authentication

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Page 1063 of 1835

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Processing Settings

Post‑Processing

Advanced Settings

Page 1064 of 1835

Compress: Toggle to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it.
Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Max events per request: Maximum number of events to include in the request body. The 0 default allows
unlimited events.

Flush period (sec): Maximum time between requests. Low values could cause the payload size to be smaller
than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers to declare them as safe to log in plaintext. (Sensitive headers such as
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header
names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

;

Page 1065 of 1835

MinIO is a non-streaming Destination type, to which Cribl Stream can output objects.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select MinIO.
Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the following
options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select MinIO. Next, click + Add New to open a
MinIO > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this MinIO definition.

MinIO endpoint: MinIO service URL (e.g., http://minioHost:9000).

MinIO bucket name:Name of the destination MinIO bucket. This value can be a constant, or a JavaScript
expression that will be evaluated only at init time. E.g., referencing a Global Variable:
myBucket-${C.vars.myVar} . Ensure that the bucket already exists, otherwise MinIO will generate "bucket
does not exist" errors.

8.17. MinIO

Type: Non-Streaming | TLS Support: Configurable | PQ Support: No

Configuring Cribl Stream to Output to MinIO
Destinations

General Settings

Event-level variables are not available for JavaScript expressions. This is because the bucket name is
evaluated only at Destination initialization. If you want to use event-level variables in file paths, Cribl
recommends specifying them in the Partitioning Expression field (described below), because this is
evaluated for each file.

Page 1066 of 1835

Staging location: Filesystem location in which to locally bu�er files before compressing and moving to final
destination. Cribl recommends that this location be stable and high-performance. (This field is not displayed
or available on Cribl.Cloud-managed Worker Nodes.)

Key prefix: Root directory to prepend to path before uploading. Enter a constant, or a JS expression
enclosed in single quotes, double quotes, or backticks.

Prefix to apply to files/objects before uploading to the specified bucket. MinIO will display key prefixes as
folders.

Data format: The output data format defaults to JSON . Raw and Parquet are also available.
Selecting Parquet (supported only on Linux, not Windows) exposes a Parquet Settings le� tab, where you
must configure certain options in order to export data in Parquet format.

Partitioning expression: JavaScript expression that defines how files are partitioned and organized. Default
is date-based. If blank, Cribl Stream will fall back to the event's __partition field value (if present); or
otherwise to the root directory of the Output Location and Staging Location.

Compress: Data compression format used before moving to final destination. Defaults to none . Cribl
recommends setting this to gzip . This setting is not available when Data format is set to Parquet .

File name prefix expression: The output filename prefix. Must be a JavaScript expression (which can
evaluate to a constant), enclosed in quotes or backticks. Defaults to CriblOut .

File name su�ix expression: The output filename su�ix. Must be a JavaScript expression (which can
evaluate to a constant), enclosed in quotes or backticks. Defaults to
`.${C.env["CRIBL_WORKER_ID"]}.${__format}${__compression === "gzip" ? ".gz" : ""}` , where
__format can be json or raw , and __compression can be none or gzip .

Backpressure behavior: Select whether to block or drop events when all receivers are exerting
backpressure. (Causes might include an accumulation of too many files needing to be closed.) Defaults to
Block .

Optional Settings

Cribl Stream's internal __partition field can be populated in multiple ways. The precedence order
is: explicit Partitioning expression value ‑> ${host}/${sourcetype} (default)
Partitioning expression value ‑> user-defined event.__partition , set with an Eval Function (takes
e�ect only where this Partitioning expression field is blank).

Page 1067 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

The full path to a file consists of:

<bucket_name>/<keyprefix><partition_expression | __partition><file_name_prefix>

<filename>.<extension>

As an example, assume that the MinIO bucket name is bucket1 , the Key prefix is aws , the
Partitioning expression is `${host}/${sourcetype}` , the source is undefined, the File name prefix is the
default CriblOut , and the Data format is json . Here, the full path as displayed in MinIO would have this
form: /bucket1/aws/192.168.1.241/undefined/CriblOut-<randomstring>0.json

Use the Authentication Method buttons to select one of these options:

Auto: This default option uses the AWS instance's metadata service to automatically obtain short-lived
credentials from the IAM role attached to an EC2 instance. The attached IAM role grants Cribl Stream Workers
access to authorized AWS resources. Can also use the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY . Works only when running on AWS.

Manual: If not running on AWS, you can select this option to enter a static set of user-associated IAM
credentials (your access key and secret key) directly or by reference. This is useful for Workers not in an AWS
VPC, e.g., those running a private cloud. The Manual option exposes these corresponding additional fields:

Access key: Enter your AWS access key. If not present, will fall back to the env.AWS_ACCESS_KEY_ID
environment variable, or to the metadata endpoint for IAM role credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to the
env.AWS_SECRET_ACCESS_KEY environment variable, or to the metadata endpoint for IAM credentials.

Secret: If not running on AWS, you can select this option to supply a stored secret that references an AWS
access key and secret key. This option exposes a Secret key pair drop-down, in which you can select a stored
secret that references the set of user-associated IAM credentials described above. A Create link is available to
store a new, reusable secret.

How MinIO Composes File Names

Although MinIO will display the Key prefix and Partitioning expression values as folders, both are
actually just part of the overall key name, along with the file name.

Authentication

Page 1068 of 1835

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

To write out Parquet files, note that:

Cribl Edge Workers support Parquet only when running on Linux, not on Windows.

See Working with Parquet for pointers on how to avoid problems such as data mismatches.

Parquet schema: Select a schema from the drop-down. The default sample_parquet schema is always
available.

Row group size: Set the target memory size for row group segments. Modify this value to optimize memory
use when writing. Value must be a positive integer smaller than the File size value, with appropriate units.
Defaults to 16 MB .

Page size: Set the target memory size for page segments. Generally, set lower values to improve reading
speed, or set higher values to improve compression. Value must be a positive integer smaller than the
Row group size value, with appropriate units. Defaults to 1 MB .

Log invalid rows: Toggle to Yes to output up to 20 unique rows that were skipped due to data format
mismatch. Log level must be set to debug for output to be visible.

Processing Settings

Post‑Processing

Parquet Settings

Cribl recommends that you add a new schema – or clone the sample schema and modify it to suit
your needs – via Processing > Knowledge > Parquet Schemas. Schemas that you add there will
become available in this drop-down. For details, see Parquet Schemas.

Page 1069 of 1835

Max file size (MB): Maximum uncompressed output file size. Files of this size will be closed and moved to
final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open for longer than this limit will
be closed and moved to final output location. Defaults to 300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open. Files open for longer than this
limit will be closed and moved to final output location. Defaults to 30 .

Max open files: Maximum number of files to keep open concurrently. When exceeded, the oldest open files
will be closed and moved to final output location. Defaults to 100 .

Add Output ID: When set to Yes (the default), adds the Output ID field's value to the staging location's file
path. This ensures that each Destination's logs will write to its own bucket.

Remove staging dirs: Toggle to Yes to delete empty staging directories a�er moving files. This prevents the
proliferation of orphaned empty directories. When enabled, exposes this additional option:

Staging cleanup period: How o�en (in seconds) to delete empty directories when Remove staging dirs
is enabled. Defaults to 300 seconds (every 5 minutes). Minimum configurable interval is 10 seconds;
maximum is 86400 seconds (every 24 hours).

Region: Region where the MinIO service/cluster is located. Leave blank when using a containerized MinIO.

Advanced Settings

Cribl Stream will close files when either of the Max file size (MB) or the
Max file open time (sec) conditions is met.

For a Destination originally configured in a Cribl Stream version below 2.4.0, the Add Output ID
behavior will be switched o� on the backend, regardless of this slider's state. This is to avoid losing
any files pending in the original staging directory, upon Cribl Stream upgrade and restart. To enable
this option for such Destinations, Cribl's recommended migration path is:

Clone the Destination.

Redirect the Routes referencing the original Destination to instead reference the new, cloned
Destination.

This way, the original Destination will process pending files (a�er an idle timeout), and the new,
cloned Destination will process newly arriving events with Add output ID enabled.

Page 1070 of 1835

Object ACL: ACL (Access Control List) to assign to uploaded objects. Defaults to Private .

Storage class: Select a storage class for uploaded objects. Defaults to Standard .

Server-side encryption: Server side encryption type for uploaded objects. Defaults to none .

Signature version: Signature version to use for signing MinIO requests. Defaults to v4 .

Reuse connections: Whether to reuse connections between requests. The default setting (Yes) can improve
performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be verified against a valid
Certificate Authority (e.g., self-signed certificates). Defaults to Yes .

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Cribl Stream uses a set of internal fields to assist in forwarding data to a Destination.

Field for this Destination:

__partition

;

Internal Fields

Page 1071 of 1835

Cribl Stream supports sending events to OTLP-compliant targets. (Cribl Stream can receive OTel events
through the OTel Source.) Besides native OTel Trace and Metric events, you can send Cribl Streamʼs Gauge
metric events through this OTel Destination.

When configuring Pipelines (including pre-processing and post-processing Pipelines), you need to ensure
that events sent to this Destination conform to the relevant Protobuf specification:

For traces, opentelemetry-proto/trace.proto at v0.9.0 · open-telemetry/opentelemetry-proto

For metrics, opentelemetry-proto/metrics.proto at v0.9.0 · open-telemetry/opentelemetry-proto

The OTel Destination will drop non-conforming events. Also, when trying to convert an event to OTLP, if the
Destination encounters a parsing error, it discards the event, and Cribl Streams logs the error.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
OpenTelemetry. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will
provide the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select OpenTelemetry. Next, click + Add New to
open an OpenTelemetry > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this OTel output definition.

Endpoint: Where to send events, in any of a variety of formats (FQDN, PQDN, IP address and port, etc). The
same endpoint is used for both Traces and Metrics. If no port is specified, we default to the standard port for
OTel Collectors, 4137, unless TLS is enabled or the protocol is HTTPS.

8.18. OpenTelemetry (OTel)

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Configuring Cribl Stream to Output to OTel

General Settings

Page 1072 of 1835

Backpressure behavior: Whether to block, drop, or queue events when all receivers are exerting
backpressure.

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Enabled Defaults to No . When toggled to Yes :

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Minimum TLS version: Optionally, select the minimum TLS version to use when connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use when connecting.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to verify the server's cert.
Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Select one of the following options for authentication:

None: Don't use authentication.

Auth token: Enter the bearer token that must be included in the authorization header. Since
OpenTelemetry runs over gRPC, authorization headers are sent as Metadata entries which are
essentially key-value pairs. E.g.: Bearer <your-configured-token> .

Optional Settings

TLS Settings (Client Side)

Authentication

Page 1073 of 1835

Auth token (text secret): This option exposes a drop-down in which you can select a stored text secret
that references the bearer token described above. A Create link is available to store a new, reusable
secret.

Basic: This default option displays fields for you to enter HTTP Basic authentication credentials.

Basic (credentials secret): This option exposes a Credentials secret drop-down, in which you can
select a stored text secret that references the Basic authentication credentials described above. A
Create link is available to store a new, reusable secret.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, queueing is stopped and data blocking is applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:
your/path/here/<worker-id>/<output-id> . Defaults to: $CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None . Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: Pipeline to process data before sending the data out using this output.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Processing Settings

Post‑Processing

Page 1074 of 1835

System fields: A list of fields to automatically add to events that use this output—both metric events, as
dimensions; and, log events, as labels. Supports wildcards.

By default, includes cribl_host (Cribl Stream Node that processed the event).

Other options include:

cribl_pipe – Cribl Stream Pipeline that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

cribl_wp — Cribl Stream Worker Process that processed the event.

Connection Timeout: Amount of time (milliseconds) to wait for the connection to establish before retrying.
Defaults to 10000 .

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it. Defaults
to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Keep Alive Time (seconds): How o�en the sender should ping the peer to keep the connection alive.
Defaults to 30 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 .

Flush period (sec): Maximum time between requests. Low values could cause the payload size to be smaller
than the configured Max body size. Defaults to 1 .

Metadata: Extra information to send with each gRPC request in the form of a list of key-value pairs. Value
supports JavaScript expressions that are evaluated just once, when the destination gets started. If passing
credentials as metadata, using C.Secret is recommended.

Environment: Optionally, specify a single Git branch on which to enable this configuration. If this field is
empty, the config will be enabled everywhere.

;

Advanced Settings

Page 1075 of 1835

Cribl Stream supports sending events to SignalFx.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select SignalFx.
Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the following
options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select SignalFx. Next, click + Add New to open a
SignalFx > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this SignalFx definition.

Realm: SignalFx realm name (e.g., us0). Required.

Use the Authentication method buttons to select one of these options:

Manual: Displays an Auth token field for you to enter your SignalFx API access token. See SignalFx's
Manage Tokens topic.

Secret: This option exposes an Auth token (text secret) drop-down, in which you can select a stored
secret that references the API access token described above. A Create link is available to store a new,
reusable secret.

8.19. SignalFx

Type: Streaming | TLS Support: Yes | PQ Support: Yes

Configuring Cribl Stream to Output to SignalFx

General Settings

Authentication Settings

Optional Settings

Page 1076 of 1835

Backpressure behavior: Select whether to block, drop, or queue events when all receivers are exerting
backpressure. (Causes might include a broken or denied connection, or a rate limiter.) Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Processing Settings

Post‑Processing

Page 1077 of 1835

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Compress: Toggle to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it.
Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Max events per request: Maximum number of events to include in the request body. The 0 default allows
unlimited events.

Flush period (sec): Maximum time between requests. Low values can cause the payload size to be smaller
than the configured Max body size. Defaults to 1 second.

Extra HTTP headers: Click + Add Header to insert extra headers as Name/Value pairs.

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers to declare them as safe to log in plaintext. (Sensitive headers such as
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header
names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Advanced Settings

Page 1078 of 1835

For details on integrating with SignalFx, see the SignalFx Developers Guide, with particular reference to the
SignalFx HTTP Send Metrics Reference.

;

Notes About SignalFx

Page 1079 of 1835

Cribl Stream supports forwarding of SNMP Traps out.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
SNMP Trap. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select SNMP Trap. Next, click + Add New to open
an SNMP Trap > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this SNMP Trap definition.

SNMP Trap destinations: Click + Add Destination to specify more SNMP destinations to forward traps to, on
new rows. Each row provides the following fields:

Address: Destination host.

Port: Destination port. Defaults to 162 .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

8.20. SNMP Trap

Type: Streaming | TLS Support: No | PQ Support: No

Configuring Cribl Stream to Forward to SNMP Traps

General Settings

Optional Settings

Processing Settings

Post‑Processing

Page 1080 of 1835

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

It's possible to work with SNMP metadata (i.e., we'll decode the packet). Options include dropping,
routing, etc. However, packets cannot be modified and sent to another SNMP Destination.

SNMP packets can be forwarded to non-SNMP Destinations (e.g., Splunk, Syslog, S3, etc.).

SNMP packets can be forwarded to other SNMP Destinations. However, the contents of the incoming
packet cannot be modified – i.e., we'll forward the packets verbatim as they came in.

Non-SNMP input data cannot be sent to SNMP Destinations.

;

Advanced Settings

Considerations for Working with SNMP Traps Data

Page 1081 of 1835

Cribl Stream can send log and metric events to Sumo Logic over HTTP.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
Sumo Logic. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Sumo Logic. Next, click + Add New to open
a Sumo Logic > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Sumo Logic Destination definition.

API URL: Enter the URL of the Sumo Logic HTTP Source to which events should be sent. (E.g.,
https://endpoint6.collection.us2.sumologic.com/receiver/v1/http/<long-hash> .)

Custom source name: Optionally, override the source name configured on the Sumo Logic HTTP Source.
This value will be sent with events via the X‐Sumo‐Name HTTP header.

Custom source category: Optionally, override the source category configured on the Sumo Logic Collector
and/or HTTP Source. This value will be sent with events via the X‐Sumo‐Category HTTP header.

Backpressure behavior: Whether to block, drop, or queue events when all receivers are exerting
backpressure.

8.21. Sumo Logic

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Configuring Cribl Stream to Output to Sumo Logic

General Settings

Optional Settings

Page 1082 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Processing Settings

Post‑Processing

Page 1083 of 1835

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Compress: Toggle this slider to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it. Defaults
to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Max events per request: Maximum number of events to include in the request body. The 0 default allows
unlimited events.

Flush period (sec): Maximum time between requests. Low values could cause the payload size to be smaller
than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers to declare them as safe to log in plaintext. (Sensitive headers such as
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header
names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Advanced Settings

Page 1084 of 1835

Cribl Stream uses a set of internal fields to assist in forwarding data to a Destination.

If an event contains the internal field __criblMetrics , Cribl Stream will send it to Sumo Logic as a metric
event. Otherwise, Cribl Stream will send it as a log event.

Cribl Stream will attempt to use keepalives to reuse a connection for multiple requests. A�er 2 minutes
of the first use, the connection will be thrown away, and a new one will be reattempted. This is to
prevent sticking to a particular destination when there is a constant flow of events.

If the server does not support keepalives (or if the server closes a pooled connection while idle), a new
connection will be established for the next request.

When resolving the Destination's hostname, Cribl Stream will pick the first IP in the list for use in the
next connection. Enable Round-robin DNS to better balance distribution of events between destination
cluster nodes.

;

Internal Fields

Notes on HTTP-based Outputs

Page 1085 of 1835

Cribl Stream supports sending out data over syslog via TCP or UDP.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Syslog.
Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the following
options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Syslog. Next, click + Add New to open a
Syslog > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Syslog definition.

Protocol: The network protocol to use for sending out syslog messages. Defaults to TCP ; UDP is also
available.

Load balancing: This option is displayed only when the Protocol is set to TCP . When toggled to Yes , see
Load Balancing Settings below.

Address: Address/hostname of the receiver.

Port: Port number to connect to on the host.

8.22. Syslog

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

This Syslog Destination supports RFC 3164 and RFC 5424. Before you configure this Destination,
review Understanding Syslog Format Options below, to ensure that your configuration will structure
compliant outbound events that downstream services can read.

Configuring Cribl Stream to Output Data in Syslog
Format

General Settings

Page 1086 of 1835

Max record size: Displayed when Protocol is set to UDP . Sets the maximum size of syslog messages. Defaults
to 1500 , and must be ≤ 2048 . To avoid packet fragmentation, keep this value <= the MTU (maximum
transmission unit for the network path to the Destination system).

Facility: Default value for message facility. If set, will be overwritten by the value of __facility . Defaults to
user .

Severity: Default value for message severity. If set, will be overwritten by the value of __severity . Defaults
to notice .

App name: Default value for application name. If set, will be overwritten by the value of __appname . Defaults
to Cribl .

Message format: The syslog message format supported by the receiver. Defaults to RFC3164 .

Timestamp format: The timestamp format to use when serializing an event's time field. Defaults to Syslog .

Throttling: Throttle rate, in bytes per second. Defaults to 0 , meaning no throttling. Multiple-byte units such
as KB, MB, GB etc. are also allowed, e.g., 42 MB . When throttling is engaged, your Backpressure behavior
selection determines whether Cribl Stream will handle excess data by blocking it, dropping it, or queueing it
to disk.

Backpressure behavior: Select whether to block, drop, or queue events when all receivers are exerting
backpressure. (Causes might include a broken or denied connection, or a rate limiter.) Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Enabling the Load balancing slider replaces the static General Settings > Address and Port fields with the
following controls:

Optional Settings

Load Balancing Settings

Load balancing is available only when the Protocol is set to TCP .

Exclude Current Host IPs

Page 1087 of 1835

This slider determines whether to exclude all IPs of the current host from the list of any resolved hostnames.
Defaults to No .

The Destinations table is where you specify a known set of receivers on which to load-balance data.
Click + Add Destination to specify more receivers on new rows. Each row provides the following fields:

Address: Hostname of the receiver. Optionally, you can paste in a comma-separated list, in <host>:<port>
format.

Port: Port number to send data to on this host.

TLS: Whether to inherit TLS configs from group setting, or disable TLS. Defaults to inherit .

TLS servername: Servername to use if establishing a TLS connection. If not specified, defaults to connection
host (if not an IP). Otherwise, uses the global TLS settings.

Load weight: The weight to apply to this receiver for load-balancing purposes.

The final column provides an X button to delete any row from the table.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Destinations

Persistent Queue Settings

This section is displayed only for TCP, and only when Backpressure behavior is set to
Persistent Queue.

Page 1088 of 1835

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Enabled defaults to No . When toggled to Yes :

Validate server certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension. This must be a host
name, not an IP address.

Minimum TLS version: Optionally, select the minimum TLS version to use when connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use when connecting.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to verify the server's cert.
Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to establish, before
retrying. Defaults to 10000 .

TLS Settings (Client Side)

Timeout Settings

These timeout settings apply only to the TCP protocol.

Page 1089 of 1835

Write timeout: Amount of time (milliseconds) to wait for a write to complete, before assuming connection is
dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

The first two options are always displayed:

Octet count framing: When enabled, Cribl Stream prefixes messages with their byte count. When disabled,
Cribl Stream omits prefixes, and instead appends a \n to messages.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

The following options are added if you enable the General Settings tab's Load balancing option:

DNS resolution period (seconds): Re-resolve any hostnames a�er each interval of this many seconds, and
pick up destinations from A records. Defaults to 600 seconds.

Load balance stats period (seconds): Lookback tra�ic history period. Defaults to 300 seconds. (Note that If
multiple receivers are behind a hostname – i.e., multiple A records – all resolved IPs will inherit the weight of
the host, unless each IP is specified separately. In Cribl Stream load balancing, IP settings take priority over
those from hostnames.)

Max connections: Constrains the number of concurrent receiver connections, per Worker Process, to limit
memory utilization. If set to a number > 0 , then on every DNS resolution period, Cribl Stream will randomly

Processing Settings

Post‑Processing

Advanced Settings

Page 1090 of 1835

select this subset of discovered IPs to connect to. Cribl Stream will rotate IPs in future resolution periods –
monitoring weight and historical data, to ensure fair load balancing of events among IPs.

Cribl Stream will attempt to load-balance outbound data as fairly as possibly across all receivers (listed as
Destinations in the GUI). If FQDNs/hostnames are used as the Destination address and each resolves to, for
example, 5 (unique) IPs, then each Worker Process will have its # of outbound connections = {# of IPs x # of
FQDNs} for purposes of the Destination. Data is sent by all Worker Processes to all receivers simultaneously,
and the amount sent to each receiver depends on these parameters:

1. Respective destination weight.

2. Respective destination historical data.

By default, historical data is tracked for 300s. Cribl Stream uses this data to influence the tra�ic sent to each
destination, to ensure that di�erences decay over time, and that total ratios converge towards configured
weights.

Suppose we have two receivers, A and B, each with weight of 1 (i.e., they are configured to receive equal
amounts of data). Suppose further that the load-balance stats period is set at the default 300s and – to
make things easy – for each period, there are 200 events of equal size (Bytes) that need to be balanced.

INTERVAL TIME RANGE EVENTS TO BE DISPENSED

1 time=0s ---> time=300s 200

Both A and B start this interval with 0 historical stats each.

Let's assume that, due to various circumstances, 200 events are "balanced" as follows: A = 120 events
and B = 80 events – a di�erence of 40 events and a ratio of 1.5:1.

INTERVAL TIME RANGE EVENTS TO BE DISPENSED

2 time=300s ---> time=600s 200

At the beginning of interval 2, the load-balancing algorithm will look back to the previous interval stats and
carry half of the receiving stats forward. I.e., receiver A will start the interval with 60 and receiver B with 40.
To determine how many events A and B will receive during this next interval, Cribl Stream will use their
weights and their stats as follows:

How Does Load Balancing Work

Example

Page 1091 of 1835

Total number of events: events to be dispensed + stats carried forward = 200 + 60 + 40 =
300 . Number of events per each destination (weighed): 300/2 = 150 (they're equal, due to equal weight).
Number of events to send to each destination A: 150 - 60 = 90 and B: 150 - 40 = 110 .

Totals at end of interval 2: A=120+90=210 , B=80+110=190 , a di�erence of 20 events and a ratio of 1.1:1.

Over the subsequent intervals, the di�erence becomes exponentially less pronounced, and eventually
insignificant. Thus, the load gets balanced fairly.

Unlike other Cribl Stream Destinations, Syslog applies an additional post-processing step a�er the Pipeline(s)
transform events. This additional step structures the data for compliance with the syslog transport protocol
(RFC 5424 and/or RFC 5425) before it is transmitted to downstream services.

The Syslog Destination's General Settings page o�ers several settings to format the timestamps, to format
the message delivering the event, and to set the syslog-specific default settings for Facility, Severity, and App
Name.

Below are two examples of RFC-compliant syslog events:

<13>Jul 11 10:34:35 testbox testing[42]

<214>1 2022-07-11T18:58:45.000Z testbox testing[42]: foo=bar this=that base=ball

gizmo=sprocket

Cribl Stream o�ers three di�erent output approaches in the Syslog Destination. The flowchart below
summarizes how Cribl Stream determines which approach to use:

: For ease of use, Cribl recommends using this option. When you define message ,
Cribl Stream discards _raw , and composes a new payload using the other syslog-related fields.
Cribl Stream automatically processes the values of the message , _time , host , and other fields, and
creates an ISO-compliant timestamp and a properly formatted event. To use this method, you must
configure message and must not set __syslogout .

: When you define __syslogout , Cribl Stream sends it as the entire syslog message,
discards _raw , and ignores all the other fields.

 (with or without a header): If you didn't define message or __syslogout , then Cribl Stream
uses the existing _raw field as the message field, and prepends all the other syslog-related fields to the
event.

Understanding Syslog Format Options

message

__syslogout

_raw

Page 1092 of 1835

Syslog output flow

The subsections below walk you through some considerations for each of these options, before you
configure this Destination. First, let's take a look at internal fields, since they play a critical role in formatting.

Cribl Stream uses a set of internal fields to assist in forwarding data to downstream services. Fields for this
Destination:

__priority

__facility

__severity

__procid

__appname

__msgid

__host

__syslogout

Internal Fields

Page 1093 of 1835

This approach is easiest and least error-prone, because Cribl Stream creates the payload for you. To define
the message , all you need to supply are the following required fields:

__facility

__severity

__host

Or, to make this even simpler, you can substitute __priority for __facility and __severity . Either
way, Cribl Stream will create a new payload using a combination of these required fields. For details on the
fields assembled here, see Important Fields below.

As a second approach, if you choose to send __syslogout to downstream services, it is exclusive – it
becomes the entire syslog message sent. Neither _raw , nor any other metadata, will be sent downstream.
Also, Cribl Stream will not check to ensure that the value of __syslogout is RFC-compliant.

The result will be a proper syslog message only if you hand-build the event yourself. You must manually
construct the __syslogout payload, starting with _time , for all the fields that Cribl Stream would
automatically handle with the above message option. In particular:

The most common uses for the __syslogout method are:

When the value of _raw is already in syslog format as it comes in, and minimal processing is necessary.

When sending raw TCP data to a destination that doesnʼt enforce syslog RFCs, such as a raw TCP listener.
Cribl Stream currently does not provide a native "raw TCP" Destination. However, in some
environments, configuring a Syslog Destination with the TCP protocol and __syslogout is an e�ective
method for delivering raw data over TCP.

You'll need to add _time to the payload. For example, in an Eval Function, you could use Evaluate fields to
build up __syslogout in the expression below. Here, the priority encodes the severity + facility ,
according to the syslog protocol.

Defining message

Exporting __syslogout

When defining __syslogout , you must follow the syslog protocol's RFCs. Otherwise, downstream
services will misinterpret or completely ignore the message. Some syslog receivers might drop non-
compliant events entirely, or try to “fix” the format by supplying missing fields.

Constructing __syslogout

Page 1094 of 1835

NAME VALUE EXPRESSION

priority (8*facility)+severity

__syslogout
`<${priority}>${C.Time.strftime(_time,"%Y-%m-%dT%H:%M:%S.%f%z")} ${host}
${appname}[${procid}]: ${_raw}`

Here's that example expression in a full Function:

Adding __syslogout , _time to construct a valid syslog message

A third approach is to add the message content in _raw , and construct the syslog "envelope" around _raw
by including the severity , priority , facility , procid , msgid , and appname fields, as required.

Here's an alternative Eval Function that illustrates this:

Enhancing _raw with syslog

Page 1095 of 1835

Adding syslog decorations to _raw

Both Eval Functions are provided in this example Pipeline:

syslog_loop.json

Page 1096 of 1835

{
"id": "syslog_loop",
"conf": {
"output": "default",
"groups": {},
"asyncFuncTimeout": 1000,
"functions": [
{
"filter": "true",
"conf": {
"mode": "reserialize",
"type": "json",
"srcField": "_raw",
"dstField": "_raw",
"keep": [
"resource",
"path",
"httpMethod"

],
"remove": []

},
"id": "serde",
"disabled": false

},
{
"filter": "true",
"conf": {
"clones": [
{
"__syslog_test": "true"

}
]

},
"id": "clone",
"disabled": false

},
{
"filter": "__syslog_test",
"conf": {
"add": [
{
"name": "appname",
"value": "'using_syslogout'"

},
{
"name": "severity",
"value": "1"

},
{
"name": "facility",
"value": "3"

},
{
"name": "pri",
"value": "(8 * facility) + severity"

},
{
"name": "procid",
"value": "'7777'"

Page 1097 of 1835

In this method, Cribl Stream takes the value of _raw verbatim, and then prepends a human-readable
timestamp, host, and other information.

},
{
"name": "__syslogout",
"value": "`<${pri}>${C.Time.strftime(_time,\"%b %d %H:%M:%S\")}

${host} ${appname}[${procid}]: ${_raw}`"
}

],
"keep": [],
"remove": []

},
"id": "eval",
"disabled": false

},
{
"filter": "! __syslog_test",
"conf": {
"add": [
{
"name": "severity",
"value": "1"

},
{
"name": "facility",
"value": "3"

},
{
"name": "procid",
"value": "8889"

},
{
"name": "appname",
"value": "'using_raw'"

}
],
"keep": [
"_raw",
"*severity",
"*facility",
"*procid",
"_time",
"*appname"

],
"remove": [
"*"

]
},
"id": "eval",
"disabled": false

}
]

}
}

Page 1098 of 1835

If you are using _raw as the message field, make sure you explicitly set the priority and facility
whenever possible. Otherwise, Cribl Stream will use the default values. The acceptable values are defined in
the RFCs.

For details on the fields assembled here, see Important Fields below.

If Cribl Stream's Destination stage receives an event that contains both message and _raw fields, it will
build the syslog package using the message field, discarding _raw .

The message (or _raw) field must be an ASCII string in order to be put on the syslog wire. This Destination
does not handle JSON objects. Avoid mismatching these types, or else no data might be sent out.

If your intermediate processing – such as a JSON.parse(_raw) transformation – has converted the _raw
field's contents into a JSON object literal, you will need to stringify the result, using a method like
JSON.stringify(_raw) . You can do so in a post‑processing Pipeline attached to the Syslog Destination.

The Message and _raw prepend methods use additional fields to create the final payload. When using
__syslogout , Cribl Stream ignores these fields.

The fields below appear in the order generated by a syslog-formatted event.

Sample syslog-formatted event: <38>1 2022-07-11T22:04:46.000Z testbox app01 [4321] AC-123 -
foo=bar this=that base=ball gizmo=sprocket

__facility or facility: Cribl Stream uses this field to calculate priority. The RFC protocol dictates
Facility levels. For details, see Facility.

When using _raw , you might end up with duplicate fields in the event. For example, even if your
event already contains a timestamp , Cribl Stream might prepend another timestamp to the
beginning of _raw , without checking whether the data is already present. This can increase event
sizes with redundant data. If you use this method, make sure you first strip the prepended (duplicate)
fields.

Also, when using _raw , this Destination does not check whether there's a valid header defined in the
event – it always adds one. Also, because this Destination reformats the data, you might not see the
header information when you preview it in Live Capture.

Defined message and _raw Fields

Important Fields

Page 1099 of 1835

__severity or severity: Cribl Stream also uses this field to calculate priority. The RFC protocol dictates
Severity levels. For details, see Severity.

__priority : If you configure this field, Cribl Stream will use it and override the severity and
facility values. The priority displays at the beginning of a syslog event, <38> in the example above.
If you don't configure this field, then Cribl Stream calculates it using the formula: priority =
(8*facility + severity) .

For example, if the facility is 13 (Security) and the severity is 2 (Critical), the priority will be
13*8 + 2 = 106 . The priority of <38> in the example above is 8*4(Facility of auth) + 6
(Severity of info) .

_time : The value of _time in Cribl events is in epoch format, but the syslog RFCs dictate that each
eventʼs timestamp is must be in human-readable format. When defining a Syslog Destination, you can
have an option to use the ISO8601 (recommended) or the syslog format. ISO8601 defines the method for
specifying time zone and year, whereas the older syslog format lacks this information. The example
above shows the ISO8601 format, listed a�er the priority (<13>) and version .

__host OR host: the value for the required host field in a syslog event, following the
timestamp. testbox in the example above.

__appname or appname: The required application name. app01 in the example above. This is typically
the name of the daemon or process that is logging any given event.

__procid or procid: This optional field is the Process ID. 4321 in the example above. Use a numeric
value for this field, optionally this may be surrounded with brackets []. Cribl Stream will automatically
adjust the spaces and syntax to ensure RFC-compliant formatting.

__msgid or msgid: This optional field is the Message ID. AC-123 in the example above.

For each pair of attribute names (above), Cribl Stream uses the values as specified here:

1. The event contains both __<key> and <key> : Cribl Stream uses the value of __<key> and ignores
<key> if also present. For example, if the event contains __host , the value of host will be ignored if
also present.

2. The event contains <key> : Cribl Stream uses the value of <key> . For example, if host is set, the value is
applied.

3. The event contains neither __<key> nor <key> , Cribl Stream uses the default values configured in the
Syslog Destination.

Page 1100 of 1835

;

Page 1101 of 1835

Cribl Stream supports sending data over TCP in JSON format.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select TCP JSON.
Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the following
options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select TCP JSON. Next, click + Add New to open a
TCP JSON > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Destination definition.

Load balancing: When toggled to Yes , see Load Balancing Settings below. The following two fields appear
only with the default No setting.

Address: Hostname of the receiver.

Port: Port number to connect to on the host.

Use the Authentication method buttons to select one of these options:

Manual: In the resulting Auth token field, you can optionally enter an auth token to use in the
connection header.

8.23. TCP JSON

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Configuring Cribl Stream to Output Data in TCP JSON
Format

General Settings

Authentication Settings

Page 1102 of 1835

Secret: This option exposes an Auth token (text secret) drop-down, in which you can select a stored
secret that references the authToken header field value described above. A Create link is available to
store a new, reusable secret.

Compression: Codec to use to compress the data before sending. Defaults to None .

Throttling: Throttle rate, in bytes per second. Defaults to 0 , meaning no throttling. Multiple-byte units such
as KB, MB, GB etc. are also allowed, e.g., 42 MB . When throttling is engaged, your Backpressure behavior
selection determines whether Cribl Stream will handle excess data by blocking it, dropping it, or queueing it
to disk.

Backpressure behavior: Specifies whether to block, drop, or queue events when all receivers are exerting
backpressure. Defaults to Block . See Persistent Queue Settings below.

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Enabling the Load balancing slider replaces the static General Settings > Address and Port fields with the
following controls:

This slider determines whether to exclude all IPs of the current host from the list of any resolved hostnames.
Defaults to No .

The Destinations table is where you specify a known set of receivers on which to load-balance data.
Click + Add Destination to specify more receivers on new rows. Each row provides the following fields:

Address: Hostname of the receiver. Optionally, you can paste in a comma-separated list, in <host>:<port>
format.

Port: Port number to send data to on this host.

TLS: Whether to inherit TLS configs from group setting, or disable TLS. Defaults to inherit .

Optional Settings

Load Balancing Settings

Exclude Current Host IPs

Destinations

Page 1103 of 1835

TLS servername: Servername to use if establishing a TLS connection. If not specified, defaults to connection
host (if not an IP). Otherwise, uses the global TLS settings.

Load weight: The weight to apply to this receiver for load-balancing purposes.

The final column provides an X button to delete any row from the table.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Use TLS defaults to No . When toggled to Yes :

If a request fails, Cribl Stream will resend the data to a di�erent endpoint. Cribl Stream will block only
if all endpoints are experiencing problems.

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

TLS Settings (Client Side)

Page 1104 of 1835

Autofill?: This setting is experimental.

Validate server certs: Reject certificates that are not authorized by a CA in the CA certificate path, or by
another trusted CA (e.g., the system's CA). Defaults to No .

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension. This must be a host
name, not an IP address.

Minimum TLS version: Optionally, select the minimum TLS version to use when connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use when connecting.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to verify the server's cert.
Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format) to use. Path can
reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to establish before
retrying. Defaults to 10000 .

Write timeout: Amount of time (in milliseconds) to wait for a write to complete before assuming connection
is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

Timeout Settings

Processing Settings

Post‑Processing

Page 1105 of 1835

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Setting General Settings > Load balancing to Yes adds the following settings:

DNS resolution period (seconds): Re-resolve any hostnames a�er each interval of this many seconds, and
pick up destinations from A records. Defaults to 600 seconds.

Load balance stats period (seconds): Lookback tra�ic history period. Defaults to 300 seconds. (Note that If
multiple receivers are behind a hostname – i.e., multiple A records – all resolved IPs will inherit the weight of
the host, unless each IP is specified separately. In Cribl Stream load balancing, IP settings take priority over
those from hostnames.)

Max connections: Constrains the number of concurrent receiver connections, per Worker Process, to limit
memory utilization. If set to a number > 0 , then on every DNS resolution period, Cribl Stream will randomly
select this subset of discovered IPs to connect to. Cribl Stream will rotate IPs in future resolution periods –
monitoring weight and historical data, to ensure fair load balancing of events among IPs.

TCP JSON events are sent in newline-delimited JSON format, consisting of:

1. A header line. Can be empty, e.g.: {} . If Auth Token is enabled, the token will be included here as a field
called authToken . In addition, if events contain common fields, they will be included here under
fields .

2. A JSON event/record per line.

See an example in our TCP JSON Source topic.

Advanced Settings

Format

How Does Load Balancing Work

Page 1106 of 1835

Cribl Stream will attempt to load-balance outbound data as fairly as possibly across all receivers (listed as
Destinations in the GUI). If FQDNs/hostnames are used as the Destination address and each resolves to, for
example, 5 (unique) IPs, then each Worker Process will have its # of outbound connections = {# of IPs x # of
FQDNs} for purposes of the Destination. Data is sent by all Worker Processes to all receivers simultaneously,
and the amount sent to each receiver depends on these parameters:

1. Respective destination weight.

2. Respective destination historical data.

By default, historical data is tracked for 300s. Cribl Stream uses this data to influence the tra�ic sent to each
destination, to ensure that di�erences decay over time, and that total ratios converge towards configured
weights.

Suppose we have two receivers, A and B, each with weight of 1 (i.e., they are configured to receive equal
amounts of data). Suppose further that the load-balance stats period is set at the default 300s and – to
make things easy – for each period, there are 200 events of equal size (Bytes) that need to be balanced.

INTERVAL TIME RANGE EVENTS TO BE DISPENSED

1 time=0s ---> time=300s 200

Both A and B start this interval with 0 historical stats each.

Let's assume that, due to various circumstances, 200 events are "balanced" as follows: A = 120 events
and B = 80 events – a di�erence of 40 events and a ratio of 1.5:1.

INTERVAL TIME RANGE EVENTS TO BE DISPENSED

2 time=300s ---> time=600s 200

At the beginning of interval 2, the load-balancing algorithm will look back to the previous interval stats and
carry half of the receiving stats forward. I.e., receiver A will start the interval with 60 and receiver B with 40.
To determine how many events A and B will receive during this next interval, Cribl Stream will use their
weights and their stats as follows:

Total number of events: events to be dispensed + stats carried forward = 200 + 60 + 40 =
300 . Number of events per each destination (weighed): 300/2 = 150 (they're equal, due to equal weight).
Number of events to send to each destination A: 150 - 60 = 90 and B: 150 - 40 = 110 .

Totals at end of interval 2: A=120+90=210 , B=80+110=190 , a di�erence of 20 events and a ratio of 1.1:1.

Example

Page 1107 of 1835

Over the subsequent intervals, the di�erence becomes exponentially less pronounced, and eventually
insignificant. Thus, the load gets balanced fairly.

;

Page 1108 of 1835

Cribl Stream supports sending events to Wavefront analytics.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select
Wavefront. Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide
the following options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Wavefront. Next, click + Add New to open
a Wavefront > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this Wavefront definition.

Domain name: WaveFront domain name, e.g., longboard . Required.

Use the Authentication method buttons to select one of these options:

Manual: Displays an API key field for you to enter your Wavefront API auth token. See Wavefront's
Generating an API Token topic.

Secret: This option exposes an Auth token (text secret) drop-down, in which you can select a stored
secret that references the API auth token described above. A Create link is available to store a new,
reusable secret.

8.24. Wavefront

Type: Streaming | TLS Support: Yes | PQ Support: Yes

Configuring Cribl Stream to Output to Wavefront

General Settings

Authentication Settings

Optional Settings

Page 1109 of 1835

Backpressure behavior: Select whether to block, drop, or queue events when all receivers are exerting
backpressure. (Causes might include a broken or denied connection, or a rate limiter.) Defaults to Block .

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Processing Settings

Post‑Processing

Page 1110 of 1835

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Compress: Toggle to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it.
Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (sec): Maximum time between requests. Low values can cause the payload size to be smaller
than the configured Max body size. Defaults to 1 second.

Extra HTTP headers: Click + Add Header to insert extra headers as Name/Value pairs.

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers to declare them as safe to log in plaintext. (Sensitive headers such as
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header
names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Advanced Settings

Notes About Wavefront

Page 1111 of 1835

For details on integrating with Wavefront, see these Wavefront resources:

Direct Data Ingestion, and adjacent topics on Wavefront Proxies.

Wavefront Data Format.

;

Page 1112 of 1835

Cribl Stream can send log and metric events to webhooks and other generic HTTP endpoints.

In the QuickConnect UI: Click + Add Destination at right. From the resulting drawer's tiles, select Webhook.
Next, click either + Add New or (if displayed) Select Existing. The resulting drawer will provide the following
options and fields.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Destinations.
From the top nav of a Cribl Edge instance or Fleet, select More > Destinations.

From the resulting page's tiles or the Destinations le� nav, select Webhook. Next, click + Add New to open a
Webhook > New Destination modal that provides the following options and fields.

Output ID: Enter a unique name to identify this HTTP output definition.

URL: Endpoint URL to send events to. The internal field __url , where present in events, will override this
value. See Internal Fields below.

Method: The HTTP verb to use when sending events. Defaults to POST . Change this to PUT or PATCH where
required by the endpoint.

Format: The format in which to send out events. One of:

NDJSON (newline-delimited JSON) : The default.

JSON Array : Arrays in JSON-parseable format.

Custom : Exposes the following additional fields to define the output format:

Source expression: JavaScript expression to evaluate on every event; Cribl Stream will send the
result of that evaluation instead of the original event. Sample expression: `${fieldA},

8.25. Webhook

Type: Streaming | TLS Support: Configurable | PQ Support: Yes

Configuring Cribl Stream to Output via HTTP

General Settings

Page 1113 of 1835

${fieldB}` (with literal backticks). Defaults to __httpOut – i.e., the value of the __httpOut
field. Use the button at right to open a validation modal.

Drop when null: If toggled to Yes , Cribl Stream will drop events when the Source expression
evaluates to null .

Event delimiter: Delimiter string to insert between events. Defaults to the newline character (\n).
Cannot be a space (this will be converted to \n).

Content type: Content type to use for requests. Defaults to application/x‐ndjson . Any content
types set in Advanced Settings > Extra HTTP headers will override this entry.

Backpressure behavior: Whether to block, drop, or queue events when all receivers are exerting
backpressure.

Tags: Optionally, add tags that you can use for filtering and grouping at the final destination. Use a tab or
hard return between (arbitrary) tag names.

Select one of the following options for authentication:

None: Don't use authentication.

Auth token: Use HTTP token authentication. In the resulting Token field, enter the bearer token that
must be included in the HTTP authorization header.

Auth token (text secret): This option exposes a Token (text secret) drop-down, in which you can select
a stored text secret that references the bearer token described above. A Create link is available to store a
new, reusable secret.

Basic: Displays Username and Password fields for you to enter HTTP Basic authentication credentials.

Basic (credentials secret): This option exposes a Credentials secret drop-down, in which you can
select a stored text secret that references the Basic authentication credentials described above. A
Create link is available to store a new, reusable secret.

Authentication

Persistent Queue Settings

This section is displayed when the Backpressure behavior is set to Persistent Queue.

Page 1114 of 1835

Max file size: The maximum data volume to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit is
reached, Cribl Stream stops queueing and applies the fallback Queue‑full behavior. Enter a numeral with
units of KB, MB, etc.

Queue file path: The location for the persistent queue files. Defaults to $CRIBL_HOME/state/queues . To
this value, Cribl Stream will append /<worker‐id>/<output‐id> .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ; Gzip is
also available.

Queue-full behavior: Whether to block or drop events when the queue is exerting backpressure (because
disk is low or at full capacity). Block is the same behavior as non-PQ blocking, corresponding to the Block
option on the Backpressure behavior drop-down. Drop new data throws away incoming data, while leaving
the contents of the PQ unchanged.

Clear persistent queue: Click this button if you want to flush out files that are currently queued for delivery
to this Destination. A confirmation modal will appear. (Appears only a�er Output ID has been defined.)

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the Cribl Stream Pipeline that processed the event). Supports wildcards. Other
options include:

cribl_host – Cribl Stream Node that processed the event.

cribl_wp – Cribl Stream Worker Process that processed the event.

cribl_input – Cribl Stream Source that processed the event.

cribl_output – Cribl Stream Destination that processed the event.

Validate server certs: Toggle to Yes to reject certificates that are not authorized by a CA in the CA
certificate path, nor by another trusted CA (e.g., the system's CA).

Processing Settings

Post‑Processing

Advanced Settings

Page 1115 of 1835

Round-robin DNS: Toggle to Yes to use round-robin DNS lookup across multiple IPv6 addresses. When a
DNS server returns multiple addresses, this will cause Cribl Stream to cycle through them in the order
returned.

Compress: Toggle this slider to Yes to gzip-compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete before aborting it. Defaults
to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This is set per
Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB. You can set this limit to as high
as 500 MB (512000 KB). Be aware that high values can cause high memory usage per Worker Node,
especially if a dynamically constructed URL (see Internal Fields) causes this Destination to send events to
more than one URL.

Max events per request: Maximum number of events to include in the request body. The 0 default allows
unlimited events.

Flush period (sec): Maximum time between requests. Low values could cause the payload size to be smaller
than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Failed request logging mode: Use this drop-down to determine which data should be logged when a
request fails. Select among None (the default), Payload , or Payload + Headers . With this last option,
Cribl Stream will redact all headers, except non-sensitive headers that you declare below in Safe headers.

Safe headers: Add headers to declare them as safe to log in plaintext. (Sensitive headers such as
authorization will always be redacted, even if listed here.) Use a tab or hard return to separate header
names.

Environment: If you're using GitOps, optionally use this field to specify a single Git branch on which to
enable this configuration. If empty, the config will be enabled everywhere.

Cribl Stream uses a set of internal fields to assist in forwarding data to a Destination.

If an event contains the internal field __criblMetrics , Cribl Stream will send it to the HTTP endpoint as a
metric event. Otherwise, Cribl Stream will send it as a log event.

Internal Fields

Page 1116 of 1835

If an event contains the internal field __url , that field's value will override the General Settings > URL
value. This way, you can determine the endpoint URL dynamically.

For example, you could create a Pipeline containing an Eval Function that adds the __url field, and connect
that Pipeline to your Webhook Destination. Configure the Eval Function to set __url 's value to a URL that
varies depending on a global variable, or on some property of the event, or on some other dynamically
generated value that meets your needs.

See these examples of configuring a Webhook Destination to integrate with specific services:

Webhook/BigPanda Integration

Webhook/Sumo Logic Integration

Cribl Stream will attempt to use keepalives to reuse a connection for multiple requests. A�er 2 minutes
of the first use, the connection will be thrown away, and a new one will be reattempted. This is to
prevent sticking to a particular destination when there is a constant flow of events.

If the server does not support keepalives (or if the server closes a pooled connection while idle), a new
connection will be established for the next request.

When resolving the Destination's hostname, Cribl Stream will pick the first IP in the list for use in the
next connection. Enable Round-robin DNS to better balance distribution of events between destination
cluster nodes.

;

Use Cases

Notes on HTTP-based Outputs

Page 1117 of 1835

9. KNOWLEDGE

Lookups are data tables that can be used in Cribl Stream to enrich events as they are processed by the
Lookup Function. You can access the Lookups library, which provides a management interface for all
lookups, from Cribl Stream's top nav under Processing > Knowledge > Lookups.

This library is searchable, and each lookup can be tagged as necessary. There's full support for .csv files.
Compressed files are supported, but must be in gzip format (.gz extension). You can add files in multimedia
database (.mmdb) binary format, but you cannot edit these binary files through Cribl Stream's UI.

Lookups Library

In single-instance deployments, all files handled by the interface are stored in $CRIBL_HOME/data/lookups .
In distributed deployments, the storage path on the Leader Node is
$CRIBL_HOME/groups/<groupname>/data/lookups/ for each Worker Group.

9.1. Lookups Library
What Are Lookups

How Does the Library Work

For large and/or frequently replicated lookup files, you might want to bypass the Lookups Library UI
and instead manually place the files in a di�erent location. This can both reduce deploy tra�ic and
prevent errors with Cribl Stream's default Git integration. For details, see Managing Large Lookups.

Adding Lookup Files

Page 1118 of 1835

To upload or create a new lookup file, click + Add New, then click the appropriate option from the drop-
down.

Adding a lookup file

To re-upload, expand, edit, or delete an existing .csv or .gz lookup file, click its row on the Lookups page.
(No editing option is available for .mmdb files; you can only re-upload or delete these.)

In the resulting modal, you can edit files in Table or Text mode. However, Text mode is disabled for files
larger than 1 MB.

Editing in table mode

Modifying Lookup Files

Page 1119 of 1835

Editing in text mode

For large lookup files, you'll need to provide extra memory beyond basic requirements for Cribl Stream and
the OS. To determine how much extra memory to add to a Worker Node/Edge Node for a lookup, use this
formula:

Lookup file's uncompressed size (MB) * 2.25 (to 2.75) * numWorkerProcesses = Extra RAM

required for lookup

For example, if you have a lookup file that is 1 GB (1,000 MB) on disk, and three Worker Processes, you could
use an average 2.50 as the multiplier:

1,000 * 2.50 * 3 = 7,500

In this case, the Node's server or VM would need an extra 7,500 MB (7.5 GB) to accommodate the lookup file
across all three worker processes.

Memory Sizing for Large Lookups

What's with That Multiplier?

Page 1120 of 1835

We've cited a squishy range of 2.25–2.75 for the multiplier, because we've found that it varies inversely with
the number of columns in the lookup file:

The fewer columns, the higher the extra memory overhead (2.75 multiplier).

The more columns, the lower the overhead (2.25 multiplier).

In Cribl's testing:

5 columns required a multiplier of 2.75

10 columns required a multiplier of only 2.25.

These are general (not exact) guidelines, and this multiplier depends only on the lookup table's number of
columns. The memory overhead imposed by each additional row appears to decline when more columns are
present in the data.

Aside from the memory requirements above, the Node.js runtime imposes a hard limit on the size of lookup

tables that Cribl Stream can handle. No table can contain more than 16,777,216 (i.e., 224) rows. If a lookup
exceeds this size, attempting to load the lookup will log errors of the form: failed to load
function...Value undefined out of range... .

See also:

Lookup Function.

Ingest-time Lookups use case.

Managing Large Lookups use case.

Redis Function for faster lookups using a Redis integration (bypasses the Lookups Library).

;

Maximum Table Size

Other Scenarios

Page 1121 of 1835

Event Breakers help break incoming streams of data into discrete events. To see how Event Breakers interact
with the rest of Cribl Stream's data flow, see Event Processing Order.

You access the Event Breakers management interface from Cribl Stream's top nav under Processing >
Knowledge > Event Breakers. On the resulting Event Breaker Rulesets page, you can edit, add, delete,
search, and tag Event Breaker rules and rulesets, as necessary.

Event Breaker Rulesets page

You can use Cribl Edge to apply and author Event Breakers while exploring files – even files that you have not
made into sample files. This includes remote files that are viewable only from Edge. See

 Exploring Cribl Edge.

Event Breakers are directly accessible only on Sources that require incoming events to be broken into a
better-defined format. (Check individual Cribl Stream Sources' documentation for Event Breaker support.)
Also, Event Breakers are currently not supported in Packs.

However, you can instead use the Event Breaker Function in Pipelines that process data from unsupported
Sources, and in Pipelines within Packs.

9.2. Event Breakers

Accessing Event Breakers

Limitations

Page 1122 of 1835

Rulesets are collections of Event Breaker rules that are associated with Sources. Rules define
configurations needed to break down a stream of data into events.

Rules within an example (AWS) ruleset that ships with Cribl Stream

Rules within a ruleset are ordered and evaluated top‑>down. One or more rulesets can be associated with a
Source, and these rulesets are also evaluated top‑>down. For a stream from a given Source, the first
matching rule goes into e�ect.

An example of multiple rulesets associated with a Source:

Event Breaker Rulesets

Ruleset A
 Rule 1
 Rule 2
 ...
 Rule n

...

Ruleset B
 Rule Foo
 Rule Bar
 ...
 Rule FooBar

Page 1123 of 1835

Three Event Breaker rulesets added to a Source

This rule breaks on newlines and uses Manual timestamping a�er the sixth comma, as indicated by this
pattern: ^(?:[^,]*,){6} .

An Event Breaker rule

The system default rule functionally sits at the bottom of the ruleset/rule hierarchy (but is built-in and not
displayed on the Event Breakers page), and goes into e�ect if there are no matching rules:

Filter Condition defaults to true

Event Breaker to [\n\r]+(?!\s)

Rule Example

System Default Rule

Page 1124 of 1835

Timestamp anchor to ^

Timestamp format to Auto and a scan depth of 150 bytes

Max Event Bytes to 51200

Default Timezone to Local

On the Event Breaker Rulesets page (see screenshot above), click + Add New to create a new Event Breaker
ruleset. Click + Add Rule within a ruleset to add a new Event Breaker.

Adding a new Event Breaker rule

Each Event Breaker includes the following components, which you configure from top to bottom in the above
Event Breaker Rule modal:

As a stream of data moves into the engine, a rule's filter expression is applied. If the expression evaluates to
true , the rule configurations are engaged for the entire duration of that stream. Else, the next rule down the
line is evaluated.

A�er a breaker pattern has been selected, it will apply on the stream continuously. See below for specific
information on di�erent Event Breaker Types.

How Do Event Breakers Work

Filter Condition

Event Breaker Type

Page 1125 of 1835

A�er events are synthesized out of streams, Cribl Stream will attempt timestamping. First, a timestamp
anchor will be located inside the event. Next, starting there, the engine will try to do one of the following:

Scan up to a configurable depth into the event and autotimestamp, or

Timestamp using a manually supplied strptime format, or

Timestamp the event with the current time.

The closer an anchor is to the timestamp pattern, the better the performance and accuracy – especially if
multiple timestamps exist within an event. For the manually supplied option, the anchor must lead the
engine right before the timestamp pattern begins.

Anchors preceding timestamps

A�er events have been timestamped, one or more fields can be added here as key-value pairs. In each field's
Value Expression, you can fully evaluate the field value using JavaScript expressions.

Timestamp Settings

This timestamping executes the same basic algorithm as the Auto Timestamp Function and the
C.Time.timestampFinder() native method.

In Cribl Stream 3.4.2 and above, where an Event Breaker has set an event's _time to the current time
– rather than extracting the value from the event itself – it will mark this by adding the internal field
__timestampExtracted: false to the event.

Add Fields to Events

Event Breakers always add the cribl_breaker field to output events. Its value is the name of the
chosen ruleset. (Some examples below omit the cribl_breaker field for brevity, but in real life the
field is always added.)

Event Breaker Types

Page 1126 of 1835

Several types of Event Breaker can be applied to incoming data streams:

Regex

File Header

JSON Array

JSON New Line Delimited

Timestamp

CSV

The Regex breaker uses regular expressions to find breaking points in data streams.

A�er a breaker regex pattern has been selected, it will apply on the stream continuously. Breaking will occur
at the beginning of the match, and the matched content will be consumed/thrown away. If necessary, you
can use a positive lookahead regex to keep the content – e.g.: (?=pattern)

Capturing groups are not allowed to be used anywhere in the Event Breaker pattern, as they will further
break the stream – which is o�en undesirable. Breaking will also occur if Max Event Bytes has been reached.

Break a�er a newline or carriage return, but only if followed by a timestamp pattern:
Event Breaker: [\n\r]+(?=\d+-\d+-\d+\s\d+:\d+:\d+)

Regex

The highest Max Event Bytes value that you can set is about 128 MB (134217728 bytes). Events
exceeding the maximum will be split into separate events, but le� unbroken. Cribl Stream will set
these events' __isBroken internal field to false .

Example

Page 1127 of 1835

You can use the File Header breaker to break files with headers, such as IIS or Bro logs. This type of breaker
relies on a header section that lists field names. The header section is typically present at the top of the file,
and can be single-line or greater.

A�er the file has been broken into events, fields will also be extracted, as follows:

Header Line: Regex matching a file header line. For example, ^# .

Field Delimiter: Field delimiter regex. For example, \s+ .

Field Regex: Regex with one capturing group, capturing all the fields to be broken by field delimiter. For
example, ^#[Ff]ields[:]?\s+(.*)

Null Values: Representation of a null value. Null fields are not added to events.

Clean Fields: Whether to clean up field names by replacing non [a-zA-Z0-9] characters with _ .

Using the values above, let's see how this sample file breaks up:

--- input ---
2020-05-19 16:32:12 moen3628 ipsum[5213]: Use the mobile TCP feed, then you can
program the auxiliary card!
 Try to connect the FTP sensor, maybe it will connect the digital bus!
 Try to navigate the AGP panel, maybe it will quantify the mobile alarm!
2020-05-19 16:32:12 moen3628 ipsum[5213]: Use the mobile TCP feed, then you can
program the auxiliary card!
 Try to connect the FTP sensor, maybe it will connect the digital bus!
 Try to navigate the AGP panel, maybe it will quantify the mobile alarm!

--- output event 1 ---
{
 "_raw": "2020-05-19 16:32:12 moen3628 ipsum[5213]: Use the mobile TCP feed, then
you can program the auxiliary card! \n Try to connect the FTP sensor, maybe it
will connect the digital bus!\n Try to navigate the AGP panel, maybe it will
quantify the mobile alarm!",
 "_time": 1589920332
}

--- output event 2 ---
{
 "_raw": "2020-05-19 16:32:12 moen3628 ipsum[5213]: Use the mobile TCP feed, then
you can program the auxiliary card!\n Try to connect the FTP sensor, maybe it will
connect the digital bus!\n Try to navigate the AGP panel, maybe it will quantify
the mobile alarm!",
 "_time": 1589920332
}

File Header

Example

Page 1128 of 1835

You can use the JSON Array to extract events from an array in a JSON document (e.g., an Amazon CloudTrail
file).

Array Field: Optional path to array in a JSON event with records to extract. For example, Records .

Timestamp Field: Optional path to timestamp field in extracted events. For example, eventTime or
level1.level2.eventTime .

JSON Extract Fields: Enable this slider to auto-extract fields from JSON events. If disabled, only _raw
and time will be defined on extracted events.

Timestamp Format: If JSON Extract Fields is set to No, you must set this to Autotimestamp or
Current Time. If JSON Extract Fields is set to Yes, you can select any option here.

--- input ---
#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p
proto
#types time string addr port addr port enum
1331904608.080000 - 192.168.204.59 137 192.168.204.255 137 udp
1331904609.190000 - 192.168.202.83 48516 192.168.207.4 53 udp

--- output event 1 ---
{
 "_raw": "1331904608.080000 - 192.168.204.59 137 192.168.204.255 137
udp",
 "ts": "1331904608.080000",
 "id_orig_h": "192.168.204.59",
 "id_orig_p": "137",
 "id_resp_h": "192.168.204.255",
 "id_resp_p": "137",
 "proto": "udp",
 "_time": 1331904608.08
}

--- output event 2 ---
{
 "_raw": "1331904609.190000 - 192.168.202.83 48516 192.168.207.4 53
udp",
 "ts": "1331904609.190000",
 "id_orig_h": "192.168.202.83",
 "id_orig_p": "48516",
 "id_resp_h": "192.168.207.4",
 "id_resp_p": "53",
 "proto": "udp",
 "_time": 1331904609.19
}

JSON Array

Example

Page 1129 of 1835

Using the values above, let's see how this sample file breaks up:

You can use the JSON New Line Delimited breaker to break and extract fields in newline-delimited JSON
streams.

Example

Using default values, let's see how this sample stream breaks up:

--- input ---
{"Records":[{"eventVersion":"1.05","eventTime":"2020-04-
08T01:35:55Z","eventSource":"ec2.amazonaws.com","eventName":"DescribeVolumes",
"more_fields":"..."},
{"eventVersion":"1.05","eventTime":"2020-04-
08T01:35:56Z","eventSource":"ec2.amazonaws.com","eventName":"DescribeInstanceAttribute"
"more_fields":"..."}]}

--- output event 1 ---
{
 "_raw": "{\"eventVersion\":\"1.05\",\"eventTime\":\"2020-04-
08T01:35:55Z\",\"eventSource\":\"ec2.amazonaws.com\",\"eventName\":\"DescribeVolumes\",
\"more_fields\":\"...\"}",
 "_time": 1586309755,
 "cribl_breaker": "j-array"
}

--- output event 2 ---
{
 "_raw": "{\"eventVersion\":\"1.05\",\"eventTime\":\"2020-04-
08T01:35:56Z\",\"eventSource\":\"ec2.amazonaws.com\",\"eventName\":\"DescribeInstanceAt
\"more_fields\":\"...\"}",
 "_time": 1586309756,
 "cribl_breaker": "j-array"
}

JSON New Line Delimited

Page 1130 of 1835

You can use the Timestamp breaker to break events at the beginning of any line in which Cribl Stream finds a
timestamp. This type enables breaking on lines whose timestamp pattern is not known ahead of time.

Example

Using default values, let's see how this sample stream breaks up:

--- input ---
{"time":"2020-05-
25T18:00:54.201Z","cid":"w1","channel":"clustercomm","level":"info","message":"metric
sender","total":720,"dropped":0}
{"time":"2020-05-
25T18:00:54.246Z","cid":"w0","channel":"clustercomm","level":"info","message":"metric
sender","total":720,"dropped":0}

--- output event 1 ---
{
 "_raw": "{\"time\":\"2020-05-
25T18:00:54.201Z\",\"cid\":\"w1\",\"channel\":\"clustercomm\",\"level\":\"info\",\"mess
sender\",\"total\":720,\"dropped\":0}",
 "time": "2020-05-25T18:00:54.201Z",
 "cid": "w1",
 "channel": "clustercomm",
 "level": "info",
 "message": "metric sender",
 "total": 720,
 "dropped": 0,
 "_time": 1590429654.201,
}

--- output event 2 ---
{
 "_raw": "{\"time\":\"2020-05-
25T18:00:54.246Z\",\"cid\":\"w0\",\"channel\":\"clustercomm\",\"level\":\"info\",\"mess
sender\",\"total\":720,\"dropped\":0}",
 "time": "2020-05-25T18:00:54.246Z",
 "cid": "w0",
 "channel": "clustercomm",
 "level": "info",
 "message": "metric sender",
 "total": 720,
 "dropped": 0,
 "_time": 1590429654.246,
}

Timestamp

Page 1131 of 1835

The CSV breaker extracts fields in CSV streams that include a header line. Selecting this type exposes these
extra fields:

Delimiter: Delimiter character to use to split values. Defaults to: ,

Quote Char: Character used to quote literal values. Defaults to: "

Escape Char: Character used to escape the quote character in field values. Defaults to: "

Example: Using default values, let's see how this sample stream breaks up:

Using default values, let's see how this sample stream breaks up:

--- input ---
{"level":"debug","ts":"2021-02-
02T10:38:46.365Z","caller":"sdk/sync.go:42","msg":"Handle ENIConfig Add/Update: us-
west-2a, [sg-426fdac8e5c22542], subnet-42658cf14a98b42"}
{"level":"debug","ts":"2021-02-
02T10:38:56.365Z","caller":"sdk/sync.go:42","msg":"Handle ENIConfig Add/Update: us-
west-2a, [sg-426fdac8e5c22542], subnet-42658cf14a98b42"}

--- output event 1 ---
{
 "_raw": "{\"level\":\"debug\",\"ts\":\"2021-02-
02T10:38:46.365Z\",\"caller\":\"sdk/sync.go:42\",\"msg\":\"Handle ENIConfig
Add/Update: us-west-2a, [sg-426fdac8e5c22542], subnet-42658cf14a98b42\"}",
 "_time": 1612262326.365
}

--- output event 2 ---
{
 "_raw": "{\"level\":\"debug\",\"ts\":\"2021-02-
02T10:38:56.365Z\",\"caller\":\"sdk/sync.go:42\",\"msg\":\"Handle ENIConfig
Add/Update: us-west-2a, [sg-426fdac8e5c22542], subnet-42658cf14a98b42\"}",
 "_time": 1612262336.365
}

CSV

Example

Page 1132 of 1835

Event Breaker rulesets shipped by Cribl will be listed under the Cribl tag, while user-built rulesets will be
listed under Custom. Over time, Cribl will ship more patterns, so this distinction allows for both sets to grow
independently. In the case of an ID/Name conflict, the Custom pattern takes priority in listings and search.

--- input ---
time,host,source,model,serial,bytes_in,bytes_out,cpu
1611768713,"myHost1","anet","cisco","ASN4204269",11430,43322,0.78
1611768714,"myHost2","anet","cisco","ASN420423",345062,143433,0.28

--- output event 1 ---
{
 "_raw":
"\"1611768713\",\"myHost1\",\"anet\",\"cisco\",\"ASN4204269\",\"11430\",\"43322\",\"0.7
 "time": "1611768713",
 "host": "myHost1",
 "source": "anet",
 "model": "cisco",
 "serial": "ASN4204269",
 "bytes_in": "11430",
 "bytes_out": "43322",
 "cpu": "0.78",
 "_time": 1611768713
}

--- output event 2 ---
{
 "_raw":
"\"1611768714\",\"myHost2\",\"anet\",\"cisco\",\"ASN420423\",\"345062\",\"143433\",\"0.
 "time": "1611768714",
 "host": "myHost2",
 "source": "anet",
 "model": "cisco",
 "serial": "ASN420423",
 "bytes_in": "345062",
 "bytes_out": "143433",
 "cpu": "0.28",
 "_time": 1611768714
}

With Type: CSV selected, an Event Breaker will properly add quotes around all values, regardless of
their initial state.

Cribl versus Custom Rulesets

Exporting and Importing Rulesets

Page 1133 of 1835

You can export and import Custom (or Cribl) rulesets as JSON files. This facilitates sharing rulesets among
Worker Groups or Cribl Stream deployments.

To export a ruleset:

1. Click to open an existing ruleset, or create a new ruleset.

2. In the resulting modal, click Advanced Mode to open the JSON editor.

3. You can now modify the ruleset directly in JSON, if you choose.

4. Click Export, select a destination path, and name the file.

To import any ruleset that has been exported as a valid JSON file:

1. Create a new ruleset.

2. In the resulting modal, click Advanced Mode to open the JSON editor.

3. Click Import, and choose the file you want.

4. Click OK to get back to the New Ruleset modal.

5. Click Save.

If you notice fragmented events, check whether Cribl Stream has added a __timeoutFlush internal field to
them. This diagnostic field's presence indicates that the events were flushed because the Event Breaker
bu�er timed out while processing them. These timeouts can be due to large incoming events, backpressure,
or other causes.

;

Every ruleset must have a unique value in its top id key. Importing a JSON file with a duplicate id
value will fail at the final Save step, with a message that the ruleset already exists. You can remedy
this by giving the file a unique id value.

Troubleshooting

Page 1134 of 1835

Parsers are definitions and configurations for the Parser Function. You can find the library from Cribl Stream's
top nav under Processing > Knowledge > Parsers, and its purpose is to provide an interface for creating and
editing Parsers. The library is searchable, and each parser can be tagged as necessary.

Parsers Library

Parsers can be used to extract or reserialize events. See Parser Function page for examples.

CSV – Parse and reserialize comma-separated values.

ELFF – Parse and reserialize events in Extended Log File Format.

CLF – Parse and reserialize events in Common Log Format.

To create a parser, follow these steps:

1. Go to Knowledge > Parsers and click Add New.

2. Enter a unique ID.

3. Optionally, enter a Description.

9.3. Parsers Library

What Are Parsers

Supported Parser Types:

Creating a Parser

Page 1135 of 1835

4. Select a Parser type (see the supported types above).

5. Enter the List of fields expected to be extracted, in order. Click this field's Maximize icon (far right) if
you'd like to open a modal where you can work with sample data and iterate on results.

6. Optionally, enter any desired Tags.

Adding a new parser

;

Page 1136 of 1835

Global Variables are reusable JavaScript expressions that can be accessed in Functions in any Pipeline. You
can access the library from Cribl Stream's top nav under Processing > Knowledge > Global Variables.

Typical use cases for Global Variables include:

Storing a constant that you can reference from any Function in any Pipeline.

Storing a relatively long value expression, or one that uses one or more arguments.

Global Variables can be of the following types:

Number

String

Boolean

Object

Array

Expression

Global Variables can be accessed via C.vars. – which can be called anywhere in Cribl Stream that JS
expressions are supported. Typeahead is provided. More on Cribl Expressions here.

Assign field foo the value in theAnswer Global Variable.

Global Variable Name: theAnswer <-- ships with Cribl Stream by default.

Global Variable Value: 42

Sample Eval Function: foo = C.vars.theAnswer

9.4. Global Variables Library

What Are Global Variables

Examples

Scenario 1:

Scenario 2:

Page 1137 of 1835

Assign field nowEpoch the current time, in epoch format.

Global Variable Name: epoch <-- ships with Cribl Stream by default.

Global Variable Value: Date.now()/1000

Sample Eval Function: nowEpoch = C.vars.epoch()

Create a new field called storage , by converting the value of event field size to human-readable format.

Global Variable Name: convertBytes <-- ships with Cribl Stream by default

Global Variable Value: `${Math.round(bytes / Math.pow(1024, (Math.floor(Math.log(bytes) /
Math.log(1024)))), 2)}${['Bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB', 'ZiB',

'YiB'][(Math.floor(Math.log(bytes) / Math.log(1024)))]}`
Note the use of quotes or backticks around values. Use the opposite delimiter for the enclosing
expression.

Global Variable Argument: bytes

Sample Eval Function: storage = C.vars.convertBytes(size)
Note the use of bytes here as an argument.

;

Scenario 3:

Page 1138 of 1835

Cribl Stream ships with a Regex Library that contains a set of pre-built common regex patterns. This library
serves as an easily accessible repository of regular expressions. The Library is searchable, and you can assign
tags to each pattern for further organization or categorization. Access the Library from Cribl Stream's top nav
under Processing > Knowledge > Regex Library .

Regular Expression Library

As of this version, the Library contains 25 patterns shipped by Cribl Stream. To insert a pattern into a
Function's regex field, first click the pop-out or Edit icon beside that field.

9.5. Regex Library

What Is the Regex Library

Using Library Patterns

Page 1139 of 1835

Opening a Regex modal

In the resulting Regex or Rules modal, Regex Library patterns will appear as typeahead options. Click a
pattern to paste it in. You can then use the pattern as-is, or modify it as necessary.

Inserting a pattern from the Regex Library

You can also add new, custom patterns to the Library. In the same modal, once you've built your pattern,
click the Save to Library button.

Adding Patterns to the Library

Page 1140 of 1835

Adding a custom pattern to the Regex Library from a Function's Regex modal

In the resulting modal, give your custom pattern a unique ID. Optionally, you can also provide a Description
(name) and groom the Sample data. Then click Save.

Identifying the custom pattern

Your custom pattern will now reside in the Regex Library. It will be available to Functions using the same
typeahead assist as Cribl's pre-built patterns.

Within the Library, patterns shipped by Cribl will be listed under the Cribl tab, while those built by users will
be found under Custom. Over time, Cribl Stream will ship more patterns, and this distinction allows for both
sets to grow independently.

In the case of an ID/Name conflict, the Custom pattern takes priority in listings and search. For example, if a
Cribl-provided pattern and a Custom one are both named ipv4 , the one from Cribl will not be displayed or
delivered as a search result.

;

Cribl vs. Custom and Priority

Page 1141 of 1835

Cribl Stream ships with a Grok Patterns Library that contains a set of pre-built common patterns, organized
as files.

Grok Patterns Library

You can access the Grok Patterns Library from the UI's top nav by selecting Processing > Knowledge >
Grok Patterns. The library contains several pattern files that Cribl provides for basic Grok scenarios, and is
searchable.

To edit a pattern file, click Edit in its Actions column.

To create a new pattern file, click + Add New. In the resulting Create Grok Patterns modal, assign a unique
Filename, populate the file with patterns, then click Save.

Adding Grok patterns

9.6. Grok Patterns Library

What Is the Grok Patterns Library

Managing Library Patterns

Page 1142 of 1835

In the current Cribl Stream version, you apply Grok patterns by inserting a Grok Function into a Pipeline, then
manually typing or pasting patterns into the Pattern field(s).

;

Pattern files reside in: $CRIBL_HOME/(default|local)/cribl/grok-patterns/

Using Grok Patterns

Page 1143 of 1835

Cribl Stream supports two kinds of schemas:

JSON schemas for validating JSON events. Manage these in the UI at Knowledge > Schemas.

Parquet schemas for writing data from a Cribl Stream Destination to Parquet files. Manage these in the
UI at Knowledge > Parquet Schemas.

These schemas obviously serve di�erent purposes. Beware of assuming that operations that work for one
kind of schema can be used with the other. For example, the validation method for JSON schemas –
C.Schema('<schema_name>').validate(<object_field>) – can't be used to validate Parquet schemas.

JSON schemas are based on the popular JSON Schema standard, and Cribl Stream supports schemas
matching that standard's Dra�s 0 through 7.

You can access the schema library from Cribl Stream's top nav under Processing > Knowledge > Schemas.
Its purpose is to provide an interface for creating, editing, and maintaining schemas.

You validate a schema using this built-in method:
C.Schema('<schema_name>').validate(<object_field>) .

You can call this method anywhere in Cribl Stream that supports JavaScript expressions. Typical use cases
for schema validation:

Making a decision before sending an event down to a destination.

Making a decision before accepting an event. (E.g., drop an event if invalid.)

Making a decision to route an event based on the result of validation.

To add this example JSON Schema, go to Processing > Knowledge > Schemas and click + Add New. Enter
the following:

ID: schema1 .

Description: (Enter your own description here.)

Schema: Paste the following schema.

9.7. Schemas Library

JSON Schemas

JSON Schema Example

Page 1144 of 1835

JSON Schema - Sample

Assume that events look like this:

To validate whether the employee field is valid per schema1 , we can use the following:
C.Schema('schema1').validate(employee)

Results:

First event is valid.

Second event is not valid because age is greater than the maximum of 42 .

Third event is not valid because age is missing.

{
"$id": "https://example.com/person.schema.json",
"$schema": "http://json-schema.org/draft-07/schema#",
"title": "Person",
"type": "object",
"required": ["firstName", "lastName", "age"],
"properties": {
"firstName": {
"type": "string",
"description": "The person's first name."

},
"lastName": {
"type": "string",
"description": "The person's last name."

},
"age": {
"description": "Age in years which must be equal to or greater than zero.",
"type": "integer",
"minimum": 0,
"maximum": 42

}
}

}

{"employee":{"firstName": "John", "lastName": "Doe", "age": 21}}
{"employee":{"firstName": "John", "lastName": "Doe", "age": 43}}
{"employee":{"firstName": "John", "lastName": "Doe"}}

Page 1145 of 1835

Schema validation results for the above events

Destinations whose General Settings > Data format drop-down includes a Parquet option can write out
data as files in the Apache Parquet columnar storage format.

Before configuring a Destination for Parquet output, you should add an existing Parquet schema, or create a
new Parquet schema, that suits the data you're working with. You do not need to start from scratch: Cribl
provides sample Parquet schemas for you to clone and then customize as needed.

From the top menu, select Knowledge, then select Parquet Schemas from the le� nav.

If you're adding a Parquet schema:

Click + Add New to open the New Parquet schema modal.

If you're creating a Parquet schema:

1. Click the name of the schema you want to start with, to open it in a modal.

2. Click Clone Parquet Schema to open the New Parquet schema modal.

3. Give the new schema a name and description.

From here, whether you're working with a brand-new or cloned schema:

4. Add and/or edit fields as desired.

5. Click Save.

Parquet Schemas

Page 1146 of 1835

Creating a Parquet schema

Now, when you configure your Destination, the schema you created will be available from the
Parquet Settings > Parquet schema drop-down.

Di�erent Parquet readers and writers behave di�erently. Keep the following guidelines in mind when
working with Parquet in Cribl Stream 3.5.3 and above.

For now, Cribl Stream can read Parquet files only if they have the extension .parquet , .parq , or .pqt .

When Cribl Stream writes to a Parquet file:

If the data contains a field that is not present in the schema – i.e, an extra field – Cribl Stream writes out
the parent rows, but omits the extra field.

If the data contains a field that is present in the Parquet schema, but whose properties violate the
schema, Cribl Stream treats this as a data mismatch. Cribl Stream drops the rows containing that field –
it does not write those rows to the output Parquet file at all.

If the data contains JSON, the JSON must be stringified. Otherwise, Cribl Stream treats this as a data
mismatch, and does not write out the row. For example, this valid (but not stringified) JSON will trigger a

Working with Parquet in Cribl Stream

File Extensions

Field Content

Page 1147 of 1835

data mismatch:
{ "name": "test"} .

The same JSON in stringified form will work fine:
"{\"name\": \"test\"}" .

Cribl Stream supports:

All primitive types.

All logical types.

All converted types, except LIST and MAP .

Converted types have been superseded by logical types, as described in the Apache Parquet docs.
Cribl Stream can read Parquet files that use converted types, but will write out the same data using
corresponding logical types.

You have three alternatives when defining a field's Repetition type:

Set optional to true .

Set repeated to true .

Set neither optional nor repeated . This implicitly sets the Repetition type to required , and it is the
default.

Usage guidelines:

Do not set both optional and repeated to true .

Do not use the required key at all.

Instead of omitting optional , you have the option to include it, but set it to false .

Instead of omitting repeated , you have the option to include it, but set it to false .

If any field's Repetition type is repeated , Cribl Stream represents this field as a single key whose value
is an array – not as separate key/value pairs with identical keys.

Among the *DICTIONARY encodings, Cribl Stream supports only DICTIONARY . Trying to assign the
unsupported encodings PLAIN_DICTIONARY or RLE_DICTIONARY will produce an error.

Data Types

Repetition Type

Encodings

Page 1148 of 1835

BYTE_STREAM_SPLIT encoding can be used only with DOUBLE or FLOAT types, and otherwise produces
errors.

The RLE and all DELTA* encodings also produce errors.

;

Page 1149 of 1835

10. REFERENCE

To complement our API Reference, below are some examples of using the Cribl Stream API to address
common scenarios. If you want to automate an action in Cribl Stream for which you can't find
documentation, ask us in Cribl Community's #docs channel.

Every Cribl API URL includes a server URL and an endpoint path, which vary depending on the type of
deployment.

The server URL follows these patterns:

Cribl.Cloud deployment:
https://logstream.<organization_name>.cribl.cloud/<endpoint_path>

On-prem deployment:
https://<cribl-stream-leader>:9000/<endpoint_path>

The endpoint path always begins with /api/v1/ , but the remainder varies. For example, the
/system/outputs endpoint follows these patterns:

Single-instance deployment: /api/v1/system/outputs/{id}

Distributed deployment: /api/v1/m/{workerGroup}/system/outputs/{id}

For licenses limited to a single Worker Group, the {workerGroup} value will always be default

When composing requests to the Cribl API, use the pattern that matches your deployment type. Adapt
examples from this page in the same way.

10.1. API Docs

Using the Correct API URL

In Cribl.Cloud and other distributed deployments, you must Commit and Deploy your changes a�er
following the steps in the examples. With the API, you can automate commit/deploy commands, too.

Page 1150 of 1835

Other than calls to /auth/login and /health , all API requests require a Bearer token. You obtain the
Bearer token in di�erent ways, depending on where your Cribl Stream instance is deployed, as outlined in
this section. You can make the listed requests at the command line, programmatically, or using the UI.

On Cribl.Cloud, you cannot get the Bearer token directly. Instead, get it from the API Reference:

1. Select global ⚙ Settings (lower le�) > API Reference.

2. Click on any GET endpoint that requires no parameters.

3. In that endpoint's open accordion, click Try it out, then Execute.

4. From the resulting curl response, copy the token value a�er Authorization: Bearer .

5. Include that value in the Authorization header, like this:
Bearer <value>

Send a local authentication request and payload to the API as shown below. Adapt the example to include
your Leader hostname (or IP address), username, and password.

Request:

Payload:

Example request using curl :

Obtaining API Bearer Tokens

Cribl.Cloud

On-Prem

If you're using SSO/OpenID Connect Authentication, you must enable the Allow local auth setting. in
order for local users to authenticate using the API.

POST https://<cribl-stream-leader>:9000/api/v1/auth/login

{
"username": "<username>",
"password": "<password>"

}

Page 1151 of 1835

You'll get a JSON object as the response, e.g.:

Use this Bearer token in all subsequent requests. Include it in the Authorization header, like this:

Bearer <JWT_token>

You can use the API to programmatically update the configuration of any object type that the API supports
(e.g., Sources and Destinations).

Example: Periodically rotate S3 keys on a preconfigured S3/MinIO destination.

1. Send a GET request to the /outputs endpoint to retrieve the definition for a Destination (in this case,
MinIO). The response provides the definition in its payload, as a JSON object.

Example request:

Example response:

curl -X POST https://<cribl-stream-leader>:9000/api/v1/auth/login -d '{"username":"
<username","password":"<password>"}'

{
"token": "<JWT_Token>",
"forcePasswordChange": false

}

Update Basic Configurations

curl -X GET "<url>/api/v1/system/inputs/<output id>" -H "accept:
application/json" -H "Authorization: Bearer <token>"

Page 1152 of 1835

2. Edit the definition so that when you send it back in a PATCH request, it updates the desired
Destination's S3 keys.

Edit the value of the id field to be the ID of the specific Destination whose keys you want to rotate,
e.g., minio_042 .

Edit the values of the S3 key fields, e.g., "awsApiKey": "minioadmin_new_api_key" and
"awsSecretKey": "minioadmin_new_secret_key" .

3. Send the edited definition as the payload of a PATCH request to the /outputs enpdoint. This patches
(i.e., updates) the specified MinIO Destination's configuration.

This section demonstrates how to upload a Lookup file via the API. The following examples assume that
we're uploading the file to a Worker Group named default .

1. Send a PUT request to the /system/lookups endpoint to upload the file. Example:

{
"systemFields": [
"cribl_pipe"

],
"signatureVersion": "v4",
"objectACL": "private",
"partitionExpr": "`${host}/${sourcetype}`",
"format": "json",
"baseFileName": "CriblOut",
"compress": "none",
"maxFileSizeMB": 32,
"maxFileOpenTimeSec": 300,
"maxFileIdleTimeSec": 30,
"maxOpenFiles": 100,
"onBackpressure": "block",
"id": "minio",
"type": "minio",
"endpoint": "http://minio:9090",
"bucket": "test",
"destPath": "keyprefix",
"stagePath": "tmp",
"awsApiKey": "minioadmin",
"awsSecretKey": "minioadmin"

}

Upload a Lookup File

curl -X PUT "<url>/api/v1/m/default/system/lookups?filename=example.csv" \
-H "Authorization: Bearer <token>" -H 'Content-Type: text/csv' \
--data-binary '@/path/to/your/example.csv'

Page 1153 of 1835

You will receive a JSON object response similar to the following example:

2. Send a POST request referencing the Lookup file to the /system/lookups endpoint. Replace the
filename with the response from the previous PUT request. This both creates the Lookup and moves the
Lookup file to its final destination. Example:

Example response:

3. If replacing an existing lookup, send a PATCH request referencing the existing filename in the URL and
the body. Example:

Example response:

{"filename":"example.csv.random.tmp","rows":100,"size":200}

curl -X POST "<url>/api/v1/m/default/system/lookups" \
-H "accept: application/json" -H "Authorization: Bearer <token>" \
-H "Content-Type: application/json" \
-d '{"id":"example.csv","fileInfo":{"filename":"example.csv.random.tmp"}}'

{
"items": [
{
"id": "example.csv",
"size": 200

}
],
"count": 1

}

curl -X PATCH "<url>/api/v1/m/default/system/lookups/example.csv" \
-H "accept: application/json" -H "Authorization: Bearer <token>" \
-H "Content-Type: application/json" \
-d '{"id":"example.csv","fileInfo":{"filename":"example.csv.random.tmp"}}'

{
"items": [
{
"id": "example.csv",
"size": 200

}
],
"count": 1

}

Page 1154 of 1835

In a distributed environment, for lookup files of manageable size: Cribl recommends uploading the Lookup
file only to the Leader Node, and then making a selective commit and deploy with only those Lookup file
changes. The Leader then notifies Worker Nodes that a new configuration is available, and Worker Nodes will
pull the new configuration from the Leader Node.

Cribl SE Jon Rust has written a Python script which demonstrates how to authenticate to the Cribl API, make
a simple POST request, and add a new HEC token.

To use the script, you'll need:

Python 3.

The Python 3 Requests module (use brew or pip3 to install).

A working, distributed Cribl Stream installation, with a configured Splunk HEC Source.

An admin username and password.

The script and instructions for usage can be found in Jon Rust's GitHub repo.

You can perform Pack operations by running Cribl API calls on the command line. This is required if you plan
to automate Pack operations – e.g., in a CI/CD pipeline. For more details, see Managing Packs via API .

;

Distributed Upload

Creating HEC Tokens with Python

Managing Packs via APIs

Page 1155 of 1835

As data travels through a Cribl Stream Pipeline, it is operated on by a series of Functions. Functions are
fundamentally JavaScript code.

Functions that ship with Cribl Stream are configurable via a set of inputs. Some of these configuration
options are literals, such as field names, and others can be JavaScript expressions.

Expressions are valid units of code that resolve to a value. Every syntactically valid expression resolves to
some value, but conceptually, there are two types of expressions: those that assign value to a variable (a.k.a.,
with side e�ects), and those that evaluate to a value.

ASSIGNING A VALUE EVALUATING TO A VALUE

x = 42
newFoo = foo.slice(30)

(Math.random() * 42)
3 + 4
'foobar'
'42'

Filters are used in Routes to select a stream of the data flow, and in Functions to scope or narrow down the
applicability of a Function. Filters are expressions that must evaluate to either true (or truthy) or false (or
falsy). Keep this in mind when creating Routes or Functions. For example:

sourcetype=='access_combined' && host.startsWith('web')

source.endsWith('.log') || sourcetype=='aws:cloudwatchlogs:vpcflow'

This table shows examples of truthy and falsy values.

TRUTHY FALSY

10.2. Cribl Expression Syntax

Filters and Value Expressions

Filters

Page 1156 of 1835

TRUTHY FALSY

true
42
-42
3.14
"foo"
Infinity
-Infinity

false
null
undefined
0
NaN
''
""

Value expressions are typically used in Functions to assign a value – for example, to a new field. For example:

Math.floor(_time/3600)

source.replace(/.{3}/, 'XXX')

In a value expression, ensure that the source variable is not null , undefined , or empty . For example,
assume you want to have a field called len , to be assigned the length of a second field called
employeeID . But you're not sure if employeeID exists. Instead of employeeID.length , you can use a
safer shorthand, such as: (employeeID || '').length .

If a field does not exist (undefined), and you're doing a comparison with its properties, then the boolean
expression will always evaluate to false. For example, if employeeID is undefined, then both of these
expressions will evaluate to false: employeeID.length > 10 , and employeeID.length < 10 .

== means "equal to," while === means "equal value and equal type." For example, 5 == 5 and 5 ==
"5" each evaluate to true, while 5 === "5" evaluates to false.

A ternary operator is a very powerful way to create conditional values. For example, if you wanted to
assign either minor or adult to a field groupAge , based on the value of age , you could do: (age >=
18) ? 'adult' : 'minor' .

If there are fields whose names include non-alphanumeric characters – e.g., @timestamp or user‐agent or
kubernetes.namespace_name – you can access them using __e['<field-name-here>'] . (Note the single
quotes.) More details here.

Value Expressions

Best Practices for Creating Predictable Expressions

Fields with Non-Alphanumeric Characters

Page 1157 of 1835

In any other place where the field is referenced – e.g., in the Eval function's field names – you should use a
single-quoted literal, of the form: '<field-name-here>' .

Wildcard Lists are used throughout the product, especially in various Functions, such as Eval, Mask,
Publish Metrics, Parser, etc.

Wildcard Lists, as their name implies, accept strings with asterisks (*) to represent one or more terms. They
also accept strings that start with an exclamation mark (!) to negate one or more terms.

Wildcard Lists are order-sensitive only when negated terms are used. This allows for implementing any
combination of allowlists and blocklists.

For example:

WILDCARD LIST VALUE MEANING

List 1 !foobar, foo* All terms that start with foo, except foobar.

List 2 !foo*, * All terms, except for those that start with foo.

;

Wildcard Lists

You cannot use wildcards to target Cribl Stream internal fields that start with __ (double
underscore). You must specify these fields individually. For example, __foobartab cannot be
removed by specifying __foo* .

Page 1158 of 1835

Native Cribl Stream function methods can be found under C.* , and can be invoked from any Function that
allows for expression evaluations. For example, to create a field that is the SHA1 of a another field's value,
you can use the Eval Function with this Evaluate Fields pair:

NAME VALUE EXPRESSION

myNewField C.Mask.sha1(myOtherField)

C.Crypto.decrypt
(method) Crypto.decrypt(value: string, escape: boolean, escapeSeq: string): string
Decrypt all occurrences of ciphers in the given value. Instances that cannot be decrypted (for any reason) are
le� intact.
@param – value – String in which to look for ciphers.
@param – escape – Boolean, defaults to false . Set to true to escape double quotes in output a�er
decryption. (E.g., for data encrypted in Splunk.)
@param – escapeSeq – String used to escape double quotes. The default '"' escapes CSV output.
@returns – value with ciphers decrypted.

C.Crypto.encrypt
(method) Crypto.encrypt(value: any, keyclass: number, keyId?: string, defaultVal?:
string): string
Encrypt the given value with the keyId , or with a keyId picked up automatically based on keyclass .
@param {string | Bu�er} value – what to encrypt.
@param – keyclass – if keyId isn't specified, pick one at the given keyclass .
@param – keyId - encryption keyId, takes precedence over keyclass .
@param – defaultVal – what to return if encryption fails for any reason; if unspecified, the original value is
returned.
@returns – if encryption succeeds, the encrypted value; otherwise, defaultVal if specified; otherwise,
value .

10.3. Cribl Expressions

Where fields' names contain special characters, you can reference them using the
__e['<field‐name‐here>'] convention. For details, see Fields with Non-Alphanumeric Characters.

C.Crypto – Data Encryption and Decryption Functions

Page 1159 of 1835

C.Crypto.createHmac
(method) Crypto.createHmac(value: string | Buffer, secret: string, algorithm: string =
'sha256', outputFormat: 'base64' | 'hex' | 'latin1' = 'hex'): string
Generates an HMAC that can be added to events, or can be used to validate events that contain an HMAC.
(Available in Cribl Stream v.3.1.2+.)
@param – value – The data to encrypt, as a string. (When the outputFormat is invalid or undefined, this
parameter is returned as the digest, via a Bu�er.)
@param} – secret – The secret key used to generate the MAC, as a string.
@param – algorithm – The hash algorithm used to generate the MAC, as a string. Defaults to 'sha256' .
Run openssl list -digest-algorithms to see the list of available algorithms.
@param – outputFormat – One of 'base64' , 'hex' , or 'latin1' . Defaults to 'hex' .
@returns – The calculated HMAC digest on success; otherwise, value .

C.Decode.base64
(method) Decode.base64(val: string, resultEnc?: string): any
Performs base64 decoding of the given string. Returns a string or Bu�er, depending on the resultEnc value,
which defaults to 'utf8' .
@param – val – value to base64-decode.
@param – resultEnc – encoding to use to convert the binary data to a string. Defaults to 'utf8' .
Use 'utf8‐valid' to validate that result is valid UTF8; use 'buffer' if you need the binary data in a
Bu�er.

C.Decode.gzip
(method) Decode.gzip(value: any, encoding?: string): string
Gunzip the supplied value.
@param – value – the value to gunzip.
@param – encoding – encoding of value , for example: 'base64' , 'hex' , 'utf-8' , 'binary' . Default is
'base64' . If data is received as Bu�er (from gzip with encoding: 'none'), decoding is skipped.

C.Decode.hex
(method) Decode.hex(val: string): number
Performs hex to number conversion. (Returns NaN if value cannot be converted to a number.)
@param – val – hex string to parse to a number (e.g., "0xcafe").

C.Decode.uri
(method) Decode.uri(val: string): string
Performs URI-decoding of the given string.
@param – val – value to URI-decode.

C.Decode – Data Decoding Functions

Page 1160 of 1835

C.Encode.base64
(method) Encode.base64(val: any, trimTrailEq?: boolean): string
Returns a base64 representation of the given string or Bu�er.
@param – val – value to base64-encode.
@param – trimTrailEq – whether to trim any trailing = .

C.Encode.gzip
(method) Encode.gzip(value: string, encoding?: string): any
Gzip, and optionally base64-encode, the supplied value.
@param – value – the value to gzip.
@param – encoding – encoding of value , for example: 'base64' , 'hex' , 'utf-8' , 'binary' , 'none' .
Default is 'base64' . If 'none' is specified, data will be returned as a Bu�er.

C.Encode.hex
(method) Encode.hex(val: string | number): string
Rounds the number to an integer and returns its hex representation (lowercase). If a string is provided, it will
be parsed into a number or NaN .
@param – val – value to convert to hex.

C.Encode.uri
(method) Encode.uri(val: string): string
Returns the URI-encoded representation of the given string.
@param – val – value to uri encode.

C.env
(property) env: {[key: string]: string;}
Returns an object containing Cribl Stream's environment variables.

C.Lookup – Exact Lookup
(property) Lookup: (file: string, primaryKey?: string, otherFields?: string[],
ignoreCase?: boolean) => InlineLookup
Returns an instance of a lookup to use inline.

C.Encode – Data Encoding Functions

C.env – Environment

C.Lookup – Inline Lookup Functions

Page 1161 of 1835

Example invocation, where host is the name of the primary key field:
C.Lookup('lookup_name.csv', 'IP_field_name_in_lookup_file').match(host)

Expanded example, where the quoted 'event_field_or_string_to_match' could be a string to match in
the primary key field:
C.Lookup('name_of_lookup_file.csv',

'field_in_csv_to_match').match('event_field_or_string_to_match',

'field_in_csv_to_output')

C.LookupCIDR – CIDR Lookup
(property) LookupCIDR: (file: string, primaryKey?: string, otherFields?: string[]) =>
InlineLookup
Returns an instance of a CIDR lookup to use inline.

C.LookupIgnoreCase – Case-insensitive Lookup
(property) LookupIgnoreCase: (file: string, primaryKey?: string, otherFields?: string[])
=> InlineLookup
Returns an instance of a lookup (ignoring case) to use inline. Works identically to C.Lookup , except ignores
the case of lookup values. (Equivalent to calling C.Lookup with its fourth ignoreCase? parameter set to
true).

C.[LookupRegex](http://google.com) – Regex Lookup
(property) LookupRegex: (file: string, primaryKey?: string, otherFields?: string[]) =>
InlineLookup
Returns an instance of a Regex lookup to use inline.

(method) InlineLookup.match(value: string, fieldToReturn?: string): any
@param – value – the value to look up.
@param – fieldToReturn – name of the lookup file > field to return.

E.g., C.Lookup('lookup-exact.csv', 'foo').match('abc', 'bar')
Return the value of field bar in the lookup table if field foo matches abc .

C.Lookup can load lookup files of up to 10 MB.

All inputs to Lookup functions' match() method must be strings. If your lookup file contains numeric
fields, convert them to strings, e.g.: .match(String(<fieldname>) .

The optional otherFields[] argument shown in C.Lookup() signatures and examples is reserved
for future use, and not currently implemented.

Page 1162 of 1835

Example 1: C.LookupCIDR('lookup-cidr.csv', 'foo').match('192.168.1.1', 'bar')
Return the value of field bar in the lookup table if the CIDR range in foo includes 192.168.1.1 .

Example 2: C.LookupCIDR('lookup-cidr.csv', 'cidr').match(hostIP, 'location') Return the
value of column location in the lookup table if the location includes `hostIP

Example 3: C.LookupRegex('lookup-regex.csv', 'foo').match('manchester', 'bar')
Return the value of field bar in the lookup table if the regex in foo matches the string manchester .

C.Mask.CC (method) Mask.CC(value: string, unmasked?: number, maskChar?: string): string
Check whether a value could be a valid credit card number, and mask a subset of the value. By default, all
digits except the last 4 will be replaced with X .
@param – value – a string whose digits to mask IFF it could be a valid credit card number.
@param – unmasked – number of digits to leave unmasked: positive for le�, negative for right, 0 for none.
@param – maskChar – a string/char to replace a digit with.

C.Mask.IMEI (method) Mask.IMEI(value: string, unmasked?: number, maskChar?: string):
string
Check whether a value could be a valid IMEI number, and mask a subset of the value. By default, all digits
except the last 4 will be replaced with X .
@param – value – a string whose digits to mask IFF it could be a valid IMEI number.
@param – unmasked – number of digits to leave unmasked: positive for le�, negative for right, 0 for none.
@param – maskChar – a string/char to replace a digit with.

C.Mask.isCC
(method) Mask.isCC(value: string): boolean
Checks whether the given value could be a valid credit card number, by computing the string's Lunh's
checksum modulo 10 == 0 .
@param – value – a string to check for being a valid credit card number.

C.Mask.isIMEI
(method) Mask.isIMEI(value: string): boolean
Checks whether the given value could be a valid IMEI number, by computing the string's Lunh's checksum
modulo 10 == 0 .
@param – value – a string to check for being a valid IMEI number

With C.LookupRegex , ensure that your lookup file contains no empty lines – not even at the bottom.
Any empty row will cause C.LookupRegex().match() to always return true .

C.Mask – Data Masking Functions

Page 1163 of 1835

C.Mask.luhn
(method) Mask.luhn(value: string, unmasked?: number, maskChar?: string): string
Check that value Lunh's checksum mod 10 is 0 , and mask a subset of the value. By default, all digits except
the last 4 will be replaced with X . If the value's Lunh's checksum mod 10 is not 0 , then the value is returned
unmodified.
@param – value – a string whose digits to mask IFF the value's Lunh's checksum mod 10 is 0 .
@param – unmasked – number of digits to leave unmasked: positive for le�, negative for right, 0 for none.
@param – maskChar – a string/char to replace a digit with.

C.Mask.LUHN_SUB (property) Mask.LUHN_SUB: any

C.Mask.luhnChecksum
(method) Mask.luhnChecksum(value: string, mod?: number): number
Generates the Luhn checksum (used to validate certain credit card numbers, IMEIs, etc.). By default, the
mod 10 of the checksum is returned. Pass mod = 0 to get the actual checksum.
@param – value – a string whose digits you want to perform the Lunh checksum on.
@param – mod – return checksum modulo this number. If 0 , skip modulo. Default is 10 .

C.Mask.md5
(method) Mask.md5(value: string, len?: string | number): string
Generate MD5 hash of a given value.
@param – value – compute the hash of this.
@param – len – length of hash to return: 0 for full hash, a +number for le� or a -number for right substring.
If a string is passed it's length will be used.

C.Mask.random
(method) Mask.random(len?: string | number): string
Generates a random alphanumeric string.
@param – len – a number indicating the length of the result; or, if a string, use its length.

C.Mask.REDACTED
(property) Mask.REDACTED: string
The literal 'REDACTED' .

C.Mask.repeat
(method) Mask.repeat(len?: string | number, char?: string): string
Generates a repeating char/string pattern, e.g., XXXX .
@param – len – a number indicating the length of the result; or, if a string, use its length.
@param – char – pattern to repeat len times.

C.Mask.sha1 (method) Mask.sha1(value: string, len?: string | number): string Generate SHA1
hash of given value.

Page 1164 of 1835

@param – value - compute the hash of this.
@param – len - length of hash to return: 0 for full hash, a +number for le�, or a -number for right.
substring. If a string is passed, its length will be used

C.Misc.zip()
(method) Misc.zip(keys: string[], values: any[], dest?: any): any
Set the given keys to the corresponding values on the given dest object. If dest is not provided, a new
object will be constructed.
@param – keys – field names corresponding to keys.
@param – values – values corresponding to values.
@param – dest – object on which to set field values.
@returns – object on which the fields were set.

E.g., people = C.Misc.zip(titles, names)
Sample data: titles=['ceo', 'svp', 'vp'] , names=['foo', 'bar', 'baz']
Create an object called people , with key names from elements in titles , and with corresponding values
from elements in names .
Result: "people": {"ceo": "foo", "svp": "bar", "vp": "baz"}

C.Net.cidrMatch()
(method) Net.cidrMatch(cidrIpRange: string, ipAddress: string): boolean
Determines whether the supplied IPv4 ipAddress is inside the range of addresses identified by
cidrIpRange . For example: C.Net.cidrMatch ('10.0.0.0/24', '10.0.0.100') returns true .
@param – cidrIpRange – IPv4 address range in CIDR format. E.g., 10.0.0.0/24 .
@param – ipAddress – The IPv4 IP address to test for inclusion in cidrIpRange .

C.Net.isIpV4()
(method) Net.isIpV4(value: string): boolean
Determine if the value supplied is an IPv4 address. (Available in Cribl Stream v.3.1.2+.)
@param – value – the IP address to test.

C.Net.isIpV6()
(method) Net.isIpV6(value: string): boolean
Determine if the value supplied is an IPv6 address. (Available in Cribl Stream v.3.1.2+.)
@param – value – the IP address to test.

C.Misc – Miscellaneous Utility Functions

C.Net – Network Functions

Page 1165 of 1835

C.Net.isIpV4AllInterfaces()
(method) Net.isIpV4AllInterfaces(value: string): boolean
Determine if the value supplied is the IPv4 all-interfaces address, typically used to bind to all IPv4 interfaces –
i.e., '0.0.0.0'. (Available in Cribl Stream v.3.1.2+.) @param – value – the IP address to test.

C.Net.isIpV6AllInterfaces()
(method) Net.isIpV6AllInterfaces(value: string): boolean
Determine if the value supplied is an IPv6 all-interfaces address, typically used to bind to all IPv6 interfaces –
one of: '::', '0:0:0:0:0:0:0:0', or '0000:0000:0000:0000:0000:0000:0000:0000'. (Available in Cribl Stream v.3.1.2+.)
@param – value – the IP address to test.

C.Net.ipv6Normalize()
(method) Net.ipv6Normalize(address: string): string
Normalize an IPV6 address based on RFC dra�-ietf-6man-text-addr-representation-04.
@param – address – the IPV6 address to normalize.

C.Net.isPrivate()
(method) Net.isPrivate(address: string): string
Determine whether the supplied IPv4 address is in the range of private addresses per RFC1918.
@param – address – address to test.

C.confVersion
Returns Cribl Stream config version.

C.os.hostname()
Returns hostname of the system running this Cribl Stream instance.

C.Schema()
(property) Schema: (id: string) => SchemaValidator
(method) SchemaValidator.validate(data: any): boolean
Validates the given object against the schema.
@param – data – object to be validated.
@returns – true when schema is valid; otherwise, false .
Example: C.Schema('schema1').validate(myField) will validate if myField object conforms to
schema1 .

C.os – System Functions

C.Schema – Schema Functions

Page 1166 of 1835

See Schema Library for more details.

C.Secret()
(method) Secret: (id: string, type?: string): ISecret
(method) Secret(id: string, type: 'keypair') => IPairSecret
(method) Secret(id: string, type: 'text') => ITextSecret
(method) Secret(id: string, type: 'credentials') => ICredentialsSecret
Returns a secret matching the specified ID.
@param id – ID of the secret.
@param type – optional type of the secret.

Examples:

C.Secret('victorias', 'text') will return a text secret with ID victorias (or with undefined, if
no such secret exists).

C.Secret('api_key', 'keypair').secretKey

C.Secret('secret_hash', 'text').value

C.Secret('user_pass', 'credentials').password

Common returned attributes for ISecret objects:

secretType – one of keypair , text , or credentials .

description (optional) – the secret description.

tags (optional) – a comma separated list of tags.

Additional returned attributes for IPairSecret objects:

apiKey – the API key value

secretKey – the Secret key value

Additional returned attributes for ITextSecret objects:

value – the text value

Additional returned attributes for ICredentialsSecret objects:

username – the username value

password – the password value

C.Secret – Secrets‑Management Functions

Page 1167 of 1835

See Securing Cribl Stream > Secrets for more details.

C.Text.entropy()
(method) Text.entropy(bytes: any): number
Computes the Shannon entropy of the given bu�er or string.
@param – bytes – value to undergo Shannon entropy computation.
@returns – the entropy value; or -1 in case of an error.

C.Text.hashCode()
(method) Text.hashCode(val: string | Buffer | number): number
Computes hashcode (djb2) of the given value.
@param – val - value to be hashed.
@returns – hashcode value.

C.Text.isASCII()
(method) Text.isASCII(bytes: any): boolean
Checks whether all bytes or chars are in the ASCII printable range.
@param – bytes – value to check for character range.
@returns – true if all chars/bytes are within ASCII printable range; otherwise, false .

C.Text.isUTF8()
(method) Text.isUTF8(bytes: any): boolean
Checks whether the given Bu�er contains valid UTF8.
@param – bytes – bytes to check.
@returns – true if bytes are UTF8; otherwise, false .

C.Text.parseWinEvent
(method) C.Text.parseWinEvent(xml: string, nonValues?: string[]): any
Parses an XML string representing a Windows event into a compact, prettified JSON object. Works like

, but with Windows events, produces more-compact output. For a usage example,
see Reducing Windows XML Events.
@param – xml – an XML string; or an event field containing the XML.
@param – nonValues – array of string values. Elements whose value equals any of the values in this array
will be omitted from the returned object. Defaults to ['-'] , meaning that elements whose value equals -
will be discarded.
@returns – an object representing the parsed Windows Event; or undefined if the input could not be
parsed.

C.Text – Text Functions

C.Text.parseXml

Page 1168 of 1835

C.Text.parseXml
(method) C.Text.parseXml(xml:string, keepAttr?:boolean, keepMetadata?:boolean,
nonValues?:string[]): any
Parses an XML string and returns a JSON object. Can be used with Eval Function to parse XML fields
contained in an event, or with ad hoc XML.
@param – xml – XML string, or an event field containing the XML.
@param – keepAttr – whether or not to include attributes in the returned object. Defaults to true .
@param – keepMetadata – whether or not to include metadata found in the XML. The keepAttr parameter
must be set to true for this to work. Defaults to false . (Eligible metadata includes namespace definitions
and prefixes, and XML declaration attributes such as encoding, version, etc.)
@param – nonValues – array of string values. Elements whose value equals any of the values in this array
will be omitted from the returned object. Defaults to [] (empty array), meaning discard no elements.
@returns – an object representing the parsed XML; or undefined if the input could not be parsed. An input
collection of elements will be parsed into an array of objects.

C.Text.relativeEntropy()
(method) Text.relativeEntropy(bytes: any, modelName?: string): number
Computes the relative entropy of the given bu�er or string.
@param – bytes – Value whose relative entropy to compute.
@param – modelName – Optionally, override the default
$CRIBL_HOME/data/lookups/model_relative_entropy_top_domains.csv model used to test the input.
Create a custom lookup file with the same column and value structure as the default, and store it in the same
path, as model_relative_entropy_<custom‐name>.csv . To reference it, pass your <custom‐name>
substring as the modelName parameter.
@returns – The relative entropy value, or -1 in case of an error.

C.Time.adjustTZ()
(method) Time.adjustTZ(epochTime: number, tzTo: string, tzFrom?: string): number
Adjust a timestamp from one timezone to another.
@param – epochTime – UNIX epoch time.
@param – tzTo – timezone to adjust to.
@param – tzFrom – optional timezone of the timestamp.
@returns – the adjusted timestamp, in UNIX epoch time (ms).

When using modelName in a distributed deployment, the corresponding paths are
$CRIBL_HOME/groups/<worker–group‐name>/data/lookups/ . Creating your custom lookup file
via Cribl Stream's UI will automatically set the appropriate paths.

C.Time – Time Functions

Page 1169 of 1835

C.Time.clamp()
(method) Time.clamp(date, earliest, latest, defaultDate?): number
Constrains an event's parsed timestamp to realistic earliest and latest boundaries.
@param – date – Timestamp originally parsed from event, in UNIX epoch time (ms) or JavaScript Date
format.
@param – earliest – earliest allowable timestamp, in UNIX epoch time (ms) or JS Date format.
@param – latest – latest allowable timestamp, in UNIX epoch time (ms) or JS Date format.
@param – defaultDate – optional default date, in UNIX epoch time (ms) or JS Date format, to substitute for
values outside the earliest or latest boundaries.

C.Time.strftime()
(method) Time.strftime(date: number | Date, format: string, utc?: boolean): string
Format a Date object or number as a time string, using str�ime specifier.
@param – date – Date object or number (seconds since epoch) to format.
@param – format – specifier to use to format the date.
@param – utc – whether to output the time in UTC, rather than in local timezone.
@returns – representation of the given date.

C.Time.strptime()
(method) Time.strptime(str: string, format: string, utc?: boolean, strict?: boolean):
Date
Extract time from a string using strptime specifier.
@param – str – string to parse to a timestamp (see strict flag).
@param - format – strptime specifier.
@param – utc – whether to interpret times as UTC, rather than as local time.
@param – strict – whether to return null if there are any extra characters a�er timestamp.
@returns – a parsed Date object, if successful; otherwise, null if the specifier did not match.

C.Time.timestampFinder()
(method) Time.timestampFinder(utc?: boolean).find(<source‐field>): AutoTimeParser
Extract time from the specified <source‐field> , using the same algorithm as the Auto Timestamp Function
and the Event Breaker Function.
@param – utc – whether to output the time in UTC, rather than in local timezone.
@param – <source‐field> – the field in which to search for the time.
@returns – representation of the extracted time.

Cribl relies on this timezone‑support package, and on this list of TZ Database Time Zones.

C.vars – Global Variables

Page 1170 of 1835

See Global Variables Library for more details.

(property) version: string
Cribl Stream Version.

;

C.version – Cribl Stream Version

Page 1171 of 1835

Command line interface basics

In addition to starting and stopping the Cribl Stream server, Cribl Stream's command line interface enables
you to initiate many configuration and administrative tasks directly from your terminal.

To execute CLI commands, the basic syntax is:

Not all commands have sub-commands.

To see help for any command, append the --help option, for example:

The scope command is an exception: it has no --help option, but it has its own CLI Reference in the
AppScope documentation.

As indicated in the sample output below, some commands take e�ect immediately.

Commands that require further input will echo the sub-commands, options, and arguments they expect.

10.4. CLI Reference

Command Syntax

cd $CRIBL_HOME/bin
./cribl <command> <sub-command> <options> <arguments>

./cribl vars --help

./cribl vars get --help

./cribl vars get -i myArray --help

Avoiding Surprises

Immediate Execution

Page 1172 of 1835

If you start Cribl Stream with the CRIBL_VOLUME_DIR variable, all subsequent CLI commands should have
this variable defined. Otherwise, those commands will apply Cribl Stream's default directories, yielding
misleading results.

You can set CRIBL_VOLUME_DIR as an environment variable, or you can explicitly include it in each
command, as in this example:

CRIBL_VOLUME_DIR=<writable-path-name> /opt/cribl/bin/cribl status

Note that $CRIBL_VOLUME_DIR , when set, overrides $CRIBL_HOME .

To see a list of available commands, enter ./cribl alone (or the equivalent ./cribl help). To execute a
command, or to see its required parameters, enter ./cribl <command> .

Displays a list of commands with a description (help) for each. Defaults to a selection of generally useful
commands.

./cribl help [-a]

Persistent Volumes

Commands Available

help

Usage

Options

-a - Display the list of all commands, except for `scope`.

Sample Response

Page 1173 of 1835

Configures Cribl Stream as a Leader instance.

./cribl mode-master <options> <args>

Software version: 3.4.0
Usage: [sub-command] [options] [args]

Commands:
help - Display help
mode-edge - Configure instance in Edge mode
mode-managed-edge - Configure instance in Managed-Edge mode
mode-master - Configure instance in Leader mode
mode-single - Configure instance in Single-Instance mode
mode-worker - Configure instance in Worker mode
reload - Reload instance
restart - Restart instance
start - Start instance
status - Display status
stop - Stop instance
version - Print version

auth - Authentication
boot-start - Enable/Disable boot-start
diag - Manage diagnostics bundles
git - Manage Worker Groups config
keys - Manage encryption keys
nc - Listen on a port for traffic and output stats and data
node - Execute a JavaScript file
pack - Manage Cribl Packs
pipe - Feed stdin to a pipeline
vars - Manage global variables

As of version 3.0, Cribl Stream's former "master" application components are renamed "leader." As
long as some legacy terminology remains within CLI commands/ options, configuration keys/values,
and environment variables, this document will reflect that.

mode-master

Usage

Options

Page 1174 of 1835

Configures Cribl Stream as a single-instance deployment.

./cribl mode-single [--help]

Configures Cribl Edge as a single-instance deployment.

./cribl mode-edge [--help]

[-H <host>] - Host (defaults to 0.0.0.0).
[-p <port>] - Port (defaults to 4200).
[-n <certName>] – Name of saved certificate.
[-k <privKeyPath>] – Server path containing the private key (in PEM format) to
use. Can reference $ENV_VARS.
[-c <certPath>] – Server path containing certificates (in PEM format) to
use. Can reference $ENV_VARS.
[-u <authToken>] - Optional authentication token to include as part of the
connection header.
[-i <ipWhitelistRegex>] – Regex matching IP addresses that are allowed to establish
a connection.
[-r <resiliency>] – Resiliency mode for the Leader. Accepts agruments: none,
failover.
[-v <failoverVolume>] – If the ‐r option is set to failover, this defines the
volume to use as shared storage.

Sample Response

Settings updated.
You will need to restart Cribl Stream before your changes take full effect.

mode-single

Usage

Sample Response

Settings updated.
You will need to restart Cribl Stream before your changes take full effect.

mode-edge

Usage

Page 1175 of 1835

Configures Cribl Stream as a Worker instance.

./cribl mode-worker -H <host> -p <port> <options> <args>

The -H <host> -p <port> parameters are required.

Configures Cribl Edge as an Edge Node.

Sample Response

Settings updated.

mode-worker

Usage

Options

-H <host> – Leader Node's Hostname or IP address.
-p <port> – Leader Node's cluster communications port (defaults to 4200).
-S – Set secure communication with the Leader using TLS.
UI‐generated update scripts automatically include this option.
[-n <certName>] – Name of saved certificate.
[-k <privKeyPath>] – Server path containing the private key (in PEM format) to use.
Can reference $ENV_VARS.
[-c <certPath>] – Server path containing certificates (in PEM format) to use. Can
reference $ENV_VARS.
[-u <authToken>] – Authentication token to include as part of the connection
header. By default, this token is included and is set to 'criblmaster'.
[-e <envRegex>] – Regex that selects environment variables to report to Leader.
[-t <tags>] – Tag values to report to Leader.
[-g <group>] – Worker Group/Fleet to report to Leader.

Sample Response

Settings updated.
You will need to restart Cribl Stream before your changes take full effect.

mode-managed-edge

Usage

Page 1176 of 1835

./cribl mode-managed-edge -H <host> -p <port> <options> <args>

The -H <host> -p <port> parameters are required.

Manages Cribl Packs.

./cribl pack <sub-command> <options> <args>

Options

-H <host> – Leader Node's Hostname or IP address.
-p <port> – Leader Node's cluster communications port (defaults to 4200).
-S <tls> – Enables secure TLS communication between Leader and Worker/Edge
Nodes. Accepts: ["true", "false"]. UI‐generated version-update scripts automatically
set this option to true.
[-n <certName>] – Name of saved certificate.
[-k <privKeyPath>] – Server path containing the private key (in PEM format) to use.
Can reference $ENV_VARS.
[-c <certPath>] – Server path containing certificates (in PEM format) to use. Can
reference $ENV_VARS.
[-u <authToken>] – Authentication token to include as part of the connection
header. By default, this token is included and is set to 'criblmaster'.
[-e <envRegex>] – Regex that selects environment variables to report to Leader.
[-t <tags>] – Tag values to report to Leader.
[-g <group>] – Worker Group/Fleet to report to Leader.

Sample Response

Settings updated.

pack

Usage

Sub-commands and Options

Page 1177 of 1835

Reloads Cribl Stream. Executes immediately.

./cribl reload [--help]

export - Export Cribl Packs, args:
 -m <mode> - Mode to export. Accepts: merge_safe, merge, default_only.
 [-o <filename>] - Where to export the pack on disk.
 [-n <name>] - Name to override the installed pack's name on export.
 [-g <group>] - The Worker Group/Fleet to execute within
install - Install a Cribl Pack, args:
 [-d] - Run install in debug.
 [-f] - Force install.
 [-n <name>] - Name of the pack to install; defaults to source.
 [-g <group>] - The Worker Group/Fleet to execute within.
list - List Cribl Packs, args:
 [-v] - Display all pack info.
 [-g <group>] - The Worker Group/Fleet to execute within.
uninstall - Uninstall a Cribl Pack, args:
 [-d] - Run uninstall in debug.
 [-g <group>] - The Worker Group/Fleet to execute within.
upgrade - Upgrade a Cribl Pack, args:
 [-d] - Run upgrade in debug.
 [-s <source>] - Provide the pack source.
 [-m <minor>] - Only upgrade to minor version.
 [-g <group>] - The Worker Group/Fleet to execute within.

Sample Response

id version spec displayName author description
source
--
--
HelloPacks 1.0.0 ---- Hello, Packs! Cribl, Inc. A sample pack with a simple
example file:/opt/cribl/default/HelloPacks

reload

Usage

Sample Response

Reload request submitted to Cribl

restart

Page 1178 of 1835

Restarts Cribl Stream. Executes immediately.

./cribl restart [--help]

Starts Cribl Stream. Executes immediately. Upon first run, echoes Cribl Stream's default login credentials.

./cribl start <options> <args>

Executing this command cancels any running collection jobs.

Usage

Sample Response

Stopping Cribl, process 18
............
Cribl Stream is not running
Starting Cribl Stream...
...
Cribl Stream started

start

Usage

Options

[-d <dir>] - Configuration directory
[-r <role>] - Process role

Sample Response

Starting Cribl Stream...
...
Cribl Stream started

status

Page 1179 of 1835

Displays status of Cribl Stream, including the API Server address, instance's mode (Leader or Worker),
process ID, and GUID (fictitious example below). Executes immediately.

./cribl status [--help]

Stops Cribl Stream. Executes immediately.

./cribl stop [--help]

Displays Cribl Stream version. Executes immediately.

Usage

Sample Response

Cribl Stream Status

Address: http://172.17.0.3:9000
Mode: master
Status: Up
Software Version: 3.1.0-f765e418
Config Version: 347079c
Master: 0.0.0.0:4200
PID: 4100
GUID: e706052a-ace9-4511-a7c7-b58a414a07d3

stop

Executing this command cancels any running collection jobs.

Usage

Sample Response

Stopping Cribl Stream, process 3951
............
Cribl Stream is not running

version

Usage

Page 1180 of 1835

./cribl version [--help]

Log into or out of Cribl Stream.

./cribl auth <sub-command> <options> <args>

Launch interactive login:

$CRIBL_HOME/bin/cribl auth login

Append credentials as command arguments:

$CRIBL_HOME/bin/cribl auth login -h <url> -u <username> -p <password>

Provide credentials in environment variables:

Sample Response

Software Version: 3.1.0-f765e418

auth

Usage

Sub-commands and Options

login - Log in to Cribl Stream/Edge, args:
 [-h <oldHost>] - undefined
 [-H <host>] - Host URL (e.g. http://localhost:9000)
 [-u <username>] - Username
 [-p <password>] - Password
 [-f <file>] - File with credentials
logout - Log out from Cribl Stream/Edge

Login Examples

All -h and host arguments are optional, provided that the API host and port are listed in the
cribl.yml file's api: section.

Page 1181 of 1835

CRIBL_HOST=<url> CRIBL_USERNAME=<username> CRIBL_PASSWORD=<password>

$CRIBL_HOME/bin/cribl auth login

Provide credentials in a file:

$CRIBL_HOME/bin/cribl auth login -f <path/to/file>

--

Corresponding file contents:

Enables or disables Cribl Stream boot-start.

./cribl boot-start <sub-command> <options> <args>

host=<url>
username=<username>
password=<password>

boot-start

Usage

Sub-commands and Options

disable - Disable Cribl Stream/Edge boot-start, args:
 [-m <manager>] - Init manager (systemd|initd)
 [-c <configDir>] - Config directory for the init manager
enable - Enable Cribl Stream/Edge boot-start, args:
 [-m <manager>] - Init manager (systemd|initd)
 [-u <user>] - User to run Cribl Stream/Edge as
 [-c <configDir>] - Config directory for the init manager

Sample Response

Enabling Cribl Stream/Edge to be managed by initd...
boot-start enable command needs root privileges...
Enabled Cribl Stream/Edge to be managed by initd as user=root.

diag

Page 1182 of 1835

Manages diagnostic bundles.

./cribl diag <sub-command> <options> <args>

Manages Worker Group/Fleets'/Fleets' configuration.

./cribl git <sub-command> <options> <args>

Usage

Sub-commands and Options

create - Creates diagnostic bundle for Cribl Stream/Edge, args:
 [-d] - Run create in debug mode
 [-j] - Do not append '.txt' to js files
list - List existing Cribl Stream/Edge diagnostic bundles

send - Send Cribl Stream/Edge diagnostics bundle to Cribl Support,
args:
 -c <caseNumber> - Cribl Support Case Number
 [-p <path>] - Diagnostic bundle path (if empty then new bundle will be
created)

Sample Response

Created @[product] diagnostic bundle at /opt/cribl/diag/logstream-zedborcdb72f-
20210820T204405.tar.gz

git

Usage

Sub-commands and Options

commit - Commit, args:
 [-g <group>] - Group ID.
 [-m <message>] - Commit message.
commit-deploy - Commit & Deploy, args:
 -g <group> - Group ID.
 [-m <message>] - Commit message.
deploy - Deploy, args:
 -g <group> - Group ID.
 [-v <version>] - Deploy version.
list-groups - List Worker Groups/Fleets.

Page 1183 of 1835

Deprecated. See .

Manages encryption keys. You must append the -g <group> argument to specify a Worker Group/Fleet. As a
fallback, append the argument -g default , e.g.: ./cribl keys list -g default

./cribl keys <sub-command> <options> <args> -g <group>

Listens on a port for tra�ic, and outputs stats and data. (Netcat-like utility.)

./cribl nc -p <port> <options> <args>

Sample Response

Successfully committed version 7c04de1

groups

git

keys

Usage

Sub-commands and Options

add - Add encryption keys, args:
 [-c <keyclass>] - key class to set for the key
 [-k <kms>] - KMS to use, must be configured, see cribl.yml
 [-e <expires>] - expiration time, epoch time
 [-i] - use an initialization vector
 -g <group> - Group ID
list - List encryption keys, args:
 -g <group> - Group ID

Sample Response

Adding key succeeded. Key count=1

nc

Usage

Page 1184 of 1835

Run with no options, displays a command prompt, as shown here:

To execute a JavaScript file, you can enter path/filename at the prompt.

With the -v option, prints the version of NodeJS that is running.

With -e , evaluates a string. Write to console to see the output, for example:

./cribl node <options> <args>

Options

 -p <port> - Port to listen on
[-s <statsInterval>] - Stats output interval (ms), use 0 to disable
[-u] - Listen on UDP port instead
[-o] - Output received data to stdout
[-t <throttle>] - throttle rate in (unit)/sec, where units can be KB,MB,GB and
TB

Sample Response

2021-08-20T22:44:30.457Z - starting server on 0.0.0.0:9999
2021-08-20T22:44:30.462Z - server listening 0.0.0.0:9999
2021-08-20T22:44:31.461Z - messages: 0, socks: 0, thruput: 0MBps
2021-08-20T22:44:32.466Z - messages: 0, socks: 0, thruput: 0MBps
...
2021-08-20T22:44:39.212Z - got connection: 127.0.0.1:37190
2021-08-20T22:44:39.213Z - got connection: 127.0.0.1:37192

node

>

./cribl node -e 'console.log(Date.now())'
1629740667695

Usage

Options

Page 1185 of 1835

Feeds stdin to a pipeline.

./cribl pipe -p <pipelineName> <options> <args>

Examples:

[-e <eval>] - String to eval
[-v] - Prints NodeJS version

Sample Response

v14.15.1

pipe

Usage

cat sample.log | ./cribl pipe -p <pipelineName>
cat sample.log | ./cribl pipe -p <pipelineName> 2>/dev/null

Options

 -p <pipeline> - Pipeline to feed data thru
[-d] - Include dropped events
[-c <cpuProfile>] - Perform CPU profiling
[-a <pack>] - Optional Cribl Pack context

Sample Response

Page 1186 of 1835

Greps your apps by the syscalls. Executes immediately.

See the AppScope CLI Reference for usage and examples.

Manages Cribl Stream Global Variables.

./cribl vars <sub-command> <options> <args>

...
{"time":"2021-08-
20T20:37:00.017Z","cid":"api","channel":"commands","level":"info","message":"creating
new pipeline","id":"main","conf":{"asyncFuncTimeout":1000,"functions":
[{"id":"eval","disabled":false,"filter":"true","conf":{"add":
[{"name":"cribl","value":"'yes'"}],"remove":[]}}]}}
{"time":"2021-08-
20T20:37:00.019Z","cid":"api","channel":"pipe:main","level":"info","message":"start
loading and initializing functions","count":1}
{"time":"2021-08-
20T20:37:00.021Z","cid":"api","channel":"pipe:main","level":"info","message":"finished
loading and initializing functions","count":1}
{"time":"2021-08-
20T20:37:00.022Z","cid":"api","channel":"commands","level":"info","message":"START
pushing stdin events","id":"main"}
{"time":"2021-08-
20T20:37:00.028Z","cid":"api","channel":"GrokMgr","level":"info","message":"loaded
grok patterns","count":152}
...

scope

vars

Usage

Sub-commands and Options

Page 1187 of 1835

;

Sub-commands:
add - Add global variable, args:
 -i <id> - Global variable ID
 -t <type> - Type
 -v <value> - Value
 [-a <args>] - Arguments
 [-d <description>] - Description
 [-c <tags>] - Custom Tags (comma separated list)
 [-g <group>] - Group ID
get - List global variables, args:
 [-i <id>] - Global variable ID
 [-g <group>] - Group ID
remove - Remove global variable, args:
 -i <id> - Global variable ID
 [-g <group>] - Group ID
update - Update global variable, args:
 -i <id> - Global variable ID
 [-t <type>] - Type
 [-v <value>] - Value
 [-a <args>] - Arguments
 [-d <description>] - Description
 [-c <tags>] - Custom Tags (comma separated list)
 [-g <group>] - Group ID

Sample Response

[
 {
 "type": "number",
 "lib": "cribl",
 "description": "Sample number variable ",
 "value": "42",
 "tags": "cribl,sample",
 "id": "theAnswer"
 }
]

Page 1188 of 1835

This is a consolidated list of environment variables available to configure Cribl Stream instances.

You can use the following environment variables to configure your distributed Cribl Stream instance.

NAME PURPOSE

CRIBL_DIST_MASTER_URL

URL of the Leader Node. Example:
CRIBL_DIST_MASTER_URL=tls://<authToken>@leader:4200 . See Formatting Notes

below.

CRIBL_DIST_MODE worker or master . Defaults to worker i� CRIBL_DIST_MASTER_URL is present.

CRIBL_HOME Auto setup on startup. Defaults to parent of bin directory.

CRIBL_CONF_DIR Auto setup on startup. Defaults to parent of bin directory.

CRIBL_NOAUTH Disables authentication. Careful here!!

CRIBL_TMP_DIR Defines the root of a temporary directory. See Formatting Notes below.

CRIBL_VOLUME_DIR
Sets a directory that persists modified data between di�erent containers or ephemeral
instances.

CRIBL_DIST_WORKER_PROXY Communicate to the Leader Node via a SOCKS proxy.See Formatting Notes below.

CRIBL_BOOTSTRAP Quickstart a Cribl instance by configuring this variable.

CRIBL_BOOTSTRAP_HOST
Host name for connecting to the Leader Node when setting up a new Worker Node. This
variable is not related to CRIBL_BOOTSTRAP .

CRIBL_USERNAME Used to log in or out of Cribl.

CRIBL_PASSWORD Used to log in or out of Cribl.

CRIBL_HOST

The Host URL for authentication. Example:
CRIBL_HOST=<url> CRIBL_USERNAME=<username> CRIBL_PASSWORD=<password>
$CRIBL_HOME/bin/cribl auth login

10.5. Environment Variables

Distributed Deployment

Page 1189 of 1835

This section explains how to use certain complex environment variables.

Use this format:

<tls|tcp>://<authToken>@host:port?group=defaultGroup&tag=tag1&tag=tag2&tls.

<tls_settings>

Here are the components:

group – The preferred Worker Group assignment.

resiliency – The preferred Leader failover mode.

volume – The location of the NFS directory to support Leader failover.

tag – A list of tags that you can use to assign (Stream, Edge) the Worker to a Worker Group.

tls.privKeyPath – Private Key Path.

tls.passphrase – Key Passphrase.

tls.caPath – CA Certificate Path.

tls.certPath – Certificate Path.

tls.rejectUnauthorized – Validate Client Certs. Boolean, defaults to false .

tls.requestCert – Authenticate Client (mutual auth). Boolean, defaults to false .

tls.commonNameRegex – Regex matching peer certificate > subject > common names allowed to
connect. Used only if tls.requestCert is set to true .

Sources use this variable to construct temporary directories in which to stage downloaded Parquet data.
If CRIBL_TMP_DIR is not set (the default), Cribl applications create subdirectories within your operating
system's default temporary directory:

For Cribl Stream: <OS_default_temporary_directory>/stream/ .

For Cribl Edge: <OS_default_temporary_directory>/edge/ .

For example, on Linux, Stream's default staging directory would be /tmp/stream/ .

If you explicitly set this CRIBL_TMP_DIR environment variable, its value replaces this OS-specific default
parent directory.

Formatting Notes

CRIBL_DIST_MASTER_URL

CRIBL_TMP_DIR

Page 1190 of 1835

Use the format <socks4|socks5>://<username>:<password>@<host>:<port> . Only <host>:<port> are
required.

The default protocol is socks5:// , but you can specify socks4://proxyhost:port if needed.

To authenticate on a SOCKS4 proxy with username and password, use this format:
username:password@proxyhost:port . The proxyhost can be a hostname , ip4 , or ip6 .

You can configure a second Leader Node via the following environment variables.

NAME PURPOSE

CRIBL_DIST_MASTER_RESILIENCY=failover Sets the Leader's Resiliency to Failover mode.

CRIBL_DIST_MASTER_FAILOVER_VOLUME=/tmp/shared
Sets the location of the NFS directory to support Leader
failover.

CRIBL_DIST_MASTER_FAILOVER_MISSED_HB_LIMIT

Determines how many Lease refresh periods elapse before
the standby Nodes attempt to promote themselves to
primary. Cribl recommends setting this to 3 .

CRIBL_DIST_MASTER_FAILOVER_PERIOD
Determines how o�en the primary Leader refreshes its hold
on the Lease file. Cribl recommends setting this to 5s .

CRIBL_INSTANCE_HOME

In Failover mode, this variable points to the
Leader Node's root directory, as opposed to the shared
volume. It is used to access
$CRIBL_INSTANCE_HOME/local/_system/instance.yml .

Outside of Failover mode, it's the same value as
CRIBL_CONF_DIR .

Cribl Stream provides the following environment variables to facilitate GitOps.

CRIBL_DIST_WORKER_PROXY

Adding a Second Leader Node

GitOps

Bootstrap Variables

Page 1191 of 1835

NAME PURPOSENAME PURPOSE

CRIBL_GIT_REMOTE
Location of the remote repo to track. Can contain username and password
for HTTPS auth.

GIT_SSH / GIT_SSH_COMMAND See Git's documentation.

CRIBL_GIT_BRANCH Git ref (branch, tag, commit) to track/check out.

CRIBL_GIT_AUTH One of: none , basic , or ssh .

CRIBL_GIT_USER Used for basic auth.

CRIBL_GIT_PASSWORD Used for basic auth.

CRIBL_GIT_OPS Controls which GitOps workflow to use – one of: none , push , or pull .

CRIBL_GIT_SSH_KEY Content of the SSH key used to access git remote.

CRIBL_GIT_STRICT_HOST_KEY_CHECKING Boolean flag sets whether to check the host key strictly.

CRIBL_INTERACTIVE
Controls whether git commands called by Cribl CLI at startup are
interactive.

Cribl Stream uses the following variables internally.

NAME PURPOSE

CRIBL_WORKER_ID Passed to Worker processes.

CRIBL_GROUP_ID Passed to ConfigHelper processes to identify Worker Groups.

CRIBL_ROLE Controls the behavior of a Cribl subprocess, e.g. LEADER , WORKER , CONFIG_HELPER

CRIBL_SERVICE Set to 1 when using systemd to start Cribl at boot time.

CRIBL_SERVICE_NAME Set to cribl when using systemd to start Cribl at boot time.

CRIBL_AUTO_PORTS
When set to true , allows the Cribl process to listen to the first open port, if the designated
API port is taken.

CRIBL_EDGE_FS_ROOT Location of the host OS' filesystem when mounting in a container. Defaults to /hostfs .

Internal Environment Variables

Page 1192 of 1835

NAME PURPOSE

CRIBL_EDGE

When set to any value, runs this command at container start:
cribl mode‐edge ‐H 0.0.0.0 . This launches the instance as an Edge Node, listening on a

Host at 0.0.0.0 .

;

Page 1193 of 1835

Even though all Cribl Stream Routes, Pipelines, and Functions can be managed from the UI, it's important to
understand how the configuration works under the hood. Here is how configuration paths and files are laid
out on the filesystem.

PATH PLACEHOLDER EXPANDED PATH

$CRIBL_HOME

Standalone Install:
/path/to/install/cribl/ – referred to

below as $CRIBL_HOME

Cribl App for Splunk Install:
$SPLUNK_HOME/etc/apps/cribl/

All paths below are relative to $CRIBL_HOME in a single-instance deployment, or to
$CRIBL_HOME/groups/<group‐name>/ in a distributed deployment.

CATEGORY RELATIVE PATH

Default Configurations
Out-of-the-box defaults (rewritable) and libraries
(expandable)

default/cribl

Local Configurations
User-created integrations and resources

local/cribl

System Configuration
(default|local)/cribl/cribl.yml

See cribl.yml

API Configuration
(default|local)/cribl/cribl.yml > [api] section

See cribl.yml

Source Configuration
(default|local)/cribl/inputs.yml

See inputs.yml

Destination Configuration
(default|local)/cribl/outputs.yml

See outputs.yml

License Configuration (default|local)/cribl/licenses.yml

10.6. Config Files

Understanding Configuration Paths and Files

Page 1194 of 1835

CATEGORY RELATIVE PATH

Regexes Configuration (default|local)/cribl/regexes.yml

Breakers Configuration (default|local)/cribl/breakers.yml

Limits Configuration (default|local)/cribl/limits.yml

Pipelines Configuration
(default|local)/cribl/pipelines/<pname>

Each Pipeline's conf is contained therein.

Routes Configuration (default|local)/cribl/pipelines/routes.yml

Functions
(default|local)/cribl/functions/<function_name>

Each function's code, conf is contained therein.

Functions Configuration
(default|local)/cribl/functions/<function_name>/...

Each function's conf is contained therein.

Roles Configuration
(default|local)/cribl/roles.yml

RBAC Role definitions. See roles.yml.

Policies Configuration
(default|local)/cribl/policies.yml

RBAC Policy definitions. See policies.yml.

Configuration changes resulting from most UI interactions – for instance, changing the order of
Functions in a Pipeline, or changing the order of Routes – do not require restarts.

Some configuration changes in the Settings UI do require restarts. You will be prompted to confirm
before restarting.

All direct edits to configuration files in (bin|local|default)/cribl/... will require restarts.

Worker Nodes/Edge Nodes might temporarily disappear from the Leader's Workers tab while restarting.

When using the Cribl App for Splunk, changes to Splunk configuration files might or might not require
restarts. Please check current Splunk docs.

Similar to most *nix systems, Cribl configurations in local take precedence over those in default . There is
no layering of configuration files.

Configurations and Restart

Configuration Layering and Precedence

Page 1195 of 1835

;

Editing Configuration Files Manually

When config files must be edited manually, save all changes in local .

Page 1196 of 1835

cribl.yml contains settings for configuring API and other system properties.

$CRIBL_HOME/default/cribl/cribl.yml

10.6.1. cribl.yml

Page 1197 of 1835

auth: # [object] Authentication Settings
type: # [string] Type - Select one of the supported authentication providers.

-------------- if type is ldap ---------------

secure: # [boolean] Secure - Enable to use a secure ldap connection (ldaps://),
disable for unsecure (ldap://) connection.
ldapServers: # [array of strings] LDAP servers - List of LDAP servers, each entry

should contain host:port (e.g., localhost:389)
bindDN: # [string] Bind DN - Distinguished name of entity to authenticate with

LDAP server, e.g., 'cn=admin,dc=example,dc=org'
bindCredentials: # [string] Password - Distinguished Name password used to

authenticate with LDAP server
searchBase: # [string] User search base - Starting point to search LDAP for users,

e.g., 'dc=example,dc=org'
usernameField: # [string] Username field - LDAP user search field, e.g. cn or uid
searchFilter: # [string] User search filter - LDAP search filter to apply when

finding user, e.g. (&(group=admin)(!(department=123*)))
groupSearchBase: # [string] Group search base - Starting point to search LDAP for

groups, e.g., 'dc=example,dc=org'
groupMemberField: # [string] Group member field - LDAP group search field, e.g.

member
groupSearchFilter: # [string] Group search filter - LDAP search filter to apply

when finding group, e.g. (&(cn=cribl*)(objectclass=group))
groupField: # [string] Group name field - LDAP group field, e.g. cn
connectTimeout: # [number] Connection timeout (ms)
rejectUnauthorized: # [boolean] Reject unauthorized - Valid for secure LDAP

connections, set true to reject unauthorized server certificates.
fallback: # [boolean] Fallback on fatal error - Attempt local authentication if

LDAP authentication is down or mis-configured. Defaults to false.
groups: # [object]
default: # [string] Default role - Default role assigned to groups not

explicitly mapped to a role.
mapping: # [object] Mapping - Group(s)-to-role(s) mappings

--

-------------- if type is saas ---------------

issuer: # [string] Issuer - Issuer from which to accept and validate JWT tokens.
tenantId: # [string] Organization ID - The organization ID within which this

instance is running.
loginUrl: # [string] Login URL - The URL to redirect unauthenticated users to.

--

-------------- if type is splunk ---------------

host: # [string] Host - Hostname or address of Splunk instance that provides
authentication. Defaults to localhost.
port: # [number] Port - Port of Splunk instance that provides authentication.

Defaults to 8089.
ssl: # [boolean] SSL - Whether SSL is enabled on Splunk instance that provides

authentication. Defaults to Yes.
fallback: # [boolean] Fallback on fatal error - Attempt local authentication if

Splunk is unsuccessful. Defaults to false.
groups: # [object]

Page 1198 of 1835

default: # [string] Default role - Default role assigned to groups not
explicitly mapped to a role.

mapping: # [object] Mapping - Group(s)-to-role(s) mappings

--

-------------- if type is openid ---------------

name: # [string] Provider name - The name of the identity provider service. Manual
entries are also allowed.
audience: # [string] Audience - The Audience from provider configuration. This

will be the base URL of your Cribl server, i.e.: https://yourDomain.com:9000
client_id: # [string] Client ID - The client_id from provider configuration.
client_secret: # [string] Client secret - The client_secret provider

configuration.
scope: # [string] Scope - Space-separated list of authentication scopes. Default:

openid profile email.
auth_url: # [string] Authentication URL - The full path to the provider's

authentication endpoint. Be sure to configure the callback URL at provider as
<yourDomainUrl>/api/v1/auth/authorization-code/callback, e.g.
https://yourDomain.com:9000/api/v1/auth/authorization-code/callback
token_url: # [string] Token URL - The full path to the provider's access token

URL.
userinfo_url: # [string] User Info URL - The full path to the provider's user info

url. If not provided, Stream will attempt to gather user info from the ID token
returned from the Token URL.
logout_url: # [string] Logout URL - The full path to the provider's logout URL.

Leave blank if the provider does not support logout or token revocation.
userIdExpr: # [string] User identifier - Expression used to derive userId from the

id_token returned by the openId provider.
rejectUnauthorized: # [boolean] Validate certs - Validate certificates; set to

false to allow insecure self-signed certificates.
filter_type: # [string] Filter type - Optional method for limiting access per

user.
groupField: # [string] Group name field - Field on the id_token that contains the

user groups.
fallback: # [boolean] Allow local auth - Allows locally configured users to log in

to Stream.
groups: # [object]
default: # [string] Default role - Default role assigned to groups not

explicitly mapped to a role.
mapping: # [object] Mapping - Group(s)-to-role(s) mappings

--

system: # [object]
upgrade: # [string]
restart: # [string]
installType: # [string]

workers: # [object]
count: # [number]
memory: # [number]

tls: # [object] Default TLS Settings
minVersion: # [string] Minimum TLS version - Minimum TLS version. Defaults to

TLSv1.
maxVersion: # [string] Maximum TLS version - Maximum TLS version. Defaults to

TLSv1.3.
defaultCipherList: # [string] Default cipher list - Default suite of enabled and

disabled TLS ciphers. Defaults to:

Page 1199 of 1835

ECDHE-RSA-AES128-GCM-SHA256:
ECDHE-ECDSA-AES128-GCM-SHA256:
ECDHE-RSA-AES256-GCM-SHA384:
ECDHE-ECDSA-AES256-GCM-SHA384:
DHE-RSA-AES128-GCM-SHA256:
ECDHE-RSA-AES128-SHA256:
DHE-RSA-AES128-SHA256:
ECDHE-RSA-AES256-SHA384:
DHE-RSA-AES256-SHA384:
ECDHE-RSA-AES256-SHA256:
DHE-RSA-AES256-SHA256:
HIGH:
!aNULL:
!eNULL:
!EXPORT:
!DES:
!RC4:
!MD5:
!PSK:
!SRP:
!CAMELLIA

defaultEcdhCurve: # [string] ECDH curve - The curve name, or a colon-separated
list of curve NIDs or names, to use for ECDH key agreement. For example:
'Pâ�521:Pâ�384:Pâ�256'. Defaults to 'auto'.
rejectUnauthorized: # [boolean] Validate server certs - Whether to validate server

certificates globally. Set to false to allow self-signed certs.
proxy: # [object]
useEnvVars: # [boolean]

git: # [object]
branch: # [string] Branch - The branch to track in your Stream deployment's git

repository.
gitOps: # [string] GitOps workflow - The GitOps workflow for managing Stream's

config.
commitDeploySingleAction: # [boolean] Collapse actions - When enabled, Commit &

Deploy will be collapsed into a single action. If you've configured a remote, Commit
& Git Push will also be collapsed. Your DefaultÂ CommitÂ Message below will be used
for all commits.
defaultCommitMessage: # [string] Default commit message - Enter a default message

to use for all commits.
remote: # [string] Remote URL - Enter remote git repo's URL.
authType: # [string] Authentication type - Git authentication type.

-------------- if authType is ssh ---------------

sshKey: # [string] SSH private key - Enter SSH private key (without passphrase) to
use for authentication on remote git repo.
strictHostKeyChecking: # [boolean] SSH strict host key checking - Validate key

against known hosts, to prevent spoofing or impersonation attacks. For details, see
"VerifyingÂ Host Keys" [here](https://linux.die.net/man/1/ssh).

--

-------------- if authType is basic ---------------

user: # [string] User - Username for authentication.
password: # [string] Password - Password for authentication. (With GitHub, use a

personal access token.)

--

Page 1200 of 1835

Example cribl.yml :

$CRIBL_HOME/default/cribl/cribl.yml

autoAction: # [string] Scheduled global actions - Global git actions to run
automatically on a schedule.

-------------- if autoAction is commit ---------------

autoActionSchedule: # [string] Schedule - Cron schedule to run selected git action
on.
autoActionMessage: # [string] Commit message - Default scheduled commit message.

--

-------------- if autoAction is push ---------------

autoActionSchedule: # [string] Schedule - Cron schedule to run selected git action
on.

--

timeout: # [number] Git timeout - Max time (milliseconds) to wait for git
processes before killing them, 0 to wait indefinitely

Page 1201 of 1835

;

api:
host: 0.0.0.0
port: 9000
retryCount: 120
retrySleepSecs: 5
baseUrl: ""
Flag to enable/disable UI. Default: false
disabled : false
loginRateLimit: 2/second
ssl:
disabled: false
privKeyPath: /path/to/myKey.pem
certPath: /path/to/myCert.pem

auth:
type: local

kms.local:
type: local

crypto:
keyPath: $CRIBL_HOME/local/cribl/auth/keys.json

system:
upgrade: api
restart: api
installType: standalone
intercom: true

workers:
count: -2
minimum: 2
memory: 2048

proxy:
useEnvVars: true

Page 1202 of 1835

Cribl's default Event Breaker Library is stored in $CRIBL_HOME/default/cribl/breakers.yml .

$CRIBL_HOME/default/cribl/breakers.yml

;

10.6.2. breakers.yml

breaker_id: # [object]
lib: # [string] Library
description: # [string] Description - Brief description of this ruleset. Optional.
tags: # [string] Tags - One or more tags related to this ruleset. Optional.
rules: # [array] Rules - List of rules. Evaluated in order, top down.
- name: # [string] Rule Name - Rule Name.
condition: # [string] Filter Condition - Filter expression (JS) that matches

data to apply rule to. To test your sample, use the maximize icon on the right.
type: # [string] Event Breaker Type - Event Breaker Type
timestampAnchorRegex: # [string] Timestamp Anchor - Regex to match before

attempting timestamp extraction. Use $ (end of string anchor) to not perform
extraction.

timestamp: # [object] Timestamp Format - Auto, manual format (strptime) or
current time.

type: # [string] Timestamp Type
length: # [number] Length
format: # [string] Format
timestampTimezone: # [string] Default timezone - Timezone to assign to

timestamps without timezone info.
timestampEarliest: # [string] Earliest timestamp allowed - The earliest

timestamp value allowed relative to now. E.g., -42years. Parsed values prior to this
date will be set to current time.

timestampLatest: # [string] Future timestamp allowed - The latest timestamp
value allowed relative to now. E.g., +42days. Parsed values after this date will be
set to current time.

maxEventBytes: # [number] Max Event Bytes - The maximum number of bytes that
an event can be before being flushed to the pipelines

fields: # [array] Fields - Key value pairs to be added to each event.
- name: # [string] Name - Field Name.
value: # [string] Value Expression - JavaScript expression to compute fields

value (can be constant).
disabled: # [boolean] Disabled - Allows breaker rule to be enabled or

disabled, default is enabled.

Page 1203 of 1835

certificates.yml maintains a list of configured certificates and their parameters.

$CRIBL_HOME/local/cribl/certificates.yml

;

10.6.3. certificates.yml

cerficate_id: # [object]
description: # [string] Description - Brief description of this certificate.

Optional.
cert: # [string] Certificate - Drag/drop or upload host certificate, in PEM/Base64

format. Or paste its contents here.
privKey: # [string] Private key - Certificate private key.
passphrase: # [string] Passphrase - Passphrase. Optional.
ca: # [string] CA certificate - Optionally, drag/drop or upload all CA

certificate(s) in PEM/Base64 format. Or paste certs' contents here. Certs can be
used for client and/or server auth.
inUse: # [array of strings] Referenced - List of configurations referencing this

certificate.

Page 1204 of 1835

groups.yml maintains a list of groups and their configuration versions.

$CRIBL_HOME/local/cribl/groups.yml

;

10.6.4. groups.yml

group_id: # [object]
configVersion: # [string] Config Version - Configuration version that is active

for this group
onPrem: # [boolean] On prem - Whether the group accepts on-prem or cloud worker

nodes (this field is only available on cloud deployments)
isFleet: # [boolean] Is Fleet - Fleet groups only manage edge nodes.
workerRemoteAccess: # [boolean] UI access - Enable authenticated viewing of

Workers' UI from the Leader.

Page 1205 of 1835

inputs.yml contains settings for configuring inputs into Cribl.

$CRIBL_HOME/default/cribl/inputs.yml

10.6.5. inputs.yml

Page 1206 of 1835

inputs: # [object]
collection_input: # [object]
type: # [string] Input Type
breakerRulesets: # [array of strings] Event Breaker rulesets - A list of event

breaking rulesets that will be applied, in order, to the input data stream.
staleChannelFlushMs: # [number] Event Breaker buffer timeout - The amount of time (

milliseconds) the Event Breaker will wait for new data to be sent to a specific channel
before flushing the data stream out, as-is, to the Pipelines.

sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to
Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

preprocess: # [object]
disabled: # [boolean] Disabled - Enable Custom Command
command: # [string] Command - Command to feed the data through (via stdin) and

process its output (stdout)
args: # [array of strings] Arguments - Arguments

throttleRatePerSec: # [string] Throttling - Rate (in bytes per second) to throttle
while writing to an output. Also takes values with multiple-byte units, such as KB, MB,
GB, etc. (E.g., 42 MB.) Default value of 0 specifies no throttling.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
environment: # [string] Environment - Optionally, enable this config only on a

specified Git branch. If empty, will be enabled everywhere.
pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

Page 1207 of 1835

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
kafka_input: # [object]
type: # [string] Input Type
brokers: # [array of strings] Brokers - List of Kafka brokers to use, eg.

localhost:9092
topics: # [array of strings] [required] Topic - Topic to subscribe to. Warning: To

optimize performance, Cribl suggests subscribing each Kafka Source to only a single
topic.

groupId: # [string] Group ID - Specifies the consumer group this instance belongs t
default is 'Cribl'.

fromBeginning: # [boolean] From beginning - Whether to start reading from earliest
available data, relevant only during initial subscription.

kafkaSchemaRegistry: # [object] Kafka Schema Registry Authentication
disabled: # [boolean] Disabled - Enable Schema Registry

-------------- if disabled is false ---------------

schemaRegistryURL: # [string] Schema Registry URL - URL for access to the Conflue
Schema Registry, i.e: http://localhost:8081

tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are n
authorized by a CA in the CA certificate path, or by another trusted CA (e.g., the
system's CA). Defaults to No.

servername: # [string] Server name (SNI) - Server name for the SNI (Server Name
Indication) TLS extension. It must be a host name, and not an IP address.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

privKeyPath: # [string] Private key path (mutual auth) - Path on client in whic
to find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in which t
find certificates to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
minVersion: # [string] Minimum TLS version - Minimum TLS version to use when

connecting
maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when

connecting

--

--

connectionTimeout: # [number] Connection timeout (ms) - Maximum time to wait for a
successful connection.

requestTimeout: # [number] Request timeout (ms) - Maximum time to wait for a
successful request.

sasl: # [object] Authentication - Authentication parameters to use when connecting
brokers. Using TLS is highly recommended.

disabled: # [boolean] Disabled - Enable Authentication

-------------- if disabled is false ---------------

Page 1208 of 1835

mechanism: # [string] SASL mechanism - SASL authentication mechanism to use.

--

tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are not
authorized by a CA in the CA certificate path, or by another trusted CA (e.g., the
system's CA). Defaults to No.

servername: # [string] Server name (SNI) - Server name for the SNI (Server Name
Indication) TLS extension. It must be a host name, and not an IP address.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

privKeyPath: # [string] Private key path (mutual auth) - Path on client in which
find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in which to
find certificates to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
minVersion: # [string] Minimum TLS version - Minimum TLS version to use when

connecting
maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when

connecting

--

sessionTimeout: # [number] Session timeout (ms) -
 Timeout used to detect client failures when using Kafka's group management
facilities.
 If the client sends the broker no heartbeats before this timeout expires,
 the broker will remove this client from the group, and will initiate a rebalance.
 Value must be between the broker's configured group.min.session.timeout.ms and
group.max.session.timeout.ms.
 See details [here]
(https://kafka.apache.org/documentation/#consumerconfigs_session.timeout.ms).

rebalanceTimeout: # [number] Rebalance timeout (ms) -
 Maximum allowed time for each worker to join the group after a rebalance has begu
 If the timeout is exceeded, the coordinator broker will remove the worker from th
group.
 See details [here]
(https://kafka.apache.org/documentation/#connectconfigs_rebalance.timeout.ms).

heartbeatInterval: # [number] Heartbeat interval (ms) -
 Expected time between heartbeats to the consumer coordinator when using Kafka's
group management facilities.
 Value must be lower than sessionTimeout, and typically should not exceed 1/3 of t
sessionTimeout value.
 See details [here]
(https://kafka.apache.org/documentation/#consumerconfigs_heartbeat.interval.ms).

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.

Page 1209 of 1835

sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to
Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
http_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
authTokens: # [array of strings] Auth tokens - Shared secrets to be provided by any

client (Authorization: <token>). If empty, unauthed access is permitted.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

Page 1210 of 1835

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

maxActiveReq: # [number] Max active requests - Maximum number of active requests pe
Worker Process. Use 0 for unlimited.

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

captureHeaders: # [boolean] Capture request headers - Toggle this to Yes to add
request headers to events, in the __headers field.

activityLogSampleRate: # [number] Activity log sample rate - How often request
activity is logged at the `info` level. A value of 1 would log every request, 10 every
10th request, etc.

requestTimeout: # [number] Request timeout (seconds) - How long to wait for an
incoming request to complete before aborting it. Use 0 to disable.

criblAPI: # [string] Cribl HTTP Event API - Absolute path on which to listen for th
Cribl HTTP API requests. At the moment, only _bulk (default /cribl/_bulk) is available.
Use empty string to disable.

elasticAPI: # [string] Elasticsearch API endpoint (Bulk API) - Absolute path on whi
to listen for the Elasticsearch API requests. At the moment only _bulk (default
/elastic/_bulk) is available. Use empty string to disable

splunkHecAPI: # [string] Splunk HEC Endpoint - Absolute path on which listen for th
Splunk HTTP Event Collector API requests. Use empty string to disable.

splunkHecAcks: # [boolean] Splunk HEC Acks - Whether to enable Splunk HEC
acknowledgements

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing

Page 1211 of 1835

engine.
maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold

in-memory before dumping the events to disk.
commitFrequency: # [number] Commit frequency - The number of events to send

downstream before committing that Stream has read them.
maxFileSize: # [string] Max file size - The maximum size to store in each queue

file before closing and optionally compressing (KB, MB, etc.).
maxSize: # [string] Max queue size - The maximum amount of disk space the queue i

allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
splunk_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

ipWhitelistRegex: # [string] IP Allowlist Regex - Regex matching IP addresses that
are allowed to establish a connection.

maxActiveCxn: # [number] Max Active Connections - Maximum number of active
connections allowed per Worker Process, use 0 for unlimited

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
breakerRulesets: # [array of strings] Event Breaker rulesets - A list of event

breaking rulesets that will be applied, in order, to the input data stream.
staleChannelFlushMs: # [number] Event Breaker buffer timeout - The amount of time (

Page 1212 of 1835

milliseconds) the Event Breaker will wait for new data to be sent to a specific channel
before flushing the data stream out, as-is, to the Pipelines.

authTokens: # [array] Auth tokens - Shared secrets to be provided by any Splunk
forwarder. IfÂ empty, unauthed access is permitted.

- token: # [string] Token - Shared secrets to be provided by any Splunk forwarder
IfÂ empty, unauthed access is permitted.

description: # [string] Description - Optional token description
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
splunk_search_input: # [object]
searchHead: # [string] Search head - Search head base URL, can be expression, defau

is https://localhost:8089.
search: # [string] [required] Search - Enter Splunk search here. For example:

'index=myAppLogs level=error channel=myApp' OR '| mstats avg(myStat) as myStat WHERE
index=myStatsIndex.'

earliest: # [string] Earliest - The earliest time boundary for the search. Can be a
exact or relative time. For example: '2022-01-14T12:00:00Z' or '-16m@m'

latest: # [string] Latest - The latest time boundary for the search. Can be an exac
or relative time. For example: '2022-01-14T12:00:00Z' or '-1m@m'

cronSchedule: # [string] [required] Cron schedule - A cron schedule on which to run

Page 1213 of 1835

this job.
endpoint: # [string] [required] Search endpoint - REST API used to create a search.
outputMode: # [string] [required] Output mode - Format of the returned output
endpointParams: # [array] Endpoint parameters - Optional request parameters to send

to the endpoint.
- name: # [string] Name - Parameter name
value: # [string] Value - JavaScript expression to compute the parameter's valu

normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use single quote
(e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are evaluated as
strings.

endpointHeaders: # [array] Endpoint headers - Optional request headers to send to t
endpoint.

- name: # [string] Name - Header Name
value: # [string] Value - JavaScript expression to compute the header's value,

normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use single quote
(e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are evaluated as
strings.

logLevel: # [string] Log level - Collector runtime log Level (verbosity).
requestTimeout: # [number] Request timeout (seconds) - HTTP request inactivity

timeout, use 0 to disable
useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS looku

When a DNS server returns multiple addresses, this will cause Stream to cycle through
them in the order returned.

keepAliveTime: # [number] Keep Alive Time (seconds) - How often workers should chec
in with the scheduler to keep job subscription alive

maxMissedKeepAlives: # [number] Worker Timeout (periods) - The number of Keep Alive
Time periods before an inactive worker will have its job subscription revoked.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
breakerRulesets: # [array of strings] Event Breaker rulesets - A list of event

breaking rulesets that will be applied, in order, to the input data stream.
staleChannelFlushMs: # [number] Event Breaker buffer timeout - The amount of time (

milliseconds) the Event Breaker will wait for new data to be sent to a specific channel
before flushing the data stream out, as-is, to the Pipelines.

authType: # [string] Authentication type - Splunk Search authentication type

-------------- if authType is basic ---------------

username: # [string] Username - Username for Basic authentication
password: # [string] Password - Password for Basic authentication

--

-------------- if authType is token ---------------

token: # [string] Token - Bearer token to include in the authorization header

--

-------------- if authType is credentialsSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a secret that
references your credentials

--

Page 1214 of 1835

-------------- if authType is textSecret ---------------

textSecret: # [string] Token (text secret) - Select (or create) a stored text secre

--

type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
splunk_hec_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
authTokens: # [array] Auth tokens - Shared secrets to be provided by any client

(Authorization: <token>). If empty, unauthed access is permitted
- token: # [string] Token - Shared secret to be provided by any client

(Authorization: <token>).

Page 1215 of 1835

description: # [string] Description - Optional token description
metadata: # [array] Fields - Fields to add to events referencing this token.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

maxActiveReq: # [number] Max active requests - Maximum number of active requests pe
Worker Process. Use 0 for unlimited.

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

captureHeaders: # [boolean] Capture request headers - Toggle this to Yes to add
request headers to events, in the __headers field.

activityLogSampleRate: # [number] Activity log sample rate - How often request
activity is logged at the `info` level. A value of 1 would log every request, 10 every
10th request, etc.

requestTimeout: # [number] Request timeout (seconds) - How long to wait for an
incoming request to complete before aborting it. Use 0 to disable.

splunkHecAPI: # [string] [required] Splunk HEC Endpoint - Absolute path on which to
listen for the Splunk HTTP Event Collector API requests. This input supports the /event
and /raw endpoints.

metadata: # [array] Fields - Fields to add to every event. May be overridden by
fields added at the token or request level.

- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
allowedIndexes: # [array of strings] Allowed Indexes - List values allowed in HEC

event index field, allows wildcards. Leave blank to skip validation.
splunkHecAcks: # [boolean] Splunk HEC Acks - Whether to enable Splunk HEC

acknowledgements
breakerRulesets: # [array of strings] Event Breaker rulesets - A list of event

breaking rulesets that will be applied, in order, to the input data stream.
staleChannelFlushMs: # [number] Event Breaker buffer timeout - The amount of time (

milliseconds) the Event Breaker will wait for new data to be sent to a specific channel
before flushing the data stream out, as-is, to the Pipelines.

pipeline: # [string] Pipeline - Pipeline to process data from this Source before
sending it through the Routes.

sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Page 1216 of 1835

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
azure_blob_input: # [object]
type: # [string] Input Type
queueName: # [string] Queue - The storage account queue name blob notifications wil

be read from. Value must be a JavaScript expression (which can evaluate to a constant
value), enclosed in quotes or backticks. Can be evaluated only at init time. E.g.,
referencing a Global Variable: `myQueue-${C.vars.myVar}`

fileFilter: # [string] Filename filter - Regex matching file names to download and
process. Defaults to: .*

visibilityTimeout: # [number] Visibility timeout (secs) - The duration (in seconds)
that the received messages are hidden from subsequent retrieve requests after being
retrieved by a ReceiveMessage request.

numReceivers: # [number] Num receivers - The Number of receiver processes to run, t
higher the number the better throughput at the expense of CPU overhead

maxMessages: # [number] Max messages - The maximum number of messages to return in
poll request. Azure storage queues never returns more messages than this value (however
fewer messages might be returned). Valid values: 1 to 32.

servicePeriodSecs: # [number] Service period (secs) - The duration (in seconds) whi
pollers should be validated and restarted if exited

skipOnError: # [boolean] Skip file on error - Toggle to Yes to skip files that
trigger a processing error. Defaults to No, which enables retries after processing
errors.

Page 1217 of 1835

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
breakerRulesets: # [array of strings] Event Breaker rulesets - A list of event

breaking rulesets that will be applied, in order, to the input data stream.
staleChannelFlushMs: # [number] Event Breaker buffer timeout - The amount of time (

milliseconds) the Event Breaker will wait for new data to be sent to a specific channel
before flushing the data stream out, as-is, to the Pipelines.

parquetChunkSizeMB: # [number] Max Parquet chunk size (MB) - Maximum file size for
each Parquet chunk.

parquetChunkDownloadTimeout: # [number] Parquet chunk download timeout (seconds) -
The maximum time to wait for a Parquet file's chunk to be downloaded. Processing will e
if a required chunk could not be downloaded within the time imposed by this setting.

authType: # [string] Authentication method - Enter connection string directly, or
select a stored secret

connectionString: # [string] Connection string - Enter your Azure Storage account
connection string. If left blank, Stream will fall back to
env.AZURE_STORAGE_CONNECTION_STRING.

-------------- if authType is manual ---------------

--

textSecret: # [string] Connection string (text secret) - Select (or create) a store
text secret

-------------- if authType is secret ---------------

--

disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold

Page 1218 of 1835

in-memory before dumping the events to disk.
commitFrequency: # [number] Commit frequency - The number of events to send

downstream before committing that Stream has read them.
maxFileSize: # [string] Max file size - The maximum size to store in each queue

file before closing and optionally compressing (KB, MB, etc.).
maxSize: # [string] Max queue size - The maximum amount of disk space the queue i

allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
elastic_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

maxActiveReq: # [number] Max active requests - Maximum number of active requests pe
Worker Process. Use 0 for unlimited.

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

captureHeaders: # [boolean] Capture request headers - Toggle this to Yes to add
request headers to events, in the __headers field.

activityLogSampleRate: # [number] Activity log sample rate - How often request
activity is logged at the `info` level. A value of 1 would log every request, 10 every
10th request, etc.

requestTimeout: # [number] Request timeout (seconds) - How long to wait for an
incoming request to complete before aborting it. Use 0 to disable.

elasticAPI: # [string] [required] Elasticsearch API endpoint - Absolute path on whi
to listen for Elasticsearch API requests. Defaults to /. _bulk will be appended
automatically, e.g., /myPath becomes /myPath/_bulk. Requests can then be made to either
/myPath/_bulk or /myPath/<myIndexName>/_bulk. Other entries are faked as success.

Page 1219 of 1835

authType: # [string] Authentication type - Elastic authentication type

-------------- if authType is basic ---------------

username: # [string] Username - Username for Basic authentication
password: # [string] Password - Password for Basic authentication

--

-------------- if authType is credentialsSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a secret that
references your credentials

--

-------------- if authType is authTokens ---------------

authTokens: # [array of strings] Token - Bearer tokens to include in the
authorization header

--

apiVersion: # [string] API Version - The API version to use for communicating with
the server.

-------------- if apiVersion is custom ---------------

customAPIVersion: # [string] Custom API Version - Custom version information to
respond to requests

--

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
proxyMode: # [object]
enabled: # [boolean] Enable Proxy Mode - Enable proxying of non-bulk API requests

to an external Elastic server. Enable this only if you understand the implications; see
docs for more details.

-------------- if enabled is true ---------------

url: # [string] Proxy URL - URL of the Elastic server to proxy non-bulk requests
to, e.g., http://elastic:9200

removeHeaders: # [array of strings] Remove headers - List of headers to remove fr
the request to proxy

timeoutSec: # [number] Proxy request timeout - Amount of time, in seconds, to wai
for a proxy request to complete before aborting it.

authType: # [string] Authentication method - Enter credentials directly, or selec
a stored secret

--

Page 1220 of 1835

pipeline: # [string] Pipeline - Pipeline to process data from this Source before
sending it through the Routes.

sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to
Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
confluent_cloud_input: # [object]
type: # [string] Input Type
brokers: # [array of strings] Brokers - List of Confluent Cloud brokers to use, eg.

yourAccount.confluent.cloud:9092
tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are not
authorized by a CA in the CA certificate path, or by another trusted CA (e.g., the
system's CA). Defaults to No.

servername: # [string] Server name (SNI) - Server name for the SNI (Server Name
Indication) TLS extension. It must be a host name, and not an IP address.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

Page 1221 of 1835

privKeyPath: # [string] Private key path (mutual auth) - Path on client in which
find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in which to
find certificates to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
minVersion: # [string] Minimum TLS version - Minimum TLS version to use when

connecting
maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when

connecting

--

topics: # [array of strings] [required] Topic - Topic to subscribe to. Warning: To
optimize performance, Cribl suggests subscribing each Kafka Source to only a single
topic.

groupId: # [string] Group ID - Specifies the consumer group this instance belongs t
default is 'Cribl'.

fromBeginning: # [boolean] From beginning - Whether to start reading from earliest
available data, relevant only during initial subscription.

kafkaSchemaRegistry: # [object] Kafka Schema Registry Authentication
disabled: # [boolean] Disabled - Enable Schema Registry

-------------- if disabled is false ---------------

schemaRegistryURL: # [string] Schema Registry URL - URL for access to the Conflue
Schema Registry, i.e: http://localhost:8081

tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are n
authorized by a CA in the CA certificate path, or by another trusted CA (e.g., the
system's CA). Defaults to No.

servername: # [string] Server name (SNI) - Server name for the SNI (Server Name
Indication) TLS extension. It must be a host name, and not an IP address.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

privKeyPath: # [string] Private key path (mutual auth) - Path on client in whic
to find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in which t
find certificates to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
minVersion: # [string] Minimum TLS version - Minimum TLS version to use when

connecting
maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when

connecting

--

--

connectionTimeout: # [number] Connection timeout (ms) - Maximum time to wait for a
successful connection.

requestTimeout: # [number] Request timeout (ms) - Maximum time to wait for a
successful request.

sasl: # [object] Authentication - Authentication parameters to use when connecting

Page 1222 of 1835

brokers. Using TLS is highly recommended.
disabled: # [boolean] Disabled - Enable Authentication

-------------- if disabled is false ---------------

mechanism: # [string] SASL mechanism - SASL authentication mechanism to use.

--

sessionTimeout: # [number] Session timeout (ms) -
 Timeout used to detect client failures when using Kafka's group management
facilities.
 If the client sends the broker no heartbeats before this timeout expires,
 the broker will remove this client from the group, and will initiate a rebalance.
 Value must be between the broker's configured group.min.session.timeout.ms and
group.max.session.timeout.ms.
 See details [here]
(https://kafka.apache.org/documentation/#consumerconfigs_session.timeout.ms).

rebalanceTimeout: # [number] Rebalance timeout (ms) -
 Maximum allowed time for each worker to join the group after a rebalance has begu
 If the timeout is exceeded, the coordinator broker will remove the worker from th
group.
 See details [here]
(https://kafka.apache.org/documentation/#connectconfigs_rebalance.timeout.ms).

heartbeatInterval: # [number] Heartbeat interval (ms) -
 Expected time between heartbeats to the consumer coordinator when using Kafka's
group management facilities.
 Value must be lower than sessionTimeout, and typically should not exceed 1/3 of t
sessionTimeout value.
 See details [here]
(https://kafka.apache.org/documentation/#consumerconfigs_heartbeat.interval.ms).

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing

Page 1223 of 1835

engine.
maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold

in-memory before dumping the events to disk.
commitFrequency: # [number] Commit frequency - The number of events to send

downstream before committing that Stream has read them.
maxFileSize: # [string] Max file size - The maximum size to store in each queue

file before closing and optionally compressing (KB, MB, etc.).
maxSize: # [string] Max queue size - The maximum amount of disk space the queue i

allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
grafana_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

maxActiveReq: # [number] Max active requests - Maximum number of active requests pe
Worker Process. Use 0 for unlimited.

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

captureHeaders: # [boolean] Capture request headers - Toggle this to Yes to add
request headers to events, in the __headers field.

activityLogSampleRate: # [number] Activity log sample rate - How often request
activity is logged at the `info` level. A value of 1 would log every request, 10 every
10th request, etc.

requestTimeout: # [number] Request timeout (seconds) - How long to wait for an
incoming request to complete before aborting it. Use 0 to disable.

prometheusAPI: # [string] Remote Write API endpoint - Absolute path on which to
listen for Grafana Agent's Remote Write requests. Defaults to /api/prom/push, which wil

Page 1224 of 1835

expand as: http://<yourâ�upstreamâ�URL>:<yourâ�port>/api/prom/push.
lokiAPI: # [string] Logs API endpoint - Absolute path on which to listen for Loki

logs requests. Defaults to /loki/api/v1/push, which will (in this example) expand as:
'http://<yourâ�upstreamâ�URL>:<yourâ�port>/loki/api/v1/push'.

keepAliveTimeout: # [number] Keep alive timeout (seconds) - Maximum time to wait fo
additional data, after the last response was sent, before closing a socket connection.
This can be very useful when Grafana Agent remote write's request frequency is high so,
reusing connections, would help mitigating the cost of creating a new connection per
request. Note that Grafana Agent's embedded Prometheus would attempt to keep connection
open for up to 5 minutes.

prometheusAuth: # [object]
authType: # [string] Authentication type - Remote Write authentication type

-------------- if authType is basic ---------------

username: # [string] Username - Username for Basic authentication
password: # [string] Password - Password for Basic authentication

--

-------------- if authType is token ---------------

token: # [string] Token - Bearer token to include in the authorization header

--

-------------- if authType is credentialsSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a secret th
references your credentials

--

-------------- if authType is textSecret ---------------

textSecret: # [string] Token (text secret) - Select (or create) a stored text
secret

--

lokiAuth: # [object]
authType: # [string] Authentication type - Loki logs authentication type

-------------- if authType is basic ---------------

username: # [string] Username - Username for Basic authentication
password: # [string] Password - Password for Basic authentication

--

-------------- if authType is token ---------------

token: # [string] Token - Bearer token to include in the authorization header

--

Page 1225 of 1835

-------------- if authType is credentialsSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a secret th
references your credentials

--

-------------- if authType is textSecret ---------------

textSecret: # [string] Token (text secret) - Select (or create) a stored text
secret

--

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

Page 1226 of 1835

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
loki_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

maxActiveReq: # [number] Max active requests - Maximum number of active requests pe
Worker Process. Use 0 for unlimited.

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

captureHeaders: # [boolean] Capture request headers - Toggle this to Yes to add
request headers to events, in the __headers field.

activityLogSampleRate: # [number] Activity log sample rate - How often request
activity is logged at the `info` level. A value of 1 would log every request, 10 every
10th request, etc.

requestTimeout: # [number] Request timeout (seconds) - How long to wait for an
incoming request to complete before aborting it. Use 0 to disable.

lokiAPI: # [string] [required] Logs API endpoint - Absolute path on which to listen
for Loki logs requests. Defaults to /loki/api/v1/push, which will (in this example)
expand as: 'http://<yourâ�upstreamâ�URL>:<yourâ�port>/loki/api/v1/push'.

authType: # [string] Authentication type - Loki logs authentication type

-------------- if authType is basic ---------------

username: # [string] Username - Username for Basic authentication
password: # [string] Password - Password for Basic authentication

--

-------------- if authType is token ---------------

token: # [string] Token - Bearer token to include in the authorization header

--

Page 1227 of 1835

-------------- if authType is credentialsSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a secret that
references your credentials

--

-------------- if authType is textSecret ---------------

textSecret: # [string] Token (text secret) - Select (or create) a stored text secre

--

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

Page 1228 of 1835

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
prometheus_rw_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

maxActiveReq: # [number] Max active requests - Maximum number of active requests pe
Worker Process. Use 0 for unlimited.

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

captureHeaders: # [boolean] Capture request headers - Toggle this to Yes to add
request headers to events, in the __headers field.

activityLogSampleRate: # [number] Activity log sample rate - How often request
activity is logged at the `info` level. A value of 1 would log every request, 10 every
10th request, etc.

requestTimeout: # [number] Request timeout (seconds) - How long to wait for an
incoming request to complete before aborting it. Use 0 to disable.

prometheusAPI: # [string] [required] Remote Write API endpoint - Absolute path on
which to listen for Prometheus requests. Defaults to /write, which will expand as:
http://<yourâ�upstreamâ�URL>:<yourâ�port>/write.

keepAliveTimeout: # [number] Keep alive timeout (seconds) - Maximum time to wait fo
additional data, after the last response was sent, before closing a socket connection.
This can be very useful when Prometheus remote write's request frequency is high so,
reusing connections, would help mitigating the cost of creating a new connection per
request. Note that Prometheus would attempt to keep connections open for up to 5 minute

authType: # [string] Authentication type - Remote Write authentication type

-------------- if authType is basic ---------------

username: # [string] Username - Username for Basic authentication
password: # [string] Password - Password for Basic authentication

--

Page 1229 of 1835

-------------- if authType is token ---------------

token: # [string] Token - Bearer token to include in the authorization header

--

-------------- if authType is credentialsSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a secret that
references your credentials

--

-------------- if authType is textSecret ---------------

textSecret: # [string] Token (text secret) - Select (or create) a stored text secre

--

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T

Page 1230 of 1835

this field's value, the system will append: /<worker-id>/inputs/<input-id>.
compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
prometheus_input: # [object]
dimensionList: # [array of strings] Extra Dimensions - Other dimensions to include

events
discoveryType: # [string] Discovery Type - Target discovery mechanism. Use static t

manually enter a list of targets.

-------------- if discoveryType is static ---------------

targetList: # [array of strings] Targets - List of Prometheus targets to pull metri
from. Values can be in URL or host[:port] format. For example:
http://localhost:9090/metrics, localhost:9090, or localhost. In cases where just
host[:port] is specified, the endpoint will resolve to 'http://host[:port]/metrics'.

--

-------------- if discoveryType is dns ---------------

nameList: # [array] DNS Names - List of DNS names to resolve
recordType: # [string] Record Type - DNS Record type to resolve
scrapeProtocol: # [string] Metrics Protocol - Protocol to use when collecting metri
scrapePath: # [string] Metrics Path - Path to use when collecting metrics from

discovered targets

--

-------------- if discoveryType is ec2 ---------------

usePublicIp: # [boolean] Use Public IP - Use public IP address for discovered
targets. Set to false if the private IP address should be used.

scrapeProtocol: # [string] Metrics Protocol - Protocol to use when collecting metri
scrapePort: # [number] Metrics Port - The port number in the metrics URL for

discovered targets.
scrapePath: # [string] Metrics Path - Path to use when collecting metrics from

discovered targets
searchFilter: # [array] Search Filter - EC2 Instance Search Filter
- Name: # [string] Filter Name - Search filter attribute name, see:

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html for
more information. Attributes can be manually entered if not present in the drop down li

Values: # [array of strings] Filter Values - Search Filter Values, if empty onl
"running" EC2 instances will be returned

awsAuthenticationMethod: # [string] Authentication method - AWS authentication
method. Choose Auto to use IAM roles.

awsSecretKey: # [string] Secret key - Secret key
region: # [string] Region - Region where the EC2 is located
endpoint: # [string] Endpoint - EC2 service endpoint. If empty, defaults to AWS'

Region-specific endpoint. Otherwise, it must point to EC2-compatible endpoint.
signatureVersion: # [string] Signature version - Signature version to use for signi

EC2 requests.
reuseConnections: # [boolean] Reuse connections - Whether to reuse connections

between requests, which can improve performance.
rejectUnauthorized: # [boolean] Reject unauthorized certificates - Whether to rejec

Page 1231 of 1835

certificates that cannot be verified against a valid CA (e.g., self-signed certificates
enableAssumeRole: # [boolean] Enable for EC2 - Use Assume Role credentials to acces

EC2
assumeRoleArn: # [string] AssumeRole ARN - Amazon Resource Name (ARN) of the role t

assume
assumeRoleExternalId: # [string] External ID - External ID to use when assuming rol

--

interval: # [number] Poll Interval - How often in minutes to scrape targets for
metrics, 60 must be evenly divisible by the value or save will fail.

logLevel: # [string] [required] Log Level - Collector runtime Log Level
keepAliveTime: # [number] Keep Alive Time (seconds) - How often workers should chec

in with the scheduler to keep job subscription alive
maxMissedKeepAlives: # [number] Worker Timeout (periods) - The number of Keep Alive

Time periods before an inactive worker will have its job subscription revoked.
metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
authType: # [string] Authentication method - Enter credentials directly, or select

stored secret
username: # [string] Username - Username for Prometheus Basic authentication
password: # [string] Password - Password for Prometheus Basic authentication

-------------- if authType is manual ---------------

--

credentialsSecret: # [string] Credentials secret - Select (or create) a secret that
references your credentials

-------------- if authType is secret ---------------

--

type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

Page 1232 of 1835

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
office365_mgmt_input: # [object]
type: # [string] Input Type
tenantId: # [string] Tenant ID - Office 365 Azure Tenant ID
appId: # [string] [required] App ID - Office 365 Azure Application ID
timeout: # [number] Timeout (secs) - HTTP request inactivity timeout, use 0 to

disable
keepAliveTime: # [number] Keep Alive Time (seconds) - How often workers should chec

in with the scheduler to keep job subscription alive
maxMissedKeepAlives: # [number] Worker Timeout (periods) - The number of Keep Alive

Time periods before an inactive worker will have its job subscription revoked.
metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
planType: # [string] [required] Subscription Plan - Office 365 subscription plan fo

your organization, typically Enterprise
publisherIdentifier: # [string] Publisher Identifier - Optional Publisher Identifie

to use in API requests, defaults to tenant id if not defined. For more information see
[here](https://docs.microsoft.com/en-us/office/office-365-management-api/office-365-
management-activity-api-reference#start-a-subscription)

contentConfig: # [array] Content Types - Enable Office 365 Management Activity API
content types and polling intervals. Polling intervals are used to set up search date
range and cron schedule, e.g.: */${interval} * * * *. Because of this, intervals entere
must be evenly divisible by 60 to give a predictable schedule.

- contentType: # [string] Content Type - Office 365 Management Activity API Conte
Type

description: # [string] Interval Description - If interval type is minutes the
value entered must evenly divisible by 60 or save will fail

interval: # [number] Interval
logLevel: # [string] Log Level - Collector runtime Log Level
enabled: # [boolean] Enabled

authType: # [string] Authentication method - Enter client secret directly, or selec
a stored secret

clientSecret: # [string] Client secret - Office 365 Azure client secret

-------------- if authType is manual ---------------

Page 1233 of 1835

--

textSecret: # [string] Client secret (text secret) - Select (or create) a stored te
secret

-------------- if authType is secret ---------------

--

disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
office365_service_input: # [object]
type: # [string] Input Type
tenantId: # [string] Tenant ID - Office 365 Azure Tenant ID
appId: # [string] [required] App ID - Office 365 Azure Application ID
timeout: # [number] Timeout (secs) - HTTP request inactivity timeout, use 0 to

disable
keepAliveTime: # [number] Keep Alive Time (seconds) - How often workers should chec

Page 1234 of 1835

in with the scheduler to keep job subscription alive
maxMissedKeepAlives: # [number] Worker Timeout (periods) - The number of Keep Alive

Time periods before an inactive worker will have its job subscription revoked.
metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
contentConfig: # [array] Content Types - Enable Office 365 Service Communication AP

content types and polling intervals. Polling intervals are used to set up search date
range and cron schedule, e.g.: */${interval} * * * *. Because of this, intervals entere
for current and historical status must be evenly divisible by 60 to give a predictable
schedule.

- contentType: # [string] Content Type - Office 365 Services API Content Type
description: # [string] Interval Description - If interval type is minutes the

value entered must evenly divisible by 60 or save will fail
interval: # [number] Interval
logLevel: # [string] Log Level - Collector runtime Log Level
enabled: # [boolean] Enabled

authType: # [string] Authentication method - Enter client secret directly, or selec
a stored secret

clientSecret: # [string] Client secret - Office 365 Azure client secret

-------------- if authType is manual ---------------

--

textSecret: # [string] Client secret (text secret) - Select (or create) a stored te
secret

-------------- if authType is secret ---------------

--

disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing

Page 1235 of 1835

engine.
maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold

in-memory before dumping the events to disk.
commitFrequency: # [number] Commit frequency - The number of events to send

downstream before committing that Stream has read them.
maxFileSize: # [string] Max file size - The maximum size to store in each queue

file before closing and optionally compressing (KB, MB, etc.).
maxSize: # [string] Max queue size - The maximum amount of disk space the queue i

allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
office365_msg_trace_input: # [object]
url: # [string] Report URL - URL to use when retrieving report data.
interval: # [number] [required] Poll interval - How often (in minutes) to run the

report. Must divide evenly into 60 minutes to create a predictable schedule, or Save wi
fail.

startDate: # [string] Date range start - Backward offset for the search range's hea
(E.g.: -3h@h) Message Trace data is delayed; this parameter (with Date range end)
compensates for delay and gaps.

endDate: # [string] Date range end - Backward offset for the search range's tail.
(E.g.: -2h@h) Message Trace data is delayed; this parameter (with Date range start)
compensates for delay and gaps.

logLevel: # [string] Log level - Log Level (verbosity) for collection runtime
behavior.

timeout: # [number] Timeout (secs) - HTTP request inactivity timeout. Maximum is 24
(40 minutes); enter 0 to wait indefinitely.

disableTimeFilter: # [boolean] Disable time filter - Disables time filtering of
events when a date range is specified.

authType: # [string] Authentication method - Select authentication method.

-------------- if authType is manual ---------------

username: # [string] Username - Username to run Message Trace API call.
password: # [string] Password - Password to run Message Trace API call.

--

-------------- if authType is secret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a secret that
references your credentials.

--

-------------- if authType is oauth ---------------

clientSecret: # [string] Client secret - client_secret to pass in the OAuth request
parameter.

tenantId: # [string] Tenant identifier - Directory ID (tenant identifier) in Azure
Active Directory.

clientId: # [string] Client ID - client_id to pass in the OAuth request parameter.

Page 1236 of 1835

resource: # [string] Resource - Resource to pass in the OAuth request parameter.

--

-------------- if authType is oauthSecret ---------------

textSecret: # [string] Client secret - Select (or create) a secret that references
your client_secret to pass in the OAuth request parameter.

tenantId: # [string] Tenant identifier - Directory ID (tenant identifier) in Azure
Active Directory.

clientId: # [string] Client ID - client_id to pass in the OAuth request parameter.
resource: # [string] Resource - Resource to pass in the OAuth request parameter.

--

keepAliveTime: # [number] Keep Alive Time (seconds) - How often workers should chec
in with the scheduler to keep job subscription alive

maxMissedKeepAlives: # [number] Worker Timeout (periods) - The number of Keep Alive
Time periods before an inactive worker will have its job subscription revoked.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

Page 1237 of 1835

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
eventhub_input: # [object]
type: # [string] Input Type
brokers: # [array of strings] Brokers - List of Event Hubs Kafka brokers to connect

to, e.g., yourdomain.servicebus.windows.net:9093. The hostname can be found in the host
portion of the primary or secondary connection string in Shared Access Policies.

topics: # [array of strings] [required] Event Hub name - The name of the Event Hub
(a.k.a. Kafka topic) to subscribe to. Warning: To optimize performance, Cribl suggests
subscribing each Event Hubs Source to only a single topic.

groupId: # [string] Group ID - Specifies the consumer group this instance belongs t
default is 'Cribl'.

fromBeginning: # [boolean] From beginning - Whether to start reading from earliest
available data, relevant only during initial subscription.

connectionTimeout: # [number] Connection timeout (ms) - Maximum time to wait for a
successful connection.

requestTimeout: # [number] Request timeout (ms) - Maximum time to wait for a
successful request.

sasl: # [object] Authentication - Authentication parameters to use when connecting
brokers. Using TLS is highly recommended.

disabled: # [boolean] Disabled - Enable authentication.

-------------- if disabled is false ---------------

mechanism: # [string] SASL mechanism - SASL authentication mechanism to use. PLAI
is the only mechanism currently supported for Event Hubs Kafka brokers.

username: # [string] Username - The username for authentication. For Event Hubs,
this should always be $ConnectionString.

authType: # [string] Authentication method - Enter password directly, or select a
stored secret

--

tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - For Event Hubs, this shou
always be false.

--

sessionTimeout: # [number] Session timeout (ms) -
 Timeout (a.k.a session.timeout.ms in Kafka domain) used to detect client failures
when using Kafka's group management facilities.
 If the client sends the broker no heartbeats before this timeout expires, the
broker will remove this client from the group, and will initiate a rebalance.
 Value must be lower than rebalanceTimeout.
 See details [here](https://github.com/Azure/azure-event-hubs-for-
kafka/blob/master/CONFIGURATION.md).

rebalanceTimeout: # [number] Rebalance timeout (ms) -
 Maximum allowed time (a.k.a rebalance.timeout.ms in Kafka domain) for each worker
to join the group after a rebalance has begun.

Page 1238 of 1835

 If the timeout is exceeded, the coordinator broker will remove the worker from th
group.
 See details [here](https://github.com/Azure/azure-event-hubs-for-
kafka/blob/master/CONFIGURATION.md).

heartbeatInterval: # [number] Heartbeat interval (ms) -
 Expected time (a.k.a heartbeat.interval.ms in Kafka domain) between heartbeats to
the consumer coordinator when using Kafka's group management facilities.
 Value must be lower than sessionTimeout, and typically should not exceed 1/3 of t
sessionTimeout value.
 See details [here](https://github.com/Azure/azure-event-hubs-for-
kafka/blob/master/CONFIGURATION.md).

minimizeDuplicates: # [boolean] Minimize duplicates - Enable feature to minimize
duplicate events by only starting one consumer for each topic partition.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.

Page 1239 of 1835

exec_input: # [object]
disabled: # [boolean] Disabled - Enable/disable this input
command: # [string] Command - Command to execute; supports Bourne shell syntax
retries: # [number] Max retries - Maximum number of retry attempts in the event tha

the command fails.
scheduleType: # [string] Schedule type - Select a schedule type; either an interval

(in seconds) or a cron-style schedule.

-------------- if scheduleType is interval ---------------

interval: # [number] Interval - Interval between command executions in seconds.

--

-------------- if scheduleType is cronSchedule ---------------

cronSchedule: # [string] Schedule - Cron schedule to execute the command on.

--

breakerRulesets: # [array of strings] Event Breaker rulesets - A list of event
breaking rulesets that will be applied, in order, to the input data stream.

staleChannelFlushMs: # [number] Event Breaker buffer timeout - The amount of time (
milliseconds) the Event Breaker will wait for new data to be sent to a specific channel
before flushing the data stream out, as-is, to the Pipelines.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
type: # [string] Input Type
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

Page 1240 of 1835

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
firehose_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
authTokens: # [array of strings] Auth tokens - Shared secrets to be provided by any

client (Authorization: <token>). If empty, unauthed access is permitted.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

maxActiveReq: # [number] Max active requests - Maximum number of active requests pe
Worker Process. Use 0 for unlimited.

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

captureHeaders: # [boolean] Capture request headers - Toggle this to Yes to add
request headers to events, in the __headers field.

activityLogSampleRate: # [number] Activity log sample rate - How often request
activity is logged at the `info` level. A value of 1 would log every request, 10 every
10th request, etc.

requestTimeout: # [number] Request timeout (seconds) - How long to wait for an
incoming request to complete before aborting it. Use 0 to disable.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

Page 1241 of 1835

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
google_pubsub_input: # [object]
type: # [string] Input Type
topicName: # [string] Topic ID - ID of the topic to receive events from.
subscriptionName: # [string] [required] Subscription ID - ID of the subscription to

use when receiving events.
createTopic: # [boolean] Create topic - If enabled, create topic if it does not exi
createSubscription: # [boolean] Create subscription - If enabled, create subscripti

if it does not exist

-------------- if createSubscription is true ---------------

orderedDelivery: # [boolean] Ordered delivery - If enabled, receive events in the
order they were added to the queue. For this to work correctly, the process sending
events must have ordering enabled.

--

region: # [string] Region - Region to retrieve messages from. Select 'default' to
allow Google to auto-select the nearest region. When using ordered delivery, the select

Page 1242 of 1835

region must be allowed by message storage policy.
googleAuthMethod: # [string] Authentication Method - Google authentication method.

Choose Auto to use environment variables PUBSUB_PROJECT and PUBSUB_CREDENTIALS.

-------------- if googleAuthMethod is manual ---------------

serviceAccountCredentials: # [string] Service account credentials - Contents of
service account credentials (JSON keys) file downloaded from Google Cloud. To upload a
file, click the upload button at this field's upper right. As an alternative, you can u
environment variables (see [here](https://googleapis.dev/ruby/google-cloud-
pubsub/latest/file.AUTHENTICATION.html)).

--

-------------- if googleAuthMethod is secret ---------------

secret: # [string] Service account credentials (text secret) - Select (or create) a
stored text secret

--

maxBacklog: # [number] Max backlog - If Destination exerts backpressure, this setti
limits how many inbound events Stream will queue for processing before it stops
retrieving events.

requestTimeout: # [number] Request timeout (ms) - Pull request timeout, in
milliseconds.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send

Page 1243 of 1835

downstream before committing that Stream has read them.
maxFileSize: # [string] Max file size - The maximum size to store in each queue

file before closing and optionally compressing (KB, MB, etc.).
maxSize: # [string] Max queue size - The maximum amount of disk space the queue i

allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
cribl_input: # [object]
type: # [string] Input Type
metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

Page 1244 of 1835

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
cribl_tcp_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

maxActiveCxn: # [number] Max Active Connections - Maximum number of active
connections allowed per Worker Process, use 0 for unlimited

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

Page 1245 of 1835

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
cribl_http_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
authTokens: # [array of strings] Auth tokens - Shared secrets to be provided by any

client (Authorization: <token>). If empty, unauthed access is permitted.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

maxActiveReq: # [number] Max active requests - Maximum number of active requests pe
Worker Process. Use 0 for unlimited.

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

captureHeaders: # [boolean] Capture request headers - Toggle this to Yes to add
request headers to events, in the __headers field.

activityLogSampleRate: # [number] Activity log sample rate - How often request

Page 1246 of 1835

activity is logged at the `info` level. A value of 1 would log every request, 10 every
10th request, etc.

requestTimeout: # [number] Request timeout (seconds) - How long to wait for an
incoming request to complete before aborting it. Use 0 to disable.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
tcpjson_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

Page 1247 of 1835

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

ipWhitelistRegex: # [string] IP Allowlist Regex - Regex matching IP addresses that
are allowed to establish a connection.

maxActiveCxn: # [number] Max Active Connections - Maximum number of active
connections allowed per Worker Process, use 0 for unlimited

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
authType: # [string] Authentication method - Enter a token directly, or provide a

secret referencing a token
authToken: # [string] Auth token - Shared secret to be provided by any client (in

authToken header field). If empty, unauthed access is permitted.

-------------- if authType is manual ---------------

--

textSecret: # [string] Auth token (text secret) - Select (or create) a stored text
secret

-------------- if authType is secret ---------------

--

pipeline: # [string] Pipeline - Pipeline to process data from this Source before
sending it through the Routes.

sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to
Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

Page 1248 of 1835

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
system_metrics_input: # [object]
interval: # [number] Polling interval - Time, in seconds, between consecutive metri

collections.
host: # [object]
mode: # [string] - Select level of detail for host metrics

-------------- if mode is custom ---------------

custom: # [object]
system: # [object]
mode: # [string] - Select the level of details for system metrics

-------------- if mode is custom ---------------

processes: # [boolean] Process metrics - Generate metrics for the numbers of
processes in various states

--

cpu: # [object]
mode: # [string] - Select the level of details for CPU metrics

-------------- if mode is custom ---------------

perCpu: # [boolean] Per CPU metrics - Generate metrics for each CPU
detail: # [boolean] Detailed metrics - Generate metrics for all CPU states
time: # [boolean] CPU time metrics - Generate raw, monotonic CPU time counter

--

memory: # [object]

Page 1249 of 1835

mode: # [string] - Select the level of details for memory metrics

-------------- if mode is custom ---------------

detail: # [boolean] Detailed metrics - Generate metrics for all memory states

--

network: # [object]
mode: # [string] - Select the level of details for network metrics

-------------- if mode is custom ---------------

devices: # [array of strings] Interface filter - Network interfaces to
include/exclude. E.g.: eth0, !lo, etc. All interfaces are included if this list is empt

perInterface: # [boolean] Per interface metrics - Generate separate metrics f
each interface

detail: # [boolean] Detailed metrics - Generate full network metrics

--

disk: # [object]
mode: # [string] - Select the level of details for disk metrics

-------------- if mode is custom ---------------

devices: # [array of strings] Device filter - Block devices to include/exclud
E.g.: sda*, !loop*, etc. Wildcards and ! (not) operators are supported. All devices are
included if this list is empty.

mountpoints: # [array of strings] Mountpoint filter - Filesystem mountpoints
include/exclude. E.g.: /, /home, !/proc*, !/tmp, etc. Wildcards and ! (not) operators a
supported. All mountpoints are included if this list is empty.

fstypes: # [array of strings] Filesystem type filter - Filesystem types to
include/exclude. E.g.: ext4, !*tmpfs, !squashfs, etc. Wildcards and ! (not) operators a
supported. All types are included if this list is empty.

perDevice: # [boolean] Per device metrics - Generate separate metrics for eac
device

detail: # [boolean] Detailed metrics - Generate full disk metrics

--

--

container: # [object]
mode: # [string] - Select the level of detail for container metrics

-------------- if mode is basic ---------------

dockerSocket: # [array of strings] Docker socket - Full paths for Docker's UNIX-
domain socket

dockerTimeout: # [number] Docker timeout - Timeout, in seconds, for the Docker AP

--

-------------- if mode is all ---------------

dockerSocket: # [array of strings] Docker socket - Full paths for Docker's UNIX-
domain socket

Page 1250 of 1835

dockerTimeout: # [number] Docker timeout - Timeout, in seconds, for the Docker AP

--

-------------- if mode is custom ---------------

filters: # [array] Container Filters - Containers matching any of these will be
included. All are included if this is empty.

- expr: # [string] Expression
allContainers: # [boolean] All containers - Include stopped and paused containers
perDevice: # [boolean] Per device metrics - Generate separate metrics for each

device
detail: # [boolean] Detailed metrics - Generate full container metrics
dockerSocket: # [array of strings] Docker socket - Full paths for Docker's UNIX-

domain socket
dockerTimeout: # [number] Docker timeout - Timeout, in seconds, for the Docker AP

--

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
persistence: # [object] persistence
enable: # [boolean] Enable disk persistence - Persist metrics on disk

-------------- if enable is true ---------------

timeWindow: # [string] Bucket time span - Time span for each file bucket
maxDataSize: # [string] Max data size - Maximum disk space allowed to be consumed

(e.g., 420MB or 4GB). Once reached, older data will be deleted.
maxDataTime: # [string] Max data age - Maximum amount of time to retain data (e.g

2h or 4d). Once reached, older data will be deleted.
compress: # [string] Compression - Select data compression format. Optional.
destPath: # [string] Path location - Path to use to write metrics. Defaults to

$CRIBL_HOME/state/<id>`

--

type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

Page 1251 of 1835

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
system_state_input: # [object]
interval: # [number] Polling interval - Time, in seconds, between consecutive state

collections.
metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
collectors: # [object]
hostsfile: # [object]
enable: # [boolean] Enabled

persistence: # [object]
enable: # [boolean] Enable disk persistence - Persist metrics on disk

-------------- if enable is true ---------------

timeWindow: # [string] Bucket time span - Time span for each file bucket
maxDataSize: # [string] Max data size - Maximum disk space allowed to be consumed

(e.g., 420MB or 4GB). Once reached, older data will be deleted.
maxDataTime: # [string] Max data age - Maximum amount of time to retain data (e.g

2h or 4d). Once reached, older data will be deleted.
compress: # [string] Compression - Select data compression format. Optional.
destPath: # [string] Path location - Path to use to write metrics. Defaults to

$CRIBL_HOME/state/<id>`

--

type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,

Page 1252 of 1835

optionally via a Pipeline or a Pack.
- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
windows_metrics_input: # [object]
interval: # [number] Polling interval - Time, in seconds, between consecutive metri

collections.
host: # [object]
mode: # [string] - Select level of detail for host metrics

-------------- if mode is custom ---------------

custom: # [object]
system: # [object]
mode: # [string] - Select the level of details for system metrics

-------------- if mode is custom ---------------

detail: # [boolean] Detailed metrics - Generate metrics for all system
information

--

cpu: # [object]
mode: # [string] - Select the level of details for CPU metrics

-------------- if mode is custom ---------------

perCpu: # [boolean] Per CPU metrics - Generate metrics for each CPU
detail: # [boolean] Detailed metrics - Generate metrics for all CPU states

Page 1253 of 1835

time: # [boolean] CPU time metrics - Generate raw, monotonic CPU time counter

--

memory: # [object]
mode: # [string] - Select the level of details for memory metrics

-------------- if mode is custom ---------------

detail: # [boolean] Detailed metrics - Generate metrics for all memory states

--

network: # [object]
mode: # [string] - Select the level of details for network metrics

-------------- if mode is custom ---------------

devices: # [array of strings] Interface filter - Network interfaces to
include/exclude. All interfaces are included if this list is empty.

perInterface: # [boolean] Per interface metrics - Generate separate metrics f
each interface

detail: # [boolean] Detailed metrics - Generate full network metrics

--

disk: # [object]
mode: # [string] - Select the level of details for disk metrics

-------------- if mode is custom ---------------

volumes: # [array of strings] Volume filter - Windows volumes to
include/exclude. E.g.: C:, !E:, etc. Wildcards and ! (not) operators are supported. All
volumes are included if this list is empty.

perVolume: # [boolean] Per volume metrics - Generate separate metrics for eac
volume

--

--

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
persistence: # [object] persistence
enable: # [boolean] Enable disk persistence - Persist metrics on disk

-------------- if enable is true ---------------

timeWindow: # [string] Bucket time span - Time span for each file bucket
maxDataSize: # [string] Max data size - Maximum disk space allowed to be consumed

(e.g., 420MB or 4GB). Once reached, older data will be deleted.
maxDataTime: # [string] Max data age - Maximum amount of time to retain data (e.g

2h or 4d). Once reached, older data will be deleted.
compress: # [string] Compression - Select data compression format. Optional.
destPath: # [string] Path location - Path to use to write metrics. Defaults to

$CRIBL_HOME/state/<id>`

Page 1254 of 1835

--

type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
crowdstrike_input: # [object]
type: # [string] Input Type
queueName: # [string] Queue - The name, URL, or ARN of the SQS queue to read

notifications from. When a non-AWS URL is specified, format must be: '{url}/myQueueName
E.g., 'https://host:port/myQueueName'. Value must be a JavaScript expression (which can
evaluate to a constant value), enclosed in quotes or backticks. Can be evaluated only a
init time. E.g., referencing a Global Variable:
`https://host:port/myQueue-${C.vars.myVar}`.

fileFilter: # [string] Filename filter - Regex matching file names to download and
process. Defaults to: .*

awsAccountId: # [string] AWS Account ID - SQS queue owner's AWS account ID. Leave
empty if SQS queue is in same AWS account.

awsAuthenticationMethod: # [string] Authentication method - AWS authentication
method. Choose Auto to use IAM roles.

Page 1255 of 1835

-------------- if awsAuthenticationMethod is manual ---------------

awsApiKey: # [string] Access key - Access key

--

-------------- if awsAuthenticationMethod is secret ---------------

awsSecret: # [string] Secret key pair - Select (or create) a stored secret that
references your access key and secret key.

--

awsSecretKey: # [string] Secret key - Secret key
region: # [string] Region - AWS Region where the S3 bucket and SQS queue are locate

Required, unless the Queue entry is a URL or ARN that includes a Region.
endpoint: # [string] Endpoint - S3 service endpoint. If empty, defaults to AWS'

Region-specific endpoint. Otherwise, it must point to S3-compatible endpoint.
signatureVersion: # [string] Signature version - Signature version to use for signi

S3 requests.
reuseConnections: # [boolean] Reuse connections - Whether to reuse connections

between requests, which can improve performance.
rejectUnauthorized: # [boolean] Reject unauthorized certificates - Whether to rejec

certificates that cannot be verified against a valid CA (e.g., self-signed certificates
breakerRulesets: # [array of strings] Event Breaker rulesets - A list of event

breaking rulesets that will be applied, in order, to the input data stream.
staleChannelFlushMs: # [number] Event Breaker buffer timeout - The amount of time (

milliseconds) the Event Breaker will wait for new data to be sent to a specific channel
before flushing the data stream out, as-is, to the Pipelines.

maxMessages: # [number] Max Messages - The maximum number of messages SQS should
return in a poll request. Amazon SQS never returns more messages than this value
(however, fewer messages might be returned). Valid values: 1 to 10.

visibilityTimeout: # [number] Visibility timeout seconds - The duration (in seconds
that received messages are hidden from subsequent retrieve requests, after being
retrieved by a ReceiveMessage request. This value also automatically extends this
duration, to prevent it from expiring before processing completes.

numReceivers: # [number] Num receivers - The Number of receiver processes to run, t
higher the number the better throughput at the expense of CPU overhead

socketTimeout: # [number] Socket timeout - Socket inactivity timeout (in seconds).
Increase this value if timeouts occur due to backpressure.

skipOnError: # [boolean] Skip file on error - Toggle to Yes to skip files that
trigger a processing error. Defaults to No, which enables retries after processing
errors.

enableAssumeRole: # [boolean] Enable for S3 - Use Assume Role credentials to access
S3

assumeRoleArn: # [string] AssumeRole ARN - Amazon Resource Name (ARN) of the role t
assume

assumeRoleExternalId: # [string] External ID - External ID to use when assuming rol
enableSQSAssumeRole: # [boolean] Enable for SQS - Use Assume Role credentials when

accessing SQS.
preprocess: # [object]
disabled: # [boolean] Disabled - Enable Custom Command
command: # [string] Command - Command to feed the data through (via stdin) and

process its output (stdout)
args: # [array of strings] Arguments - Arguments

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

Page 1256 of 1835

enclosed in quotes or backticks. (Can evaluate to a constant.)
pollTimeout: # [number] Poll timeout (secs) - The amount of time to wait for events

before trying polling again. The lower the number the higher the AWS bill. The higher t
number the longer it will take for the source to react to configuration changes and
system restarts.

disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
datadog_agent_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

Page 1257 of 1835

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

maxActiveReq: # [number] Max active requests - Maximum number of active requests pe
Worker Process. Use 0 for unlimited.

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

captureHeaders: # [boolean] Capture request headers - Toggle this to Yes to add
request headers to events, in the __headers field.

activityLogSampleRate: # [number] Activity log sample rate - How often request
activity is logged at the `info` level. A value of 1 would log every request, 10 every
10th request, etc.

requestTimeout: # [number] Request timeout (seconds) - How long to wait for an
incoming request to complete before aborting it. Use 0 to disable.

extractMetrics: # [boolean] Extract metrics - Toggle to Yes to extract each incomin
metric to multiple events, one per data point. This works well when sending metrics to
statsd-type output. If sending metrics to DatadogHQ or any destination that accepts
arbitrary JSON, leave toggled to No (the default).

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
proxyMode: # [object]
enabled: # [boolean] Forward API key validation requests - Toggle to Yes to send

key validation requests from Datadog Agent to the Datadog API. If toggled to No (the
default), Stream handles key validation requests by always responding that the key is
valid.

pipeline: # [string] Pipeline - Pipeline to process data from this Source before
sending it through the Routes.

sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to
Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

Page 1258 of 1835

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
datagen_input: # [object]
samples: # [array] Datagen - List of datagens
- sample: # [string] Data Generator File - Name of the datagen file
eventsPerSec: # [number] Events Per Second Per Worker Node - Maximum no. of

events to generate per second per worker node. Defaults to 10.
metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold

Page 1259 of 1835

in-memory before dumping the events to disk.
commitFrequency: # [number] Commit frequency - The number of events to send

downstream before committing that Stream has read them.
maxFileSize: # [string] Max file size - The maximum size to store in each queue

file before closing and optionally compressing (KB, MB, etc.).
maxSize: # [string] Max queue size - The maximum amount of disk space the queue i

allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
http_raw_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
authTokens: # [array of strings] Auth tokens - Shared secrets to be provided by any

client (Authorization: <token>). If empty, unauthed access is permitted.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

maxActiveReq: # [number] Max active requests - Maximum number of active requests pe
Worker Process. Use 0 for unlimited.

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

captureHeaders: # [boolean] Capture request headers - Toggle this to Yes to add
request headers to events, in the __headers field.

activityLogSampleRate: # [number] Activity log sample rate - How often request
activity is logged at the `info` level. A value of 1 would log every request, 10 every
10th request, etc.

requestTimeout: # [number] Request timeout (seconds) - How long to wait for an
incoming request to complete before aborting it. Use 0 to disable.

breakerRulesets: # [array of strings] Event Breaker rulesets - A list of event
breaking rulesets that will be applied, in order, to the input data stream.

Page 1260 of 1835

staleChannelFlushMs: # [number] Event Breaker buffer timeout - The amount of time (
milliseconds) the Event Breaker will wait for new data to be sent to a specific channel
before flushing the data stream out, as-is, to the Pipelines.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
allowedPaths: # [array of strings] Allowed URI paths - List of URI paths accepted b

this input, wildcards are supported, e.g /api/v*/hook. Defaults to allow all.
allowedMethods: # [array of strings] Allowed HTTP methods - List of HTTP methods

accepted by this input, wildcards are supported, e.g. P*, GET. Defaults to allow all.
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
kinesis_input: # [object]
type: # [string] Input Type
streamName: # [string] Stream name - Kinesis stream name to read data from.
serviceInterval: # [number] Service Period - Time interval in minutes between

consecutive service calls
shardExpr: # [string] Shard selection expression - A JS expression to be called wit

each shardId for the stream, if the expression evalutates to a truthy value the shard

Page 1261 of 1835

will be processed.
shardIteratorType: # [string] Shard iterator start - Location at which to start

reading a shard for the first time.
payloadFormat: # [string] Record data format - Format of data inside the Kinesis

Stream records. Gzip compression is automatically detected.
awsAuthenticationMethod: # [string] Authentication method - AWS authentication

method. Choose Auto to use IAM roles.

-------------- if awsAuthenticationMethod is manual ---------------

awsApiKey: # [string] Access key - Access key

--

-------------- if awsAuthenticationMethod is secret ---------------

awsSecret: # [string] Secret key pair - Select (or create) a stored secret that
references your access key and secret key.

--

awsSecretKey: # [string] Secret key - Secret key
region: # [string] [required] Region - Region where the Kinesis stream is located
endpoint: # [string] Endpoint - Kinesis stream service endpoint. If empty, defaults

to AWS' Region-specific endpoint. Otherwise, it must point to Kinesis stream-compatible
endpoint.

signatureVersion: # [string] Signature version - Signature version to use for signi
Kinesis stream requests.

reuseConnections: # [boolean] Reuse connections - Whether to reuse connections
between requests, which can improve performance.

rejectUnauthorized: # [boolean] Reject unauthorized certificates - Whether to rejec
certificates that cannot be verified against a valid CA (e.g., self-signed certificates

enableAssumeRole: # [boolean] Enable for Kinesis stream - Use Assume Role credentia
to access Kinesis stream

assumeRoleArn: # [string] AssumeRole ARN - Amazon Resource Name (ARN) of the role t
assume

assumeRoleExternalId: # [string] External ID - External ID to use when assuming rol
verifyKPLCheckSums: # [boolean] Verify KPL checksums - Verify Kinesis Producer

Library (KPL) event checksums
avoidDuplicates: # [boolean] Avoid duplicate records - Yes means: when resuming

streaming from a stored state, Stream will read the next available record, rather than
rereading the last-read record. Enabling this can cause data loss after a Worker Node's
unexpected shutdown or restart.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

Page 1262 of 1835

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
logstream_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

Page 1263 of 1835

ipWhitelistRegex: # [string] IP Allowlist Regex - Regex matching IP addresses that
are allowed to establish a connection.

maxActiveCxn: # [number] Max Active Connections - Maximum number of active
connections allowed per Worker Process, use 0 for unlimited

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
authType: # [string] Authentication method - Enter a token directly, or provide a

secret referencing a token
authToken: # [string] Auth token - Shared secret to be provided by any client (in

authToken header field). If empty, unauthed access is permitted.

-------------- if authType is manual ---------------

--

textSecret: # [string] Auth token (text secret) - Select (or create) a stored text
secret

-------------- if authType is secret ---------------

--

pipeline: # [string] Pipeline - Pipeline to process data from this Source before
sending it through the Routes.

sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to
Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i

Page 1264 of 1835

allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
criblmetrics_input: # [object]
type: # [string] Input Type
prefix: # [string] Metric Name Prefix - A prefix that is applied to the metrics

provided by Cribl Stream
fullFidelity: # [boolean] Full Fidelity - Include granular metrics. Disabling this

will drop the following metrics events: `cribl.logstream.host.
(in_bytes,in_events,out_bytes,out_events)`, `cribl.logstream.index.
(in_bytes,in_events,out_bytes,out_events)`, `cribl.logstream.source.
(in_bytes,in_events,out_bytes,out_events)`, `cribl.logstream.sourcetype.
(in_bytes,in_events,out_bytes,out_events)`.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T

Page 1265 of 1835

this field's value, the system will append: /<worker-id>/inputs/<input-id>.
compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
metrics_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. For IPv4 (all addresses), use the

default '0.0.0.0'. For IPv6, enter '::' (all addresses) or specify an IP address.
udpPort: # [number] UDP Port - Enter UDP port number to listen on. Not required if

listening on TCP.
tcpPort: # [number] TCP Port - Enter TCP port number to listen on. Not required if

listening on UDP.
maxBufferSize: # [number] Max Buffer Size (events) - Maximum number of events to

buffer when downstream is blocking. Only applies to UDP.
ipWhitelistRegex: # [string] IP Allowlist Regex - Regex matching IP addresses that

are allowed to send data
enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is

proxied by a device that supports Proxy Protocol V1 or V2
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.

Page 1266 of 1835

output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
s3_input: # [object]
type: # [string] Input Type
queueName: # [string] Queue - The name, URL, or ARN of the SQS queue to read

notifications from. When a non-AWS URL is specified, format must be: '{url}/myQueueName
E.g., 'https://host:port/myQueueName'. Value must be a JavaScript expression (which can
evaluate to a constant value), enclosed in quotes or backticks. Can be evaluated only a
init time. E.g., referencing a Global Variable:
`https://host:port/myQueue-${C.vars.myVar}`.

fileFilter: # [string] Filename filter - Regex matching file names to download and
process. Defaults to: .*

awsAccountId: # [string] AWS Account ID - SQS queue owner's AWS account ID. Leave
empty if SQS queue is in same AWS account.

awsAuthenticationMethod: # [string] Authentication method - AWS authentication
method. Choose Auto to use IAM roles.

-------------- if awsAuthenticationMethod is manual ---------------

awsApiKey: # [string] Access key - Access key

--

-------------- if awsAuthenticationMethod is secret ---------------

awsSecret: # [string] Secret key pair - Select (or create) a stored secret that
references your access key and secret key.

--

Page 1267 of 1835

awsSecretKey: # [string] Secret key - Secret key
region: # [string] Region - AWS Region where the S3 bucket and SQS queue are locate

Required, unless the Queue entry is a URL or ARN that includes a Region.
endpoint: # [string] Endpoint - S3 service endpoint. If empty, defaults to AWS'

Region-specific endpoint. Otherwise, it must point to S3-compatible endpoint.
signatureVersion: # [string] Signature version - Signature version to use for signi

S3 requests.
reuseConnections: # [boolean] Reuse connections - Whether to reuse connections

between requests, which can improve performance.
rejectUnauthorized: # [boolean] Reject unauthorized certificates - Whether to rejec

certificates that cannot be verified against a valid CA (e.g., self-signed certificates
breakerRulesets: # [array of strings] Event Breaker rulesets - A list of event

breaking rulesets that will be applied, in order, to the input data stream.
staleChannelFlushMs: # [number] Event Breaker buffer timeout - The amount of time (

milliseconds) the Event Breaker will wait for new data to be sent to a specific channel
before flushing the data stream out, as-is, to the Pipelines.

maxMessages: # [number] Max Messages - The maximum number of messages SQS should
return in a poll request. Amazon SQS never returns more messages than this value
(however, fewer messages might be returned). Valid values: 1 to 10.

visibilityTimeout: # [number] Visibility timeout seconds - The duration (in seconds
that received messages are hidden from subsequent retrieve requests, after being
retrieved by a ReceiveMessage request. This value also automatically extends this
duration, to prevent it from expiring before processing completes.

numReceivers: # [number] Num receivers - The Number of receiver processes to run, t
higher the number the better throughput at the expense of CPU overhead

socketTimeout: # [number] Socket timeout - Socket inactivity timeout (in seconds).
Increase this value if timeouts occur due to backpressure.

skipOnError: # [boolean] Skip file on error - Toggle to Yes to skip files that
trigger a processing error. Defaults to No, which enables retries after processing
errors.

enableAssumeRole: # [boolean] Enable for S3 - Use Assume Role credentials to access
S3

assumeRoleArn: # [string] AssumeRole ARN - Amazon Resource Name (ARN) of the role t
assume

assumeRoleExternalId: # [string] External ID - External ID to use when assuming rol
enableSQSAssumeRole: # [boolean] Enable for SQS - Use Assume Role credentials when

accessing SQS.
preprocess: # [object]
disabled: # [boolean] Disabled - Enable Custom Command
command: # [string] Command - Command to feed the data through (via stdin) and

process its output (stdout)
args: # [array of strings] Arguments - Arguments

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
parquetChunkSizeMB: # [number] Max Parquet chunk size (MB) - Maximum file size for

each Parquet chunk.
parquetChunkDownloadTimeout: # [number] Parquet chunk download timeout (seconds) -

The maximum time to wait for a Parquet file's chunk to be downloaded. Processing will e
if a required chunk could not be downloaded within the time imposed by this setting.

pollTimeout: # [number] Poll timeout (secs) - The amount of time to wait for events
before trying polling again. The lower the number the higher the AWS bill. The higher t
number the longer it will take for the source to react to configuration changes and
system restarts.

disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Page 1268 of 1835

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
snmp_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. For IPv4 (all addresses), use the

default '0.0.0.0'. For IPv6, enter '::' (all addresses) or specify an IP address.
port: # [number] [required] UDP Port - UDP port to receive SNMP traps on. Defaults

162.
maxBufferSize: # [number] Max Buffer Size (events) - Maximum number of events to

buffer when downstream is blocking.
ipWhitelistRegex: # [string] IP Allowlist Regex - Regex matching IP addresses that

are allowed to send data
metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

Page 1269 of 1835

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
open_telemetry_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path - Path on server containing certificates to
use. PEM format. Can reference $ENV_VARS.

caPath: # [string] CA certificate path - Path on server containing CA certificate
to use. PEM format. Can reference $ENV_VARS.

requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require
clients to present their certificates. Used to perform client authentication using SSL
certs.

--

Page 1270 of 1835

maxActiveReq: # [number] Max active requests - Maximum number of active requests pe
Worker Process. Use 0 for unlimited.

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

captureHeaders: # [boolean] Capture request headers - Toggle this to Yes to add
request headers to events, in the __headers field.

activityLogSampleRate: # [number] Activity log sample rate - How often request
activity is logged at the `info` level. A value of 1 would log every request, 10 every
10th request, etc.

requestTimeout: # [number] Request timeout (seconds) - How long to wait for an
incoming request to complete before aborting it. Use 0 to disable.

extractSpans: # [boolean] Extract spans - Toggle to Yes to extract each incoming sp
to a separate event.

extractMetrics: # [boolean] Extract metrics - Toggle to Yes to extract each incomin
Gauge or IntGauge metric to multiple events, one per data point.

maxActiveCxn: # [number] Max active connections - Maximum number of active
connections allowed per Worker Process, use 0 for unlimited

authType: # [string] Authentication type - OpenTelemetry authentication type

-------------- if authType is basic ---------------

username: # [string] Username - Username for Basic authentication
password: # [string] Password - Password for Basic authentication

--

-------------- if authType is token ---------------

token: # [string] Token - Bearer token to include in the authorization header

--

-------------- if authType is credentialsSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a secret that
references your credentials

--

-------------- if authType is textSecret ---------------

textSecret: # [string] Token (text secret) - Select (or create) a stored text secre

--

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,

Page 1271 of 1835

optionally via a Pipeline or a Pack.
- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
sqs_input: # [object]
type: # [string] Input Type
queueName: # [string] Queue - The name, URL, or ARN of the SQS queue to read events

from. When a non-AWS URL is specified, format must be: '{url}/myQueueName'. E.g.,
'https://host:port/myQueueName'. Value must be a JavaScript expression (which can
evaluate to a constant value), enclosed in quotes or backticks. Can only be evaluated a
init time. E.g. referencing a Global Variable:
`https://host:port/myQueue-${C.vars.myVar}`.

queueType: # [string] [required] Queue Type - The queue type used (or created).
Defaults to Standard

-------------- if queueType is standard ---------------

numReceivers: # [number] Num receivers - The Number of receiver processes to run, t
higher the number the better throughput at the expense of CPU overhead

--

awsAccountId: # [string] AWS Account ID - SQS queue owner's AWS account ID. Leave
empty if SQS queue is in same AWS account.

createQueue: # [boolean] Create Queue - Create queue if it does not exist.
awsAuthenticationMethod: # [string] Authentication method - AWS authentication

method. Choose Auto to use IAM roles.

-------------- if awsAuthenticationMethod is manual ---------------

Page 1272 of 1835

awsApiKey: # [string] Access key - Access key

--

-------------- if awsAuthenticationMethod is secret ---------------

awsSecret: # [string] Secret key pair - Select (or create) a stored secret that
references your access key and secret key.

--

awsSecretKey: # [string] Secret key - Secret key
region: # [string] Region - AWS Region where the SQS queue is located. Required,

unless the Queue entry is a URL or ARN that includes a Region.
endpoint: # [string] Endpoint - SQS service endpoint. If empty, defaults to AWS'

Region-specific endpoint. Otherwise, it must point to SQS-compatible endpoint.
signatureVersion: # [string] Signature version - Signature version to use for signi

SQS requests.
reuseConnections: # [boolean] Reuse connections - Whether to reuse connections

between requests, which can improve performance.
rejectUnauthorized: # [boolean] Reject unauthorized certificates - Whether to rejec

certificates that cannot be verified against a valid CA (e.g., self-signed certificates
enableAssumeRole: # [boolean] Enable for SQS - Use Assume Role credentials to acces

SQS
assumeRoleArn: # [string] AssumeRole ARN - Amazon Resource Name (ARN) of the role t

assume
assumeRoleExternalId: # [string] External ID - External ID to use when assuming rol
maxMessages: # [number] Max Messages - The maximum number of messages SQS should

return in a poll request. Amazon SQS never returns more messages than this value
(however, fewer messages might be returned). Valid values: 1 to 10.

visibilityTimeout: # [number] Visibility Timeout Seconds - The duration (in seconds
that the received messages are hidden from subsequent retrieve requests after being
retrieved by a ReceiveMessage request.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
pollTimeout: # [number] Poll timeout (secs) - The amount of time to wait for events

before trying polling again. The lower the number the higher the AWS bill. The higher t
number the longer it will take for the source to react to configuration changes and
system restarts.

disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

Page 1273 of 1835

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
syslog_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. For IPv4 (all addresses), use the

default '0.0.0.0'. For IPv6, enter '::' (all addresses) or specify an IP address.
udpPort: # [number] UDP port - Enter UDP port number to listen on. Not required if

listening on TCP.
tcpPort: # [number] TCP port - Enter TCP port number to listen on. Not required if

listening on UDP.
maxBufferSize: # [number] Max buffer size (events) - Maximum number of events to

buffer when downstream is blocking. Only applies to UDP.
ipWhitelistRegex: # [string] IP allowlist regex - Regex matching IP addresses that

are allowed to send data
timestampTimezone: # [string] Default timezone - Timezone to assign to timestamps

without timezone info.
singleMsgUdpPackets: # [boolean] Single msg per UDP - Whether to treat UDP packet

data received as full syslog message
enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is

proxied by a device that supports Proxy Protocol V1 or V2
keepFieldsList: # [array of strings] Fields to keep - Wildcard list of fields to ke

from source data, * = ALL (default)
octetCounting: # [boolean] Octet count framing - Enable if incoming messages use

octet counting per RFC 6587.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.

Page 1274 of 1835

caPath: # [string] CA certificate path - Path on server containing CA certificate
to use. PEM format. Can reference $ENV_VARS.

requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require
clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
file_input: # [object]
mode: # [string] - Choose how to discover files to monitor.

Page 1275 of 1835

-------------- if mode is manual ---------------

path: # [string] Search path - Directory path to search for files. Environment
variables will be resolved, e.g. $CRIBL_HOME/log/.

depth: # [number] Max depth - Set how many subdirectories deep to search. Use 0 to
search only files in the given path, 1 to also look in its immediate subdirectories, et
Leave it empty for unlimited depth.

--

interval: # [number] Polling interval - Time, in seconds, between scanning for file
filenames: # [array of strings] Filename allowlist - The full path of discovered

files are matched against this wildcard list.
metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
breakerRulesets: # [array of strings] Event Breaker rulesets - A list of event

breaking rulesets that will be applied, in order, to the input data stream.
staleChannelFlushMs: # [number] Event Breaker buffer timeout - The amount of time (

milliseconds) the Event Breaker will wait for new data to be sent to a specific channel
before flushing the data stream out, as-is, to the Pipelines.

type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T

Page 1276 of 1835

this field's value, the system will append: /<worker-id>/inputs/<input-id>.
compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
tcp_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

ipWhitelistRegex: # [string] IP Allowlist Regex - Regex matching IP addresses that
are allowed to establish a connection.

maxActiveCxn: # [number] Max Active Connections - Maximum number of active
connections allowed per Worker Process, use 0 for unlimited

enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
breakerRulesets: # [array of strings] Event Breaker rulesets - A list of event

breaking rulesets that will be applied, in order, to the input data stream.
staleChannelFlushMs: # [number] Event Breaker buffer timeout - The amount of time (

milliseconds) the Event Breaker will wait for new data to be sent to a specific channel
before flushing the data stream out, as-is, to the Pipelines.

enableHeader: # [boolean] Enable Header - If enabled, client will pass the header
record with every new connection. The header can contain an authToken, and an object wi
a list of fields and values to add to every event. These fields can be used to simplify
Event Breaker selection, routing, etc. Header has this format, and must be followed by
newline: { "authToken" : "myToken", "fields": { "field1": "value1", "field2": "value2"
}

-------------- if enableHeader is true ---------------

Page 1277 of 1835

authType: # [string] Authentication method - Enter a token directly, or provide a
secret referencing a token

--

preprocess: # [object]
disabled: # [boolean] Disabled - Enable Custom Command
command: # [string] Command - Command to feed the data through (via stdin) and

process its output (stdout)
args: # [array of strings] Arguments - Arguments

pipeline: # [string] Pipeline - Pipeline to process data from this Source before
sending it through the Routes.

sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to
Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
appscope_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
ipWhitelistRegex: # [string] IP Allowlist Regex - Regex matching IP addresses that

are allowed to establish a connection.
maxActiveCxn: # [number] Max Active Connections - Maximum number of active

connections allowed per Worker Process, use 0 for unlimited
enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is

Page 1278 of 1835

proxied by a device that supports Proxy Protocol V1 or V2.
metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
breakerRulesets: # [array of strings] Event Breaker rulesets - A list of event

breaking rulesets that will be applied, in order, to the input data stream.
staleChannelFlushMs: # [number] Event Breaker buffer timeout - The amount of time (

milliseconds) the Event Breaker will wait for new data to be sent to a specific channel
before flushing the data stream out, as-is, to the Pipelines.

enableUnixPath: # [boolean] UNIX domain socket - Toggle to Yes to specify a file-
backed UNIX domain socket connection, instead of a network host and port.

-------------- if enableUnixPath is false ---------------

host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] Port - Port to listen to.
tls: # [object] TLS settings (server side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

certificateName: # [string] Certificate name - The name of the predefined
certificate.

privKeyPath: # [string] Private key path - Path on server containing the private
key to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] Certificate path - Path on server containing certificates to

use. PEM format. Can reference $ENV_VARS.
caPath: # [string] CA certificate path - Path on server containing CA certificate

to use. PEM format. Can reference $ENV_VARS.
requestCert: # [boolean] Authenticate client (mutual auth) - Whether to require

clients to present their certificates. Used to perform client authentication using SSL
certs.

minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from
connections.

maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from
connections.

--

--

-------------- if enableUnixPath is true ---------------

unixSocketPath: # [string] UNIX socket path - Path to the UNIX domain socket to
listen on.

unixSocketPerms: # [string,number] UNIX socket permissions - Permissions to set for
socket e.g., 777. If empty, falls back to the runtime user's default permissions.

--

authType: # [string] Authentication method - Enter a token directly, or provide a
secret referencing a token

authToken: # [string] Auth token - Shared secret to be provided by any client (in
authToken header field). If empty, unauthed access is permitted.

-------------- if authType is manual ---------------

Page 1279 of 1835

--

textSecret: # [string] Auth token (text secret) - Select (or create) a stored text
secret

-------------- if authType is secret ---------------

--

pipeline: # [string] Pipeline - Pipeline to process data from this Source before
sending it through the Routes.

sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to
Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
wef_input: # [object]
type: # [string] Input Type
disabled: # [boolean] Disabled - Enable/disable this input
host: # [string] Address - Address to bind on. Defaults to 0.0.0.0 (all addresses).
port: # [number] [required] Port - Port to listen to.
tls: # [object] [required] mTLS settings

Page 1280 of 1835

disabled: # [boolean] Disabled - Enable TLS
rejectUnauthorized: # [boolean] Validate client certs - Required for WEF

certificate authentication.
requestCert: # [boolean] Authenticate client - Required for WEF certificate

authentication.
certificateName: # [string] Certificate name - Name of the predefined certificate
privKeyPath: # [string] Private key path - Path on server containing the private

key to use. PEM format. Can reference $ENV_VARS.
passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
certPath: # [string] [required] Certificate path - Path on server containing

certificates to use. PEM format. Can reference $ENV_VARS.
caPath: # [string] [required] CA certificate path - Path on server containing CA

certificates to use. PEM format. Can reference $ENV_VARS.
commonNameRegex: # [string] Common name - Regex matching allowable common names i

peer certificates' subject attribute.
minVersion: # [string] Minimum TLS version - Minimum TLS version to accept from

connections.
maxVersion: # [string] Maximum TLS version - Maximum TLS version to accept from

connections
maxActiveReq: # [number] Max active requests - Maximum number of active requests pe

Worker Process. Use 0 for unlimited.
enableProxyHeader: # [boolean] Enable proxy protocol - Enable if the connection is

proxied by a device that supports Proxy Protocol V1 or V2.
captureHeaders: # [boolean] Capture request headers - Toggle this to Yes to add

request headers to events, in the __headers field.
caFingerprint: # [string] CA fingerprint override - SHA1 fingerprint expected by th

client, if it does not match the first certificate in the configured CA chain
allowMachineIdMismatch: # [boolean] Allow MachineID mismatch - Allow events to be

ingested even if their MachineID does not match the client certificate CN.
subscriptions: # [array] [required] Subscriptions - Subscriptions to events on

forwarding endpoints.
- subscriptionName: # [string] Name - Friendly name for this subscription.
version: # [string] Version - Version UUID for this subscription. If any

subscription parameters are modified, this value will change.
contentFormat: # [string] Format - Content format in which the endpoint should

deliver events.
heartbeatInterval: # [number] Heartbeat - Max time (in seconds) between endpoin

checkins before considering it unavailable.
batchTimeout: # [number] Batch timeout - Interval (in seconds) over which the

endpoint should collect events before sending them to Stream.
readExistingEvents: # [boolean] Read existing events - Set to Yes if a newly-

subscribed endpoint should send previously existing events. Set to No to only receive n
events

sendBookmarks: # [boolean] Use bookmarks - If toggled to Yes, @{product} will
keep track of which events have been received, resuming from that point after a re-
subscription. This setting takes precedence over 'Read existing events' -- see the
documentation for details.

compress: # [boolean] Compression - If toggled to Yes, Stream will receive
compressed events from the source.

targets: # [array of strings] Targets - Enter the DNS names of the endpoints th
should forward these events. You may use wildcards, for example: *.mydomain.com

querySelector: # [string] Query builder mode - Select the query builder mode.
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,

Page 1281 of 1835

optionally via a Pipeline or a Pack.
- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
win_event_logs_input: # [object]
type: # [string] Input Type
logNames: # [array of strings] Event Logs - Enter the event logs to collect. Run

"Get-WinEvent -ListLog *" in PowerShell to see the available logs.
readMode: # [string] Read Mode - Read all stored and future event logs, or only

future events.
interval: # [number] Polling Interval - Time, in seconds, between checking for new

entries.
batchSize: # [number] Batch Size - Maximum number of event records to read in one

interval.
metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
disabled: # [boolean] Disabled - Enable/disable this input
pipeline: # [string] Pipeline - Pipeline to process data from this Source before

sending it through the Routes.
sendToRoutes: # [boolean] - Select whether to send data to Routes, or directly to

Destinations.

-------------- if sendToRoutes is false ---------------

connections: # [array] Quick Connections - Direct connections to Destinations,
optionally via a Pipeline or a Pack.

- pipeline: # [string] Pipeline/Pack - Select Pipeline or Pack. Optional.
output: # [string] Destination - Select a Destination.

Page 1282 of 1835

;

--

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

pqEnabled: # [boolean] Enable Persistent Queue

-------------- if pqEnabled is true ---------------

pq: # [object]
mode: # [string] Mode - With Smart mode, PQ will write events to the filesystem

only when it detects backpressure from the processing engine. WithÂ AlwaysÂ On mode, PQ
will always write events directly to the queue before forwarding them to the processing
engine.

maxBufferSize: # [number] Max buffer size - The maximum amount of events to hold
in-memory before dumping the events to disk.

commitFrequency: # [number] Commit frequency - The number of events to send
downstream before committing that Stream has read them.

maxFileSize: # [string] Max file size - The maximum size to store in each queue
file before closing and optionally compressing (KB, MB, etc.).

maxSize: # [string] Max queue size - The maximum amount of disk space the queue i
allowed to consume. Once reached, the system stops queueing and applies the fallback
Queue-full behavior. Enter a numeral with units of KB, MB, etc.

path: # [string] Queue file path - The location for the persistent queue files. T
this field's value, the system will append: /<worker-id>/inputs/<input-id>.

compress: # [string] Compression - Codec to use to compress the persisted data.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.

Page 1283 of 1835

Instance configuration is located under $CRIBL_HOME/local/_system/instance.yml .

$CRIBL_HOME/local/_system/instance.yml

;

10.6.6. instance.yml

distributed:
mode master | worker | single | edge | managed-edge

mode: master
master:
host: 0.0.0.0
port: 4203
tls:
disabled: true

ipWhitelistRegex: /.*/
maxActiveCxn: 0
authToken: criblmaster
enabledWorkerRemoteAccess: true
compression: none
connectionTimeout: 5000
writeTimeout: 10000

group: default
envRegex: /^CRIBL_/
tags:

- tag1
- tag2
- tag42

Page 1284 of 1835

jobs.yml maintains parameters for configured Collectors, corresponding to those listed on the UI's
Manage Collectors page. Each collection job is listed according to the pattern shown below.

$CRIBL_HOME/local/cribl/jobs.yml

10.6.7. jobs.yml

Page 1285 of 1835

collection_job: # [object]
workerAffinity: # [boolean] Worker affinity - If enabled tasks are created and run

by the same worker node.
collector: # [object]
type: # [string] Collector type - The type of collector to run.

-------------- if type is azure_blob ---------------

conf: # [object] [required]
outputName: # [string] Auto-populate from - The name of the predefined

Destination that will be used to auto-populate collector settings.
authType: # [string] Authentication method - Enter authentication data

directly, or select a secret referencing your auth data

-------------- if authType is manual ---------------

connectionString: # [string] Connection string - Enter your Azure storage
account Connection String. If left blank, Cribl Stream will fall back to
env.AZURE_STORAGE_CONNECTION_STRING.

--

-------------- if authType is secret ---------------

textSecret: # [string] Connection string (text secret) - Text secret

--

containerName: # [string] Container name - Name of the container to collect
from. This value can be a constant or a JavaScript expression that can only be
evaluated at init time. E.g. referencing a Global Variable:
`myBucket-${C.vars.myVar}`.

path: # [string] Path - The directory from which to collect data. Templating
is supported, e.g.: myDir/${datacenter}/${host}/${app}/. Time-based tokens are also
supported, e.g.: myOtherDir/${_time:%Y}/${_time:%m}/${_time:%d}/

extractors: # [array] Path extractors - Allows using template tokens as
context for expressions that enrich discovery results. E.g.: given a template
/path/${epoch}, an extractor under key "epoch" with an expression {date: new
Date(+value*1000)}, will enrich discovery results with a human readable "date" field

- key: # [string] Token - A token from the template path, e.g.: epoch
expression: # [string] Extractor expression - JS expression that receives

token under "value" variable, and evaluates to populate event fields, e.g.: {date:
new Date(+value*1000)}

recurse: # [boolean] Recursive - Whether to recurse through subdirectories.
maxBatchSize: # [number] Max Batch Size (objects) - Maximum number of metadata

objects to batch before recording as results.

--

-------------- if type is filesystem ---------------

conf: # [object] [required]
outputName: # [string] Auto-populate from - Select a predefined configuration

(e.g., a Destination) to auto-populate collector settings.
path: # [string] Directory - The directory from which to collect data.

Templating is supported, e.g.: /myDir/${datacenter}/${host}/${app}/. Time-based
tokens are also supported, e.g.: /myOtherDir/${_time:%Y}/${_time:%m}/${_time:%d}/

Page 1286 of 1835

extractors: # [array] Path extractors - Allows using template tokens as
context for expressions that enrich discovery results. E.g.: given a template
/path/${epoch}, an extractor under key "epoch" with an expression {date: new
Date(+value*1000)}, will enrich discovery results with a human readable "date" field

- key: # [string] Token - A token from the template directory, e.g.: epoch
expression: # [string] Extractor expression - JS expression that receives

token under "value" variable, and evaluates to populate event fields, e.g.: {date:
new Date(+value*1000)}

recurse: # [boolean] Recursive - Whether to recurse through subdirectories.
maxBatchSize: # [number] Max Batch Size (files) - Maximum number of metadata

files to batch before recording as results.

--

-------------- if type is google_cloud_storage ---------------

conf: # [object] [required]
outputName: # [string] Auto-populate from - The name of the predefined

Destination that will be used to auto-populate collector settings.
bucket: # [string] Bucket name - Name of the bucket to collect from. This

value can be a constant or a JavaScript expression that can only be evaluated at
init time. E.g. referencing a Global Variable: `myBucket-${C.vars.myVar}`.

path: # [string] Path - The directory from which to collect data. Templating
is supported, e.g.: myDir/${datacenter}/${host}/${app}/. Time-based tokens are also
supported, e.g.: myOtherDir/${_time:%Y}/${_time:%m}/${_time:%d}/

extractors: # [array] Path extractors - Allows using template tokens as
context for expressions that enrich discovery results. E.g.: given a template
/path/${epoch}, an extractor under key "epoch" with an expression {date: new
Date(+value*1000)}, will enrich discovery results with a human readable "date" field

- key: # [string] Token - A token from the template path, e.g.: epoch
expression: # [string] Extractor expression - JS expression that receives

token under "value" variable, and evaluates to populate event fields, e.g.: {date:
new Date(+value*1000)}

endpoint: # [string] Endpoint - Google Cloud Storage service endpoint. If
empty, the endpoint will be automatically constructed using service credentials.

disableTimeFilter: # [boolean] Disable time filter - Used to disable collector
event time filtering when a date range is specified.

recurse: # [boolean] Recursive - Whether to recurse through subdirectories.
maxBatchSize: # [number] Max Batch Size (objects) - Maximum number of metadata

objects to batch before recording as results.
authType: # [string] Authentication method - Enter account credentials

manually, or select a secret that references your credentials.

-------------- if authType is manual ---------------

serviceAccountCredentials: # [string] Service account credentials - Contents
of Google Cloud service account credentials (JSON keys) file. To upload a file,
click the upload button at this field's upper right.

--

-------------- if authType is secret ---------------

textSecret: # [string] Service account credentials (text secret) - Select (or
create) a stored text secret that references your credentials.

--

Page 1287 of 1835

--

-------------- if type is health_check ---------------

conf: # [object] [required]
discovery: # [object]
discoverType: # [string] Discover Type - Defines how task discovery will be

performed. Use None to skip the discovery. Use HTTP Request to make a REST call to
discover tasks. Use Item List to enumerate items for collect to retrieve. Use JSON
Response to manually define discover tasks as a JSON array of objects. Each entry
returned by the discover operation will result in a collect task.

-------------- if discoverType is http ---------------

discoverUrl: # [string] Discover URL - Expression to derive URL to use for
the Discover operation (can be a constant).

discoverMethod: # [string] Discover method - Discover HTTP method.
discoverRequestHeaders: # [array] Discover Headers - Optional discover

request headers.
- name: # [string] Name - Header name.
value: # [string] Value - JavaScript expression to compute the header

value (can be a constant).
discoverDataField: # [string] Discover Data Field - Path to field in the

response object which contains discover results (e.g.: level1.name), leave blank if
the result is an array.

--

-------------- if discoverType is json ---------------

manualDiscoverResult: # [string] Discover result - Allows hard-coding the
Discover result. Must be a JSON object. Works with the Discover Data field.

discoverDataField: # [string] Discover data field - Within the response
JSON, name of the field or array element to pull results from. LeaveÂ blank if the
result is an array of values. Sample entry: items, json: { items: [{id: 'first'},
{id: 'second'}] }

--

-------------- if discoverType is list ---------------

itemList: # [array of strings] Discover items - Comma-separated list of
items to return from the Discover task. Each item returned will generate a collect
task, and can be referenced using `${id}` in the collect URL, headers, or
parameters.

--

collectUrl: # [string] Health check URL - Expression to derive URL to use for
the health check operation (can be a constant).

collectMethod: # [string] [required] Health check method - Health check HTTP
method.

-------------- if collectMethod is get ---------------

collectRequestParams: # [array] Health check parameters - Optional health

Page 1288 of 1835

check request parameters.
- name: # [string] Name - Parameter name
value: # [string] Value - JavaScript expression to compute the parameter

value (can be a constant).

--

-------------- if collectMethod is post ---------------

collectRequestParams: # [array] Health check parameters - Optional health
check request parameters.

- name: # [string] Name - Parameter name.
value: # [string] Value - JavaScript expression to compute the parameter

value (can be a constant).

--

-------------- if collectMethod is post_with_body ---------------

collectBody: # [string] Health check POST Body - Template for POST body to
send with the health check request. You can reference parameters from the Discover
response, using template params of the form: ${variable}.

--

collectRequestHeaders: # [array] Health check headers - Optional health check
request headers.

- name: # [string] Name - Header Name
value: # [string] Value - JavaScript expression to compute the header

value (can be a constant).
authenticateCollect: # [boolean] Authenticate health check - Enable to make

auth health check call.
authentication: # [string] [required] Authentication - Authentication method

for Discover and Collect REST calls. You can specify API Keyâ�based authentication
by adding the appropriate CollectÂ headers.

-------------- if authentication is basic ---------------

username: # [string] Username - Basic authentication username
password: # [string] Password - Basic authentication password

--

-------------- if authentication is basicSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a stored
secret that references your credentials

--

-------------- if authentication is login ---------------

loginUrl: # [string] Login URL - URL to use for login API call. This call is
expected to be a POST.

username: # [string] Username - Login username
password: # [string] Password - Login password

Page 1289 of 1835

loginBody: # [string] POST Body - Template for POST body to send with login
request, ${username} and ${password} are used to specify location of these
attributes in the message

tokenRespAttribute: # [string] Token Attribute - Path to token attribute in
login response body. Nested attributes are OK.

authHeaderExpr: # [string] Authorize Expression - JavaScript expression to
compute the Authorization header to pass in discover and collect calls. The value
${token} is used to reference the token obtained from login.

authRequestHeaders: # [array] Authentication Headers - Optional authentication
request headers.

- name: # [string] Name - Header name.
value: # [string] Value - JavaScript expression to compute the header

value (can be a constant).

--

-------------- if authentication is loginSecret ---------------

loginUrl: # [string] Login URL - URL to use for login API call, this call is
expected to be a POST.

credentialsSecret: # [string] Credentials secret - Select (or create) a stored
secret that references your login credentials

loginBody: # [string] POST Body - Template for POST body to send with login
request, ${username} and ${password} are used to specify location of these
attributes in the message

tokenRespAttribute: # [string] Token Attribute - Path to token attribute in
login response body. Nested attributes are OK.

authHeaderExpr: # [string] Authorize Expression - JavaScript expression to
compute the Authorization header to pass in discover and collect calls. The value
${token} is used to reference the token obtained from login.

authRequestHeaders: # [array] Authentication Headers - Optional authentication
request headers.

- name: # [string] Name - Header name.
value: # [string] Value - JavaScript expression to compute the header

value (can be a constant).

--

-------------- if authentication is oauth ---------------

loginUrl: # [string] Login URL - URL to use for the OAuth API call. This call
is expected to be a POST.

tokenRespAttribute: # [string] Token attribute - Path to token attribute in
login response body. Nested attributes are OK.

authHeaderExpr: # [string] Authorize expression - JavaScript expression to
compute the Authorization header to pass in discover and collect calls. The value
${token} is used to reference the token obtained from login.

clientSecretParamName: # [string] Client secret parameter - Parameter name
that contains client secret. Defaults to 'client_secret', and is automatically added
to request parameters.

clientSecretParamValue: # [string] Client secret value - Secret value to add
to HTTP requests as the 'client secret' parameter. Stored on disk encrypted, and is
automatically added to request parameters

authRequestParams: # [array] Extra authentication parameters - OAuth request
parameters added to the POST body. The Content-Type header will automatically be set
to application/x-www-form-urlencoded.

- name: # [string] Name - Parameter name.
value: # [string] Value - JavaScript expression to compute the parameter's

Â Â

Page 1290 of 1835

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use
single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

authRequestHeaders: # [array] Authentication headers - Optional authentication
request headers.

- name: # [string] Name - Header name.
value: # [string] Value - JavaScript expression to compute the header's

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use
single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

--

-------------- if authentication is oauthSecret ---------------

loginUrl: # [string] Login URL - URL to use for the OAuth API call. This call
is expected to be a POST.

tokenRespAttribute: # [string] Token attribute - Path to token attribute in
login response body. Nested attributes are OK.

authHeaderExpr: # [string] Authorize expression - JavaScript expression to
compute the Authorization header to pass in discover and collect calls. The value
${token} is used to reference the token obtained from login.

clientSecretParamName: # [string] Client secret parameter - Parameter name
that contains client secret. Defaults to 'client_secret', and is automatically added
to request parameters.

textSecret: # [string] Client secret value (text secret) - Select (or create)
a text secret that contains the client secret's value.

authRequestParams: # [array] Extra authentication parameters - OAuth request
parameters added to the POST body. The Content-Type header will automatically be set
to application/x-www-form-urlencoded.

- name: # [string] Name - Parameter name.
value: # [string] Value - JavaScript expression to compute the parameter's

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use
single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

authRequestHeaders: # [array] Authentication headers - Optional authentication
request headers.

- name: # [string] Name - Header name.
value: # [string] Value - JavaScript expression to compute the header's

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use
single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

--

timeout: # [number] Request Timeout (secs) - HTTP request inactivity timeout,
use 0 to disable

defaultBreakers: # [string] Hidden Default Breakers
safeHeaders: # [array of strings] Safe headers - List of headers that are safe

to log in plain text.

--

-------------- if type is office365_mgmt ---------------

conf: # [object] [required]
plan_type: # [string] Subscription plan - Office 365 subscription plan for

your organization, typically Enterprise

Page 1291 of 1835

tenant_id: # [string] [required] Tenant identifier - Directory ID (tenant
identifier) in Azure Active Directory

app_id: # [string] [required] Application identifier - Identifier of the
registered application in Azure Active Directory.

client_secret: # [string] [required] Client secret - Application key of the
registered application.

publisher_identifier: # [string] Publisher identifier - Optional
PublisherIdentifier to use in API requests, defaults to tenant id if not defined.

content_type: # [string] [required] Content type - The type of content to
retrieve from the Office 365 management communications API.

--

-------------- if type is office365_service ---------------

conf: # [object] [required]
tenant_id: # [string] Tenant identifier - Directory ID (tenant identifier) in

Azure Active Directory
app_id: # [string] [required] Application identifier - Identifier of the

registered application in Azure Active Directory.
client_secret: # [string] [required] Client secret - Application key of the

registered application.
content_type: # [string] [required] Content type - The type of content to

retrieve from the Office 365 service communications API.

--

-------------- if type is prometheus ---------------

conf: # [object] [required]
dimensionList: # [array] Extra Dimensions - Other dimensions to include in

events
username: # [string] Username - Optional username for Basic authentication
password: # [string] Password - Optional password for Basic authentication
discoveryType: # [string] Discovery Type - Target discovery mechanism, use

static to manually enter a list of targets

-------------- if discoveryType is static ---------------

targetList: # [array] Targets - List of Prometheus targets to pull metrics
from, values can be in URL or host[:port] format. For example:
http://localhost:9090/metrics, localhost:9090, or localhost. In the cases where just
host[:port] are specified, the endpoint will resolve to
'http://host[:port]/metrics'.

--

-------------- if discoveryType is dns ---------------

nameList: # [array] DNS Names - List of DNS names to resolve
recordType: # [string] Record Type - DNS Record type to resolve
scrapeProtocol: # [string] Metrics Protocol - Protocol to use when collecting

metrics
scrapePath: # [string] Metrics Path - Path to use when collecting metrics from

discovered targets

--

Page 1292 of 1835

-------------- if discoveryType is ec2 ---------------

usePublicIp: # [boolean] Use Public IP - Use public IP address for discovered
targets. Set to false if the private IP address should be used.

scrapeProtocol: # [string] Metrics Protocol - Protocol to use when collecting
metrics

scrapePort: # [number] Metrics Port - The port number in the metrics URL for
discovered targets.

scrapePath: # [string] Metrics Path - Path to use when collecting metrics from
discovered targets

searchFilter: # [array] Search Filter - EC2 Instance Search Filter
- Name: # [string] Filter Name - Search filter attribute name, see:

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html
for more information. Attributes can be manually entered if not present in the drop
down list

Values: # [array of strings] Filter Values - Search Filter Values
region: # [string] Region - Region from which to retrieve data.
awsAuthenticationMethod: # [string] Authentication Method - AWS authentication

method
enableAssumeRole: # [boolean] Enable Assume Role - Use Assume Role credentials
endpoint: # [string] Endpoint - EC2 service endpoint. If empty, defaults to

AWS' Region-specific endpoint. Otherwise, used to point to a EC2-compatible
endpoint.

signatureVersion: # [string] Signature version - Signature version to use for
signing EC2 requests

--

--

-------------- if type is rest ---------------

conf: # [object] [required]
discovery: # [object]
discoverType: # [string] Discover type - Defines how task discovery will be

performed. Use None to skip the discovery. Use HTTP Request to make a REST call to
discover tasks. Use Item List to enumerate items for collect to retrieve. Use JSON
Response to manually define discover tasks as a JSON array of objects. Each entry
returned by the discover operation will result in a collect task.

-------------- if discoverType is http ---------------

discoverUrl: # [string] Discover URL - Expression to derive URL to use for
the Discover operation (can be a constant).

discoverMethod: # [string] Discover method - Discover HTTP method.
discoverRequestHeaders: # [array] Discover headers - Optional discover

request headers.
- name: # [string] Name - Header name.
value: # [string] Value - JavaScript expression to compute the

parameter's value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a
constant, use single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters
(e.g.,Â earliest) are evaluated as strings.

discoverDataField: # [string] Discover data field - Path to field in the
response object which contains discover results (e.g.: level1.name), leave blank if
the result is an array.

Page 1293 of 1835

--

-------------- if discoverType is json ---------------

manualDiscoverResult: # [string] Discover result - Allows hard-coding the
Discover result. Must be a JSON object. Works with the Discover Data field.

discoverDataField: # [string] Discover data field - Within the response
JSON, name of the field or array element to pull results from. LeaveÂ blank if the
result is an array of values. Sample entry: items, json: { items: [{id: 'first'},
{id: 'second'}] }

--

-------------- if discoverType is list ---------------

itemList: # [array of strings] Discover items - Comma-separated list of
items to return from the Discover task. Each item returned will generate a collect
task, and can be referenced using `${id}` in the collect URL, headers, or
parameters.

--

collectUrl: # [string] Collect URL - Expression to derive URL to use for the
collect operation (can be a constant).

collectMethod: # [string] [required] Collect method - Collect HTTP method.

-------------- if collectMethod is get ---------------

collectRequestParams: # [array] Collect parameters - Optional collect request
parameters.

- name: # [string] Name - Parameter name
value: # [string] Value - JavaScript expression to compute the parameter's

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use
single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

--

-------------- if collectMethod is post ---------------

collectRequestParams: # [array] Collect parameters - Optional collect request
parameters.

- name: # [string] Name - Parameter name.
value: # [string] Value - JavaScript expression to compute the parameter's

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use
single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

--

-------------- if collectMethod is post_with_body ---------------

collectBody: # [string] Collect POST body - Template for POST body to send
with the Collect request. Reference global variables, functions, or parameters from
the Discover response using template params: `${C.vars.myVar}`, or `${Date.now()}`,
`${param}`.

Page 1294 of 1835

--

-------------- if collectMethod is other ---------------

collectVerb: # [string] Collect verb - DIY HTTP verb to use for the collect
operation.

collectBody: # [string] Collect body - Template for body to send with the
Collect request. Reference global variables, functions, or parameters from the
Discover response using template params: `${C.vars.myVar}`, or `${Date.now()}`,
`${param}`

collectRequestParams: # [array] Collect parameters - Optional collect request
parameters.

- name: # [string] Name - Parameter name.
value: # [string] Value - JavaScript expression to compute the parameter's

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use
single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

--

collectRequestHeaders: # [array] Collect headers - Optional collect request
headers.

- name: # [string] Name - Header Name
value: # [string] Value - JavaScript expression to compute the header's

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use
single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

pagination: # [object]
type: # [string] Pagination - Select collect pagination scheme

-------------- if type is response_body ---------------

attribute: # [array,string] Response attribute - The name of the attribute
in the response that contains next page information

maxPages: # [number] Max pages - The maximum number of pages to retrieve,
set to 0 to retrieve all pages

--

-------------- if type is response_header_link ---------------

nextRelationAttribute: # [string] Next page relation name - Relation name
used in the link header that refers to the next page in the result set. In this
example link header, rel="next" to the next page of results:
<https://myHost/curPage>; rel="self" <https://myHost/nextPage>; rel="next"

curRelationAttribute: # [string] Current page relation name - Optional
relation name used in the link header that refers to the current result set. In this
example link header, rel="self" refers to the current page of results:
<https://myHost/curPage>; rel="self" <https://myHost/nextPage>; rel="next"

maxPages: # [number] Max pages - The maximum number of pages to retrieve,
set to 0 to retrieve all pages

--

-------------- if type is request_offset ---------------

Page 1295 of 1835

offsetField: # [string] Offset field name - Query string parameter that sets
the index from which to begin returning records. E.g.: /api/v1/query?
term=cribl&limit=100&offset=0

offset: # [number] Starting offset - Offset index from which to start
request. Defaults to undefined, which will start collection from the first record.

offsetSpacer: # [null]
limitField: # [string] Limit field name - Query string parameter to set the

number of records retrieved per request. E.g.: /api/v1/query?
term=cribl&limit=100&offset=0

limit: # [number] Limit - Maximum number of records to collect per request.
limitSpacer: # [null]
totalRecordField: # [string] Total record count field name - Identifies the

attribute in the response that contains the total number of records for the query.
maxPages: # [number] Max pages - The maximum number of pages to retrieve.

Set to 0 to retrieve all pages.
zeroIndexed: # [boolean] Zero-based index - Toggle to Yes to indicate that

the first record in the requested data is at index 0. The default (No) indicates
index 1.

--

-------------- if type is request_page ---------------

pageField: # [string] Page number field name - Query string parameter that
sets the page index to be returned. E.g.: /api/v1/query?
term=cribl&page_size=100&page_number=0

page: # [number] Starting page number - Page number from which to start
request. Defaults to undefined, which will start collection from the first page.

offsetSpacer: # [null]
sizeField: # [string] Page size field name - Query string parameter to set

the number of records retrieved per request. E.g.: /api/v1/query?
term=cribl&page_size=100&page_number=0

size: # [number] Page size - Maximum number of records to collect per page.
limitSpacer: # [null]
totalPageField: # [string] Total page count field name - The name of the

attribute in the response that contains the total number of pages for the query.
totalRecordField: # [string] Total record count field name - Identifies the

attribute in the response that contains the total number of records for the query.
maxPages: # [number] Max pages - The maximum number of pages to retrieve.

Set to 0 to retrieve all pages.
zeroIndexed: # [boolean] zero-based index - Toggle to Yes to indicate that

the first page in the requested data is at index 0. The default (No) indicates index
1.

--

authentication: # [string] [required] Authentication - Authentication method
for Discover and Collect REST calls. You can specify API Keyâ�based authentication
by adding the appropriate CollectÂ headers.

-------------- if authentication is basic ---------------

username: # [string] Username - Basic authentication username
password: # [string] Password - Basic authentication password

--

-------------- if authentication is basicSecret ---------------

Page 1296 of 1835

credentialsSecret: # [string] Credentials secret - Select (or create) a stored
secret that references your credentials

--

-------------- if authentication is login ---------------

loginUrl: # [string] Login URL - URL to use for login API call. This call is
expected to be a POST.

username: # [string] Username - Login username
password: # [string] Password - Login password
loginBody: # [string] POST body - Template for POST body to send with login

request, ${username} and ${password} are used to specify location of these
attributes in the message

tokenRespAttribute: # [string] Token attribute - Path to token attribute in
login response body. Nested attributes are OK.

authHeaderExpr: # [string] Authorize expression - JavaScript expression to
compute the Authorization header to pass in discover and collect calls. The value
${token} is used to reference the token obtained from login.

authRequestHeaders: # [array] Authentication headers - Optional authentication
request headers.

- name: # [string] Name - Header name.
value: # [string] Value - JavaScript expression to compute the header's

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use
single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

--

-------------- if authentication is loginSecret ---------------

loginUrl: # [string] Login URL - URL to use for login API call, this call is
expected to be a POST.

credentialsSecret: # [string] Credentials secret - Select (or create) a stored
secret that references your login credentials

loginBody: # [string] POST body - Template for POST body to send with login
request, ${username} and ${password} are used to specify location of these
attributes in the message

tokenRespAttribute: # [string] Token attribute - Path to token attribute in
login response body. Nested attributes are OK.

authHeaderExpr: # [string] Authorize expression - JavaScript expression to
compute the Authorization header to pass in discover and collect calls. The value
${token} is used to reference the token obtained from login.

authRequestHeaders: # [array] Authentication headers - Optional authentication
request headers.

- name: # [string] Name - Header name.
value: # [string] Value - JavaScript expression to compute the parameter's

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use
single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

--

-------------- if authentication is oauth ---------------

loginUrl: # [string] Login URL - URL to use for the OAuth API call. This call

Page 1297 of 1835

is expected to be a POST.
tokenRespAttribute: # [string] Token attribute - Path to token attribute in

login response body. Nested attributes are OK.
authHeaderExpr: # [string] Authorize expression - JavaScript expression to

compute the Authorization header to pass in discover and collect calls. The value
${token} is used to reference the token obtained from login.

clientSecretParamName: # [string] Client secret parameter - Parameter name
that contains client secret. Defaults to 'client_secret', and is automatically added
to request parameters.

clientSecretParamValue: # [string] Client secret value - Secret value to add
to HTTP requests as the 'client secret' parameter. Stored on disk encrypted, and is
automatically added to request parameters

authRequestParams: # [array] Extra authentication parameters - OAuth request
parameters added to the POST body. The Content-Type header will automatically be set
to application/x-www-form-urlencoded.

- name: # [string] Name - Parameter name.
value: # [string] Value - JavaScript expression to compute the parameter's

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use
single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

authRequestHeaders: # [array] Authentication headers - Optional authentication
request headers.

- name: # [string] Name - Header name.
value: # [string] Value - JavaScript expression to compute the header's

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use
single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

--

-------------- if authentication is oauthSecret ---------------

loginUrl: # [string] Login URL - URL to use for the OAuth API call. This call
is expected to be a POST.

tokenRespAttribute: # [string] Token attribute - Path to token attribute in
login response body. Nested attributes are OK.

authHeaderExpr: # [string] Authorize expression - JavaScript expression to
compute the Authorization header to pass in discover and collect calls. The value
${token} is used to reference the token obtained from login.

clientSecretParamName: # [string] Client secret parameter - Parameter name
that contains client secret. Defaults to 'client_secret', and is automatically added
to request parameters.

textSecret: # [string] Client secret value (text secret) - Select (or create)
a text secret that contains the client secret's value.

authRequestParams: # [array] Extra authentication parameters - OAuth request
parameters added to the POST body. The Content-Type header will automatically be set
to application/x-www-form-urlencoded.

- name: # [string] Name - Parameter name.
value: # [string] Value - JavaScript expression to compute the parameter's

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use
single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

authRequestHeaders: # [array] Authentication headers - Optional authentication
request headers.

- name: # [string] Name - Header name.
value: # [string] Value - JavaScript expression to compute the header's

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use
single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

Page 1298 of 1835

--

timeout: # [number] Request timeout (secs) - HTTP request inactivity timeout,
use 0 to disable

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. Suitable when DNS server returns multiple addresses in sort order.

disableTimeFilter: # [boolean] Disable time filter - Used to disable collector
event time filtering when a date range is specified.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

--

-------------- if type is s3 ---------------

conf: # [object] [required]
outputName: # [string] Auto-populate from - The name of the predefined

Destination that will be used to auto-populate collector settings.
bucket: # [string] S3 bucket - S3 Bucket from which to collect data.
region: # [string] Region - Region from which to retrieve data.
path: # [string] Path - The directory from which to collect data. Templating

is supported, e.g.: myDir/${datacenter}/${host}/${app}/. Time-based tokens are also
supported, e.g.: myOtherDir/${_time:%Y}/${_time:%m}/${_time:%d}/

extractors: # [array] Path extractors - Allows using template tokens as
context for expressions that enrich discovery results. E.g.: given a template
/path/${epoch}, an extractor under key "epoch" with an expression {date: new
Date(+value*1000)}, will enrich discovery results with a human readable "date" field

- key: # [string] Token - A token from the template path, e.g.: epoch
expression: # [string] Extractor expression - JS expression that receives

token under "value" variable, and evaluates to populate event fields, e.g.: {date:
new Date(+value*1000)}

awsAuthenticationMethod: # [string] Authentication Method - AWS authentication
method. Choose Auto to use IAM roles.

-------------- if awsAuthenticationMethod is manual ---------------

awsApiKey: # [string] Access key - Access key. If not present, will fall back
to env.AWS_ACCESS_KEY_ID, or to the metadata endpoint for IAM creds. Optional when
running on AWS.

awsSecretKey: # [string] Secret key - Secret key. If not present, will fall
back to env.AWS_SECRET_ACCESS_KEY, or to the metadata endpoint for IAM creds.
Optional when running on AWS.

--

-------------- if awsAuthenticationMethod is secret ---------------

awsSecret: # [string] Secret key pair - Select (or create) a stored secret
that references AWS access key and secret key.

--

endpoint: # [string] Endpoint - S3 service endpoint. If empty, the endpoint
will be automatically constructed from the region.

signatureVersion: # [string] Signature version - Signature version to use for
signing S3 requests.

enableAssumeRole: # [boolean] Enable Assume Role - Use Assume Role

Page 1299 of 1835

credentials.
assumeRoleArn: # [string] AssumeRole ARN - Amazon Resource Name (ARN) of the

role to assume.
assumeRoleExternalId: # [string] External ID - External ID to use when

assuming role.
recurse: # [boolean] Recursive - Whether to recurse through subdirectories.
maxBatchSize: # [number] Max Batch Size (objects) - Maximum number of metadata

objects to batch before recording as results.
reuseConnections: # [boolean] Reuse Connections - Whether to reuse connections

between requests, which can improve performance.
rejectUnauthorized: # [boolean] Reject Unauthorized Certificates - Whether to

reject certificates that cannot be verified against a valid CA (e.g., self-signed
certificates).

verifyPermissions: # [boolean] Verify bucket permissions - Disable if you can
access files within the bucket but not the bucket itself. Resolves errors of the
form "discover task initialization failed...error: Forbidden".

--

-------------- if type is script ---------------

conf: # [object] [required]
discoverScript: # [string] Discover Script - Script to discover what to

collect. Should output one task per line in stdout.
collectScript: # [string] [required] Collect Script - Script to run to perform

data collections. Task passed in as $CRIBL_COLLECT_ARG. Should output results to
stdout.

shell: # [string] Shell - Shell to use to execute scripts.

--

-------------- if type is splunk ---------------

conf: # [object] [required]
searchHead: # [string] [required] Search head - Search Head base URL, can be

expression, default is https://localhost:8089.
search: # [string] Search - Enter Splunk search here. For example:

'index=myAppLogs level=error channel=myApp' OR '| mstats avg(myStat) as myStat WHERE
index=myStatsIndex.'

earliest: # [string] Earliest - The earliest time boundary for the search. Can
be an exact or relative time. For example: '2022-01-14T12:00:00Z' or '-16m@m'

latest: # [string] Latest - The latest time boundary for the search. Can be an
exact or relative time. For example: '2022-01-14T12:00:00Z' or '-1m@m'

endpoint: # [string] [required] Search endpoint - REST API used to create a
search.

outputMode: # [string] [required] Output mode - Format of the returned output
collectRequestParams: # [array] Extra parameters - Optional collect request

parameters.
- name: # [string] Name - Parameter name
value: # [string] Value - JavaScript expression to compute the parameter's

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use
single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

collectRequestHeaders: # [array] Extra headers - Optional collect request
headers.

- name: # [string] Name - Header Name
value: # [string] Value - JavaScript expression to compute the header's

value, normally enclosed in backticks (e.g.,Â `${earliest}`). IfÂ a constant, use

Â Â Â

Page 1300 of 1835

single quotes (e.g.,Â 'earliest'). ValuesÂ without delimiters (e.g.,Â earliest) are
evaluated as strings.

authentication: # [string] [required] Authentication - Authentication method
for Discover and Collect REST calls.

-------------- if authentication is basic ---------------

username: # [string] Username - Basic authentication username
password: # [string] Password - Basic authentication password

--

-------------- if authentication is basicSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a stored
secret that references your credentials

--

-------------- if authentication is login ---------------

loginUrl: # [string] Login URL - URL to use for login API call. This call is
expected to be a POST.

username: # [string] Username - Login username
password: # [string] Password - Login password
loginBody: # [string] POST Body - Template for POST body to send with login

request, ${username} and ${password} are used to specify location of these
attributes in the message

tokenRespAttribute: # [string] Token Attribute - Path to token attribute in
login response body. Nested attributes are OK.

authHeaderExpr: # [string] Authorize Expression - JavaScript expression to
compute the Authorization header to pass in discover and collect calls. The value
${token} is used to reference the token obtained from login.

--

-------------- if authentication is loginSecret ---------------

loginUrl: # [string] Login URL - URL to use for login API call, this call is
expected to be a POST.

credentialsSecret: # [string] Credentials secret - Select (or create) a stored
secret that references your login credentials

loginBody: # [string] POST Body - Template for POST body to send with login
request, ${username} and ${password} are used to specify location of these
attributes in the message

tokenRespAttribute: # [string] Token Attribute - Path to token attribute in
login response body. Nested attributes are OK.

authHeaderExpr: # [string] Authorize Expression - JavaScript expression to
compute the Authorization header to pass in discover and collect calls. The value
${token} is used to reference the token obtained from login.

--

timeout: # [number] Request Timeout (secs) - HTTP request inactivity timeout,
use 0 to disable

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. Suitable when DNS server returns multiple addresses in sort order.

Page 1301 of 1835

disableTimeFilter: # [boolean] Disable time filter - Used to disable collector
event time filtering when a date range is specified.

--

destructive: # [boolean] Destructive - If set to Yes, the collector will delete
any files that it collects (where applicable).
input: # [object]
type: # [string]
breakerRulesets: # [array of strings] Event Breaker rulesets - A list of event

breaking rulesets that will be applied, in order, to the input data stream.
staleChannelFlushMs: # [number] Event Breaker buffer timeout - The amount of

time (in milliseconds) the Event Breaker will wait for new data to be sent to a
specific channel, before flushing the data stream out, as-is, to the Pipelines.

sendToRoutes: # [boolean] Send to Routes - If set to Yes, events will be sent to
normal routing and event processing. Set to No if you want to select a specific
Pipeline/Destination combination.

-------------- if sendToRoutes is true ---------------

pipeline: # [string] Pre-Processing Pipeline - Pipeline to process results
before sending to routes. Optional.

--

-------------- if sendToRoutes is false ---------------

pipeline: # [string] Pipeline - Pipeline to process results.
output: # [string] Destination - Destination to send results to.

--

preprocess: # [object]
disabled: # [boolean] Disabled - Enable Custom Command
command: # [string] Command - Command to feed the data through (via stdin) and

process its output (stdout)
args: # [array of strings] Arguments - Arguments

throttleRatePerSec: # [string] Throttling - Rate (in bytes per second) to
throttle while writing to an output. Also takes values with multiple-byte units,
such as KB, MB, GB, etc. (E.g., 42 MB.) Default value of 0 specifies no throttling.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
type: # [string] Job type - Job type.
ttl: # [string] Time to live - Time to keep the job's artifacts on disk after job

completion. This also affects how long a job is listed in the Job Inspector.
removeFields: # [array of strings] Remove Discover fields - List of fields to

remove from Discover results. Wildcards (e.g.: aws*) are allowed. This is useful
when discovery returns sensitive fields that should not be exposed in the Jobs user
interface.
resumeOnBoot: # [boolean] Resume job on boot - Resumes the ad hoc job if a failure

condition causes Stream to restart during job execution.
environment: # [string] Environment - Optionally, enable this config only on a

specified Git branch. If empty, will be enabled everywhere.
schedule: # [object] Schedule - Configuration for a scheduled job.
enabled: # [boolean] Enabled - Determines whether or not this schedule is

enabled.

Page 1302 of 1835

-------------- if enabled is true ---------------

cronSchedule: # [string] Cron schedule - A cron schedule on which to run this
job.

maxConcurrentRuns: # [number] Max concurrent runs - The maximum number of
instances that may be running of this scheduled job at any given time.

skippable: # [boolean] Skippable - Skippable jobs can be delayed, up to their
next run time, if the system is hitting concurrency limits.

run: # [object] Run settings

-------------- if type is collection ---------------

rescheduleDroppedTasks: # [boolean] Reschedule tasks - Reschedule tasks that
failed with non-fatal errors.

maxTaskReschedule: # [number] Max task reschedule - Max number of times a task
can be rescheduled.

logLevel: # [string] Log Level - Level at which to set task logging.
jobTimeout: # [string] Job timeout - Maximum time the job is allowed to run

(e.g., 30, 45s or 15m). Units are seconds, if not specified. Enter 0 for unlimited
time.

mode: # [string] Mode - Job run mode. Preview will either return up to N
matching results, or will run until capture time T is reached. Discovery will gather
the list of files to turn into streaming tasks, without running the data collection
job. Full Run will run the collection job.

-------------- if mode is list ---------------

discoverToRoutes: # [boolean] Send to Routes - If true, send discover results
to routes

--

-------------- if mode is preview ---------------

capture: # [object] Capture Settings
duration: # [number] Capture Time (sec) - Amount of time to keep capture

open, in seconds.
maxEvents: # [number] Capture Up to N Events - Maximum number of events to

capture.
level: # [string] Where to capture

--

timeRangeType: # [string] Time range - Time range for scheduled job.
earliest: # [number,string] Earliest - Earliest time, in local time.
latest: # [number,string] Latest - Latest time, in local time.
timestampTimezone: # [string] Range Timezone - Timezone to use for Earliest

and Latest times (defaults to UTC).
expression: # [string] Filter - A filter for tokens in the provided collect

path and/or the events being collected
minTaskSize: # [string] Lower task bundle size - Limits the bundle size for

small tasks. E.g., bundle five 200KB files into one 1M task.
maxTaskSize: # [string] Upper task bundle size - Limits the bundle size for

files above the Lower task bundle size. E.g., bundle five 2MB files into one 10MB
task bundle. Files greater than this size will be assigned to individual tasks.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in

Page 1303 of 1835

Stream.
executor_job: # [object]
executor: # [object]
type: # [string] Executor type - The type of executor to run.
storeTaskResults: # [boolean] Store task results - Determines whether or not to

write task results to disk.
conf: # [object] Executor-specific settings.

type: # [string] Job type - Job type.
ttl: # [string] Time to live - Time to keep the job's artifacts on disk after job

completion. This also affects how long a job is listed in the Job Inspector.
removeFields: # [array of strings] Remove Discover fields - List of fields to

remove from Discover results. Wildcards (e.g.: aws*) are allowed. This is useful
when discovery returns sensitive fields that should not be exposed in the Jobs user
interface.
resumeOnBoot: # [boolean] Resume job on boot - Resumes the ad hoc job if a failure

condition causes Stream to restart during job execution.
environment: # [string] Environment - Optionally, enable this config only on a

specified Git branch. If empty, will be enabled everywhere.
schedule: # [object] Schedule - Configuration for a scheduled job.
enabled: # [boolean] Enabled - Determines whether or not this schedule is

enabled.

-------------- if enabled is true ---------------

cronSchedule: # [string] Cron schedule - A cron schedule on which to run this
job.

maxConcurrentRuns: # [number] Max concurrent runs - The maximum number of
instances that may be running of this scheduled job at any given time.

skippable: # [boolean] Skippable - Skippable jobs can be delayed, up to their
next run time, if the system is hitting concurrency limits.

run: # [object] Run settings

-------------- if type is collection ---------------

rescheduleDroppedTasks: # [boolean] Reschedule tasks - Reschedule tasks that
failed with non-fatal errors.

maxTaskReschedule: # [number] Max task reschedule - Max number of times a task
can be rescheduled.

logLevel: # [string] Log Level - Level at which to set task logging.
jobTimeout: # [string] Job timeout - Maximum time the job is allowed to run

(e.g., 30, 45s or 15m). Units are seconds, if not specified. Enter 0 for unlimited
time.

mode: # [string] Mode - Job run mode. Preview will either return up to N
matching results, or will run until capture time T is reached. Discovery will gather
the list of files to turn into streaming tasks, without running the data collection
job. Full Run will run the collection job.

-------------- if mode is list ---------------

discoverToRoutes: # [boolean] Send to Routes - If true, send discover results
to routes

--

-------------- if mode is preview ---------------

capture: # [object] Capture Settings
duration: # [number] Capture Time (sec) - Amount of time to keep capture

open, in seconds.

Page 1304 of 1835

;

maxEvents: # [number] Capture Up to N Events - Maximum number of events to
capture.

level: # [string] Where to capture

--

timeRangeType: # [string] Time range - Time range for scheduled job.
earliest: # [number,string] Earliest - Earliest time, in local time.
latest: # [number,string] Latest - Latest time, in local time.
timestampTimezone: # [string] Range Timezone - Timezone to use for Earliest

and Latest times (defaults to UTC).
expression: # [string] Filter - A filter for tokens in the provided collect

path and/or the events being collected
minTaskSize: # [string] Lower task bundle size - Limits the bundle size for

small tasks. E.g., bundle five 200KB files into one 1M task.
maxTaskSize: # [string] Upper task bundle size - Limits the bundle size for

files above the Lower task bundle size. E.g., bundle five 2MB files into one 10MB
task bundle. Files greater than this size will be assigned to individual tasks.

--

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.

The workerAffinity internal parameter defaults to false . Cribl automatically sets this to true on
certain jobs, specifying that collection tasks will be both created and run by the same Worker Node.

Page 1305 of 1835

job-limits.yml maintains parameters for collection jobs and system tasks. In the UI, you can configure
these at global ⚙ Settings (lower le�) > General Settings > Job Limits.

$CRIBL_HOME/default/cribl/job-limits.yml

;

10.6.8. job-limits.yml

concurrentJobLimit: # [number] Concurrent job limit - The total number of jobs that
may run concurrently
concurrentSystemJobLimit: # [number] Concurrent system job limit - The total number
of system jobs that may run concurrently
concurrentScheduledJobLimit: # [number] Concurrent scheduled job limit - The total
number of scheduled jobs that may run concurrently. Limit is relative to concurrent
job limit.
concurrentTaskLimit: # [number] Concurrent task limit - The total number of tasks
that a worker process may run concurrently
concurrentSystemTaskLimit: # [number] Concurrent system task limit - The number of
system tasks that a worker process may run concurrently
maxTaskPerc: # [number] Max task usage percentage - Value from 0 to 1 representing
the percentage of total tasks within the system a job may consume
taskPollTimeoutMs: # [number] Task poll timeout - The number of milliseconds the
worker's task handler will wait to receive a task before retrying the request for a
task.
jobArtifactsReaperPeriod: # [string] Artifact reaper period - Time period at which
the system attempts to reap stale disk artifacts belonging to the jobs
finishedJobArtifactsLimit: # [number] Finished job artifacts limit - Maximum number
of finished job artifacts to keep on disk.
finishedTaskArtifactsLimit: # [number] Finished task artifacts limit - Maximum
number of finished task artifacts to keep on disk per job on each worker node.
taskManifestFlushPeriodMs: # [number] Manifest flush period - The rate at which a
job's task manifest should be refreshed in milliseconds.
taskManifestMaxBufferSize: # [number] Manifest max buffer size - The maximum number
of tasks the task manifest can hold in memory before flushing to disk.
taskManifestReadBufferSize: # [string] Manifest reader buffer size - The number of
bytes the task manifest reader should pull from disk.
schedulingPolicy: # [string] Job dispatching - The method by which tasks are
assigned to worker processes to complete the work
jobTimeout: # [string] Job timeout - Maximum time a job is allowed to run. Defaults
to 0, for unlimited time. Units are seconds if not specified. Sample entries: 30,
45s, 15m.
taskHeartbeatPeriod: # [number] Task heartbeat period - The heartbeat period (in
seconds) for tasks to report back to the leader/API.

Page 1306 of 1835

licenses.yml maintains a list of Cribl Stream licenses.

$CRIBL_HOME/default/cribl/licenses.yml

;

10.6.9. licenses.yml

licenses: # [array of string] - list of licenses

Page 1307 of 1835

limits.yml maintains parameters for the system. In a distributed deployment, these parameters are
configured on both the Leader and the Workers.

In the UI, you can configure them at global ⚙ Settings (lower le�) > General Settings > Limits.

$CRIBL_HOME/default/cribl/limits.yml

;

10.6.10. limits.yml

samples: # [object] Samples
maxSize: # [string] Max sample size - Maximum file size for the sample, in binary

units (KB, MB). (Max. 3MB.)
minFreeSpace: # [string] Min free disk space - The minimum amount of disk space in
the system before various features will take measures to prevent disk usage (KB, MB,
etc.).
metricsGCPeriod: # [string] Metrics GC period - The interval on which the system
attempts to free memory, by pruning stale metrics from the Stream system metrics
store.
metricsMaxCardinality: # [number] Metrics cardinality limit - The system's allowed
number of permutations of a given metric name.
metricsMaxDiskSpace: # [string] Metrics max disk space - Maximum allowed disk space
for persisting metrics to disk.
metricsWorkerIdBlacklist: # [array of strings] Metrics worker tracking - List of
metric names for which to disable tracking of Worker Node ID. Supports wildcards.
metricsNeverDropList: # [array of strings] Metrics never drop list - List metric
names for which to ensure delivery. Supports wildcards.
metricsFieldsBlacklist: # [array of strings] Disable field metrics - List of event
fields for which to disable metric collection.
metricsDirectory: # [string] Metrics directory - Directory to store metrics on disk.
cpuProfileTTL: # [string] CPU profile TTL - The time-to-live for collected CPU
profiles.
eventsMetadataSources: # [array of strings] Event metadata sources - List of event
metadata sources to enable.

Page 1308 of 1835

logger.yml maintains logging levels and redactions, per channel. In the UI, you can configure these at
global ⚙ Settings (lower le�) > System > Logging.

$CRIBL_HOME/default/cribl/logger.yml

;

10.6.11. logger.yml

redactFields: # [array of strings] - list of fields to redact
redactLabel: # [string] - redact label
channels: # [object] Logger channels as logger ID/log level pairs. Log levels:
error, warn, info, http, verbose, debug, silly
DEFAULT: info

input:DistMaster: debug
output:DistWorker: debug

Page 1309 of 1835

Mapping ruleset configurations are stored in $CRIBL_HOME/default/cribl/mappings.yml .

$CRIBL_HOME/default/cribl/mappings.yml

;

10.6.12. mappings.yml

mapping_ruleset_id: # [object]
conf: # [object]
functions: # [array] Functions - List of functions to pass data through

active: # [boolean]

Page 1310 of 1835

messages.yml stores messages displayed in the UI's Messages fly-out.

$CRIBL_HOME/local/cribl/logger.yml

;

10.6.13. messages.yml

message_id: # [object]
severity: # [string] Severity
title: # [string] Title
text: # [string] Text
time: # [number] Occurrence Time
group: # [string] Group
metadata: # [array]

Page 1311 of 1835

outputs.yml contains configuration settings for Cribl Stream Destinations.

$CRIBL_HOME/default/cribl/outputs.yml

10.6.14. outputs.yml

Page 1312 of 1835

outputs: # [object]
default_output: # [object]
type: # [string] Output Type
defaultId: # [string,null] Default Output ID - ID of the default output. This

will be used whenever a nonexistent/deleted output is referenced.
pipeline: # [string] Pipeline - Pipeline to process data before sending out to

this output.
systemFields: # [array of strings] System fields - Set of fields to

automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
webhook_output: # [object]
type: # [string] Output Type
url: # [string] URL - URL to send events to.
method: # [string] Method - The method to use when sending events. Defaults to

POST.
format: # [string] Format - Specifies how to format events before sending out.

Defaults to NDJSON.

-------------- if format is custom ---------------

customSourceExpression: # [string] Source expression - Expression to evaluate as
event. E.g., `${fieldA}, ${fieldB}`. Defaults to __httpOut (i.e. value of field
__httpOut).

customDropWhenNull: # [boolean] Drop when null - Whether or not to drop events
when the source expression evaluates to null.

customEventDelimiter: # [string] Event delimiter - Delimiter string to insert
between individual events. Defaults to newline character.

customContentType: # [string] Content type - Content type to use for request.
Defaults to application/x-ndjson. Any content types set in Advanced Settings > Extra
HTTP headers will override this entry.

--

concurrency: # [number] Request concurrency - Maximum number of ongoing requests
before blocking.

maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the
request body.

maxPayloadEvents: # [number] Max events per request - Max number of events to
include in the request body. Default is 0 (unlimited).

compress: # [boolean] Compress - Whether to compress the payload body before
sending.

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

Page 1313 of 1835

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

authType: # [string] Authentication type - The authentication method to use for
the HTTP request. Defaults to None.

-------------- if authType is basic ---------------

username: # [string] Username - Username for Basic authentication
password: # [string] Password - Password for Basic authentication

--

-------------- if authType is token ---------------

token: # [string] Token - Bearer token to include in the authorization header

--

-------------- if authType is credentialsSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a secret
that references your credentials

--

-------------- if authType is textSecret ---------------

textSecret: # [string] Token (text secret) - Select (or create) a stored text
secret

--

Page 1314 of 1835

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
devnull_output: # [object]
type: # [string] Output Type
pipeline: # [string] Pipeline - Pipeline to process data before sending out to

this output.
systemFields: # [array of strings] System fields - Set of fields to

automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
syslog_output: # [object]
type: # [string] Output Type
protocol: # [string] Protocol - The network protocol to use for sending out

syslog messages

-------------- if protocol is tcp ---------------

loadBalanced: # [boolean] Load balancing - Use load-balanced destinations
connectionTimeout: # [number] Connection Timeout - Amount of time (milliseconds)

to wait for the connection to establish before retrying
writeTimeout: # [number] Write Timeout - Amount of time (milliseconds) to wait

for a write to complete before assuming connection is dead
tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

servername: # [string] Server name (SNI) - Server name for the SNI (Server
Name Indication) TLS extension. It must be a host name, and not an IP address.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

privKeyPath: # [string] Private key path (mutual auth) - Path on client in
which to find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in which
to find certificates to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
minVersion: # [string] Minimum TLS version - Minimum TLS version to use when

connecting
maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when

connecting

--

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

Page 1315 of 1835

--

-------------- if protocol is udp ---------------

host: # [string] Address - The hostname of the receiver
port: # [number] Port - The port to connect to on the provided host
maxRecordSize: # [number] Max Record Size - Maximum size of syslog messages. If

max record size is > than MTU then UDP packets can be fragmented across, set this
value <= MTU to avoid fragmentation.

--

facility: # [number] Facility - Default value for message facility, will be
overwritten by value of __facility if set. Defaults to user.

severity: # [number] Severity - Default value for message severity, will be
overwritten by value of __severity if set. Defaults to notice.

appName: # [string] App Name - Default value for application name, will be
overwritten by value of __appname if set. Defaults to Cribl.

messageFormat: # [string] Message Format - The syslog message format depending
on the receiver's support

timestampFormat: # [string] Timestamp Format - Timestamp format to use when
serializing event's time field

throttleRatePerSec: # [string] Throttling - Rate (in bytes per second) to
throttle while writing to an output. Also takes values with multiple-byte units,
such as KB, MB, GB, etc. (E.g., 42 MB.) Default value of 0 specifies no throttling.

octetCountFraming: # [boolean] Octet count framing - When enabled, messages will
be prefixed with the byte count of the message. Otherwise, no prefix will be set,
and the message will be appended with a \n.

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
splunk_output: # [object]
type: # [string] Output Type
host: # [string] Address - The hostname of the receiver
port: # [number] [required] Port - The port to connect to on the provided host
nestedFields: # [string] Nested field serialization - Specifies how to serialize

nested fields into index-time fields.
throttleRatePerSec: # [string] Throttling - Rate (in bytes per second) to

throttle while writing to an output. Also takes values with multiple-byte units,
such as KB, MB, GB, etc. (E.g., 42 MB.) Default value of 0 specifies no throttling.

connectionTimeout: # [number] Connection Timeout - Amount of time (milliseconds)
to wait for the connection to establish before retrying

writeTimeout: # [number] Write Timeout - Amount of time (milliseconds) to wait
for a write to complete before assuming connection is dead

tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

Page 1316 of 1835

servername: # [string] Server name (SNI) - Server name for the SNI (Server
Name Indication) TLS extension. It must be a host name, and not an IP address.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

privKeyPath: # [string] Private key path (mutual auth) - Path on client in
which to find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in which
to find certificates to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
minVersion: # [string] Minimum TLS version - Minimum TLS version to use when

connecting
maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when

connecting

--

enableMultiMetrics: # [boolean] Output multiple metrics - Output metrics in
multiple-metric format in a single event. Supported in Splunk 8.0 and above.

enableACK: # [boolean] Minimize in-flight data loss - Check if indexer is
shutting down and stop sending data. This helps minimize data loss during shutdown.

maxS2Sversion: # [string] Max S2S version - The highest S2S protocol version to
advertise during handshake.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

authType: # [string] Authentication method - Enter a token directly, or provide
a secret referencing a token

authToken: # [string] Auth token - Shared secret token to use when establishing
a connection to a Splunk indexer.

-------------- if authType is manual ---------------

--

textSecret: # [string] Auth token (text secret) - Select (or create) a stored
text secret

-------------- if authType is secret ---------------

Page 1317 of 1835

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
splunk_lb_output: # [object]
type: # [string] Output Type
dnsResolvePeriodSec: # [number] DNS resolution period (seconds) - Re-resolve any

hostnames every this many seconds and pick up destinations from A records.
loadBalanceStatsPeriodSec: # [number] Load balance stats period (seconds) - How

far back in time to keep traffic stats for load balancing purposes.
maxConcurrentSenders: # [number] Max connections - Maximum number of concurrent

connections (per worker process). A random set of IPs will be picked on every DNS
resolution period. Use 0 for unlimited.

nestedFields: # [string] Nested field serialization - Specifies how to serialize
nested fields into index-time fields.

throttleRatePerSec: # [string] Throttling - Rate (in bytes per second) to
throttle while writing to an output. Also takes values with multiple-byte units,
such as KB, MB, GB, etc. (E.g., 42 MB.) Default value of 0 specifies no throttling.

connectionTimeout: # [number] Connection Timeout - Amount of time (milliseconds)
to wait for the connection to establish before retrying

writeTimeout: # [number] Write Timeout - Amount of time (milliseconds) to wait
for a write to complete before assuming connection is dead

tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

servername: # [string] Server name (SNI) - Server name for the SNI (Server
Name Indication) TLS extension. It must be a host name, and not an IP address.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

privKeyPath: # [string] Private key path (mutual auth) - Path on client in
which to find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in which
to find certificates to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
minVersion: # [string] Minimum TLS version - Minimum TLS version to use when

connecting
maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when

connecting

--

enableMultiMetrics: # [boolean] Output multiple metrics - Output metrics in
multiple-metric format in a single event. Supported in Splunk 8.0 and above.

enableACK: # [boolean] Minimize in-flight data loss - Check if indexer is

Page 1318 of 1835

shutting down and stop sending data. This helps minimize data loss during shutdown.
maxS2Sversion: # [string] Max S2S version - The highest S2S protocol version to

advertise during handshake.
onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or

queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

indexerDiscovery: # [boolean] Indexer Discovery - Automatically discover
indexers in indexer clustering environment.

-------------- if indexerDiscovery is true ---------------

indexerDiscoveryConfigs: # [object] - List of configurations to set up indexer
discovery in Splunk Indexer clustering environment.

site: # [string] [required] Site - Clustering site of the indexers from where
indexers need to be discovered. In case of single site cluster, it defaults to
'default' site.

masterUri: # [string] Cluster Manager URI - Full URI of Splunk cluster Manager
(scheme://host:port). E.g.: https://managerAddress:8089

refreshIntervalSec: # [number] [required] Refresh Period - Time interval in
seconds between two consecutive indexer list fetches from cluster Manager.

authType: # [string] Authentication method - Enter a token directly, or
provide a secret referencing a token

authToken: # [string] Auth token - Authentication token required to
authenticate to cluster Manager for indexer discovery.

-------------- if authType is manual ---------------

--

textSecret: # [string] Auth token (text secret) - Select (or create) a stored
text secret

-------------- if authType is secret ---------------

--

--

Page 1319 of 1835

-------------- if indexerDiscovery is false ---------------

excludeSelf: # [boolean] Exclude current host IPs - Exclude all IPs of the
current host from the list of any resolved hostnames.

hosts: # [array] Destinations - Set of Splunk indexers to load-balance data to.
- host: # [string] Address - The hostname of the receiver.
port: # [number] Port - The port to connect to on the provided host.
tls: # [string] TLS - Whether to inherit TLS configs from group setting or

disable TLS.
servername: # [string] TLS Servername - Servername to use if establishing a

TLS connection. If not specified, defaults to connection host (iff not an IP);
otherwise, to the global TLS settings.

weight: # [number] Load Weight - The weight to use for load-balancing
purposes.

dnsResolvePeriodSec: # [number] DNS resolution period (seconds) - Re-resolve any
hostnames every this many seconds and pick up destinations from A records.

loadBalanceStatsPeriodSec: # [number] Load balance stats period (seconds) - How
far back in time to keep traffic stats for load balancing purposes.

maxConcurrentSenders: # [number] Max connections - Maximum number of concurrent
connections (per worker process). A random set of IPs will be picked on every DNS
resolution period. Use 0 for unlimited.

--

authType: # [string] Authentication method - Enter a token directly, or provide
a secret referencing a token

authToken: # [string] Auth token - Shared secret token to use when establishing
a connection to a Splunk indexer.

-------------- if authType is manual ---------------

--

textSecret: # [string] Auth token (text secret) - Select (or create) a stored
text secret

-------------- if authType is secret ---------------

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
splunk_hec_output: # [object]
type: # [string] Output Type
loadBalanced: # [boolean] Load balancing - Use load-balanced destinations

-------------- if loadBalanced is false ---------------

url: # [string] Splunk HEC Endpoint - URL to a Splunk HEC endpoint to send
events to, e.g., http://localhost:8088/services/collector/event

Page 1320 of 1835

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

--

-------------- if loadBalanced is true ---------------

excludeSelf: # [boolean] Exclude current host IPs - Exclude all IPs of the
current host from the list of any resolved hostnames.

urls: # [array] Splunk HEC Endpoints
- url: # [string] HEC Endpoint - URL to a Splunk HEC endpoint to send events

to, e.g., http://localhost:8088/services/collector/event
weight: # [number] Load Weight - The weight to use for load-balancing

purposes.
dnsResolvePeriodSec: # [number] DNS resolution period (seconds) - Re-resolve any

hostnames every this many seconds and pick up destinations from A records.
loadBalanceStatsPeriodSec: # [number] Load balance stats period (seconds) - How

far back in time to keep traffic stats for load balancing purposes.

--

nextQueue: # [string] Next Processing Queue - Which Splunk processing queue to
send the events after HEC processing

tcpRouting: # [string] Default _TCP_ROUTING - Set the value of _TCP_ROUTING for
events that does not have _ctrl._TCP_ROUTING set

concurrency: # [number] Request concurrency - Maximum number of ongoing requests
before blocking.

maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the
request body.

maxPayloadEvents: # [number] Max events per request - Max number of events to
include in the request body. Default is 0 (unlimited).

compress: # [boolean] Compress - Whether to compress the payload body before
sending.

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

enableMultiMetrics: # [boolean] Output multi-metrics - Output metrics in
multiple-metric format, supported in Splunk 8.0 and above to allow multiple metrics
in a single event.

authType: # [string] Authentication method - Enter a token directly, or provide
a secret referencing a token

-------------- if authType is manual ---------------

token: # [string] HEC Auth token - Splunk HEC authentication token

Page 1321 of 1835

--

-------------- if authType is secret ---------------

textSecret: # [string] HEC Auth token (text secret) - Select (or create) a
stored text secret

--

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
tcpjson_output: # [object]
type: # [string] Output Type
loadBalanced: # [boolean] Load balancing - Use load-balanced destinations

-------------- if loadBalanced is false ---------------

host: # [string] Address - The hostname of the receiver
port: # [number] Port - The port to connect to on the provided host

--

-------------- if loadBalanced is true ---------------

excludeSelf: # [boolean] Exclude current host IPs - Exclude all IPs of the
current host from the list of any resolved hostnames.

hosts: # [array] Destinations - Set of hosts to load-balance data to.
- host: # [string] Address - The hostname of the receiver.

Page 1322 of 1835

port: # [number] Port - The port to connect to on the provided host.
tls: # [string] TLS - Whether to inherit TLS configs from group setting or

disable TLS.
servername: # [string] TLS Servername - Servername to use if establishing a

TLS connection. If not specified, defaults to connection host (iff not an IP);
otherwise, to the global TLS settings.

weight: # [number] Load Weight - The weight to use for load-balancing
purposes.

dnsResolvePeriodSec: # [number] DNS resolution period (seconds) - Re-resolve any
hostnames every this many seconds and pick up destinations from A records.

loadBalanceStatsPeriodSec: # [number] Load balance stats period (seconds) - How
far back in time to keep traffic stats for load balancing purposes.

maxConcurrentSenders: # [number] Max connections - Maximum number of concurrent
connections (per worker process). A random set of IPs will be picked on every DNS
resolution period. Use 0 for unlimited.

--

compression: # [string] Compression - Codec to use to compress the data before
sending

throttleRatePerSec: # [string] Throttling - Rate (in bytes per second) to
throttle while writing to an output. Also takes values with multiple-byte units,
such as KB, MB, GB, etc. (E.g., 42 MB.) Default value of 0 specifies no throttling.

tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

servername: # [string] Server name (SNI) - Server name for the SNI (Server
Name Indication) TLS extension. It must be a host name, and not an IP address.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

privKeyPath: # [string] Private key path (mutual auth) - Path on client in
which to find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in which
to find certificates to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
minVersion: # [string] Minimum TLS version - Minimum TLS version to use when

connecting
maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when

connecting

--

connectionTimeout: # [number] Connection Timeout - Amount of time (milliseconds)
to wait for the connection to establish before retrying

writeTimeout: # [number] Write Timeout - Amount of time (milliseconds) to wait
for a write to complete before assuming connection is dead

tokenTTLMinutes: # [number] Auth Token TTL minutes - The number of minutes
before the internally generated authentication token expires, valid values between 1
and 60

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

Page 1323 of 1835

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

authType: # [string] Authentication method - Enter a token directly, or provide
a secret referencing a token

authToken: # [string] Auth token - Optional authentication token to include as
part of the connection header

-------------- if authType is manual ---------------

--

textSecret: # [string] Auth token (text secret) - Select (or create) a stored
text secret

-------------- if authType is secret ---------------

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
wavefront_output: # [object]
type: # [string] Output Type
authType: # [string] Authentication method - Enter a token directly, or provide

a secret referencing a token

-------------- if authType is manual ---------------

token: # [string] Auth token - WaveFront API authentication token (see [here]
(https://docs.wavefront.com/wavefront_api.html#generating-an-api-token))

--

-------------- if authType is secret ---------------

Page 1324 of 1835

textSecret: # [string] Auth token (text secret) - Select (or create) a stored
text secret

--

domain: # [string] Domain name - WaveFront domain name, e.g. "longboard"
concurrency: # [number] Request concurrency - Maximum number of ongoing requests

before blocking.
maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the

request body.
maxPayloadEvents: # [number] Max events per request - Max number of events to

include in the request body. Default is 0 (unlimited).
compress: # [boolean] Compress - Whether to compress the payload body before

sending.
rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are

not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to Yes.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

Page 1325 of 1835

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
signalfx_output: # [object]
type: # [string] Output Type
authType: # [string] Authentication method - Enter a token directly, or provide

a secret referencing a token

-------------- if authType is manual ---------------

token: # [string] Auth token - SignalFx API access token (see [here]
(https://docs.signalfx.com/en/latest/admin-guide/tokens.html#working-with-access-
tokens))

--

-------------- if authType is secret ---------------

textSecret: # [string] Auth token (text secret) - Select (or create) a stored
text secret

--

realm: # [string] Realm - SignalFx realm name, e.g. "us0"
concurrency: # [number] Request concurrency - Maximum number of ongoing requests

before blocking.
maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the

request body.
maxPayloadEvents: # [number] Max events per request - Max number of events to

include in the request body. Default is 0 (unlimited).
compress: # [boolean] Compress - Whether to compress the payload body before

sending.
rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are

not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to Yes.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

Page 1326 of 1835

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
filesystem_output: # [object]
type: # [string] Output Type
destPath: # [string] Output location - Final destination for the output files
stagePath: # [string] Staging location - Filesystem location in which to buffer

files before compressing and moving to final destination. Use performant stable
storage.

addIdToStagePath: # [boolean] Add output ID - Append output's ID to staging
location.

removeEmptyDirs: # [boolean] Remove staging dirs - Remove empty staging
directories after moving files.

-------------- if removeEmptyDirs is true ---------------

emptyDirCleanupSec: # [number] Staging cleanup period - How often (secs) to
clean-up empty directories when 'Remove Staging Dirs' is enabled.

--

partitionExpr: # [string] Partitioning expression - JS expression defining how
files are partitioned and organized. Default is date-based. If blank, Stream will
fall back to the event's __partition field value â� if present â� otherwise to
each location's root directory.

format: # [string] Data format - Format of the output data.

-------------- if format is json ---------------

compress: # [string] Compress - Choose data compression format to apply before
moving files to final destination.

--

-------------- if format is parquet ---------------

parquetSchema: # [string] Parquet schema - Select a Parquet schema. New schemas
can be uploaded under Processing > Knowledge > Parquet Schemas

Page 1327 of 1835

parquetRowGroupSize: # [string] Row group size - Ideal memory size for row group
segments. E.g., 128MB or 1GB. Affects memory use when writing. Imposes a target, not
a strict limit; row groups final size may be larger or smaller.

parquetPageSize: # [string] Page size - Ideal memory size for page segments.
E.g., 1MB or 128MB. Generally, lower values improve reading speed, while higher
values improve compression. Imposes a target, not a strict limit; pages final size
may be larger or smaller.

spacer: # [null]
parquetVersion: # [string] Parquet version - Determines which data types are

supported and how they are represented.
parquetDataPageVersion: # [string] Data page version - Serialization format of

data pages. Note that not all reader implemtations support Data page V2.
shouldLogInvalidRows: # [boolean] Log invalid rows - Output up to 20 unique rows

that were skipped due to data format mismatch. Must have Logging set to Debug to see
output.

--

baseFileName: # [string] File name prefix expression - JavaScript expression to
define the output filename prefix (can be constant).

fileNameSuffix: # [string] File name suffix expression - JavaScript expression
to define the output filename suffix (can be constant). The `__format` variable
refers to the value of the `Data format` field (`json` or `raw`). The
`__compression` field refers to the kind of compression being used (`none` or
`gzip`)

maxFileSizeMB: # [number] Max file size (MB) - Maximum uncompressed output file
size. Files of this size will be closed and moved to final output location.

maxFileOpenTimeSec: # [number] Max file open time (Sec) - Maximum amount of time
to write to a file. Files open for longer than this will be closed and moved to
final output location.

maxFileIdleTimeSec: # [number] Max file idle time (Sec) - Maximum amount of time
to keep inactive files open. Files open for longer than this will be closed and
moved to final output location.

maxOpenFiles: # [number] Max open files - Maximum number of files to keep open
concurrently. When over, the oldest open files will be closed and moved to final
output location.

onBackpressure: # [string] Backpressure behavior - Whether to block or drop
events when all receivers are exerting backpressure.

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
s3_output: # [object]
type: # [string] Output Type
bucket: # [string] S3 bucket name - Name of the destination S3 bucket. Must be a

JavaScript expression (which can evaluate to a constant value), enclosed in quotes
or backticks. Can be evaluated only at init time. E.g., referencing a Global
Variable: `myBucket-${C.vars.myVar}`.

region: # [string] Region - Region where the S3 bucket is located.
awsAuthenticationMethod: # [string] Authentication method - AWS authentication

method. Choose Auto to use IAM roles.

-------------- if awsAuthenticationMethod is manual ---------------

awsApiKey: # [string] Access key - Access key

Page 1328 of 1835

--

-------------- if awsAuthenticationMethod is secret ---------------

awsSecret: # [string] Secret key pair - Select (or create) a stored secret that
references your access key and secret key.

--

awsSecretKey: # [string] Secret key - Secret key
endpoint: # [string] Endpoint - S3 service endpoint. If empty, defaults to AWS'

Region-specific endpoint. Otherwise, it must point to S3-compatible endpoint.
signatureVersion: # [string] Signature version - Signature version to use for

signing S3 requests.
reuseConnections: # [boolean] Reuse connections - Whether to reuse connections

between requests, which can improve performance.
rejectUnauthorized: # [boolean] Reject unauthorized certificates - Whether to

reject certificates that cannot be verified against a valid CA (e.g., self-signed
certificates).

enableAssumeRole: # [boolean] Enable for S3 - Use Assume Role credentials to
access S3

assumeRoleArn: # [string] AssumeRole ARN - Amazon Resource Name (ARN) of the
role to assume

assumeRoleExternalId: # [string] External ID - External ID to use when assuming
role

stagePath: # [string] [required] Staging location - Filesystem location in which
to buffer files, before compressing and moving to final destination. Use performant
stable storage.

addIdToStagePath: # [boolean] Add output ID - Append output's ID to staging
location.

removeEmptyDirs: # [boolean] Remove staging dirs - Remove empty staging
directories after moving files.

-------------- if removeEmptyDirs is true ---------------

emptyDirCleanupSec: # [number] Staging cleanup period - How often (secs) to
clean-up empty directories when 'Remove Staging Dirs' is enabled.

--

destPath: # [string] [required] Key prefix - Prefix to append to files before
uploading. Must be a JavaScript expression (which can evaluate to a constant value),
enclosed in quotes or backticks. Can be evaluated only at init time. E.g.,
referencing a Global Variable: `myKeyPrefix-${C.vars.myVar}`.

objectACL: # [string] Object ACL - Object ACL to assign to uploaded objects.
storageClass: # [string] Storage class - Storage class to select for uploaded

objects.
serverSideEncryption: # [string] Server side encryption - Server-side encryption

for uploaded objects.

-------------- if serverSideEncryption is aws:kms ---------------

kmsKeyId: # [string] KMS key ID - ID or ARN of the KMS customer managed key to
use for encryption

--

partitionExpr: # [string] Partitioning expression - JS expression defining how

Page 1329 of 1835

files are partitioned and organized. Default is date-based. If blank, Stream will
fall back to the event's __partition field value â� if present â� otherwise to
each location's root directory.

format: # [string] Data format - Format of the output data.

-------------- if format is json ---------------

compress: # [string] Compress - Choose data compression format to apply before
moving files to final destination.

--

-------------- if format is parquet ---------------

parquetSchema: # [string] Parquet schema - Select a Parquet schema. New schemas
can be uploaded under Processing > Knowledge > Parquet Schemas

parquetRowGroupSize: # [string] Row group size - Ideal memory size for row group
segments. E.g., 128MB or 1GB. Affects memory use when writing. Imposes a target, not
a strict limit; row groups final size may be larger or smaller.

parquetPageSize: # [string] Page size - Ideal memory size for page segments.
E.g., 1MB or 128MB. Generally, lower values improve reading speed, while higher
values improve compression. Imposes a target, not a strict limit; pages final size
may be larger or smaller.

spacer: # [null]
parquetVersion: # [string] Parquet version - Determines which data types are

supported and how they are represented.
parquetDataPageVersion: # [string] Data page version - Serialization format of

data pages. Note that not all reader implemtations support Data page V2.
shouldLogInvalidRows: # [boolean] Log invalid rows - Output up to 20 unique rows

that were skipped due to data format mismatch. Must have Logging set to Debug to see
output.

--

baseFileName: # [string] File name prefix expression - JavaScript expression to
define the output filename prefix (can be constant).

fileNameSuffix: # [string] File name suffix expression - JavaScript expression
to define the output filename suffix (can be constant). The `__format` variable
refers to the value of the `Data format` field (`json` or `raw`). The
`__compression` field refers to the kind of compression being used (`none` or
`gzip`)

maxFileSizeMB: # [number] Max file size (MB) - Maximum uncompressed output file
size. Files of this size will be closed and moved to final output location.

maxFileOpenTimeSec: # [number] Max file open time (Sec) - Maximum amount of time
to write to a file. Files open for longer than this will be closed and moved to
final output location.

maxFileIdleTimeSec: # [number] Max file idle time (Sec) - Maximum amount of time
to keep inactive files open. Files open for longer than this will be closed and
moved to final output location.

maxOpenFiles: # [number] Max open files - Maximum number of files to keep open
concurrently. When over, the oldest open files will be closed and moved to final
output location.

onBackpressure: # [string] Backpressure behavior - Whether to block or drop
events when all receivers are exerting backpressure.

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

Page 1330 of 1835

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
azure_blob_output: # [object]
type: # [string] Output Type
containerName: # [string] Container name - A container organizes a set of blobs,

similar to a directory in a file system.
createContainer: # [boolean] Create container - Creates the configured container

in Azure Blob Storage if it does not already exist.
destPath: # [string] [required] Blob prefix - Root directory prepended to path

before uploading.
stagePath: # [string] [required] Staging location - Filesystem location in which

to buffer files, before compressing and moving to final destination. Use performant
stable storage.

addIdToStagePath: # [boolean] Add output ID - Append output's ID to staging
location.

removeEmptyDirs: # [boolean] Remove staging dirs - Remove empty staging
directories after moving files.

-------------- if removeEmptyDirs is true ---------------

emptyDirCleanupSec: # [number] Staging cleanup period - How often (secs) to
clean-up empty directories when 'Remove Staging Dirs' is enabled.

--

partitionExpr: # [string] Partitioning expression - JS expression defining how
files are partitioned and organized. Default is date-based. If blank, Stream will
fall back to the event's __partition field value â� if present â� otherwise to
each location's root directory.

format: # [string] Data format - Format of the output data.

-------------- if format is json ---------------

compress: # [string] Compress - Choose data compression format to apply before
moving files to final destination.

--

-------------- if format is parquet ---------------

parquetSchema: # [string] Parquet schema - Select a Parquet schema. New schemas
can be uploaded under Processing > Knowledge > Parquet Schemas

parquetRowGroupSize: # [string] Row group size - Ideal memory size for row group
segments. E.g., 128MB or 1GB. Affects memory use when writing. Imposes a target, not
a strict limit; row groups final size may be larger or smaller.

parquetPageSize: # [string] Page size - Ideal memory size for page segments.
E.g., 1MB or 128MB. Generally, lower values improve reading speed, while higher
values improve compression. Imposes a target, not a strict limit; pages final size
may be larger or smaller.

spacer: # [null]
parquetVersion: # [string] Parquet version - Determines which data types are

supported and how they are represented.
parquetDataPageVersion: # [string] Data page version - Serialization format of

data pages. Note that not all reader implemtations support Data page V2.
shouldLogInvalidRows: # [boolean] Log invalid rows - Output up to 20 unique rows

that were skipped due to data format mismatch. Must have Logging set to Debug to see
output.

Page 1331 of 1835

--

baseFileName: # [string] File name prefix expression - JavaScript expression to
define the output filename prefix (can be constant).

fileNameSuffix: # [string] File name suffix expression - JavaScript expression
to define the output filename suffix (can be constant). The `__format` variable
refers to the value of the `Data format` field (`json` or `raw`). The
`__compression` field refers to the kind of compression being used (`none` or
`gzip`)

maxFileSizeMB: # [number] Max file size (MB) - Maximum uncompressed output file
size. Files of this size will be closed and moved to final output location.

maxFileOpenTimeSec: # [number] Max file open time (Sec) - Maximum amount of time
to write to a file. Files open for longer than this will be closed and moved to
final output location.

maxFileIdleTimeSec: # [number] Max file idle time (Sec) - Maximum amount of time
to keep inactive files open. Files open for longer than this will be closed and
moved to final output location.

maxOpenFiles: # [number] Max open files - Maximum number of files to keep open
concurrently. When over, the oldest open files will be closed and moved to final
output location.

onBackpressure: # [string] Backpressure behavior - Whether to block or drop
events when all receivers are exerting backpressure.

authType: # [string] Authentication method - Enter connection string directly,
or select a stored secret

connectionString: # [string] Connection string - Enter your Azure Storage
account connection string. If left blank, Stream will fall back to
env.AZURE_STORAGE_CONNECTION_STRING.

-------------- if authType is manual ---------------

--

textSecret: # [string] Connection string (text secret) - Select (or create) a
stored text secret

-------------- if authType is secret ---------------

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
azure_logs_output: # [object]
type: # [string] Output Type
logType: # [string] Log Type - The Log Type of events sent to this LogAnalytics

workspace. Can be overwritten by event field __logType.
resourceId: # [string] Resource ID - Optional Resource ID of the Azure resource

the data should be associated with, can be overridden by event field __resourceId.
This populates the _ResourceId property and allows the data to be included in
resource-centric queries. If this field isn't specified, the data will not be
included in resource-centric queries.

Page 1332 of 1835

concurrency: # [number] Request concurrency - Maximum number of ongoing requests
before blocking.

maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the
request body.

maxPayloadEvents: # [number] Max events per request - Max number of events to
include in the request body. Default is 0 (unlimited).

compress: # [boolean] Compress - Whether to compress the payload body before
sending.

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to Yes.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

authType: # [string] Authentication method - Enter workspace ID and workspace
key directly, or select a stored secret

workspaceId: # [string] Workspace ID - Azure Log Analytics Workspace ID. See
Azure Dashboard WorkspaceÂ > Advanced settings.

workspaceKey: # [string] Workspace key - Azure Log Analytics Workspace Primary
or Secondary Shared Key. See Azure Dashboard WorkspaceÂ > Advanced settings.

-------------- if authType is manual ---------------

--

Page 1333 of 1835

keypairSecret: # [string] Secret key pair - Select (or create) a stored secret
that references your access key and secret key.

-------------- if authType is secret ---------------

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
kinesis_output: # [object]
type: # [string] Output Type
streamName: # [string] Stream Name - Kinesis stream name to send events to.
awsAuthenticationMethod: # [string] Authentication method - AWS authentication

method. Choose Auto to use IAM roles.

-------------- if awsAuthenticationMethod is manual ---------------

awsApiKey: # [string] Access key - Access key

--

-------------- if awsAuthenticationMethod is secret ---------------

awsSecret: # [string] Secret key pair - Select (or create) a stored secret that
references your access key and secret key.

--

awsSecretKey: # [string] Secret key - Secret key
region: # [string] [required] Region - Region where the Kinesis stream is

located
endpoint: # [string] Endpoint - Kinesis stream service endpoint. If empty,

defaults to AWS' Region-specific endpoint. Otherwise, it must point to Kinesis
stream-compatible endpoint.

signatureVersion: # [string] Signature version - Signature version to use for
signing Kinesis stream requests.

reuseConnections: # [boolean] Reuse connections - Whether to reuse connections
between requests, which can improve performance.

rejectUnauthorized: # [boolean] Reject unauthorized certificates - Whether to
reject certificates that cannot be verified against a valid CA (e.g., self-signed
certificates).

enableAssumeRole: # [boolean] Enable for Kinesis stream - Use Assume Role
credentials to access Kinesis stream

assumeRoleArn: # [string] AssumeRole ARN - Amazon Resource Name (ARN) of the
role to assume

assumeRoleExternalId: # [string] External ID - External ID to use when assuming
role

concurrency: # [number] Put request concurrency - Maximum number of ongoing put
requests before blocking.

maxRecordSizeKB: # [number] Max record size (KB, uncompressed) - Maximum size

Page 1334 of 1835

(KB) of each individual record before compression. For non-compressible data 1MB is
the max recommended size

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max
record size.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
honeycomb_output: # [object]
type: # [string] Output Type
dataset: # [string] Dataset name - Name of the dataset to send events to â�

e.g., observability
concurrency: # [number] Request concurrency - Maximum number of ongoing requests

before blocking.
maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the

request body.
maxPayloadEvents: # [number] Max events per request - Max number of events to

include in the request body. Default is 0 (unlimited).
compress: # [boolean] Compress - Whether to compress the payload body before

sending.
rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are

not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to Yes.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS

Page 1335 of 1835

lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

authType: # [string] Authentication method - Enter API key directly, or select a
stored secret

team: # [string] API key - Team API key where the dataset belongs

-------------- if authType is manual ---------------

--

textSecret: # [string] API key (text secret) - Select (or create) a stored text
secret

-------------- if authType is secret ---------------

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
azure_eventhub_output: # [object]
type: # [string] Output Type
brokers: # [array of strings] Brokers - List of Event Hubs Kafka brokers to

connect to, eg. yourdomain.servicebus.windows.net:9093. The hostname can be found in
the host portion of the primary or secondary connection string in Shared Access

Page 1336 of 1835

Policies.
topic: # [string] [required] Event Hub Name - The name of the Event Hub (a.k.a.

Kafka Topic) to publish events. Can be overwritten using field __topicOut.
ack: # [number] Acknowledgments - Control the number of required acknowledgments
format: # [string] Record data format - Format to use to serialize events before

writing to the Event Hubs Kafka brokers.
maxRecordSizeKB: # [number] Max record size (KB, uncompressed) - Maximum size

(KB) of each record batch before compression. Setting should be < message.max.bytes
settings in Event Hubs brokers.

flushEventCount: # [number] Max events per batch - Maximum number of events in a
batch before forcing a flush.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max
record size.

connectionTimeout: # [number] Connection timeout (ms) - Maximum time to wait for
a successful connection.

requestTimeout: # [number] Request timeout (ms) - Maximum time to wait for a
successful request.

sasl: # [object] Authentication - Authentication parameters to use when
connecting to brokers. Using TLS is highly recommended.

disabled: # [boolean] Disabled - Enable authentication.

-------------- if disabled is false ---------------

mechanism: # [string] SASL mechanism - SASL authentication mechanism to use.
PLAIN is the only mechanism currently supported for Event Hubs Kafka brokers.

username: # [string] Username - The username for authentication. For Event
Hubs, this should always be $ConnectionString.

authType: # [string] Authentication method - Enter password directly, or
select a stored secret

--

tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - For Event Hubs, this
should always be false.

--

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,

Page 1337 of 1835

while leaving the contents of the PQ unchanged.
pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
google_chronicle_output: # [object]
type: # [string] Output Type
authenticationMethod: # [string] Authentication Method

-------------- if authenticationMethod is manual ---------------

apiKey: # [string] API key - Organization's API key in Google Chronicle

--

-------------- if authenticationMethod is secret ---------------

apiKeySecret: # [string] API key (text secret) - Select (or create) a stored
text secret

--

logType: # [string] Log type - Log type value to send to Chronicle. Can be
overwritten by event field __logType.

logTextField: # [string] Log text field - Name of the event field that contains
the log text to send. If not specified, Stream sends a JSON representation of the
whole event.

logFormatType: # [string] Send events as
region: # [string] Region - Regional endpoint to send events to
concurrency: # [number] Request concurrency - Maximum number of ongoing requests

before blocking.
maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the

request body.
maxPayloadEvents: # [number] Max events per request - Max number of events to

include in the request body. Default is 0 (unlimited).
compress: # [boolean] Compress - Whether to compress the payload body before

sending.
rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are

not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to Yes.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to

Page 1338 of 1835

cycle through them in the order returned.
failedRequestLoggingMode: # [string] Failed request logging mode - Determines

which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
google_cloud_storage_output: # [object]
type: # [string] Output Type
bucket: # [string] Bucket name - Name of the destination Bucket. This value can

be a constant or a JavaScript expression that can only be evaluated at init time.
E.g. referencing a Global Variable: `myBucket-${C.vars.myVar}`.

region: # [string] [required] Region - Region where the bucket is located.
endpoint: # [string] [required] Endpoint - Google Cloud Storage service

endpoint.
signatureVersion: # [string] Signature version - Signature version to use for

signing Google Cloud Storage requests.
awsAuthenticationMethod: # [string] Authentication method

-------------- if awsAuthenticationMethod is manual ---------------

awsApiKey: # [string] Access key - HMAC access Key
awsSecretKey: # [string] Secret - HMAC secret

--

-------------- if awsAuthenticationMethod is secret ---------------

awsSecret: # [string] Secret key pair - Select (or create) a stored secret that

Page 1339 of 1835

references your access key and secret key.

--

stagePath: # [string] [required] Staging location - Filesystem location in which
to buffer files, before compressing and moving to final destination. Use performant
stable storage.

destPath: # [string] [required] Key prefix - Prefix to append to files before
uploading. Must be a JavaScript expression (which can evaluate to a constant value),
enclosed in quotes or backticks. Can be evaluated only at init time. E.g.,
referencing a Global Variable: `myKeyPrefix-${C.vars.myVar}`.

objectACL: # [string] Object ACL - Object ACL to assign to uploaded objects.
storageClass: # [string] Storage class - Storage class to select for uploaded

objects.
reuseConnections: # [boolean] Reuse connections - Whether to reuse connections

between requests, which can improve performance.
rejectUnauthorized: # [boolean] Reject unauthorized certificates - Whether to

reject certificates that cannot be verified against a valid CA (e.g., self-signed
certificates).

addIdToStagePath: # [boolean] Add output ID - Append output's ID to staging
location.

removeEmptyDirs: # [boolean] Remove staging dirs - Remove empty staging
directories after moving files.

-------------- if removeEmptyDirs is true ---------------

emptyDirCleanupSec: # [number] Staging cleanup period - How often (secs) to
clean-up empty directories when 'Remove Staging Dirs' is enabled.

--

partitionExpr: # [string] Partitioning expression - JS expression defining how
files are partitioned and organized. Default is date-based. If blank, Stream will
fall back to the event's __partition field value â� if present â� otherwise to
each location's root directory.

format: # [string] Data format - Format of the output data.

-------------- if format is json ---------------

compress: # [string] Compress - Choose data compression format to apply before
moving files to final destination.

--

-------------- if format is parquet ---------------

parquetSchema: # [string] Parquet schema - Select a Parquet schema. New schemas
can be uploaded under Processing > Knowledge > Parquet Schemas

parquetRowGroupSize: # [string] Row group size - Ideal memory size for row group
segments. E.g., 128MB or 1GB. Affects memory use when writing. Imposes a target, not
a strict limit; row groups final size may be larger or smaller.

parquetPageSize: # [string] Page size - Ideal memory size for page segments.
E.g., 1MB or 128MB. Generally, lower values improve reading speed, while higher
values improve compression. Imposes a target, not a strict limit; pages final size
may be larger or smaller.

spacer: # [null]
parquetVersion: # [string] Parquet version - Determines which data types are

supported and how they are represented.
parquetDataPageVersion: # [string] Data page version - Serialization format of

Page 1340 of 1835

data pages. Note that not all reader implemtations support Data page V2.
shouldLogInvalidRows: # [boolean] Log invalid rows - Output up to 20 unique rows

that were skipped due to data format mismatch. Must have Logging set to Debug to see
output.

--

baseFileName: # [string] File name prefix expression - JavaScript expression to
define the output filename prefix (can be constant).

fileNameSuffix: # [string] File name suffix expression - JavaScript expression
to define the output filename suffix (can be constant). The `__format` variable
refers to the value of the `Data format` field (`json` or `raw`). The
`__compression` field refers to the kind of compression being used (`none` or
`gzip`)

maxFileSizeMB: # [number] Max file size (MB) - Maximum uncompressed output file
size. Files of this size will be closed and moved to final output location.

maxFileOpenTimeSec: # [number] Max file open time (Sec) - Maximum amount of time
to write to a file. Files open for longer than this will be closed and moved to
final output location.

maxFileIdleTimeSec: # [number] Max file idle time (Sec) - Maximum amount of time
to keep inactive files open. Files open for longer than this will be closed and
moved to final output location.

maxOpenFiles: # [number] Max open files - Maximum number of files to keep open
concurrently. When over, the oldest open files will be closed and moved to final
output location.

onBackpressure: # [string] Backpressure behavior - Whether to block or drop
events when all receivers are exerting backpressure.

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
google_pubsub_output: # [object]
type: # [string] Output Type
topicName: # [string] Topic ID - ID of the topic to send events to.
createTopic: # [boolean] Create topic - If enabled, create topic if it does not

exist.
orderedDelivery: # [boolean] Ordered delivery - If enabled, send events in the

order they were added to the queue. For this to work correctly, the process
receiving events must have ordering enabled.

region: # [string] Region - Region to publish messages to. Select 'default' to
allow Google to auto-select the nearest region. When using ordered delivery, the
selected region must be allowed by message storage policy.

googleAuthMethod: # [string] Authentication Method - Google authentication
method. Choose Auto to use environment variables PUBSUB_PROJECT and
PUBSUB_CREDENTIALS.

-------------- if googleAuthMethod is manual ---------------

serviceAccountCredentials: # [string] Service account credentials - Contents of
service account credentials (JSON keys) file downloaded from Google Cloud. To upload
a file, click the upload button at this field's upper right. As an alternative, you
can use environment variables (see [here](https://googleapis.dev/ruby/google-cloud-
pubsub/latest/file.AUTHENTICATION.html)).

--

Page 1341 of 1835

-------------- if googleAuthMethod is secret ---------------

secret: # [string] Service account credentials (text secret) - Select (or
create) a stored text secret

--

batchSize: # [number] Batch size - The maximum number of items the Google API
should batch before it sends them to the topic.

batchTimeout: # [number] Batch timeout (ms) - The maximum amount of time, in
milliseconds, that the Google API should wait to send a batch (if the Batch size is
not reached).

maxQueueSize: # [number] Max queue size - Maximum number of queued batches
before blocking.

maxRecordSizeKB: # [number] Max batch size (KB) - Maximum size (KB) of batches
to send.

maxInProgress: # [number] Max concurrent requests - The maximum number of in-
progress API requests before backpressure is applied.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
kafka_output: # [object]
type: # [string] Output Type
brokers: # [array of strings] Brokers - List of Kafka brokers to connect to,

e.g., kafkaBrokerHost:9092.
topic: # [string] [required] Topic - The topic to publish events to. Can be

overridden using the __topicOut field.
ack: # [number] Acknowledgments - Control the number of required

acknowledgments.
format: # [string] Record data format - Format to use to serialize events before

Page 1342 of 1835

writing to Kafka.
compression: # [string] Compression - Codec to use to compress the data before

sending to Kafka.
maxRecordSizeKB: # [number] Max record size (KB, uncompressed) - Maximum size

(KB) of each record batch before compression. Setting should be < message.max.bytes
settings in Kafka brokers.

flushEventCount: # [number] Max events per batch - Maximum number of events in a
batch before forcing a flush.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max
record size.

kafkaSchemaRegistry: # [object] Kafka Schema Registry Authentication
disabled: # [boolean] Disabled - Enable Schema Registry

-------------- if disabled is false ---------------

schemaRegistryURL: # [string] Schema Registry URL - URL for access to the
Confluent Schema Registry, i.e.: http://localhost:8081

defaultKeySchemaId: # [number] Default key schema ID - Used when
__keySchemaIdOut is not present, to transform key values, leave blank if key
transformation is not required by default.

defaultValueSchemaId: # [number] Default value schema ID - Used when
__valueSchemaIdOut is not present, to transform _raw, leave blank if value
transformation is not required by default.

tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that
are not authorized by a CA in the CA certificate path, or by another trusted CA
(e.g., the system's CA). Defaults to No.

servername: # [string] Server name (SNI) - Server name for the SNI (Server
Name Indication) TLS extension. It must be a host name, and not an IP address.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

privKeyPath: # [string] Private key path (mutual auth) - Path on client in
which to find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in
which to find certificates to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private
key.

minVersion: # [string] Minimum TLS version - Minimum TLS version to use when
connecting

maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when
connecting

--

--

connectionTimeout: # [number] Connection timeout (ms) - Maximum time to wait for
a successful connection.

requestTimeout: # [number] Request timeout (ms) - Maximum time to wait for a
successful request.

sasl: # [object] Authentication - Authentication parameters to use when
connecting to brokers. Using TLS is highly recommended.

Page 1343 of 1835

disabled: # [boolean] Disabled - Enable Authentication

-------------- if disabled is false ---------------

mechanism: # [string] SASL mechanism - SASL authentication mechanism to use.

--

tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

servername: # [string] Server name (SNI) - Server name for the SNI (Server
Name Indication) TLS extension. It must be a host name, and not an IP address.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

privKeyPath: # [string] Private key path (mutual auth) - Path on client in
which to find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in which
to find certificates to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
minVersion: # [string] Minimum TLS version - Minimum TLS version to use when

connecting
maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when

connecting

--

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards

Page 1344 of 1835

supported.
environment: # [string] Environment - Optionally, enable this config only on a

specified Git branch. If empty, will be enabled everywhere.
streamtags: # [array of strings] Tags - Add tags for filtering and grouping in

Stream.
confluent_cloud_output: # [object]
type: # [string] Output Type
brokers: # [array of strings] Brokers - List of Confluent Cloud brokers to

connect to, e.g., yourAccount.confluent.cloud:9092.
tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

servername: # [string] Server name (SNI) - Server name for the SNI (Server
Name Indication) TLS extension. It must be a host name, and not an IP address.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

privKeyPath: # [string] Private key path (mutual auth) - Path on client in
which to find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in which
to find certificates to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
minVersion: # [string] Minimum TLS version - Minimum TLS version to use when

connecting
maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when

connecting

--

topic: # [string] [required] Topic - The topic to publish events to. Can be
overridden using the __topicOut field.

ack: # [number] Acknowledgments - Control the number of required
acknowledgments.

format: # [string] Record data format - Format to use to serialize events before
writing to Kafka.

compression: # [string] Compression - Codec to use to compress the data before
sending to Kafka.

maxRecordSizeKB: # [number] Max record size (KB, uncompressed) - Maximum size
(KB) of each record batch before compression. Setting should be < message.max.bytes
settings in Kafka brokers.

flushEventCount: # [number] Max events per batch - Maximum number of events in a
batch before forcing a flush.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max
record size.

kafkaSchemaRegistry: # [object] Kafka Schema Registry Authentication
disabled: # [boolean] Disabled - Enable Schema Registry

-------------- if disabled is false ---------------

schemaRegistryURL: # [string] Schema Registry URL - URL for access to the
Confluent Schema Registry, i.e.: http://localhost:8081

defaultKeySchemaId: # [number] Default key schema ID - Used when
__keySchemaIdOut is not present, to transform key values, leave blank if key

Page 1345 of 1835

transformation is not required by default.
defaultValueSchemaId: # [number] Default value schema ID - Used when

__valueSchemaIdOut is not present, to transform _raw, leave blank if value
transformation is not required by default.

tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that
are not authorized by a CA in the CA certificate path, or by another trusted CA
(e.g., the system's CA). Defaults to No.

servername: # [string] Server name (SNI) - Server name for the SNI (Server
Name Indication) TLS extension. It must be a host name, and not an IP address.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

privKeyPath: # [string] Private key path (mutual auth) - Path on client in
which to find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in
which to find certificates to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private
key.

minVersion: # [string] Minimum TLS version - Minimum TLS version to use when
connecting

maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when
connecting

--

--

connectionTimeout: # [number] Connection timeout (ms) - Maximum time to wait for
a successful connection.

requestTimeout: # [number] Request timeout (ms) - Maximum time to wait for a
successful request.

sasl: # [object] Authentication - Authentication parameters to use when
connecting to brokers. Using TLS is highly recommended.

disabled: # [boolean] Disabled - Enable Authentication

-------------- if disabled is false ---------------

mechanism: # [string] SASL mechanism - SASL authentication mechanism to use.

--

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

Page 1346 of 1835

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
elastic_output: # [object]
type: # [string] Output Type
loadBalanced: # [boolean] Load balancing - Use load-balanced destinations

-------------- if loadBalanced is false ---------------

url: # [string] Bulk API URL or Cloud ID - Enter Cloud ID or URL to an Elastic
cluster to send events to â� e.g., http://elastic:9200/_bulk

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

--

-------------- if loadBalanced is true ---------------

excludeSelf: # [boolean] Exclude current host IPs - Exclude all IPs of the
current host from the list of any resolved hostnames.

urls: # [array] Bulk API URLs
- url: # [string] URL - URL to an Elastic node to send events to â� e.g.,

http://elastic:9200/_bulk
weight: # [number] Load Weight - The weight to use for load-balancing

purposes.
dnsResolvePeriodSec: # [number] DNS resolution period (seconds) - Re-resolve any

hostnames every this many seconds and pick up destinations from A records.
loadBalanceStatsPeriodSec: # [number] Load balance stats period (seconds) - How

far back in time to keep traffic stats for load balancing purposes.

--

index: # [string] Index or Data Stream - Index or Data Stream to send events to.
Must be a JavaScript expression (which can evaluate to a constant value), enclosed
in quotes or backticks. Can be overwritten by an event's __index field.

docType: # [string] Type - Document type to use for events. Can be overwritten
by an event's __type field

concurrency: # [number] Request concurrency - Maximum number of ongoing requests
before blocking.

maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the
request body.

maxPayloadEvents: # [number] Max events per request - Max number of events to

Page 1347 of 1835

include in the request body. Default is 0 (unlimited).
compress: # [boolean] Compress - Whether to compress the payload body before

sending.
rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are

not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

extraParams: # [array] Extra Parameters - Extra Parameters.
- name: # [string] Name - Field name
value: # [string] Value - Field value

auth: # [object]
disabled: # [boolean] Authentication Disabled

-------------- if disabled is false ---------------

authType: # [string] Authentication method - Enter credentials directly, or
select a stored secret

--

elasticVersion: # [string] Elastic Version - Optional Elasticsearch version,
used to format events. If not specified, will auto-discover version.

elasticPipeline: # [string] Elastic pipeline - Optional Elasticsearch
destination pipeline

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

Page 1348 of 1835

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
newrelic_output: # [object]
type: # [string] Output Type
region: # [string] Region - Which New Relic region endpoint to use.
logType: # [string] Log type - Name of the logtype to send with events, e.g.:

observability, access_log. The event's 'sourcetype' field (if set) will override
this value.

messageField: # [string] Log message field - Name of field to send as log
message value. If not present, event will be serialized and sent as JSON.

metadata: # [array] Fields - Fields to add to events from this input.
- name: # [string] Name - Field name
value: # [string] Value - JavaScript expression to compute field's value,

enclosed in quotes or backticks. (Can evaluate to a constant.)
concurrency: # [number] Request concurrency - Maximum number of ongoing requests

before blocking.
maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the

request body.
maxPayloadEvents: # [number] Max events per request - Max number of events to

include in the request body. Default is 0 (unlimited).
compress: # [boolean] Compress - Whether to compress the payload body before

sending.
rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are

not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to Yes.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

Page 1349 of 1835

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

authType: # [string] Authentication method - Enter API key directly, or select a
stored secret

apiKey: # [string] API key - New Relic API key. Can be overridden using
__newRelic_apiKey field.

-------------- if authType is manual ---------------

--

textSecret: # [string] API key (text secret) - Select (or create) a stored text
secret

-------------- if authType is secret ---------------

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
newrelic_events_output: # [object]
type: # [string] Output Type
region: # [string] [required] Region - Which New Relic region endpoint to use.
accountId: # [string] Account ID - New Relic account ID
eventType: # [string] [required] Event type - Default eventType to use when not

present in an event. For more information, see [here]
(https://docs.newrelic.com/docs/telemetry-data-platform/custom-data/custom-
events/data-requirements-limits-custom-event-data/#reserved-words).

concurrency: # [number] Request concurrency - Maximum number of ongoing requests
before blocking.

maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the
request body.

maxPayloadEvents: # [number] Max events per request - Max number of events to
include in the request body. Default is 0 (unlimited).

compress: # [boolean] Compress - Whether to compress the payload body before
sending.

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to Yes.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.

Page 1350 of 1835

- name: # [string] Name - Field name
value: # [string] Value - Field value

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

authType: # [string] Authentication method - Enter API key directly, or select a
stored secret

apiKey: # [string] API key - New Relic API key. Can be overridden using
__newRelic_apiKey field.

-------------- if authType is manual ---------------

--

textSecret: # [string] API key (text secret) - Select (or create) a stored text
secret

-------------- if authType is secret ---------------

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
influxdb_output: # [object]

Page 1351 of 1835

type: # [string] Output Type
url: # [string] Write API URL - URL of an InfluxDB cluster to send events to,

e.g., http://localhost:8086/write
useV2API: # [boolean] Use v2 API - The v2 API can be enabled with InfluxDB

versions 1.8 and later.

-------------- if useV2API is false ---------------

database: # [string] Database - Database to write to.

--

-------------- if useV2API is true ---------------

bucket: # [string] Bucket - Bucket to write to.
org: # [string] Organization - Organization ID for this bucket.

--

timestampPrecision: # [string] Timestamp precision - Sets the precision for the
supplied Unix time values. Defaults to milliseconds.

dynamicValueFieldName: # [boolean] Dynamic value fields - Enabling this will
pull the value field from the metric name. E,g, 'db.query.user' will use 'db.query'
as the measurement and 'user' as the value field.

valueFieldName: # [string] Value field name - Name of the field in which to
store the metric when sending to InfluxDB. If dynamic generation is enabled and
fails, this will be used as a fallback.

concurrency: # [number] Request concurrency - Maximum number of ongoing requests
before blocking.

maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the
request body.

maxPayloadEvents: # [number] Max events per request - Max number of events to
include in the request body. Default is 0 (unlimited).

compress: # [boolean] Compress - Whether to compress the payload body before
sending.

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

Page 1352 of 1835

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

authType: # [string] Authentication type - InfluxDB authentication type

-------------- if authType is basic ---------------

username: # [string] Username - Username for Basic authentication
password: # [string] Password - Password for Basic authentication

--

-------------- if authType is token ---------------

token: # [string] Token - Bearer token to include in the authorization header

--

-------------- if authType is credentialsSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a secret
that references your credentials

--

-------------- if authType is textSecret ---------------

textSecret: # [string] Token (text secret) - Select (or create) a stored text
secret

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
cloudwatch_output: # [object]
type: # [string] Output Type

Page 1353 of 1835

logGroupName: # [string] Log group name - CloudWatch log group to associate
events with

logStreamName: # [string] [required] Log stream prefix - Prefix for CloudWatch
log stream name. This prefix will be used to generate a unique log stream name per
cribl instance, for example: myStream_myHost_myOutputId

awsAuthenticationMethod: # [string] Authentication method - AWS authentication
method. Choose Auto to use IAM roles.

-------------- if awsAuthenticationMethod is manual ---------------

awsApiKey: # [string] Access key - Access key

--

-------------- if awsAuthenticationMethod is secret ---------------

awsSecret: # [string] Secret key pair - Select (or create) a stored secret that
references your access key and secret key.

--

awsSecretKey: # [string] Secret key - Secret key
region: # [string] [required] Region - Region where the CloudWatchLogs is

located
endpoint: # [string] Endpoint - CloudWatchLogs service endpoint. If empty,

defaults to AWS' Region-specific endpoint. Otherwise, it must point to
CloudWatchLogs-compatible endpoint.

signatureVersion: # [string] Signature version - Signature version to use for
signing CloudWatchLogs requests.

reuseConnections: # [boolean] Reuse connections - Whether to reuse connections
between requests, which can improve performance.

rejectUnauthorized: # [boolean] Reject unauthorized certificates - Whether to
reject certificates that cannot be verified against a valid CA (e.g., self-signed
certificates).

enableAssumeRole: # [boolean] Enable for CloudWatchLogs - Use Assume Role
credentials to access CloudWatchLogs

assumeRoleArn: # [string] AssumeRole ARN - Amazon Resource Name (ARN) of the
role to assume

assumeRoleExternalId: # [string] External ID - External ID to use when assuming
role

maxQueueSize: # [number] Max queue size - Maximum number of queued batches
before blocking

maxRecordSizeKB: # [number] Max record size (KB, uncompressed) - Maximum size
(KB) of each individual record before compression. For non compressible data 1MB is
the max recommended size

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max
record size.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue

Page 1354 of 1835

files. To this field's value, the system will append: /<worker-id>/<output-id>.
pqCompress: # [string] Compression - Codec to use to compress the persisted

data.
pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop

events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
minio_output: # [object]
type: # [string] Output Type
endpoint: # [string] [required] MinIO endpoint - MinIO service url (e.g.

http://minioHost:9000)
bucket: # [string] MinIO bucket name - Name of the destination MinIO bucket.

This value can be a constant or a JavaScript expression that can only be evaluated
at init time. E.g. referencing a Global Variable: `myBucket-${C.vars.myVar}`.

awsAuthenticationMethod: # [string] Authentication method - AWS authentication
method

-------------- if awsAuthenticationMethod is manual ---------------

awsApiKey: # [string] Access key - Access key

--

-------------- if awsAuthenticationMethod is secret ---------------

awsSecret: # [string] Secret key pair - Select (or create) a stored secret that
references your access key and secret key.

--

awsSecretKey: # [string] Secret key - Secret key
region: # [string] Region - Region where the MinIO service/cluster is located
stagePath: # [string] [required] Staging location - Filesystem location in which

to buffer files, before compressing and moving to final destination. Use performant
stable storage.

addIdToStagePath: # [boolean] Add output ID - Append output's ID to staging
location.

removeEmptyDirs: # [boolean] Remove staging dirs - Remove empty staging
directories after moving files.

-------------- if removeEmptyDirs is true ---------------

emptyDirCleanupSec: # [number] Staging cleanup period - How often (secs) to
clean-up empty directories when 'Remove Staging Dirs' is enabled.

--

Page 1355 of 1835

destPath: # [string] [required] Key prefix - Root directory to prepend to path
before uploading. Enter a constant, or a JS expression enclosed in quotes or
backticks.

signatureVersion: # [string] Signature version - Signature version to use for
signing MinIO requests.

objectACL: # [string] Object ACL - Object ACL to assign to uploaded objects.
storageClass: # [string] Storage class - Storage class to select for uploaded

objects.
serverSideEncryption: # [string] Server-side encryption - Server-side encryption

for uploaded objects.
reuseConnections: # [boolean] Reuse connections - Whether to reuse connections

between requests, which can improve performance.
rejectUnauthorized: # [boolean] Reject unauthorized certificates - Whether to

reject certificates that cannot be verified against a valid CA (e.g., self-signed
certificates).

partitionExpr: # [string] Partitioning expression - JS expression defining how
files are partitioned and organized. Default is date-based. If blank, Stream will
fall back to the event's __partition field value â� if present â� otherwise to
each location's root directory.

format: # [string] Data format - Format of the output data.

-------------- if format is json ---------------

compress: # [string] Compress - Choose data compression format to apply before
moving files to final destination.

--

-------------- if format is parquet ---------------

parquetSchema: # [string] Parquet schema - Select a Parquet schema. New schemas
can be uploaded under Processing > Knowledge > Parquet Schemas

parquetRowGroupSize: # [string] Row group size - Ideal memory size for row group
segments. E.g., 128MB or 1GB. Affects memory use when writing. Imposes a target, not
a strict limit; row groups final size may be larger or smaller.

parquetPageSize: # [string] Page size - Ideal memory size for page segments.
E.g., 1MB or 128MB. Generally, lower values improve reading speed, while higher
values improve compression. Imposes a target, not a strict limit; pages final size
may be larger or smaller.

spacer: # [null]
parquetVersion: # [string] Parquet version - Determines which data types are

supported and how they are represented.
parquetDataPageVersion: # [string] Data page version - Serialization format of

data pages. Note that not all reader implemtations support Data page V2.
shouldLogInvalidRows: # [boolean] Log invalid rows - Output up to 20 unique rows

that were skipped due to data format mismatch. Must have Logging set to Debug to see
output.

--

baseFileName: # [string] File name prefix expression - JavaScript expression to
define the output filename prefix (can be constant).

fileNameSuffix: # [string] File name suffix expression - JavaScript expression
to define the output filename suffix (can be constant). The `__format` variable
refers to the value of the `Data format` field (`json` or `raw`). The
`__compression` field refers to the kind of compression being used (`none` or
`gzip`)

maxFileSizeMB: # [number] Max file size (MB) - Maximum uncompressed output file

Page 1356 of 1835

size. Files of this size will be closed and moved to final output location.
maxFileOpenTimeSec: # [number] Max file open time (Sec) - Maximum amount of time

to write to a file. Files open for longer than this will be closed and moved to
final output location.

maxFileIdleTimeSec: # [number] Max file idle time (Sec) - Maximum amount of time
to keep inactive files open. Files open for longer than this will be closed and
moved to final output location.

maxOpenFiles: # [number] Max open files - Maximum number of files to keep open
concurrently. When over, the oldest open files will be closed and moved to final
output location.

onBackpressure: # [string] Backpressure behavior - Whether to block or drop
events when all receivers are exerting backpressure.

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
statsd_output: # [object]
type: # [string] Output Type
protocol: # [string] Destination Protocol - Protocol to use when communicating

with the destination.

-------------- if protocol is tcp ---------------

throttleRatePerSec: # [string] Throttling - Rate (in bytes per second) to
throttle while writing to an output. Also takes values with multiple-byte units,
such as KB, MB, GB, etc. (E.g., 42 MB.) Default value of 0 specifies no throttling.

connectionTimeout: # [number] Connection Timeout - Amount of time (milliseconds)
to wait for the connection to establish before retrying

writeTimeout: # [number] Write Timeout - Amount of time (milliseconds) to wait
for a write to complete before assuming connection is dead

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

--

host: # [string] [required] Host - The hostname of the destination.
port: # [number] [required] Port - Destination port.
mtu: # [number] Max record Size (Bytes) - Used when Protocol is UDP, to specify

the maximum size of packets sent to the destination. Also known as the MTU for the
network path to the destination system.

flushPeriodSec: # [number] Flush period (sec) - Used when Protocol is TCP, to
specify how often buffers should be flushed resulting in records sent to the
destination.

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
statsd_ext_output: # [object]
type: # [string] Output Type
protocol: # [string] Destination Protocol - Protocol to use when communicating

Page 1357 of 1835

with the destination.

-------------- if protocol is tcp ---------------

throttleRatePerSec: # [string] Throttling - Rate (in bytes per second) to
throttle while writing to an output. Also takes values with multiple-byte units,
such as KB, MB, GB, etc. (E.g., 42 MB.) Default value of 0 specifies no throttling.

connectionTimeout: # [number] Connection Timeout - Amount of time (milliseconds)
to wait for the connection to establish before retrying

writeTimeout: # [number] Write Timeout - Amount of time (milliseconds) to wait
for a write to complete before assuming connection is dead

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

--

host: # [string] [required] Host - The hostname of the destination.
port: # [number] [required] Port - Destination port.
mtu: # [number] Max record Size (Bytes) - Used when Protocol is UDP, to specify

the maximum size of packets sent to the destination. Also known as the MTU for the
network path to the destination system.

flushPeriodSec: # [number] Flush period (sec) - Used when Protocol is TCP, to
specify how often buffers should be flushed resulting in records sent to the
destination.

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
graphite_output: # [object]
type: # [string] Output Type
protocol: # [string] Destination Protocol - Protocol to use when communicating

with the destination.

-------------- if protocol is tcp ---------------

throttleRatePerSec: # [string] Throttling - Rate (in bytes per second) to
throttle while writing to an output. Also takes values with multiple-byte units,
such as KB, MB, GB, etc. (E.g., 42 MB.) Default value of 0 specifies no throttling.

connectionTimeout: # [number] Connection Timeout - Amount of time (milliseconds)
to wait for the connection to establish before retrying

writeTimeout: # [number] Write Timeout - Amount of time (milliseconds) to wait
for a write to complete before assuming connection is dead

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

--

host: # [string] [required] Host - The hostname of the destination.
port: # [number] [required] Port - Destination port.
mtu: # [number] Max record Size (Bytes) - Used when Protocol is UDP, to specify

the maximum size of packets sent to the destination. Also known as the MTU for the
network path to the destination system.

flushPeriodSec: # [number] Flush period (sec) - Used when Protocol is TCP, to
specify how often buffers should be flushed resulting in records sent to the
destination.

Page 1358 of 1835

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
router_output: # [object]
type: # [string] Output Type
rules: # [array] Rules - Event routing rules
- filter: # [string] Filter Expression - JavaScript expression to select

events to send to output
output: # [string] Output - Output to send matching events to
description: # [string] Description - Description of this rule's purpose
final: # [boolean] Final - Flag to control whether to stop the event from

being checked against other rules
pipeline: # [string] Pipeline - Pipeline to process data before sending out to

this output.
systemFields: # [array of strings] System fields - Set of fields to

automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
sqs_output: # [object]
type: # [string] Output Type
queueName: # [string] Queue Name - The name, URL, or ARN of the SQS queue to

send events to. When a non-AWS URL is specified, format must be:
'{url}/myQueueName'. E.g., 'https://host:port/myQueueName'. Must be a JavaScript
expression (which can evaluate to a constant value), enclosed in quotes or
backticks. Can be evaluated only at init time. E.g., referencing a Global Variable:
`https://host:port/myQueue-${C.vars.myVar}`.

queueType: # [string] [required] Queue Type - The queue type used (or created).
Defaults to Standard.

awsAccountId: # [string] AWS Account ID - SQS queue owner's AWS account ID.
Leave empty if SQS queue is in same AWS account.

messageGroupId: # [string] Message Group ID - This parameter applies only to
FIFO queues. The tag that specifies that a message belongs to a specific message
group. Messages that belong to the same message group are processed in a FIFO
manner. Use event field __messageGroupId to override this value.

createQueue: # [boolean] Create Queue - Create queue if it does not exist.
awsAuthenticationMethod: # [string] Authentication method - AWS authentication

method. Choose Auto to use IAM roles.

-------------- if awsAuthenticationMethod is manual ---------------

awsApiKey: # [string] Access key - Access key

--

-------------- if awsAuthenticationMethod is secret ---------------

awsSecret: # [string] Secret key pair - Select (or create) a stored secret that
references your access key and secret key.

--

Page 1359 of 1835

awsSecretKey: # [string] Secret key - Secret key
region: # [string] Region - AWS Region where the SQS queue is located. Required,

unless the Queue entry is a URL or ARN that includes a Region.
endpoint: # [string] Endpoint - SQS service endpoint. If empty, defaults to AWS'

Region-specific endpoint. Otherwise, it must point to SQS-compatible endpoint.
signatureVersion: # [string] Signature version - Signature version to use for

signing SQS requests.
reuseConnections: # [boolean] Reuse connections - Whether to reuse connections

between requests, which can improve performance.
rejectUnauthorized: # [boolean] Reject unauthorized certificates - Whether to

reject certificates that cannot be verified against a valid CA (e.g., self-signed
certificates).

enableAssumeRole: # [boolean] Enable for SQS - Use Assume Role credentials to
access SQS

assumeRoleArn: # [string] AssumeRole ARN - Amazon Resource Name (ARN) of the
role to assume

assumeRoleExternalId: # [string] External ID - External ID to use when assuming
role

maxQueueSize: # [number] Max queue size - Maximum number of queued batches
before blocking.

maxRecordSizeKB: # [number] Max record size (KB) - Maximum size (KB) of batches
to send. Per the SQS spec, the max allowed value is 256 KB.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max
record size.

maxInProgress: # [number] Max concurrent requests - The maximum number of in-
progress API requests before backpressure is applied.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
snmp_output: # [object]

Page 1360 of 1835

type: # [string] Output Type
hosts: # [array] SNMP Trap Destinations - One or more SNMP destinations to

forward traps to
- host: # [string] Address - Destination host
port: # [number] Port - Destination port, default is 162

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
sumo_logic_output: # [object]
type: # [string] Output Type
url: # [string] API URL - Sumo Logic HTTP collector URL to which events should

be sent.
customSource: # [string] Custom source name - Optionally, override the source

name configured on the SumoÂ Logic HTTP collector. This can also be overridden at
the event level with the __sourceName field.

customCategory: # [string] Custom source category - Optionally, override the
source category configured on the SumoÂ Logic HTTP collector. This can also be
overridden at the event level with the __sourceCategory field.

concurrency: # [number] Request concurrency - Maximum number of ongoing requests
before blocking.

maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the
request body.

maxPayloadEvents: # [number] Max events per request - Max number of events to
include in the request body. Default is 0 (unlimited).

compress: # [boolean] Compress - Whether to compress the payload body before
sending.

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to Yes.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the

Page 1361 of 1835

fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.
pqPath: # [string] Queue file path - The location for the persistent queue

files. To this field's value, the system will append: /<worker-id>/<output-id>.
pqCompress: # [string] Compression - Codec to use to compress the persisted

data.
pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop

events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
datadog_output: # [object]
type: # [string] Output Type
contentType: # [string] Send logs as - The content type to use when sending

logs.
message: # [string] Message field - Name of the event field that contains the

message to send. If not specified, Stream sends a JSON representation of the whole
event.

source: # [string] Source - Name of the source to send with logs. When you send
logs as JSON objects, the event's 'source' field (if set) will override this value.

host: # [string] Host - Name of the host to send with logs. When you send logs
as JSON objects, the event's 'host' field (if set) will override this value.

service: # [string] Service - Name of the service to send with logs. When you
send logs as JSON objects, the event's '__service' field (if set) will override this
value.

tags: # [array of strings] Datadog tags - List of tags to send with logs (e.g.,
'env:prod', 'env_staging:east').

allowApiKeyFromEvents: # [boolean] Allow API key from events - If enabled, the
API key can be set from the event's '__agent_api_key' field.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.

severity: # [string] Severity - Default value for message severity. When you
send logs as JSON objects, the event's '__severity' field (if set) will override
this value.

site: # [string] Datadog site
concurrency: # [number] Request concurrency - Maximum number of ongoing requests

before blocking.
maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the

request body.
maxPayloadEvents: # [number] Max events per request - Max number of events to

include in the request body. Default is 0 (unlimited).
compress: # [boolean] Compress - Whether to compress the payload body before

sending.
rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are

not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to Yes.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.

Page 1362 of 1835

Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

authType: # [string] Authentication method - Enter API key directly, or select a
stored secret

apiKey: # [string] API key - Organization's API key in Datadog

-------------- if authType is manual ---------------

--

textSecret: # [string] API key (text secret) - Select (or create) a stored text
secret

-------------- if authType is secret ---------------

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.
grafana_cloud_output: # [object]

Page 1363 of 1835

type: # [string] Output Type
lokiUrl: # [string] Loki URL - The endpoint to send logs to, e.g.: https://logs-

prod-us-central1.grafana.net
prometheusUrl: # [string] [required] Prometheus URL - The remote_write endpoint

to send Prometheus metrics to, e.g.: https://prometheus-blocks-prod-us-
central1.grafana.net/api/prom/push

message: # [string] Logs message field - Name of the event field that contains
the message to send. If not specified, Stream sends a JSON representation of the
whole event.

messageFormat: # [string] Message Format - Which format to use when sending logs
to Loki (Protobuf or JSON). Defaults to Protobuf.

-------------- if messageFormat is json ---------------

compress: # [boolean] Compress - Whether to compress the payload body before
sending. Applies only to Loki's JSON payloads, as both Prometheus' and Loki's
Protobuf variant are snappy-compressed by default.

--

labels: # [array] Logs labels - List of labels to send with logs. Labels define
Loki streams, so use static labels to avoid proliferating label value combinations
and streams. Can be merged and/or overridden by the event's __labels field (e.g.:
'__labels: {host: "cribl.io", level: "error"}').

- name: # [string] Name - Name of the label.
value: # [string] Value - Value of the label.

metricRenameExpr: # [string] Metrics renaming expression - A JS expression that
can be used to rename metrics. E.g.: name.replace(/\./g, '_') will replace all '.'
characters in a metric's name with the supported '_' character. Use the 'name'
global variable to access the metric's name. You can access event fields' values
via __e.<fieldName>.

prometheusAuth: # [object]
authType: # [string] Authentication Type - The authentication method to use

for the HTTP requests

-------------- if authType is token ---------------

token: # [string] Auth token - Bearer token to include in the authorization
header. In Grafana Cloud, this is generally built by concatenating the username and
the API key, separated by a colon. E.g.: <your-username>:<your-api-key>.

--

-------------- if authType is textSecret ---------------

textSecret: # [string] Auth token (text secret) - Select (or create) a stored
text secret

--

-------------- if authType is basic ---------------

username: # [string] Username - Username for authentication
password: # [string] Password - Password (a.k.a API key in Grafana Cloud

domain) for authentication

--

Page 1364 of 1835

-------------- if authType is credentialsSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a secret
that references your credentials

--

lokiAuth: # [object]
authType: # [string] Authentication Type - The authentication method to use

for the HTTP requests

-------------- if authType is token ---------------

token: # [string] Auth token - Bearer token to include in the authorization
header. In Grafana Cloud, this is generally built by concatenating the username and
the API key, separated by a colon. E.g.: <your-username>:<your-api-key>.

--

-------------- if authType is textSecret ---------------

textSecret: # [string] Auth token (text secret) - Select (or create) a stored
text secret

--

-------------- if authType is basic ---------------

username: # [string] Username - Username for authentication
password: # [string] Password - Password (a.k.a API key in Grafana Cloud

domain) for authentication

--

-------------- if authType is credentialsSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a secret
that references your credentials

--

concurrency: # [number] Request concurrency - Maximum number of ongoing requests
before blocking. Warning: Setting this value > 1 can cause Loki and Prometheus to
complain about entries being delivered out of order.

maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the
request body. Warning: Setting this too low can increase the number of ongoing
requests (depending on the value of 'Request concurrency'); this can cause Loki and
Prometheus to complain about entries being delivered out of order.

maxPayloadEvents: # [number] Max events per request - Maximum number of events
to include in the request body. Default is 0 (unlimited). Warning: Setting this too
low can increase the number of ongoing requests (depending on the value of 'Request
concurrency'); this can cause Loki and Prometheus to complain about entries being
delivered out of order.

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to Yes.

Page 1365 of 1835

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Maximum
time between requests. Small values can reduce the payload size below the configured
'Max record size' and 'Max events per request'. Warning: Setting this too low can
increase the number of ongoing requests (depending on the value of 'Request
concurrency'); this can cause Loki and Prometheus to complain about entries being
delivered out of order.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
loki_output: # [object]
type: # [string] Output Type
url: # [string] Loki URL - The endpoint to send logs to.
message: # [string] Logs message field - Name of the event field that contains

the message to send. If not specified, Stream sends a JSON representation of the
whole event.

messageFormat: # [string] Message Format - Which format to use when sending logs
to Loki (Protobuf or JSON). Defaults to Protobuf.

Page 1366 of 1835

-------------- if messageFormat is json ---------------

compress: # [boolean] Compress - Whether to compress the payload body before
sending.

--

labels: # [array] Logs labels - List of labels to send with logs. Labels define
Loki streams, so use static labels to avoid proliferating label value combinations
and streams. Can be merged and/or overridden by the event's __labels field (e.g.:
'__labels: {host: "cribl.io", level: "error"}').

- name: # [string] Name - Name of the label.
value: # [string] Value - Value of the label.

authType: # [string] Authentication Type - The authentication method to use for
the HTTP requests

-------------- if authType is token ---------------

token: # [string] Auth token - Bearer token to include in the authorization
header. In Grafana Cloud, this is generally built by concatenating the username and
the API key, separated by a colon. E.g.: <your-username>:<your-api-key>.

--

-------------- if authType is textSecret ---------------

textSecret: # [string] Auth token (text secret) - Select (or create) a stored
text secret

--

-------------- if authType is basic ---------------

username: # [string] Username - Username for authentication
password: # [string] Password - Password (a.k.a API key in Grafana Cloud domain)

for authentication

--

-------------- if authType is credentialsSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a secret
that references your credentials

--

concurrency: # [number] Request concurrency - Maximum number of ongoing requests
before blocking. Warning: Setting this value > 1 can cause Loki to complain about
entries being delivered out of order.

maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the
request body. Warning: Setting this too low can increase the number of ongoing
requests (depending on the value of 'Request concurrency'); this can cause Loki to
complain about entries being delivered out of order.

maxPayloadEvents: # [number] Max events per request - Maximum number of events
to include in the request body. Defaults to 0 (unlimited). Warning: Setting this too
low can increase the number of ongoing requests (depending on the value of 'Request
concurrency'); this can cause Loki to complain about entries being delivered out of

Page 1367 of 1835

order.
rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are

not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Maximum
time between requests. Small values can reduce the payload size below the configured
'Max record size' and 'Max events per request'. Warning: Setting this too low can
increase the number of ongoing requests (depending on the value of 'Request
concurrency'); this can cause Loki to complain about entries being delivered out of
order.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
prometheus_output: # [object]
type: # [string] Output Type
url: # [string] Remote Write URL - The endpoint to send metrics to.
metricRenameExpr: # [string] Metric renaming expression - A JS expression that

can be used to rename metrics. E.g.: name.replace(/\./g, '_') will replace all '.'

Page 1368 of 1835

characters in a metric's name with the supported '_' character. Use the 'name'
global variable to access the metric's name. You can access event fields' values
via __e.<fieldName>.

sendMetadata: # [boolean] Send metadata - Whether to generate and send metadata
(`type` and `metricFamilyName`) requests.

-------------- if sendMetadata is true ---------------

metricsFlushPeriodSec: # [number] Metadata flush period (sec) - How frequently
metrics metadata is sent out. Value cannot be smaller than the base Flush period
(sec) set above.

--

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

concurrency: # [number] Request concurrency - Maximum number of ongoing requests
before blocking.

maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the
request body.

maxPayloadEvents: # [number] Max events per request - Max number of events to
include in the request body. Default is 0 (unlimited).

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

Page 1369 of 1835

pqControls: # [object]

--

authType: # [string] Authentication type - Remote Write authentication type

-------------- if authType is basic ---------------

username: # [string] Username - Username for Basic authentication
password: # [string] Password - Password for Basic authentication

--

-------------- if authType is token ---------------

token: # [string] Token - Bearer token to include in the authorization header

--

-------------- if authType is credentialsSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a secret
that references your credentials

--

-------------- if authType is textSecret ---------------

textSecret: # [string] Token (text secret) - Select (or create) a stored text
secret

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
ring_output: # [object]
type: # [string] Output Type
format: # [string] Data format - Format of the output data.
partitionExpr: # [string] Partitioning expression - JS expression to define how

files are partitioned and organized. If left blank, Cribl Stream will fallback on
event.__partition.

maxDataSize: # [string] Max data size - Maximum disk space allowed to be
consumed (e.g., 420MB or 4GB). Once reached, older data will be deleted.

maxDataTime: # [string] Max data age - Maximum amount of time to retain data
(e.g., 2h or 4d). Once reached, older data will be deleted.

compress: # [string] Compression - Select data compression format. Optional.
destPath: # [string] Path location - Path to use to write metrics. Defaults to

$CRIBL_HOME/state/<id>`
onBackpressure: # [string] Backpressure behavior - Whether to block or drop

events when all receivers are exerting backpressure.
streamtags: # [array of strings] Tags - Add tags for filtering and grouping in

Stream.
pipeline: # [string] Pipeline - Pipeline to process data before sending out to

Page 1370 of 1835

this output.
systemFields: # [array of strings] System fields - Set of fields to

automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.
open_telemetry_output: # [object]
type: # [string] Output Type
endpoint: # [string] Endpoint - The endpoint to send OTEL events to. It can be

any valid URL or an IP address (both IPv4 and IPv6 are supported). If the port is
not specified, it will default to 4317, unless the endpoint is an HTTPS-based URL or
TLS is enabled. In such cases, it will default to 443.

authType: # [string] Authentication type - OpenTelemetry authentication type

-------------- if authType is basic ---------------

username: # [string] Username - Username for Basic authentication
password: # [string] Password - Password for Basic authentication

--

-------------- if authType is token ---------------

token: # [string] Token - Bearer token to include in the authorization header

--

-------------- if authType is credentialsSecret ---------------

credentialsSecret: # [string] Credentials secret - Select (or create) a secret
that references your credentials

--

-------------- if authType is textSecret ---------------

textSecret: # [string] Token (text secret) - Select (or create) a stored text
secret

--

tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

privKeyPath: # [string] Private key path (mutual auth) - Path on client in
which to find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in which
to find certificates to use. PEM format. Can reference $ENV_VARS.

Page 1371 of 1835

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
minVersion: # [string] Minimum TLS version - Minimum TLS version to use when

connecting
maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when

connecting

--

metadata: # [array] Metadata - Extra information to send with each gRPC request
in the form of a list of key-value pairs. Value supports JavaScript expressions that
are evaluated just once, when the destination gets started. In case you need to pass
credentials as metadata, it's encouraged to use 'C.Secret'.

- key: # [string] Key - The key of the metadata.
value: # [string] Value - The value of the metadata.

concurrency: # [number] Request concurrency - Maximum number of ongoing requests
before blocking.

maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the
request body.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

connectionTimeout: # [number] Connection Timeout - Amount of time (milliseconds)
to wait for the connection to establish before retrying

keepAliveTime: # [number] Keep Alive Time (seconds) - How often the sender
should ping the peer to keep the connection alive.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a

Page 1372 of 1835

specified Git branch. If empty, will be enabled everywhere.
streamtags: # [array of strings] Tags - Add tags for filtering and grouping in

Stream.
dataset_output: # [object]
type: # [string] Output Type
messageField: # [string] Message field - Name of the event field that contains

the message or attributes to send. If not specified, all of the event's non-internal
fields will be sent as attributes.

excludeFields: # [array of strings] Exclude fields - Fields to exclude from the
event if the Message field is either unspecified or refers to an object. Ignored if
the Message field is a string. If empty, we send all non-internal fields.

serverHostField: # [string] Server/host field - Name of the event field that
contains the `serverHost` identifier. If not specified, defaults to
`cribl_<outputId>`.

timestampField: # [string] Timestamp field - Name of the event field that
contains the timestamp. If not specified, defaults to `ts`, `_time`, or
`Date.now()`, in that order.

defaultSeverity: # [string] Severity - Default value for event severity. If the
`sev` or `__severity` fields are set on an event, the first one matching will
override this value.

site: # [string] DataSet site - DataSet site to which events should be sent
customUrl: # [string]
concurrency: # [number] Request concurrency - Maximum number of ongoing requests

before blocking.
maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the

request body.
maxPayloadEvents: # [number] Max events per request - Max number of events to

include in the request body. Default is 0 (unlimited).
compress: # [boolean] Compress - Whether to compress the payload body before

sending.
rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are

not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to Yes.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the

Page 1373 of 1835

fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.
pqPath: # [string] Queue file path - The location for the persistent queue

files. To this field's value, the system will append: /<worker-id>/<output-id>.
pqCompress: # [string] Compression - Codec to use to compress the persisted

data.
pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop

events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

authType: # [string] Authentication method - Enter API key directly, or select a
stored secret

apiKey: # [string] API key - A 'Log Write Access' API key for the DataSet
account

-------------- if authType is manual ---------------

--

textSecret: # [string] API key (text secret) - Select (or create) a stored text
secret

-------------- if authType is secret ---------------

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.
logstream_output: # [object]
type: # [string] Output Type
loadBalanced: # [boolean] Load balancing - Use load-balanced destinations

-------------- if loadBalanced is false ---------------

host: # [string] Address - The hostname of the receiver
port: # [number] Port - The port to connect to on the provided host

--

-------------- if loadBalanced is true ---------------

excludeSelf: # [boolean] Exclude current host IPs - Exclude all IPs of the
current host from the list of any resolved hostnames.

hosts: # [array] Destinations - Set of hosts to load-balance data to.
- host: # [string] Address - The hostname of the receiver.
port: # [number] Port - The port to connect to on the provided host.
tls: # [string] TLS - Whether to inherit TLS configs from group setting or

disable TLS.
servername: # [string] TLS Servername - Servername to use if establishing a

Page 1374 of 1835

TLS connection. If not specified, defaults to connection host (iff not an IP);
otherwise, to the global TLS settings.

weight: # [number] Load Weight - The weight to use for load-balancing
purposes.

dnsResolvePeriodSec: # [number] DNS resolution period (seconds) - Re-resolve any
hostnames every this many seconds and pick up destinations from A records.

loadBalanceStatsPeriodSec: # [number] Load balance stats period (seconds) - How
far back in time to keep traffic stats for load balancing purposes.

maxConcurrentSenders: # [number] Max connections - Maximum number of concurrent
connections (per worker process). A random set of IPs will be picked on every DNS
resolution period. Use 0 for unlimited.

--

compression: # [string] Compression - Codec to use to compress the data before
sending

throttleRatePerSec: # [string] Throttling - Rate (in bytes per second) to
throttle while writing to an output. Also takes values with multiple-byte units,
such as KB, MB, GB, etc. (E.g., 42 MB.) Default value of 0 specifies no throttling.

tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

servername: # [string] Server name (SNI) - Server name for the SNI (Server
Name Indication) TLS extension. It must be a host name, and not an IP address.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

privKeyPath: # [string] Private key path (mutual auth) - Path on client in
which to find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in which
to find certificates to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
minVersion: # [string] Minimum TLS version - Minimum TLS version to use when

connecting
maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when

connecting

--

connectionTimeout: # [number] Connection Timeout - Amount of time (milliseconds)
to wait for the connection to establish before retrying

writeTimeout: # [number] Write Timeout - Amount of time (milliseconds) to wait
for a write to complete before assuming connection is dead

tokenTTLMinutes: # [number] Auth Token TTL minutes - The number of minutes
before the internally generated authentication token expires, valid values between 1
and 60

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the

Page 1375 of 1835

queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

authType: # [string] Authentication method - Enter a token directly, or provide
a secret referencing a token

authToken: # [string] Auth token - Optional authentication token to include as
part of the connection header

-------------- if authType is manual ---------------

--

textSecret: # [string] Auth token (text secret) - Select (or create) a stored
text secret

-------------- if authType is secret ---------------

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
cribl_tcp_output: # [object]
type: # [string] Output Type
loadBalanced: # [boolean] Load balancing - Use load-balanced destinations

-------------- if loadBalanced is false ---------------

host: # [string] Address - The hostname of the receiver
port: # [number] Port - The port to connect to on the provided host

--

-------------- if loadBalanced is true ---------------

excludeSelf: # [boolean] Exclude current host IPs - Exclude all IPs of the
current host from the list of any resolved hostnames.

hosts: # [array] Destinations - Set of hosts to load-balance data to.
- host: # [string] Address - The hostname of the receiver.
port: # [number] Port - The port to connect to on the provided host.

Page 1376 of 1835

tls: # [string] TLS - Whether to inherit TLS configs from group setting or
disable TLS.

servername: # [string] TLS Servername - Servername to use if establishing a
TLS connection. If not specified, defaults to connection host (iff not an IP);
otherwise, to the global TLS settings.

weight: # [number] Load Weight - The weight to use for load-balancing
purposes.

dnsResolvePeriodSec: # [number] DNS resolution period (seconds) - Re-resolve any
hostnames every this many seconds and pick up destinations from A records.

loadBalanceStatsPeriodSec: # [number] Load balance stats period (seconds) - How
far back in time to keep traffic stats for load balancing purposes.

maxConcurrentSenders: # [number] Max connections - Maximum number of concurrent
connections (per worker process). A random set of IPs will be picked on every DNS
resolution period. Use 0 for unlimited.

--

compression: # [string] Compression - Codec to use to compress the data before
sending

throttleRatePerSec: # [string] Throttling - Rate (in bytes per second) to
throttle while writing to an output. Also takes values with multiple-byte units,
such as KB, MB, GB, etc. (E.g., 42 MB.) Default value of 0 specifies no throttling.

tls: # [object] TLS settings (client side)
disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

servername: # [string] Server name (SNI) - Server name for the SNI (Server
Name Indication) TLS extension. It must be a host name, and not an IP address.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

privKeyPath: # [string] Private key path (mutual auth) - Path on client in
which to find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in which
to find certificates to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
minVersion: # [string] Minimum TLS version - Minimum TLS version to use when

connecting
maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when

connecting

--

connectionTimeout: # [number] Connection Timeout - Amount of time (milliseconds)
to wait for the connection to establish before retrying

writeTimeout: # [number] Write Timeout - Amount of time (milliseconds) to wait
for a write to complete before assuming connection is dead

tokenTTLMinutes: # [number] Auth Token TTL minutes - The number of minutes
before the internally generated authentication token expires, valid values between 1
and 60

excludeFields: # [array of strings] Exclude Fields - Fields to exclude from the
event. By default, all internal fields except `__output` are sent.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

Page 1377 of 1835

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.
cribl_http_output: # [object]
type: # [string] Output Type
loadBalanced: # [boolean] Load balancing - Use load-balanced destinations

-------------- if loadBalanced is false ---------------

url: # [string] Cribl endpoint - URL of a Cribl Worker to send events to, e.g.,
http://localhost:10200

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

--

-------------- if loadBalanced is true ---------------

excludeSelf: # [boolean] Exclude current host IPs - Exclude all IPs of the
current host from the list of any resolved hostnames.

urls: # [array] Cribl Worker Endpoints
- url: # [string] Cribl Endpoint - URL of a Cribl Worker to send events to,

e.g., http://localhost:10200
weight: # [number] Load Weight - The weight to use for load-balancing

purposes.
dnsResolvePeriodSec: # [number] DNS resolution period (seconds) - Re-resolve any

hostnames every this many seconds and pick up destinations from A records.
loadBalanceStatsPeriodSec: # [number] Load balance stats period (seconds) - How

far back in time to keep traffic stats for load balancing purposes.

--

tls: # [object] TLS settings (client side)

Page 1378 of 1835

disabled: # [boolean] Disabled

-------------- if disabled is false ---------------

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

servername: # [string] Server name (SNI) - Server name for the SNI (Server
Name Indication) TLS extension. It must be a host name, and not an IP address.

certificateName: # [string] Certificate name - The name of the predefined
certificate.

caPath: # [string] CA certificate path - Path on client in which to find CA
certificates to verify the server's cert. PEM format. Can reference $ENV_VARS.

privKeyPath: # [string] Private key path (mutual auth) - Path on client in
which to find the private key to use. PEM format. Can reference $ENV_VARS.

certPath: # [string] Certificate path (mutual auth) - Path on client in which
to find certificates to use. PEM format. Can reference $ENV_VARS.

passphrase: # [string] Passphrase - Passphrase to use to decrypt private key.
minVersion: # [string] Minimum TLS version - Minimum TLS version to use when

connecting
maxVersion: # [string] Maximum TLS version - Maximum TLS version to use when

connecting

--

tokenTTLMinutes: # [number] Auth Token TTL minutes - The number of minutes
before the internally generated authentication token expires, valid values between 1
and 60.

excludeFields: # [array of strings] Exclude fields - Fields to exclude from the
event. By default, all internal fields except `__output` are sent.

compression: # [string] Compression - Codec to use to compress the data before
sending.

concurrency: # [number] Request concurrency - Maximum number of ongoing requests
before blocking.

maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the
request body.

maxPayloadEvents: # [number] Max events per request - Max number of events to
include in the request body. Default is 0 (unlimited).

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to Yes.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

Page 1379 of 1835

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.
humio_hec_output: # [object]
type: # [string] Output Type
loadBalanced: # [boolean] Load balancing - Use load-balanced destinations

-------------- if loadBalanced is false ---------------

url: # [string] Humio HEC Endpoint - URL to a Humio HEC endpoint to send events
to, e.g., https://cloud.us.humio.com/api/v1/ingest/hec for JSON and
https://cloud.us.humio.com/api/v1/ingest/hec/raw for raw

useRoundRobinDns: # [boolean] Round-robin DNS - Enable to use round-robin DNS
lookup. When a DNS server returns multiple addresses, this will cause Stream to
cycle through them in the order returned.

--

-------------- if loadBalanced is true ---------------

excludeSelf: # [boolean] Exclude current host IPs - Exclude all IPs of the
current host from the list of any resolved hostnames.

urls: # [array] Humio HEC Endpoints
- url: # [string] HEC Endpoint - URL to a Humio HEC endpoint to send events

to, e.g., https://cloud.us.humio.com/api/v1/ingest/hec for JSON and
https://cloud.us.humio.com/api/v1/ingest/hec/raw for raw

weight: # [number] Load Weight - The weight to use for load-balancing
purposes.

dnsResolvePeriodSec: # [number] DNS resolution period (seconds) - Re-resolve any
hostnames every this many seconds and pick up destinations from A records.

loadBalanceStatsPeriodSec: # [number] Load balance stats period (seconds) - How
far back in time to keep traffic stats for load balancing purposes.

--

concurrency: # [number] Request concurrency - Maximum number of ongoing requests
before blocking.

Page 1380 of 1835

maxPayloadSizeKB: # [number] Max body size (KB) - Maximum size, in KB, of the
request body.

maxPayloadEvents: # [number] Max events per request - Max number of events to
include in the request body. Default is 0 (unlimited).

compress: # [boolean] Compress - Whether to compress the payload body before
sending.

rejectUnauthorized: # [boolean] Validate server certs - Reject certs that are
not authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to Yes.

timeoutSec: # [number] Request timeout - Amount of time, in seconds, to wait for
a request to complete before aborting it.

flushPeriodSec: # [number] Flush period (sec) - Maximum time between requests.
Small values could cause the payload size to be smaller than the configured Max body
size.

extraHttpHeaders: # [array] Extra HTTP headers - Extra HTTP headers.
- name: # [string] Name - Field name
value: # [string] Value - Field value

failedRequestLoggingMode: # [string] Failed request logging mode - Determines
which data should be logged when a request fails. Defaults to None. All headers are
redacted by default, except those listed under `Safe Headers`.

safeHeaders: # [array of strings] Safe headers - List of headers that are safe
to log in plain text.

format: # [string] Request Format - Send data in JSON format to the
api/v1/ingest/hec endpoint , or raw 1-request-per-line to the api/v1/ingest/hec/raw
endpoint .

authType: # [string] Authentication method - Enter a token directly, or provide
a secret referencing a token

-------------- if authType is manual ---------------

token: # [string] HEC Auth token - Humio HEC authentication token

--

-------------- if authType is secret ---------------

textSecret: # [string] HEC Auth token (text secret) - Select (or create) a
stored text secret

--

onBackpressure: # [string] Backpressure behavior - Whether to block, drop, or
queue events when all receivers are exerting backpressure.

-------------- if onBackpressure is queue ---------------

pqMaxFileSize: # [string] Max file size - The maximum size to store in each
queue file before closing and optionally compressing (KB, MB, etc.).

pqMaxSize: # [string] Max queue size - The maximum amount of disk space the
queue is allowed to consume. Once reached, the system stops queueing and applies the
fallback Queue-full behavior. Enter a numeral with units of KB, MB, etc.

pqPath: # [string] Queue file path - The location for the persistent queue
files. To this field's value, the system will append: /<worker-id>/<output-id>.

pqCompress: # [string] Compression - Codec to use to compress the persisted
data.

pqOnBackpressure: # [string] Queue-full behavior - Whether to block or drop
events when the queue is exerting backpressure (full capacity or low disk). 'Block'
is the same behavior as non-PQ blocking. 'Drop new data' throws away incoming data,
while leaving the contents of the PQ unchanged.

Page 1381 of 1835

;

pqControls: # [object]

--

pipeline: # [string] Pipeline - Pipeline to process data before sending out to
this output.

systemFields: # [array of strings] System fields - Set of fields to
automatically add to events using this output. E.g.: cribl_pipe, c*. Wildcards
supported.

environment: # [string] Environment - Optionally, enable this config only on a
specified Git branch. If empty, will be enabled everywhere.

streamtags: # [array of strings] Tags - Add tags for filtering and grouping in
Stream.

Page 1382 of 1835

parsers.yml stores configuration data for the Knowledge > Parsers Library.

$CRIBL_HOME/default/cribl/parsers.yml

;

10.6.15. parsers.yml

parser_id: # [object]
lib: # [string] Library
description: # [string] Description - Brief description of this parser. Optional.
tags: # [string] Tags - One or more tags related to this parser. Optional.
type: # [string] Type - Parser/Formatter type to use.
fields: # [array of strings] List of Fields - Fields expected to be extracted, in

order. If not specified parser will auto-generate.

Page 1383 of 1835

policies.yml contains RBAC Policy definitions. Default example:

$CRIBL_HOME/default/cribl/policies.yml

10.6.16. policies.yml

Page 1384 of 1835

GroupFull:
args:
- groupName

template:
- PATCH /master/groups/${groupName}/deploy
- GroupEdit ${groupName}

GroupEdit:
args:
- groupName

template:
- '* /m/${groupName}'
- '* /m/${groupName}/*'
- GroupRead ${groupName}

GroupCollect:
args:
- groupName

template:
- POST /m/${groupName}/lib/jobs
- PATCH /m/${groupName}/lib/jobs/*
- POST /m/${groupName}/jobs
- PATCH /m/${groupName}/jobs/*
- GroupRead ${groupName}

GroupRead:
args:
- groupName

template:
- GET /m/${groupName}
- GET /m/${groupName}/*
- POST /m/${groupName}/preview
- POST /m/${groupName}/system/capture
- POST /m/${groupName}/lib/expression
- GET /master/groups/${groupName}
- GET /master/workers
- GET /master/workers/*
- '* /w/*'
- GET /master/groups
- GET /system/info
- GET /system/info/*
- GET /system/logs
- GET /system/logs/group/${groupName}/*
- GET /system/settings
- GET /system/settings/*
- GET /system/instance/distributed
- GET /system/instance/distributed/*
- GET /version
- GET /version/*
- GET /version/info
- GET /version/info/*
- GET /version/status
- GET /version/status/*
- GET /mappings
- GET /mappings/*
- GET /system/messages
- GET /system/message/*
- GET /ui/*
- POST /system/metrics/query
- GET /clui
- POST /system/capture

Page 1385 of 1835

;

Page 1386 of 1835

regexes.yml maintains a list of regexes. Cribl's Regex Library ships under default . Each regex is listed
according to the following pattern:

$CRIBL_HOME/default/cribl/regexes.yml

;

10.6.17. regexes.yml

egex_id: # [object]
lib: # [string] Library
description: # [string] Description - Brief description of this regex. Optional.
regex: # [string] Regex pattern - Regex pattern. Required.
sampleData: # [string] Sample data - Sample data for this regex. Optional.
tags: # [string] Tags - One or more tags related to this regex. Optional.

Page 1387 of 1835

roles.yml contains RBAC Role definitions. Default example:

$CRIBL_HOME/default/cribl/roles.yml

;

10.6.18. roles.yml

admin:
description: 'Members with admin role have permission to do anything and

everything in the system.'
policy:
- '* *'

reader_all:
description: 'Members with reader_all role get read-only access to all

Worker Groups/Fleets.'
policy:
- GroupRead *

collect_all:
description: 'Members of this group can run existing collection jobs of all

Worker Groups/Fleets'
policy:
- GroupCollect *

editor_all:
description: 'Members with editor_all role get read/write access to all

Worker Groups/Fleets.'
policy:
- GroupEdit *

owner_all:
description: 'Members with owner_all role get read/write access as well as Deploy

permissions to all Worker Groups/Fleets.'
policy:
- GroupFull *

user:
description: 'The base user role allows users to see the system info along with

their own profile settings.'
policy:
- GET /system/info
- GET /system/info/*
- GET /system/users
- GET /system/instance/distributed
- GET /system/instance/distributed/*
- GET /clui
- PATCH /ui/*

Page 1388 of 1835

samples.yml contains metadata about about stored sample data files (size, number of events, date created,
name, etc.). Each sample is listed according to the following pattern:

$CRIBL_HOME/local/cribl/samples.yml

The corresponding sample files reside in $CRIBL_HOME/data/samples .

;

10.6.19. samples.yml

sample_id: # [object]
sampleName: # [string] File Name - Filename to save the sample as. Required.
pipelineId: # [string] Associate with Pipeline - Select a pipeline to associate

with sample with. Select GLOBAL if not sure. Deprecated.
description: # [string] Description - Brief description of this sample file.

Optional.
ttl: # [number] Expiration (hours) - Time to live for the sample, the TTL is reset

after each use of the sample. Leave empty to never expire.
tags: # [string] Tags - One or more tags related to this sample file. Optional.

Page 1389 of 1835

schemas.yml stores configuration data for the Knowledge > Schema Library.

$CRIBL_HOME/default/cribl/schemas.yml

;

10.6.20. schemas.yml

schema_id: # [object]
description: # [string] Description - Brief description of this schema. Optional.
schema: # [string] Schema - JSON schema matching standards of draft version 2019-

09.

Page 1390 of 1835

scripts.yml stores configuration data for scripts configured at global ⚙ Settings (lower le�) > Scripts:

$CRIBL_HOME/local/cribl/scripts.yml

;

10.6.21. scripts.yml

script_id: # [object]
command: # [string] Command - Command to execute for this script
description: # [string] Description - Brief description of this script. Optional.
args: # [array of strings] Arguments - Arguments to pass when executing this

script
env: # [object] Env Variables - Extra environment variables to set when executing

script

Page 1391 of 1835

vars.yml stores configuration data for the Knowledge > Global Variables Library.

$CRIBL_HOME/default/cribl/vars.yml

;

10.6.22. vars.yml

variable_id: # [object]
lib: # [string] Library
description: # [string] Description - Brief description of this variable.

Optional.
type: # [string] Type - Type of variable.
value: # [string] Value - Value of variable
tags: # [string] Tags - One or more tags related to this variable. Optional.

Page 1392 of 1835

11. TECHNIQUES & TIPS

In designing, supporting, and troubleshooting, complex Cribl Stream deployments and workflows, we've
found the following general principles helpful.

Separate your data volume by Worker Groups, or by Routes, or both. Common business reasons for sorting
by Groups include data isolation by business group, ensuring data privacy, and achieving cost savings
through geo-isolation. Another consideration is: Which type of separation will be the easiest to understand
and manage as your organization grows?

In Cribl Stream 3.5 and above, where Workers share the same Leader, the obvious choices for sending data
between those Workers are the Cribl HTTP Source and Destination pair, or the Cribl TCP Source and
Destination pair. Either option prevents double-counting of this internal data flow against your on-prem
license or Cribl.Cloud plan.

When sending between Cribl Stream Worker Groups and/or instances connected to di�erent Leaders, use
the TCP JSON Source and Destination pair. While Cribl Stream supports multiple Sources/Destinations for
sending and receiving, TCP JSON is ideal because it supports TLS, has solid compression, and is overall well-
formatted to maintain data's structure between sender and receiver.

11.1. Tips and Tricks

Every use case is di�erent. Don't hesitate to contact Cribl Support for help with solving your specific
needs.

Architecture and Deployment

Separate Data by Worker Groups, Routes, or Both?

Connecting Cribl Stream Groups/Instances with Same Leader: Cribl HTTP or
Cribl TCP

Connecting Stream Groups/Instances with Di�erent Leaders: TCP JSON

Input Side: Event Breakers and Timestamping

Page 1393 of 1835

Validate timestamping and event breaking before turning on a Source.

If a Source supports Event Breakers (e.g., AWS Sources), it is much more e�icient to perform JSON unroll in a
Breaker, versus in a Pipeline Function.

Design data paths to move through as few Routes as possible. This usually means we want to reduce volume
of events as early as possible. If most of the events being processed are sent to a Destination by the first
Route, this will spare all the other Routes and Pipelines wasted processing cycles and testing against whether
filter criteria are met.

As a mirror principle, clone events as late as possible in the Routes. This will minimize the number of
Functions acting on data, to the extent possible.

Create a catchall Route at the end of the list to explicitly route events that fail to match any Route filters.

Do not use the same Pipeline for both pre-processing and post-processing. This makes isolation and
troubleshooting extremely di�icult.

If you need to extract one or just a few fields, use the Regex Extract Function. If you need to extract all or most
of an event's fields, use the Parser Function.

Function groups might be helpful in organizing your Pipeline. These groups are abstractions, purely for visual
context, and do not a�ect the movement of data through Functions. Data will move down the listed

Routes

Avoid Route Creep

Prevent Function Creep

Leave No Data Behind

Pipelines and Functions Logic

Don't Overload Pipelines

Extract or Parse by Desired Yield

Use Function Groups for Legibility

Page 1394 of 1835

Functions, ignoring any grouping assignments.

Comment, comment, comment. There is a lot of contextual information which might become lost over time
as users continue to advance and add Routes and Pipelines to Cribl Stream. A good principle is to keep the
design decisions as simple and easy to understand as possible, and to document the assumptions around
each Route and Pipeline in comments as clearly as possible.

If there are fields with non-alphanumeric characters – e.g., @timestamp or user‐agent or
kubernetes.namespace_name – you can access them using __e['<field-name-here>'] . (Note the single
quotes.) For more details, see MDN's Property Accessors documentation. In any other place where such fields
are referenced – e.g., in an Eval Function's Field names – you should use a single-quoted literal, of the form:
'<field-name-here>' .

In any Source that supports adding Fields (Metadata), your Value expression can specify that fields in events
should override these fields' values. E.g., the following expression's L‑>R/OR logic specifies that if an inbound
event includes an index field, use that field's value; otherwise, fall back to the myIndex constant defined
here: `${__e['index'] || 'myIndex'}` .

Consider avoiding the use of _raw as a temporary location for data. Instead, split out explicitly separate
fields/variables.

Consider using a smaller maximum file size in Persistent Queues settings, for better bu�ering.

Although this might be obvious: Ship metrics out to a dedicated alerting/metrics engine (ELK, Grafana,
Splunk, etc.)

Use Comments to Preserve Legibility

Create Expressions Around Fields with Non-Alphanumeric Characters

Specify Fields' Precedence Order in Expressions

Break Up _raw

Optimize PQ Using File Size

Output Side

Troubleshooting

Page 1395 of 1835

Troubleshoot streams processing systems from right to le�. Start at the Destination, and check for block
status from the Destination back to the Source.

Don't run health checks on data ports too frequently, as this can lead to false-positives errors.

;

Page 1396 of 1835

11.2. Integrating with Other Services

The "better practices" in this guide all apply to Cribl Stream's Amazon S3-based Sources and Destinations.
Many also apply to other object stores, like Azure Blob Storage, MinIO, and Google Cloud Storage.

In this first section, we'll lay out four basic factual underpinnings:

How Cribl writes to object storage.

Writing to a Cribl Amazon S3 Destination.

Reading from Cribl's Amazon SQS Source.

Replaying from Amazon S3 buckets, via Cribl's S3 Collector.

Then, this guide will go on to detail 10 "better practices" (and a bonus one!) as we cover four broad topics:

Writing to object storage, generically.

Cardinality and partitioning expressions.

Amazon S3–specific optimization.

Better partitioning expressions.

Cribl does not write data directly to its object storage Destinations, which include Amazon S3; any solution
with an S3 API; and other object storage Destinations, like Azure Blob Storage, MinIO, and
Google Cloud Storage.

Data persists locally to a "staging location" on the Workers. The Worker Processes append new data to the
staging location based on partitioning expressions and configurations such as file size and max timeout
settings. Each Worker Process, governed by its own specific settings, creates and maintains its own set of
files.

11.2.1. Amazon S3 Better Practices

View the AWS S3 with Cribl Best Practices video presentation from Cribl Community O�ice Hours.

Foundations: Cribl Stream and Object Storage

How Cribl Writes to Object Storage

Page 1397 of 1835

Writing to object storage – example

When writing to our Amazon S3 Destination, or any object storage, there are two main things to consider:

File Expression: Cribl allows a maximum of 2000 open files per Worker Process per S3 Destination. On a
system with 14 Worker Processes, that translates to a maximum of 28,000 open files per S3 Destination.
On a system with 30 CPUs, that translates to 60,000 open files.

When a specific Worker Process hits the maximum open files, it closes the oldest open files, moves them
to the final output location, and creates new ones. If you have multiple object storage Destinations
configured in Cribl, ensure that the total maximum open files across all these Destinations is less than
your system's configured maximum open files.

The default maximum open file settings on many Linux systems are too low for Cribl Stream when
writing to an object storage Destination. You'll need to increase your system max open files and/or
process max open files settings, as explained below.

Partitioning Expression: To limit the number of files in each directory, partitioning expressions should
specify dates down to the hour or minute.

When reading data using Cribl Stream's Amazon SQS Source, a few settings can greatly speed up data
retrieval. These are:

Writing to a Cribl Amazon S3 Destination

Reading from Cribl's Amazon SQS Source

Page 1398 of 1835

General Settings > Queue, a.k.a. the filename filter.

Advanced Settings > Max messages.

Advanced Settings > Num receivers.

Even more importantly, data retrieval speed is also governed by Destination settings and Pipeline e�iciency.

When replaying from S3 via Cribl's S3 Collector, optimize your performance by adjusting the following:

Optional Settings > Path, a.k.a. the filter.

Pipeline e�iciency.

Destination settings.

Destination health.

The Path should specify the time down to the hour, or in some cases, down to the minute.

Also, consider the API limits for your object storage Destination. AWS sets a limit of 3,500 writes/second and
5,500 reads/second per S3 prefix. An S3 prefix is a path on Amazon S3, including bucket name and any
subdirectories up to but not including the object name. The S3 prefix always ends in (and includes) the slash
before the object name. In its simplest form, the S3 prefix is just BucketName/ .

AWS API limits apply to all attempted access to these prefixes, cumulatively. You probably won't hit the write
limits while putting the "better practices" in this guide into e�ect. However, populating too many files in any
one directory might trigger throttling when reading and performing replays.

When you deploy a Cribl Amazon S3 Compatible Stores Destination, start with a simple global
Partitioning expression and the default File name prefix expression.

This will work as long as cardinality remains below 2,000 during the max timeout period. Also, apply the
procedures to increase the system max open file settings, as described later in this guide.

Replaying from Amazon S3 Buckets

Some Cribl Destinations have File prefix expression and/or Partitioning expression settings. Do not
confuse these with the AWS prefix.

Writing to Object Storage, Generically

Better Practice 1: Mind the Partitioning Expression

Page 1399 of 1835

If cardinality exceeds 2,000, you can either:

Remove the less-important fields from the expression; or

Create di�erent partitioning expressions for di�erent event types, categories, etc.

On the Advanced Settings tab:

Match the Max open files to cardinality, without exceeding 2,000.

Toggle Remove staging dirs to Yes .

Set the Storage class to Intelligent Tiering .

Still in Advanced Settings, keep the default settings for:

Max file size (MB): 32 .

Max file open time (sec): 300 .

Max file idle time (sec): 30 .

As you gain deeper understanding of the data, consider the following options:

Create a set of di�erent S3 Destinations, each with its own Partitioning expression. They can all point
to the same S3 bucket.

If the numbers of open files becomes too large, discuss alternative architectures (e.g., creating
additional Worker Groups) with your Cribl Account team or Support.

Consider the workflow for writing to Cribl S3 Destinations:

Each Cribl Worker Process creates its own set of files in a staging directory based on
Partitioning expression and File name expression.

The maximum partitioning expression cardinality allowed is 2,000. This translates to a maximum of
2,000 open files per Worker Process per object storage Destination.

Each Destination writes files to its staging directory until the number of files exceeds the configured
maximum, or the Destination reaches any of the following limits: Max file size (MB), Max file idle time
(sec), or Max file open time (sec).

`${C.Time.strftime(_time ? _time : Date.now() / 1000, '%Y/%m/%d/%H')
/${index ? index : 'no_index'}
/${host ? host : 'no_host'}
/${sourcetype ? sourcetype : 'no_sourcetype'}

Better Practice 2: Optimize System Settings for Max Open Files

Page 1400 of 1835

Linux defaults for maximum open files tend to be too low for writing to Cribl S3 Destinations. Try updating
the Worker's Linux system settings to accommodate a larger quantity of open files. When setting the
maximum open files substantially higher than 65,536, you should track system health.

Cribl recommends setting the maximum open files based on the number of S3 Destinations you are planning,
and the number of Worker Processes on each Node. The table below provides some examples:

OF

S3 DESTINATIONS

IN CRIBL

MAX

CARDINALITY

PER DEST.

MAX OPEN

FILES IN CRIBL

DEST.

WORKER PROCESS ON

EACH WORKER NODE

MIN LINUX PER-

PROCESS OPEN FILE

LIMIT

MIN LINUX SYSTEM PLUS

CRIBL USER OPEN FILE

1 2,000 2,000 10 3,000 21,000

1 2,000 2,000 14 3,000 29,000

1 2,000 2,000 22 3,000 45,000

2 2,000 2,000 10 5,000 41,000

2 2,000 2,000 14 5,000 57,000

2 2,000 2,000 22 5,000 89,000

5 2,000 2,000 10 11,000 101,000

5 2,000 2,000 14 11,000 141,000

5 2,000 2,000 22 11,000 221,000

Here are basic instructions that cover many Linux distributions. (Check the documentation for your specific
Linux distribution and version for any variations required.)

Edit the first group of settings. You will be required to reboot.

When writing to an object store, more Worker Nodes with fewer CPUs is better than fewer Worker
Nodes with more CPUs (e.g., 5 Workers with 12 vCPUs is better than 2 systems with 32 vCPUs).

You should apply this principle to realize two benefits:

To maximize the number of open files.

To have more S3 Destinations with more precisely-focused partitioning expressions.

Better Practice 3: Update Max Open File Settings on Hosts

Page 1401 of 1835

A�er you reboot, verify the settings:

As we've seen, partitioning expressions and file expressions interact to determine cardinality. In this section,
we'll examine this interaction more closely and learn better practices based on what we find.

Partitioning expressions specify the directory structure that Cribl adds when writing to an object storage
Destination.

For example, the following partitioning expression extracts the year , month , day , hour , minute , index ,
host , sourcetype , server_ip , status_code , and Method , and populates them as the directory
structure.

A file expression prefix comes into play next. The default file expression is just a random file name. However,
an expression like this would create files that also include the hour and minute in each file name. This

sysctl -w fs.file-max=65536 (as root)

vi /etc/sysctl.conf (as root)
fs.file-max = 65536

vi /etc/security/limits.conf (as Cribl user)
* soft nproc 65536
* hard nproc 65536
* soft nofile 65536
* hard nofile 65536

sysctl -p
cat /proc/sys/fs/file-max
sysctl fs.file-max

Cardinality and Partitioning Expressions

Where Cardinality Begins

`${C.Time.strftime(_time ? _time : Date.now() / 1000, '%Y/%m/%d/%H')
/${index ? index : 'no_index'}
/${host ? host : 'no_host'}
/${sourcetype ? sourcetype : 'no_sourcetype'}
/${server_ip}
/${status_code}
/${Method}/`

Page 1402 of 1835

reflects the time the file was created, not the time of each event.

${C.Time.strftime(_time ? _time : Date.now() / 1000, '%H%M')}

Cardinality is the quantity of combinations of unique values, within a time period, for each parameter in the
expressions.

For example, a partitioning expression could specify the following:

Within an hour.

5 unique sourcetype values.

10 unique host values.

2 unique source values for each host.

For this example, we could calculate the maximum cardinality as (5*10*2)=100 .

It's important to also consider the timeframe this is calculated within. That cardinality might be 100 over a 1-
minute period, but might be 500 over a 5-minute period.

If we further add a file name prefix expression, this increases the cardinality. For example, let's add the
method and top-level URI as file name prefix parameters. If there are 3 possible methods, and 10 URIs, the
cardinality just went up from 100 to 100*3*10=3,000 .

Cardinality has the greatest impact on how you should configure an object storage Destination in Cribl. For
every combination of partitioning expression, file prefix expression, and Worker Process, there can be an
open file on the Worker Node's system.

A partitioning expression and file prefix expression should produce fewer than 2,000 potential combinations.
When a Worker Process exceeds the configured Max open files, this generates errors; all open files for that
Worker Process are simultaneously closed; and, new files will be created.

The Worker Process might experience some extra load while all files are processed. If this occurs infrequently,
that's generally okay. But if it happens several times per hour, you should consider how to improve the
combination of partitioning and file expressions.

As a starting point, consider these two strategies:

Together, the partitioning expression and the file expression must not produce a cardinality greater
than 2,000.

Calculating Cardinality

Page 1403 of 1835

1. Write to one S3 bucket, incorporating parameters common to each event.

For example, here's a partitioning expression that specifies year, month, day, hour, minute, index,
sourcetype, source, and host:

2. Dedicate di�erent S3 Destinations to di�erent event types. During replays, this makes searching specific
data faster. However, this benefit comes at the expense of needing a larger number of open files. Should
you pursue this option, test large numbers of open files on a test system in your environment. Such
testing is especially crucial in virtualized environments with shared disk, CPU, and memory resources.

The main factors to consider when selecting fields for a partitioning or filename prefix expression are:

Configure Time-based filtering: All partitioning expressions should include year , month , day , hour ,
and optionally, minute . This facilitates filtering during replays. It also limits the files in any one
directory, so that replays are not throttled when returning large volumes of files.

Identify Universal fields: Fields that users will typically search on during replays across all datasets.
Examples include sourcetype , host , source , category , and index .

Optionally, configure specific fields for di�erent datasets.

Examples include:

Web logs: server IP, method, status code.

Firewall logs: source zone, destination zone, accept/deny status.

Flow logs: protocol, accept/deny status.

Be careful when pursuing this option as the number of open files can grow exponentially with too many
multiple partition and file name prefix expressions.

Let's work through some examples of partitioning expressions, with hypothetical possible values for each
parameter, to see what cardinalities they produce.

Example 1

${C.Time.strftime(_time ?
_time:Date.now()/1000,'%Y/%m/%d/%H/%M')/${index}/${host}/${sourcetype}

Better Practice 4: Select Files for Partitioning and File Expressions

Analyzing Partitioning Expressions

Page 1404 of 1835

This one produces reasonable results.

Possible values:

sourcetype : 5.

host : 100.

AttackType : 5.

Potential cardinality: 5 x 100 x 5 = 2,500 .

Example 2

Here, too, cardinality is kept commendably low.

Possible values:

state : 2.

interface : 50.

dest_ip : 20.

Potential cardinality: 2 x 100 x 10 = 2,000 .

Example 3

This is a bad partitioning expression which produces out-of-control cardinality. Back to the drawing board!

Possible values:

state : 2.

interface : 100.

src_ip : 65,535.

`${C.Time.strftime(_time ? _time : Date.now(), '%Y/%m/%d/%H')}
/${sourcetype}/${host}/${AttackType}`

`${C.Time.strftime(_time ? _time : Date.now(),
'%Y/%m/%d/%H')}/${state}/${interface}/${dest_ip}`

`${C.Time.strftime(_time ? _time : Date.now(),
'%Y/%m/%d/%H')}/${state}/${interface}/${src_ip}`

Page 1405 of 1835

Potential cardinality: 2 x 100 x 65,535 = 13,107,000 .

For more examples like these, see Better Partitioning Expressions.

In the examples so far, we've assumed typical expected values for parameters. Another useful exercise is to
estimate the maximum possible values of each parameter, and multiply each value to obtain maximum
theoretical cardinality.

You should also investigate how cardinality changes depending on when and how long you measure it. To do
this, query/search your analytic tool to determine cardinality for di�erent durations over several days.

Run the searches over di�erent duration spans (e.g., 1 minute, 3 minutes, 5 minutes) to determine the best
timeout period. For example, your cardinality might be 2,000 over a 2-minute span, but 10,000 over a 5-
minute span. In this case, it is most certainly beneficial to set the maximum file timeout to 2 minutes.

Below are examples of Splunk searches over di�erent span periods, with maximum open file time set to 3
minutes. Change the fields to the ones you'd prefer to incorporate into a partition and/or file name prefix
expression, and try running them in your environment.

Here's an example using a "traditional" search method:

Here's an example using tstats :

The tstats search produces the results shown in the diagram below.

Cardinality mostly stays below 1,625.

There are some hourly peaks around 2,500. These spikes, which exceed the max allowed cardinality of
2,000, are infrequent.

All of this is generally acceptable.

Seeing How Cardinality Changes Over Time

earliest=-24h index=*
|bin _time span=3m
| stats dc(source) as dc by host, sourcetype _time
| stats sum(dc) by _time

| tstats dc(source) as dc where index=* earliest=-25h@h latest=-1h@h by _time, host,
sourcetype span=3m
| stats sum(dc) by _time

Page 1406 of 1835

cardinality Check Results

The system's ability to handle enough open files is a key factor that drives performance. This requires:

Setting Max open files high enough.

Ensuring that the staging directory on the Workers can handle simultaneous writing tens of thousands
of open files. The metric to use here is Input/Output Operations per Second (IOPS). A good starting point
is 2,000 IOPS.

Cribl recommends that you allocate a separate disk for the staging directory on Workers, especially when you
have configured multiple object storage Destinations. Follow these general, conservative guidelines:

Toggle Advanced Settings > Remove staging dirs to Yes . This means that any empty directory that
has not been written to for an hour, is deleted.

Disk size of 500 GB should be adequate, since the Workers need only enough disk capacity for a few
minutes' worth of data. 500 GB errs on the side of caution, allowing us to store as much as 4 hours of
data to disk. See the formula and examples below.

Because Cribl writes to the staging directory only when the object storage Destinations are healthy, disk
size does not usually become an issue. If the Worker encounters or triggers a backpressure situation, it
stops writing to the staging directory.

The staging directories are not intended for high availability, but rather to support creation of large-
enough files to write to object storage.

Better Practice 5: Size a Separate Fast(er) Disk for Staging
Location

Replay from a dedicated Worker Group. Do not compete for resources against production, real-time,
streaming resources to perform replays!

Determining Staging Directory Disk Size

Page 1407 of 1835

You can calculate an optimal size for your staging directory disk using the following formula:

Data Volume (GB/day or TB/day) you expect to ingest, times 1.25 metadata factor; divided by

1440 (minutes in a day) times Duration (hours) you want to store data on disk; divided by

Number of Workers writing to a staging directory.

The result will be disk size per Worker.

The figure below illustrates the formula.

Here are some examples:

DATA VOLUME NUMBER OF WORKERS DURATION DISK SIZE PER WORKER

1 TB/day 3 2 35 GB

10 TB/day 5 4 417 GB

50 TB/day 45 4 232 GB

Once you configure your Amazon S3 permissions, verify access, and (if applicable) discover your Cribl.Cloud
Organization's AWS ARN, you can start applying some more better practices.

If your Workers are hosted outside AWS, you will need an access key and secret key to access the S3 bucket. If
the Workers are EC2 instances or in AWS EKS, it's most ideal to assign an EC2 service role to the instances.
The role will need access to the S3 bucket. For policies for reading and writing to/from Amazon S3, see AWS
Cross-Account Data Collection.

Here's a policy to grant a role, or user access, with read and write permissions the S3 bucket. Just change the
bucket name in this policy:

Amazon S3 Optimization

Amazon S3 Permissions

Page 1408 of 1835

If assumeRole is required, here's a sample policy to assume the role that has access to the S3 bucket:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action":
 [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::bucketname/*"
 },
 {
 "Effect": "Allow",
 "Action":
 [
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::bucketname"
 }
]
}

{
"Version": "2012-10-17",
"Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111111111111:role/account-a-logstream-assumerole-role"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "sts:ExternalId": "cribl-s3cre3t"
 }
 }
 }
]
}

Test your policy with AWS's IAM policy simulator to ensure there are no boundary policies that might
conflict with this policy.

Verifying S3 Access

Page 1409 of 1835

To troubleshoot access to your S3 bucket, install the AWS CLI on one of the Workers. Log in using your AWS
user and Region. Assume the role if necessary. Then, attempt to download a file from the bucket or write a
new file to the bucket.

Example of assuming a role:

Example of validating the role you'll use to run subsequent commands:

Example of listing files in a bucket:

Example of sending stdin to a specified bucket:

Example of writing a local file to the bucket:

Example of reading a file from S3:

Every Cribl.Cloud Organization exposes its own unique AWS ARN.

From the main Cribl.Cloud portal, click the ⚙ Network Settings link, then select the Trust tab to expose the
Cribl.Cloud ARN.

aws sts assume-role --role-arn "arn:aws:iam::123456789012:role/example-role" --role-
session-name AWSCLI-Session

aws sts get-caller-identity

aws s3 ls s3://s3-bucket-name

aws s3 cp - <target> [--options]

aws s3 cp localfilename.txt s3://bucket-name

aws s3 cp s3://bucket-name localfilename.txt

Accessing Amazon S3 from Cribl.Cloud

Page 1410 of 1835

Cribl.Cloud ARN

Configure your AWS account with access to the S3 bucket, to allow Cribl.Cloud to assume that role, as
illustrated above in Amazon S3 Permissions.

Under the Amazon S3 Destination's General Settings and Advanced Settings tabs are several settings for
tuning your Amazon S3 Destination. Below are some recommendations for tuning those settings, in order of
importance:

1. Staging Location: Change this to a directory on the Workers with increased IOPS, to accommodate
thousands or tens of thousands of simultaneous open files. (Cannot be configured on Cribl.Cloud-
managed Workers.)

2. Remove staging dirs: This setting must be enabled, so as not to leave millions of empty directories on
the system over time.

3. Compress: Always enable compression, to reduce the size of files uploaded and downloaded from S3.
This can reduce your S3 bill by 8–15x. Note that compression does add to the processing time – but
transfer time will be substantially faster.

4. Max open files: Adjust this to be slightly larger than the data's cardinality, but not greater than 2,000.
Also, ensure that the system can support the number of open files for all Worker Processes, and across
all configured S3 Destinations.

5. Max file size (MB): If you have a separate S3 Destination for high-volume data sources, such as VPC Flow
Logs or firewall logs, consider raising this value in order to create fewer files. Start with 64 MB.
Otherwise, the default 32 MB setting is generally acceptable.

6. Max file open time (sec): First, determine your cardinality over 1 minute, 3 minutes, 5 minutes, and 10
minutes. Adjust this setting to match the lowest-cardinality period. E.g., if cardinality is 10,000 over 5
minutes, but 2,000 over 90 seconds, change this setting to 90 seconds. If cardinality is 2,000 over 5
minutes, then the default 5 minutes (300 seconds) is acceptable.

Better Practice 6: Tuning Amazon S3 Destination Settings

Page 1411 of 1835

7. Max idle time (sec): The default 30 seconds is generally acceptable. In cases with high cardinality,
lowering this setting can result in fewer open files when processing bursty data. Data format: If using a
Passthru Pipeline, change this setting to Raw . Otherwise, leave it at the JSON default to preserve all
metadata added to the events.

8. Storage class: For Amazon S3 Destinations, consider the "infrequent access tier" or "intelligent tier" to
reduce overall cost if the data will be rarely searched. Examples of rarely-searched data include threat-
hunting or compliance-reporting use cases.

9. AWS Region: Leave this field blank for non-AWS Destinations, unless instructed otherwise. For AWS, set
this to the nearest geographic location to the Workers.

Configuring S3 Destination Settings

Page 1412 of 1835

Configuring S3 Destination Settings- Continued

Lowering AWS costs can be achieved by a few means. First and foremost, ensure that compression is enabled
on your Cribl S3 Destination. This will reduce both egress costs and S3 storage costs.

Better Practice 7: Lower AWS Costs

Page 1413 of 1835

Set File Compression

To eliminate egress costs from your Workers to S3, map a VPC endpoint on the S3 bucket to the VPC where
your Workers reside.

Page 1414 of 1835

Mapping a VPC endpoint to an S3 bucket

Page 1415 of 1835

VPC Endpoint URL in the Cribl S3 Destination

Writing to S3's Intelligent storage class, or infrequent access tier, can reduce long-term costs. Intelligent
storage automatically routes data to cheaper S3 tiers when it is not searched or touched for certain periods of
time. Consult the AWS Cost Estimator to calculate the di�erences. Old data can also be rolled o� to a much
cheaper option such as Glacier Instant Retrieval or Glacier Deep Archive. Below are sample cost comparisons:

Page 1416 of 1835

AWS Cost Comparison

AWS may limit S3 access if cumulative API writes are greater than 3,500 writes/second, or cumulative API
reads are greater than 5,500 reads/second for a prefix (a.k.a., directory within S3). While it would be
impossible to track every single AWS prefix's API requests, Cloudtrail o�ers "rate exceeded" events if you are
ever over the API request limits.

Here's a Splunk search to report on all Cloudtrail events for S3. Filter or look for rate exceeded within the
errorMessage field:

index=aws sourcetype=aws:cloudtrail errorCode=* "resources{}.ARN"=* | rename

"resources{}.ARN" as ARN | stats count by eventName errorCode errorMessage ARN

Cloudtrail Logs Search

Better Practice 8: Monitor Amazon S3 Buckets

Page 1417 of 1835

If there are rate exceeded messages from writing to Amazon S3, then a new strategy for partition and
filename prefix expressions might be warranted. You will want to create fewer files, so consider one or more
of the following options:

Increasing timeouts.

Eliminating file name expression prefixes.

Updating partitioning expressions.

If there are rate exceeded messages on reading from Amazon S3, then you should likely apply better filtering.
This might also warrant a new strategy for how files are written to S3.

For trending API calls, you'll need to focus on a specific prefix. This might be useful for specific AWS prefixes,
as there will be hundreds of thousands or millions. API calls can be tracked via AWS Cloudwatch, but first
need to be enabled for tracking within the S3 bucket. See AWS' Creating a Metrics Configuration that Filters
by Prefix, Object Tag, or Access Point topic.

The screenshot below illustrates the locations to enable tracking API calls for a specific prefix:

Enable Monitoring in S3

Here's a Cloudwatch chart trending all requests, and write requests, for an S3 prefix. This is granular to 1
minute. Because the API limits are per second, some extrapolations are necessary to estimate per-second
values.

Page 1418 of 1835

Cloudwatch Chart

Consider both the write and read behavior when designing your partitioning expressions and file name prefix
expressions.

Aside from the standard CPU load, disk space, memory usage metrics, consider tracking some additional
metrics. If the Worker Nodes are deployed as EC2 instances, track the Cloudwatch metrics for the EC2
instances and associated disks. Cribl Support will ask for these metrics to track Amazon S3 issues:

BurstBalance

VolumeReadBytes

VolumeWriteBytes

VolumeReadOps

VolumeWriteOps

VolumeQueueLength

Better Practice 9: Monitor Worker Node Performance, and Enable
Notifications

Page 1419 of 1835

On the Linux host, the following command allows you to track the number of open files. This would be
another useful metric to track over time:

lsof | grep <common_upperlevel_staging_dir> | wc -l

You can also configure Notifications in Cribl Stream when the S3 Destination is unhealthy or triggering
backpressure. Once the S3 Destination is enabled, and a Notification target is set, the screenshot below
illustrates the workflow, which includes:

Editing Cribl Stream's S3 Destination to configure Notifications.

Adding Notifications for di�erent conditions.

S3 Destination Notifications

Execute Replays from a dedicated Worker Group. Streaming real-time data needs dedicated Worker Groups.
You do not want CPU or memory conflicts on production systems that are streaming mission-critical, real-
time machine data. Kubernetes or AWS spot instances are good options for on-demand Worker Processes
that are needed only for infrequent replays.

For Cribl Stream's SQS-based Amazon S3 Source (as opposed to our S3 Collector), a few settings can speed
up processing of new files added to an S3 bucket:

Better Practice 10: Dedicate a Separate Worker Group for Replays

Bonus Better Practice: Tune Amazon S3 Source Settings

Page 1420 of 1835

1. Under General Settings, apply a Filename filter if you want to pull only a subset of files from the S3
filter. The value is a regular expression (e.g., suricata)

2. Under Advanced Settings, set Max messages as high as 10 to fetch more queues at once.

3. Under Advanced Settings, set the Num receivers to vertically scale the number of simultaneous
processes pulling SQS messages and downloading S3 files. For S3 buckets with centralized Cloudtrail
logs, or VPC flows across multiple accounts, raise the setting to 5 or 10.

Creating partitioning expressions is an art. To get a sense of the possibilities and risks, let's consider both
positive and negative examples.

KEY QUESTIONS ANSWERS

Potential cardinality every hour? 1

How many open files if there are 30 Worker Processes? 30 open files

How many files in the S3 prefix, if the timeout is the default 60 seconds (assuming no
file size limit)?

30 * 1 = 30 files

What if there are 10 Nodes in the Worker Group? How many files in each S3 prefix? 30 * 10 = 300 files

What happens when a replay fetches data for this hour?
Under API limit of 5,500
reads/sec

Result

A good partitioning expression.

Better Partitioning Expressions

Partitioning Expression 1: The Good

${C.Time.strftime(_time ? _time : Date.now(), '%Y/%m/%d/%H/%M')}

Partitioning Expression 2: The Ambiguous

${C.Time.strftime(_time ? _time : Date.now(), '%Y/%m/%d/%H')}
/${index ? index : 'no_index'}
/${host ? host : 'no_host'}
/${sourcetype ? sourcetype : 'no_sourcetype'}

Page 1421 of 1835

KEY QUESTIONS ANSWERS

Potential cardinality every 3 minutes? 3,000

How many active subdirectories in the staging dir? 3,000

What is the excess cardinality? 30 * 1 = 30 files

What if there are 10 Nodes in the Worker Group? How many
files in each S3 prefix?

3,000 - 2,000 = 1,000

What are maximum open files if there are 14 Worker
Processes on a Worker ?

14 * 2,000 = 28,000 open files

What happens when maximum open files of 2,000 is
reached for any one Worker Process? What happens if it
happens too frequently?

All files closed & written to S3 at once = 2,000 writes.
Potential for backpressure if Cribl Stream takes long
enough to write the files.

What's the maximum number of files in any S3 prefix?
14 * 10 Worker Process * (60min/3min) = 2800 files max in
any S3 prefix

Additional assumptions:

Cardinality of 3,000 every 3 mins.

File write timeout of 3 minutes.

Max file size never reached.

10 Worker Process in group.

Result

Proceed with caution.

Solution

Track the occurrences of max open files reached messages

If the max open files reached message occurs too frequently, consider reducing the cardinality. You
might achieve this by lowering the timeout period to 2 minutes or 1 minute.

KEY QUESTIONS ANSWERS

Partitioning Expression 3: The Bad

${C.Time.strftime(_time ? _time : Date.now(), '%Y/%m/%d/%H')}

Page 1422 of 1835

KEY QUESTIONS ANSWERS

Potential cardinality every hour? 1

How many open files if there are 30 Worker Processes? 30 open files.

How many files in the S3 prefix, if the timeout is the default 60 seconds (assuming no file
size limit)?

(30 * 60) = 1800 files

What if there are 10 Nodes in the Worker Group? How many files in each S3 prefix? (1,800 * 10) = 18,000 files

What happens when a replay fetches data for this hour?
Over API limit of 5,500
reads/sec.

Result

A bad partitioning expression.

Solution

Go down to the minute, to lower the number of files in any one AWS prefix.

${C.Time.strftime(_time ? _time : Date.now(), '%Y/%m/%d/%H/%M')}

Filename Prefix Expression:

KEY QUESTIONS ANSWERS

What are max open files on any one
Worker Process?

Answer: 2,000 , because that is the lower of:
[(500 directories * 5 filename prefix files = 2,500 open files
per process]

and [2,000 open files]

Partitioning Expression 4: The Terrible

${C.Time.strftime(_time ? _time : Date.now() / 1000, '%Y/%m/%d')}
/${index ? index : 'no_index'}
/${host ? host : 'no_host'}
/${sourcetype ? sourcetype : 'no_sourcetype'}

${C.Time.strftime(_time ? _time : Date.now() / 1000, '%H%M')}

Page 1423 of 1835

KEY QUESTIONS ANSWERS

How many active subdirectories in
the staging dir?

Around 400

What happens when max open files
of 2,000 is reached for any one
Worker Process?

All files closed and written to S3 at once (2,000 writes at once). Happens every 4
minutes. There's potential for backpressure if Cribl Stream takes long enough to
write the files.

What's the max number of files in
any S3 prefix?

14 processes * 1440 mins * 10 Worker Process = 202K files! API issues on read are
likely.

Additional Assumptions

Reduced cardinality of 200 every 2 minutes, and 500 every 5 minutes.

Introduction of a file prefix partition.

Max open files within Cribl Destination set to 2,000.

Max file open time of 5 minutes.

Assume max file size is never reached.

10 Worker Processes in Group.

14 Worker Processes/Worker.

Result

A terrible partitioning expression.

Solution

Don't use the file prefix expression; consider expanding the partitioning expression instead.

Reduce timeout to 2 minutes, as cardinality will be lower over a 2-minute span.

;

Page 1424 of 1835

You can configure Cribl Stream to send Webhook notifications to the BigPanda IT Ops platform. These
notifications arrive in BigPanda as Alerts, which BigPanda correlates into Incidents.

Before you begin, you should have an Admin account on a BigPanda Cloud instance.

1. Log into your BigPanda Cloud instance as an Admin.

2. In the Integrations tab, click New Integration.

The Integrations tab

3. In the Create a New Integration modal, select Alerts REST API and click Integrate.

11.2.2. BigPanda/Webhook Integration

Prepare BigPanda to Receive Data from Cribl Stream

The BigPanda App Key and Access Token are separate and independent. The Access Token is a 32-
character string that is part of the value that BigPanda generates for the Authorization HTTP
header. (It functions like an auth token or bearer token.)

Page 1425 of 1835

The Create a New Integration modal

This opens the Alerts API Integration page.

Page 1426 of 1835

The Alerts API Integration page

4. In the Create an App Key section, generate an App Key named Cribl Stream . You'll need the App Key
when configuring Cribl Stream in the next section. Cribl Stream will insert the App Key into every event it
sends to BigPanda.

5. Store the following information from the Make a REST Call From Your Monitoring System section:

The Alerts API endpoint URL.

The Authorization HTTP header. This should consist of the word Bearer , a space, and a 32-
character string. The 32-character string will be your Access Token.

The Content-Type HTTP header. This should be application/json .

Page 1427 of 1835

You'll need the URL and header values when configuring Cribl Stream in the next section.

6. View your completed Cribl Stream integration in the Integrations tab.

1. From the top nav of a Cribl Stream instance or Group, select Data > Destinations, then select
Webhook from the Manage Destinations page's tiles or le� nav. Click + Add New to open the Webhook
> New Destination modal.

2. In the Configure > General Settings tab, enter or select the following values:

URL: Enter the Alerts API endpoint URL, for example:
https://api.bigpanda.io/data/v2/alerts

Method: POST

Format: Custom

Content type: application/json

3. In the Authentication tab, select an Authentication type.

You can select Auth token, and then enter the Access Token (the 32-character string you wrote
down earlier) in the Token field.

Alternatively, select Auth token (text secret) to expose the Secret drop-down, in which you can
select a stored secret that references the Access Token. A Create link is available to store a new,
reusable secret.

4. Click Save, then Commit & Deploy. You are now ready to test your Webhook Destination's
communication with Big Panda.

5. In the Test tab, enter the following test input, substituting your own App Key value for the
<your_app_key> placeholder shown:

Configure the Webhook Destination in Cribl Stream

Page 1428 of 1835

5. Click Run Test.

This should send an alert to BigPanda.

HTTP payloads sent to the BigPanda Alerts API must satisfy rules that are beyond the scope of this topic. For
details, see the BigPanda documentation about Alert Properties and Integration Diagnostics.

However, at at minimum, three fields are required:

1. app_key .

2. status .

3. host OR service OR application OR device .

Thus, the test input shown above works even if you omit all but the first three fields.

There are other possibilities for the third field, but they require understanding how BigPanda determines the
primary_property of an Alert, plus some additional BigPanda configuration. See the BigPanda links above
for details.

In the BigPanda Incidents tab, you should see an Incident whose Source is Cribl Stream . The details of the
test input you sent from the Webhook Destination should appear in an Alert within that Incident. If so: It
works!

;

 [
 {
 "app_key": "<your_app_key>",
 "status": "critical",
 "host": "production-database-1",
 "timestamp": 1402302570,
 "check": "CPU overloaded",
 "description": "CPU is above upper limit (70%)",
 "cluster": "production-databases",
 "my_unique_attribute": "myUniqueValue987654321"
 }
]

BigPanda Alerts API Requirements

Verify that BigPanda is Receiving Notifications and
Events

Page 1429 of 1835

You can configure Cribl Stream to send Webhook notifications to Moogso�, using custom integrations. A
custom integration is a user-defined Moogso� endpoint that ingests JSON payloads, and converts them to
Moogso� events or metrics.

Note these options:

A Moogso� custom integration can ingest either events or metrics. Each custom integration has its own
separate API key, and its own Cribl-to-Moogso� mappings.

There is no limit to the number of custom integrations you can create.

The examples below illustrate simple event and metric mappings. You can define your own mappings
for each endpoint, based on the data types and payloads you want to send. For details, see Moogso�'s
Create Your Own Integration documentation.

Log into your Moogso� SaaS instance as an Owner or Administrator, and then:

1. Choose Data Config > Ingestion Services > Create Your Own Integration.

2. Click Add New Integration.

3. Specify an integration endpoint and description.

4. Specify the data type to send to the endpoint: Events or Metrics.

The integration setup screen appears, with the URL and the API key for the new endpoint.

11.2.3. Moogso�/Webhook Integration

Written for Cribl by Douglas Bothwell, formerly of Moogso�.

Create the Moogso� Custom Integration

Page 1430 of 1835

The Moogso� integration setup screen

From the top nav of a Cribl Stream instance or Group, select Data > Destinations, then select Webhook from
the Manage Destinations page's tiles or le� nav. Click + Add New to open the Webhook > New Destination
modal, and complete the following options and fields.

URL: The URL for the new custom integration (copy this from the Moogso� UI).

Method: POST .

Format: Custom .

Content type: application/json .

Extra HTTP Headers: Click + Add Header to define this extra header:

NAME VALUE

apiKey The API key for the new custom integration (copy this from the Moogso� UI).

Configure the Webhook Destination

General Settings

Advanced Settings

Page 1431 of 1835

Click Save, then Commit and Deploy. Now you are ready to map your events and/or metrics.

Your mappings will di�er, depending on the data you want to send. However, the simple examples below, in
which we map a Cribl Stream payload to a Moogso� custom integration, illustrate principles that apply to all
custom mappings:

Moogso� has a defined event schema and metric schema. Each schema includes a set of required fields.
Your custom integration must include mappings for all required fields.

You can define custom tags for Cribl Stream fields that do not have Moogso� equivalents.

You can also specify default values in case Cribl Stream sends an object with a missing field.

The Moogso� event schema includes a severity field. You can map Cribl Stream fields and values to
Moogso� severities, or define a default severity if a payload does not include this information.

Define and validate your mappings based on the type of data you plan to send to Moogso�:

Event Mapping

Metric Mapping

To illustrate how to map Cribl Stream payloads to Moogso� events, we'll walk through an example with a
payload of Cribl Stream syslog messages. You'll follow the same overall workflow for any events payload.

In Cribl Stream, navigate to your Webhook Destination's configuration modal, click the Test tab, then:

1. In the Test input field, define one or more JSON payloads for the Cribl data you want to send. To map
syslog events, set the Select sample drop-down to syslog.log.

2. Click Test.

In Moogso�, view the custom integration's config screen. Under Map Your Data, you should now see the
payload you just sent.

Mapping Cribl Data to Moogso�

Event Mapping

Send a Sample Payload to Moogso�

Map the Event Fields

Page 1432 of 1835

The event payload appears in Moogso�

Select the payload, and then define your Cribl-to-Moogso� mappings. Your Cribl Stream data will largely
determine the mappings you want. See Events Object in the Moogso� API docs.

Here are some reasonable mappings for the syslog payload in this example:

CRIBL SOURCE FIELD(S) MOOGSOFT TARGET FIELD

message description

appname service

facilityName check

severity , severityName severity

procid tag.process-id

The Moogso� event schema has a severity field. You can specify integers or strings, from 0 , meaning Clear, to
5 , meaning Critical. Here are some reasonable mappings.

SYSLOG SEVERITIES MOOGSOFT SEVERITIES

Map the Severities

Page 1433 of 1835

SYSLOG SEVERITIES MOOGSOFT SEVERITIES

Emergency (0), Alert (1), Critical (2) Critical (5)

Error (3) Major (4)

Warning (4) Warning (2)

Informational (6), Debug (7) Unknown (1)

Notice (5) Clear (0)

Once you save and apply your mappings in Moogso�, do the following:

1. In Cribl Stream, return to the Test tab for the Webhook Destination. Click Test again to send another
payload.

2. In Moogso�, go to the Alerts screen. You should now see a new alert based on the payload you just sent.

To illustrate how to map Cribl Stream payloads to Moogso� events, we'll walk through an example with a
payload of Cribl Stream syslog messages. You'll follow the same overall workflow for any metrics payload.

In Cribl Stream, navigate to your Webhook Destination's configuration modal, click the Test tab, then:

1. In the Test input field, define one or more JSON payloads for the Cribl data you want to send. To map
syslog events, set the Select sample drop-down to appscope-metrics.log.

2. Click Test.

In Moogso�, view the custom integration's config screen. Under Map Your Data, you should now see the
payload you just sent.

Verify your Mappings

Metric Mapping

Send a Sample Payload to Moogso�

Map the Metrics Fields

Page 1434 of 1835

The metrics payload appears in Moogso�

Select the payload and then define the Cribl-to-Moogso� mappings you want. Your Cribl data will largely
determine these mappings. See Metric Datum Object in the Moogso� API docs.

Here are some reasonable mappings for the AppScope payload you just sent:

CRIBL SOURCE FIELDS MOOGSOFT TARGET FIELD

_metric metric

_value data

host source

unit tag.unit

pid tag.pid

A�er you save and apply your mappings in Moogso�, test them like this:

1. In Cribl Stream, return to the Webhook Destination's Test tab. Click Test again to send another payload.

2. In Moogso�, go to the Metrics screen. You should now see a new alert, based on the payload you just
sent.

Verify Your Mappings

Page 1435 of 1835

;

Page 1436 of 1835

The Nightfall Pack relies on Nightfall's Data Loss Prevention (DLP) engine, which uses machine learning to
detect sensitive information in events streamed through Cribl. The Pack enables you to monitor your
Pipelines in real time for PII, PHI, PCI, and other sensitive data. Nightfall discovers and automatically redacts
the sensitive content before it can reach any Destination. Aside from redaction, you can use the Pack to
automatically label problematic event data.

The risk of sensitive data spreading across data pipelines grows as organizations work with data from more
sources. Nightfall can help ensure that sensitive data doesn't accumulate in the first place, facilitating
compliance with data-security regulations. This is important for Cloud-first organizations that must scale
observability while complying with regional or industry-specific compliance regimes.

1. Sign up for a free Nightfall Developer Platform account, if you have not already done so. This entitles
you to scan up to 3GB of event data per month for free.

2. Log in to the Nightfall Dashboard.

3. Create an API Key.

4. Create the Detection Rules and/or Policy that you want Nightfall to scan with.

Detection Rules enable you to specify which Detectors will scan each event. A Detection Rule simply
redacts sensitive information from events.

A Policy governs alerts, which Nightfall can send via email, Slack, or webhook. (Assuming that you want
to send data to a Cribl Stream Destination and/or a SIEM, use a webhook.) A Policy can include up to 20
previously defined Detection Rules. It can also turn redaction o�, if desired.

1. From Cribl Stream's top nav, select Processing > Packs.

11.2.4. Nightfall Integration

Thanks to Nightfall for contributing this page and the corresponding Nightfall Pack, which you can
install in Cribl Stream and customize as described below.

Configuring the Detection Engine

Installing the Nightfall Pack

Page 1437 of 1835

Selecting Packs

2. Click + Add New, then select Add from Dispensary to open the Packs Dispensary drawer.

Adding a new Pack from the Dispensary

3. Navigate to the DLP by Nighfall AI Pack's tile.

Page 1438 of 1835

Locating the Nightfall Pack

4. Click the Nightfall Pack's tile to display its details page.

The Nightfall Pack details page

5. Click + Add Pack. Shortly, you'll see a banner confirming that the Pack is installed.

1. From the Manage Packs page, click the new Pack. This opens the Pack's Routes tab.

Configuring the Nightfall Pack

Page 1439 of 1835

2. In the Pipeline column, click Nightfall .

3. From the resulting Nightfall Pipeline configuration, expand the DLP Scanner with Nightfall AI Function.

Selecting the Nightfall Pipeline

4. In the Nightfall API Key field, enter the API key you created in the Nightfall Dashboard.

5. Set the Scan with a Policy or Multiple Detection Rules drop-down to match your detection engine
configuration.

Selecting Policy UUID exposes a corresponding field to enter the single UUID.

Selecting Detection Rule UUID exposes a + Add Rule. Click this to enter as many Detection Rule UUIDs
as you want to specify.

Scanning with a Policy

Page 1440 of 1835

6. (Optionally:) Label sensitive events. If you toggle Label Log Lines with nightfall_violations to Yes ,
each event where Nightfall has detected sensitive information will have an added
nightfall_violations: true field.

The Nightfall Pipeline also includes three limiting Functions, described here. These are disabled by default,
but you can enable them as needed.

To reduce the data usage that's billed against your Nightfall plan, you can enable the Sampling Function. This
way, Nightfall will scan only a subset of each streamed file, instead of every event.

Disabled steps

To reduce the number of requests that Cribl Stream makes to the Nightfall API, you can enable log batching.
To do so, enable both the Aggregations and Unroll Functions, then configure the Aggregation Function's
Time window.

Advanced Features

Sampling

Log Batching

Page 1441 of 1835

Enabling log batching

The Nightfall DLP plugin will automatically detect the aggregations, and unroll the batches, only a�er
Cribl Stream sends them to the Detection Engine. Then, Nightfall will process each event separately, as it
normally does.

;

Page 1442 of 1835

If you're using a SIEM (security information and event management) system like QRadar that's subject to an
events-per-second (EPS) licensing model, managing license costs can be an issue. Cribl Stream enables you
to proactively manage your license by slowing EPS growth.

Cribl Stream does so by o�ering fine-grained control over what events to send to the QRadar
Event Processor, without breaking the expected LEEF (Log Event Extended Format) data format. You can
report on event codes, and make decisions about what to drop, based on the data in the events. Some of
what we discuss here also applies to SIEMs generally, not just QRadar.

QRadar imposes constraints on data through several of its components:

QRadar Event Collectors can send data only to QRadar. Elastic and other systems of retention or analysis
are not an option.

QRadar Event Collectors can send data only in LEEF format. The pipeline cannot provide additional
streams of data in di�erent formats such as JSON or syslog.

Incoming data must adhere to a predefined schema, based on IBM's LEEF format. You can't reformat
events, nor reduce the size of an event, without breaking the correlation rules within the QRadar Event
Processor.

When incoming data exceeds the EPS license limits, QRadar will drop or stop ingesting data. Meanwhile,
since the license is based on EPS event velocity, license costs increase linearly: the higher the EPS count,
the higher the cost.

If your event velocity approaches the license limit, your options are unappealing:

You can try to exclude some data, but the correlation rules and constraints on data formatting restrict
your ability to be selective. You can drop only broad categories of data, such as an entire Windows Event
ID, leaving you at a risk of missing something important.

You can hope that you never actually exceed the EPS limit, but if you guess wrong, QRadar dropping or
not ingesting data can be disruptive and compromise your enterprise security posture.

Cribl Stream enables you to surgically minimize these risks, and get the most out of your existing licenses.

11.2.5. Managing QRadar Licenses

Confronting QRadar Constraints

Dropping Events Selectively

Page 1443 of 1835

A common tactic to avoid exceeding an EPS license limit is to start dropping an entire class of events. This is a
crude approach that carries its own risks. With Cribl Stream, you can analyze the data within the event, and
decide what to keep based on your priorities.

Here's an example of how to analyze and selectively drop Windows Security Event ID 4674. This event
documents operations attempted on a privileged object. While it's commonly discarded when admins are
feeling pressed to drop events, 4674 is actually a critical ID that should be kept some, or most, of the time.

Event ID 4674 includes the logon types shown in the table below.

LOGON

TYPE
LOGON TITLE DESCRIPTION

2 Interactive Activity on the system's keyboard and screen.

3 Network Connection to a shared folder on this computer from elsewhere on the network.

4 Batch Processes might be executing on behalf of a user without their direct intervention.

5 Service Service startup by the Service Control Manager.

7 Unlock An unattended workstation with password-protected screen saver.

8 NetworkCleartext
Logon with credentials sent in cleartext. Most o�en indicates a logon to IIS with
“basic authentication”.

9 RemoteInteractive Logon with RunAs, or mapping a network drive with alternate credentials.

10 CachedInteractive
Logon with cached domain credentials, such as when logging on to a laptop when
away from the network.

Each logon type is assigned a di�erent security value.

Let's suppose that your QRadar deployment is in an enterprise where inbound file sharing is disabled. In that
case, you don't need logon type 3 events. So let's see how to use Cribl Stream to keep all ID 4674 events
except logon type 3 events, which we'll' drop.

Analyzing a Windows Event

Dropping the Excess Baggage

Page 1444 of 1835

1. Save your Windows Events to Cribl Stream using Live Capture.

2. Create a Pipeline and name it Windows_Event_Reduction .

3. Add the Regex Extract Function to your Pipeline to create fields for EventCode and Logon Type . These
fields will be the foundation for a Filter that drops only Windows events of ID 4674, logon type 3.

Regex Function on Pipeline

4. Add the Drop Function to your Pipeline using the Filter below.

Drop Function

Use sample data to validate the reduction methods described below. Only when you are sure they
won't interfere with your system's usability should you apply these methods to your production SIEM.

index=='endpoint' && source=='WinEventLog:Security' && __eventCode=='4624' &&
__logon_Type=='3'

Page 1445 of 1835

5. Apply the Pipeline to your Windows Sources. Cribl Stream will then start dropping the unneeded events.

Event ID 4624: Look for Subtypes (Logon Type) that can be dropped.

Event ID's 4634 and 4674: An account was logged o�. Most security use cases don't require Logo�
events.

Event ID 4673: A privileged service was called. This event rarely contains actionable intel. It's a large-
volume data source that can be dropped, in exchange for other, more-valuable event IDs.

Event ID 4674: An operation was attempted on a privileged object. Similar to Event ID 4673, this event is
largely considered "noise," providing little value. Consider dropping.

Event ID 4689: A process was exited. This source, when paired with Event ID 4688, can tell you "how long
a process was running." Typically, this is unimportant information, and can be omitted from your event
collection.

The following filters can be helpful to reduce the noise:

All external-to-internal tra�ic AND action=deny : Ingress traffic && action=deny

PAN Traffic logs && application=ping|ibm-bigfix|outlook-web-online|google-

base|traceroute|ms-teams|ic mp|outlook-web-online|ms-office365-base|crowdstrike

All external-to-internal tra�ic AND action=deny : Ingress traffic && action=deny

Teardown UDP Connection && Event ID 302016

Teardown TCP connection && Event ID 302014

Teardown ICMP connection && Event ID 302021

Other Reduction Examples

Apply the options in this section only a�er careful analysis of your own environment and priorities.
Even if you choose to exclude these events from QRadar, you might want to send them to an object
store for later auditing and/or replay.

WinEvents

Palo Alto

Cisco ASA

Page 1446 of 1835

Teardown Translation && Event ID 305010|305012

;

Page 1447 of 1835

To route data from existing Splunk infrastructure to Elasticsearch services, you might face a daunting task:
re-architecting your entire forwarding tier. This could require retooling lots of servers – up to hundreds, or
thousands – to uninstall their Splunk forwarders, and swap in Elastic-compatible agents.

Cribl Stream can reduce this e�ort to just a few hours: Configure one Splunk outputs.conf stanza to output
to Cribl Stream, and propagate that across all your Splunk servers. Done!

Next, you can easily configure Cribl Stream to listen for Splunk data on one port, and to route that data to all
the Elasticsearch destinations you want to feed.

Also, in Cribl Stream's core, you can easily design a Pipeline that modifies the original Splunk event into
Elastic's Common Schema – making it look exactly like an event generated by an Elastic agent.
These transformations help you make the most of Elastic's o�erings, like Filebeats, etc.

Transforming to Elastic Common Schema

Some of the Cribl Stream Functions useful in transforming Splunk-generated events into Elastic's format are:

Regex Extract: Extract a portion of the raw event, and place it into a specified field.

Lookup: key o� the host IP to add fields like hostname , name , id , and type .

11.2.6. Splunk to Elasticsearch

Transforming Data from Splunk to Elastic Format

Page 1448 of 1835

Eval: Turn key-value pairs into nested JSON objects.

GeoIP: Correlate source IP to a geographic database.

We'll show all four in our example Pipeline below, although you might need only a subset.

Cribl Stream Pipeline and Data Preview

Cribl Stream will o�er you further time savings as you configure the internal data transformation.
Cribl Stream's Data Preview features enable you to test transformations' results as you build your Pipeline,
before you commit or run it.

This eliminates blind guesswork in Splunk configuration files to specify source ‑> index transformations,
check the results, and then start all over again. In particular, Cribl Stream's Regex Extract Function provides a
regex101-like UI, to facilitate precisely designing and debugging your regex expressions.

Let's goat started on the example.

First, in a Splunk App, configure a Splunk forwarder (UF or HF) to specify your Cribl Workers as destinations.
Use outputs.conf stanzas of this form:

Goat Rid of Some Guesswork

Configure Splunk Forwarder

Page 1449 of 1835

Push the app using the deployment server.

Next, in Cribl Stream, configure a Splunk Source. The key requirement here is to set the Port to listen on.
(Optionally, you can also configure TLS, Event Breakers, metadata fields, and/or a pre-processing Pipeline.)

Splunk Source configuration

To configure Cribl Stream's output, set up an Elasticsearch Destination by specifying the Bulk API URL and
Index.

[tcpout]
disabled = false
defaultGroup = cribl, <optional_clone_target_group>,

[tcpout:cribl]
server = [<cribl_ip>|<cribl_host>]:<port>, [<cribl_ip>|<cribl_host>]:<port>, ...
sendCookedData=true

Configure Splunk Source in Cribl Stream

Configure Elasticsearch Destination

Page 1450 of 1835

Elasticsearch Destination configuration

Next, this section shows several Functions that you can assemble into a Pipeline to transform incoming
Splunk events to match the Elastic Common Schema.

First, use a Regex Extract Function to break the Splunk events into fields. Try the sample configuration shown
below:

Configure Pipeline

Regex Extract Function

Page 1451 of 1835

Regex Extract Function

Here are the six rows of regex in this example:

Regex; Additional Regex

As you refine your expression, capture a sample of incoming Splunk data to test your regex's results in
Cribl Stream's right Preview pane.

/\s\d\d\d\s(?<__bytes>[0-9]{2,})/
/(?<__method>GET|HEAD|POST|PUT|DELETE|CONNECT|OPTIONS|TRACE)/
/HTTP\/(?<__version>[0-9\.]*)\"/
/\s(?<__status>\d\d\d)\s/
/(?<__ip_address>(?:[0-9]{1,3}\.){3}[0-9]{1,3})\s/
/(?<__url>\s\/([^\s]*))/

Page 1452 of 1835

In this example, we next add a Lookup Function, to translate HTTP error codes to readable text. Note this
Function's optional Reload Period field, in which you can define a reload interval for a lookup file whose
contents refresh frequently.

To enrich the Splunk data, we next use a GeoIP Function. This a specialized lookup against a database of IP
addresses by geographic location. This Function's output can provide Elasticsearch with location fields
like lat and long .

Lookup Function

GeoIP Function

Page 1453 of 1835

GeoIP specialized lookup

Finally, to further enrich the outbound events, the Pipeline uses an Eval Function. This adds multiple key-
value pairs that define and populate fields conforming to the Elastic Common Schema.

Eval Function

Page 1454 of 1835

Eval Function

A�er attaching your Pipeline to a Route, here's an an exported event, all happy in Elasticsearch with nested
JSON.

Event as exported to Elasticsearch

For additional details on configuring Splunk forwarders for Cribl Stream, see this related documentation:

Configuring a Splunk (TCP) Forwarder

Configuring Cribl App for Splunk on an HF

;

Results

For More Info

Page 1455 of 1835

In many organizations, the IT department uses a tool like Splunk for operational logging, while the Security
team relies on Exabeam to prevent insider threats. These tools use separate agents to access the same data,
leading to some data-sharing conundrums:

Installing the Exabeam agent in parallel with Splunk would duplicate the data.

Some servers, like domain controllers, allow only a single agent. In this case, you can't feed two
platforms with the same data.

Querying Splunk for the data would introduce extra latency and overhead costs.

Forwarding data directly from Splunk Universal Forwarders (UFs) is a nonstarter. Classic logs from
Splunk UFs embed newlines and special characters, which break Exabeamʼs parser.

Cribl Stream can help you unblock these issues: Ingest data directly into Cribl Stream from Splunk UFs
running on the domain controller, and transform the events in Stream before routing them to Exabeam.

In Cribl Stream's core, you can easily design a Pipeline that modifies the original Splunk event to fit the
format that Exabeam expects. Some Cribl Stream Functions useful for this transformation are:

Serialize: Remove all of the newlines and spaces, and then transform the data into JSON format.

Mask: Remove the special characters, and replace them with space.

Eval: Create a new field called Message , and remove everything else using the Remove Fields option.

In this guide, we'll show you how to:

1. Capture sample logs.

2. Apply the Functions (outlined above) to transform the sample log into Exabeam's expected format.

3. Validate your fields with Exabeam Parsers.

4. Stream your event to Exabeam to test the entire sequence.

11.2.7. Splunk to Exabeam

While this example is written around a Splunk-to-Exabeam scenario, you can use the same general
techniques to connect and transform data between several other upstream and downstream
services.

Transforming Data from Splunk to Exabeam's Format

Page 1456 of 1835

Start with sample logs of the event data you plan to work with. In our example, we'll copy and paste the log
sample straight into Cribl Stream.

Once you've pasted the log sample, enter a unique File Name on the modal's le� side, then click
Save as Sample File at right.

Saving captured data

In your production environment, you can filter incoming events in real time (e.g., using a filter expression like
Windows Security logging) to identify your in-scope Exabeam data.

Next, this section shows relevant Functions that you can assemble into a processing Pipeline to transform
the sample log into Exabeam's expected format.

First, use a Serialize Function to change the event's format into JSON . Then, remove the extra lines and
spaces, because Exabeam treats each newline as a separate event.

Capture Sample Logs

Configure Pipeline

Serialize Function

Page 1457 of 1835

Reformatting the event

Next, use a Mask Function to remove extra \n and \r characters. (Otherwise, Exabeam's regex filter would
reject the characters and drop whole fields that need to be matched and extracted.)

In this example, we are using a Mask Function to remove these special characters and replace them with
spaces.

Extraneous newlines/returns to remove

Mask Function

Page 1458 of 1835

As the last step in Cribl Stream, use an Eval Function to enrich the outbound events, by adding key-value pair
that defines and populates a field conforming to the Exabeam schema. Name the new field Message .
(The Message field will populate Raw Message in the Exabeam Data Lake.) Remove everything else using
Remove Fields.

Eval Function to add an Exabeam-specific field

Use Exabeam's Auto Parser Generator (APG) tool to validate your fields. If you don't have the APG tool,
contact Exabeam support to request access via your ECP account. This tool validates matching parsers based
on your event.

Eval Function

Goat the Fields?

Page 1459 of 1835

APG tool access in Exabeam

In the APG tool, click New Parser.

New Parser option

On the Create Parser page, click Copy and paste raw log lines.

In the text box, paste the Message field value from the your sample file and click Upload Log Sample.

Paste Message Field

Click View Parsing Details to view parsers matching this event type.

Copy the *Message** field value to your clipboard for a later step in Stream it to Exabeam.

Page 1460 of 1835

New Parser option

Validate that all the fields you need are populated: src_ip , dest_host , user , etc.

Paste Message Field

At the bottom of the Extraction Preview page, click Configuration Files to inspect the parsers. If required,
you can download the parser to change the regex configurations.

Do not change Field Names in Exabeam (e.g., src_ip to source_IP). Exabeam has its own
Field Name format that matches its Advanced Analytics template.

Page 1461 of 1835

Parser Details

Our final test is to send a single event to Exabeam, and validate the results in Exabeam's Data Lake or
Advanced Analytics.

1. In Cribl Stream, select Data > Destinations > Syslog.

2. Click + Add New to configure and save a new Syslog Destination to export data to Exabeam.

Configure the Address, Port, Message foramt, Timestamp foramt, and other options to match your
Exabeam implementation.

Stream It to Exabeam

Before testing, configure your Exabeam implementation's Asset Name and Username to a dummy
account. Exabeam's Advanced Analytics has hundreds of models out of the box, and you do not want
to ruin these models while testing out your data.

Page 1462 of 1835

Configure Syslog

3. Reopen the Syslog Destination. On its Test tab, copy and paste the Message field's value you copied
onto your clipboard above.

Syslog Test tab

4. Within a few seconds, you should see your event display in the Exabeam Data Lake. Search for your
forwarder IP/Host (Example syntax: Forwarder:”IP/host).

Page 1463 of 1835

Validating event in Exabeam

5. You can validate that you have the right parser by matching the exa_parser_name with the parser in
the Auto Parser Generator.

Validating parser in Exabeam

;

Page 1464 of 1835

Splunk Stream is a set of three Splunk packages that, combined, enable you to capture and work with
streams of network event data. This adds up to a collector for streaming data. You can deploy Splunk Stream
in either of two forms:

As part of a Splunk Universal Forwarder (we'll call this the forwarder‑based config), sending data to a
Cribl Stream Splunk TCP Source; or

As an independent stream forwarder (we'll call this the ISF config), running on a compatible Linux
machine, and sending data to a Cribl Stream Splunk HEC Source.

In either case, the collector process (not to be confused with a Cribl Stream Collector) will need to call home
to a Splunk Enterprise process with the Splunk Stream app installed. You'll manage the collector's settings in
Splunk Enterprise.

For the broader Splunk configuration story, see Splunk's documentation. Here, we'll explain one small part of
the Splunk configuration process: how to configure Splunk Stream to send the data it captures to
Cribl Stream. See the section below – either Forwarder-based or ISF – that corresponds to your use case.

Install the Stream TA on the Universal Forwarder targets, either manually or via the deployment server. You'll
need to add a new inputs.conf stanza pointing to your Splunk Stream App management instance. Adapt
the example stanza below, replacing the placeholder with the hostname or IP address of your management
host.

New stanza in config file

The outputs.conf for the Universal Forwarder with Splunk Stream App is the same as for a
Universal Forwarder with a non-streaming collector. See these examples.

To verify that your setup is working, run a Live Capture in your Cribl Stream Splunk TCP Source with
appropriate filters. Once the Universal Forwarder is sending data to your Cribl Stream Workers, you're ready
to begin working with sample captures, Routes, and Pipelines.

11.2.8. Splunk Stream to Cribl Stream

Setting Up the Forwarder-Based Config

[streamfwd://streamfwd]
splunk_stream_app_location = https://<your_management_host>:8000/en-
us/custom/splunk_app_stream/
disabled = 0

Page 1465 of 1835

If no data seems to be coming through, check the logs located at
/opt/splunkforwarder/var/log/splunk/splunkd.log on each machine where your Forwarder is
running.

Splunk Stream as an independent stream forwarder (ISF) can run only on Ubuntu- or RHEL-based x64 Linux
machines that have bzip2 installed.

To install Splunk Stream, begin in the Splunk UI:

In the Stream App, navigate to Configuration > Distributed Forwarder Management.

Click the Install Stream Forwarders button.

In the resulting modal, under the text To get data from other machines, run this command on
your data source machine , copy the curl command. E.g.:

curl -sSL http://DellT20:8000/en-us/custom/splunk_app_stream/install_streamfwd |

sudo bash

On each Linux machine where you want to install Splunk Stream, run the curl command that you copied.
Installation will fail if the machine lacks bzip2 .

Once installation is complete, return to the Splunk UI.

1. To update the HEC endpoint URL, navigate to Actions > Edit Forwarder Group for the desired group.

2. Toggle HTTP Event Collector Autoconfig to Off .

3. In the Endpoint URLs field, list your Cribl Stream Worker URLs, as shown here:

Setting Up the ISF Config

Page 1466 of 1835

Editing forwarder group to specify Cribl Worker URLs

4. Click OK.

Finally, on each Linux machine where you're running Splunk Stream, update the ISF settings with the proper
HEC token. (While it is technically possible to run without a token, Cribl strongly recommends against this
practice.)

1. In Cribl Stream, copy the HEC token from your Cribl Stream Splunk HEC Source definition (the value of
the __hecToken internal field).

2. On the desired Linux machines, open /opt/streamfwd/local/streamfwd.conf in a text editor.

3. Add the following stanza, substituting your HEC token for the placeholder:

4. Run the following command to restart the ISF:

[streamfwd]
httpEventCollectorToken = <HEC_token_from_your_Cribl_Stream_Source>

Page 1467 of 1835

To verify that your setup is working, run a Live Capture in your Cribl Stream Splunk HEC Source with
appropriate filters.

You can also check ISF status in Splunk. Navigate to Apps > Splunk Stream > Admin Dashboards >
Stream Forwarder Status:

Verify ISF status in Splunk

If no data seems to be coming through, check the logs located at
/opt/streamfwd/var/log/streamfwd.log on each machine where your ISF is running.

;

systemctl restart streamfwd

Page 1468 of 1835

Cribl Stream can process a syslog stream directly. Moving to Cribl Stream from existing syslog-ng or rsyslog
servers fully replaces those solutions with one that is fully supported and easily managed.

Processing syslog in Cribl Stream allows you to readily address these common challenges of ingesting data
from syslog senders:

Architecture: Cribl Stream routes the syslog stream directly, immediately, and securely to the
destinations of your choice, reducing latency and management overhead.

Volume: Removing redundant data and unnecessary fields in Cribl Stream typically reduces volume 20–
30% overall. It also optimizes the data for downstream services like Splunk or Elasticsearch.

Timestamp handling: Cribl Stream intelligently processes events sent from di�erent time zones. It can
embed a new, consistent timestamp, and can auto-correct timestamps that are o� by an exact number
of hours.

Severity/Facility accuracy: Each syslog event begins with a bracketed integer that represents Facility
and Severity, as defined in the Syslog Protocol. Cribl Stream translates this code (e.g., <165> , <0>) into
the correct Facility and Severity values.

Metadata: Cribl Stream can automatically set metadata fields, including sourcetype and index .

This tutorial outlines best practices for replacing your syslog server with Cribl Stream. To go even a bit
deeper, check out this Cribl O�ice Hours video.

By default, a Cribl Stream Syslog Source produces eight fields: _time , appname , facility (numeric),
facilityName (text), host , message , severity (numeric), and severityName (text).

Default, parsed syslog event

11.2.9. Syslog Best Practices

The Goal: Optimizing Syslog Events

Page 1469 of 1835

While this default parsing makes the output much more readable, we haven't saved any volume – and we
now have redundant pairs of fields (numeric versus text) that represent facility and severity.

Our next logical step is to streamline syslog events to something more like this:

Default, parsed syslog event

This accomplishes all of the following:

Extracts the essentials.

Removes the redundancies.

Adds a new field to identify the Cribl Stream Pipeline (which we're about to build).

Adds metadata that the Destination needs.

Shrinks the outbound _raw payload to just its message component.

Once we optimize syslog in this way, we can achieve still further e�iciencies by dropping or downsampling
frequent events, and by balancing high-volume syslog inputs across Cribl Stream worker processes.

Syslog data, especially when sent via UDP, is best collected as close to the source as possible. Ideally, you
should capture syslog data at its origin. (This is true of syslog in general, not just syslog processed in
Cribl Stream.)

Also, because syslog senders have no built-in load balancing, Cribl strongly recommends using a load
balancer to distribute the load across multiple worker nodes.

Overall Architecture

Page 1470 of 1835

Example architecture for a single site or location

When configuring a load balancer to be fed by syslog senders, start with these basic principles:

In this context, stickiness is when tra�ic from a given source is always sent to the same destination IP. The
optimal configuration of the load balancer avoids “sticky” behavior, and instead spreads the workload across
Cribl Stream Worker Nodes as evenly as possible.

If UDP data is being sent, the load balancer has no way to automatically detect whether the destination is up.
Configure the load balancer to use API calls to the Worker Nodes to check the health status of each Node.

If possible, configure the load balancer to listen on port 514, and then relay tra�ic to the Worker Nodes on
port 9514. Here's why:

Many syslog senders are hard-coded to send only to port 514, so you need to support them.

Cribl Stream itself should not run as root, and therefore cannot listen on ports lower than 1024 without
additional OS-level steps (like SETCAP).

Load Balancing

Avoid Stickiness

Use API Calls to Do Health Checks

Listen on Port 514

A Port for Each Device Class

Page 1471 of 1835

As explained above, for syslog devices that can send only to port 514, you can configure the load balancer to
relay to destination port 9514. But what about the many syslog senders that do support sending to ports
other than 514? It's a best practice among Cribl customers to use a dedicated receiving port for each class of
device in their environment. While this takes a little more e�ort to set up, it enables you to hard-code
metadata (and optionally, Pipelines) for the events from that data source. Examples include:

1517: VMware ESXi logs.

1521: Palo Alto Firewall.

1522: F5 load balancers.

We'll see how to set per-port metadata in the Adding Processing Pipelines section.

For any given syslog device, you might need to choose between using UDP or TCP. Which is best depends on
the characteristics of the sender. Here are some basic guidelines:

For single, high-volume senders (over 300GB/day), use UDP if possible. For both the sender and
Cribl Stream, UDP imposes lower overhead than TCP. The stateless nature of UDP allows each log event
to be directed to a di�erent worker thread than the last. This ensures maximum utilization of the Worker
Nodes. See Sizing and Scaling for more details.

For lower-volume senders, use TCP if the sender supports it.

For all other use cases, use UDP.

In Cribl Stream, we speak of pre-processing Pipelines, processing Pipelines (or just plain Pipelines), and
post-processing Pipelines. Cribl recommends combining the first two in an arrangement that we've found
to be optimal for syslog.

Attach a pre-processing Pipeline to most (or all) of your Syslog Sources. Use the pre-processing Pipeline to
apply the same set of ingest-time processing that all syslog events will need, regardless of what subsequently
happens on di�erent subsets of the data.

Syslog data is a classic example of where a pre-processing Pipeline is useful: Unlike processing Pipelines, pre-
processing Pipelines attach directly to a Source, enabling you to standardize or normalize what comes in.

UDP Versus TCP

Pipeline Planning

Pre-Processing Syslog Sources

Page 1472 of 1835

This way, you avoid having to implement that same functionality and logic separately in each processing
Pipeline associated with a Syslog Source.

Configure dedicated Pipelines (and Routes!) for each distinct subset of data that arrives via syslog senders.
These subsets might include DHCP logs from the router, tra�ic logs from the firewall, operational logs from
load balancers, and virtualization logs from on-prem virtualization hypervisors.

Certain kinds of subset-specific processing have become Cribl Stream best practices. These include:

For ESXi or other hypervisor logs, use the Drop Function to drop debug -level logs.

For firewall logs, enrich with DNS names, GeoIP fields, and lookups from a threat list.

For load balancer logs, use the Suppress Function to reduce volume.

Unless you're new to Cribl Stream, you've already created your own Pipelines, so we're not going to review
that here. (If you are new to Cribl Stream, consider running through the free Cribl Stream Fundamentals
sandbox course ASAP.)

Even before setting up a Cribl Stream Syslog Source, you'll want to install the Cribl Pack for Syslog Input
(a.k.a. cribl‐syslog‐input Pack), which provides the required pre-processing Pipeline.

If this is your first time installing from the Cribl Dispensary, see the full directions with screenshots.
Otherwise:

1. Open the Cribl Pack Dispenary's Cribl Pack for Syslog Input page.

2. Under Releases at right, click the link for the latest release.

3. In the resulting Assets section, right-click the .crbl file to download it locally.

4. In Cribl Stream, select a Worker Group, then select Processing > Packs.

5. Click the Add New button, and select Import from file.

6. Select the Pack you downloaded, and follow the prompts from there. In most cases, when installing a
Dispensary Pack, you should not enter an override value for New Pack ID.

7. Review the Pack's README file, available in the Pack's Settings link and also online.

Let's examine what this Syslog Input Pack provides, starting with the Routes page.

Pipeline for Selected Syslog Data Subsets

Importing the Pre-Processing Pipeline

Page 1473 of 1835

Routes page in the Cribl Pack for Syslog Input

The first Route matches based on inputId . Anything arriving via a Cribl Stream Syslog Source will match
this filter, as long as you've configured the Source to use the Pack, as shown below.

On first installation of the Pack, the Pipeline defaults to commonly used configurations. Cribl strongly
recommends reviewing the Pipeline's internal documentation to understand which features are enabled.
This documentation consists of Comments for each section, and a Description for each Function to explain
what's happening in that step.

Page 1474 of 1835

The Pipeline's internal documentation

Examining this documentation should make it clear what changes (if any) are needed to suit your
deployment environment. Go ahead and make those changes now.

The Pack ships with a lookup file called SyslogLookup.csv , whose contents you should replace as
necessary. To access the file, navigate to Processing > Packs, select the cribl‐syslog‐input Pack, and
click Knowledge.

The Lookup File

Page 1475 of 1835

Stock SyslogLookup.csv file, to be filled with customer data

Now that you've imported the pre-processing Pipeline, the next step is to ensure that you have the Syslog
Sources you need.

Use the in_syslog Source for syslog senders that are hard-coded to send to port 514, as described above.
In the QuickConnect UI: Click + New Source. From the resulting drawer's tiles, select [Push >] Syslog. Click
Select Existing, then in_syslog .

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the resulting page's tiles or the Sources le� nav, select [Push >] Syslog. In the Manage Sources page,
click in_syslog .

Configure the fields and options as follows:

Enabled: Toggle to Yes .

UDP Port and TCP Port: Assuming you're following the guidelines in this tutorial, you'll have a load
balancer relaying incoming tra�ic from port 514 to port 9514. Therefore, leave the in_syslog Source
configured to listen on its default port, 9514, for both TCP and UDP.

Enabling TLS is strongly recommended if the Source will be receiving data across the Internet.

Metadata: There is no need to add fields here, because for generic senders coming in on 9514, the Pack
will set the meta-information via the SyslogLookup.csv file. What you need to do is edit the lookup file

Creating Syslog Sources

Configure the in_syslog Source

Cribl Stream ships with a Syslog Source named in_syslog , which is preconfigured to listen for both
UDP and TCP tra�ic on Port 9514. You can clone or directly modify this Source to further configure it,
and then enable it.

General Settings

TLS Settings (TCP Only)

Processing Settings

Page 1476 of 1835

to add content appropriate to your deployment.

Pre-processing: From the Pipeline drop-down, select PACK: cribl-syslog-input
(Syslog Preprocessing) .

As explained above, you should now create a Syslog Source for each vendor/class of syslog sender. Create
each Syslog Source as follows:

In the QuickConnect UI: Click + New Source. From the resulting drawer's tiles, select [Push >] Syslog. Click
+ Add New.

Or, in the Data Routes UI: From the top nav of a Cribl Stream instance or Group, select Data > Sources.
From the resulting page's tiles or the Sources le� nav, select [Push >] Syslog. Click + Add New to open a
New Source modal.

Configure the fields and options as follows:

Input ID: This field specifies the name for the Source, which will appear in the __inputId field as well
as on Monitoring pages that show Source information. Common examples include
in_syslog_cisco_switch for Cisco switches, in_syslog_f5 for F5 load balancers, and so on.

UDP Port and TCP Port: Enter the dedicated port you have chosen for the device class, and use UDP or
TCP according to the recommendations above.

Enabling TLS is strongly recommended if the Source will be receiving data across the Internet.

Metadata: Select Fields (Metadata) and add the fields appropriate for the intended Destination(s), such
as sourcetype , index , __timezone , and any other meta-information you want to tie to the sender's
hostname or IP address.

Create a Source for Each Device Class

If you use QuickConnect, remember that each Source/Destination pair will be parallel and
independent.

General Settings

TLS Settings (TCP Only)

Processing Settings

Page 1477 of 1835

Metadata fields tied to a dedicated-port Syslog source

Pre-processing: From the Pipeline drop-down, select PACK: cribl-syslog-input (Syslog
Preprocessing) .

Congratulations! You've gotten a nice grounding in syslog processing, and you've seen methods with which
you can:

Properly architect the deployment environment, where syslog sender data travels through a load
balancer, which then distributes it across a Cribl Stream Worker Group.

Import a Pack from the Cribl Pack Dispensary.

Create new Cribl Stream Syslog Sources which use the Cribl Pack for Syslog Input.

Hard-code meta-information for specific ports, or use the lookup file to map meta-information for
specific hosts.

Your logical next step: using Pipelines and Routes, transform syslog data in a way that makes sense for your
particular syslog sender(s).

We'll look at two use cases:

QuickConnect a Syslog Sender to a Source

Route Multiple Syslog Senders to a Source

The point is to see how Cribl Stream o�ers di�erent approaches for di�erent scenarios. For configuring one
dedicated Source to receive a given, single dataset, QuickConnect is ideal. But to accommodate a mix of data
arriving on the same Source and port, and needing to be divided into subsets, and processed di�erently by
di�erent Pipelines – that is where we need Routes.

Adding Processing Pipelines

Use Case A: QuickConnect a Syslog Sender to a Source

Page 1478 of 1835

Of the many possible examples, we'll focus on reducing the volume of VMware ESXi syslog data by dropping
events of debug severity.

Data reduction will be significant, because debug severity events can make up 80-90% of syslog data sent
from ESXi servers. Not only that: Reducing the data volume reduces the CPU load and storage used to
process the data, and searches will respond faster. In a world where we're searching for needles in a
haystack, dropping 80% of the hay makes everything better.

To set this up:

1. In your Worker Group, navigate to Pipelines, click + Pipeline, then click Add Pipeline.

2. Name the new Pipeline DropNoisySyslog or something similar.

3. Click Comment and enter a good description of what you're doing. (This is an important best practice!)

4. Add a Drop Function with filter severityName=='debug' . (You could also use sampling, or dynamic
sampling if you wanted to be fancy about this.)

5. Click Save and we're done.

Pipeline to remove debug events

Next, we need to direct VMware ESXi data to our Pipeline. We'll do this using QuickConnect, which is the
fastest way to configure a new Source, tie it to a Destination, and assign pre-processing and processing
Pipelines to that Source. (We could also do this with Routes; that simply requires a few more configuration
steps.)

In the QuickConnect UI:

1. Click + New Source.

Page 1479 of 1835

2. From the resulting drawer's tiles, select [Push >] Syslog.

3. Click + Add New.

4. Configure the fields and options as follows:
Name: in_syslog_ESXi .

TCP: 1517 . This is the TCP port on which ESXi servers send their logs.

Pre-Processing > Pack: Select cribl-syslog-input .

Fields (metadata): Add a sourcetype field with value esxilogs , and an index field with value
vmware‐esxi .

Adding metadata appropriate for ESXi

5. Click Save.

6. On the main QuickConnect page, drag a connector from in_syslog_ESXi to each Destination you
want to receive these events. When prompted, select Pipeline, select your DropNoisySyslog , and click
Save.

7. Commit and deploy, and you're all set!

Let's imagine you have incoming data from a router. This data is tagged with sourcetype=myrouter , and it
includes a mix of DHCP actions, login/authentication attempts, and firewall tra�ic logs.

Our goal is to send each of the three data subsets of data – DHCP, login, and firewall – to its own Pipeline.

We know that the Cribl Pack for Syslog Input has a Lookup Function that – for data arriving on the default
port – should return meta-information such as sourcetype or index . We can combine this metadata with
some matching of strings within the data, in Route filters that direct the right data to the right Pipeline.

Use Case B: Route Multiple Syslog Senders to a Source

Although in reality, the myrouter firewall does not exist, the example that follows shows the art of
the possible. We'll spell out the procedures as if the scenario were real. Perhaps one day you'll use it
as a template for an actual deployment.

Page 1480 of 1835

Create three Pipelines, naming each one for a data subset: myrouter‐dhcp , myrouter‐auth , and
myrouter‐fw‐traffic .

Leave the Pipelines empty for now; we'll add Functions later on.

1. Navigate to Routing > Data Routes.

2. Click + Route.

3. Configure a Route as specified in the table below:

NAME FILTER PIPELINE

myrouter-dhcp sourcetype=='myrouter' && raw.match('dhcpd3:') myrouter-dhcp

myrouter-auth sourcetype=='myrouter' && raw.match('login') myrouter-auth

myrouter-fw-traffic sourcetype=='myrouter' && raw.match('TRAFFIC') myrouter-fw-traffic

myrouter-other sourcetype=='myrouter' DropNoisySyslog

4. Repeat the preceding steps until you have configured four new Routes – one for each of the three data
subsets, plus a final Route to drop events that don't match our Filters (i.e., noise).

All Routes should have the Final flag to Yes , and the output set to whatever Destination you think is
appropriate for the given data subset.

5. Click the myrouter-dhcp Route's ••• (Options) menu, then select Group Actions > Create Group.

6. Name new Group myrouter .

7. Drag the Routes you created above into the new Group. (Be sure that myrouter-other is listed last.)

8. Drag the new Group to whichever vertical position makes the most sense for your deployment.

Once you've completed all the above steps, then a�er collapsing your new Routes, you should see
something like this:

Create a Pipeline for Each Data Subset

Create a Route for Each Data Subset

Page 1481 of 1835

Example of Routes in a Group, each tied to the same sender

Next, edit each of the myrouter-<data‐subset> pipelines:

Use an Eval Function to modify the sourcetype (and perhaps other metadata.)

Use appropriate Functions to accomplish the enrichment, suppression, volume reduction, and/or other
transformations that the data needs.

Routing provides the flexibility needed when dealing with multiple datasets from a single sender, or
when a single Source receives multiple datasets.

Ensure that you have a dedicated Pipeline (and Route) for each discrete dataset that you want to
manipulate in some way (e.g., fw-traffic).

Ensure that you have a final Route that matches the general data from the overall sourcetype.

Use the Routing page's Groups option to create logical containers for sets of Routes that belong
together.

;

Takeaways from This Routing / Pipeline Use Case

Page 1482 of 1835

You can configure Cribl Stream to send raw event data through a Webhook Destination to Sumo Logic's
log management and analytics service.

Before you begin, you need the Manage Collectors role capability in Sumo Logic.

1. In Sumo Logic, navigate to Manage Data > Collection.

2. If you already have a Hosted Collector, select it and skip to Step 4. If you do not already have a Hosted
Collector, click Add Collector.

Adding a Hosted Collector

3. Select Hosted Collector and fill in the form.

4. Click Add Source.

Adding a Source for your Hosted Collector

5. Select HTTP Logs & Metrics. Fill in the form and click Save.

6. Sumo Logic then displays the HTTP Source URL, which you will need when configuring the
Webhook Destination in Cribl Stream.

11.2.10. Sumo Logic/Webhook Integration

Prepare Sumo Logic

Page 1483 of 1835

The HTTP Source URL

7. Click Copy to capture the URL.

8. Click Next to finish configuring the HTTP Source.

From the top nav of a Cribl Stream instance or Group, select Data > Destinations, then select Webhook from
the Manage Destinations page's tiles or le� nav. Click + Add New to open the Webhook > New Destination
modal.

In the Configure > General Settings tab, enter or select the following values:

URL: Enter the Sumo Logic HTTP Source URL.

Method: POST

Format: Custom

Source Expression = _raw . As needed, add more fields (e.g., host) for Webhook to include in the raw
output.

Content type: application/text

Configure Cribl Stream's Webhook Destination

Page 1484 of 1835

Webhook Destination General Settings

Next, in the Authentication tab, make sure that Authentication type is set to None .

In the Post-Processing tab, remove cribl_pipe from System Fields.

Click Save, then Commit & Deploy.

Create a Cribl Stream Pipeline to remove all except the Source Expression fields. Add an Eval Function with
the following values:

Keep Fields: Specify the same field(s) you specified in Source Expression when you created the
Webhook Destination (e.g., _raw , host).

Remove Fields: _* and * , to remove all other fields.

Example Pipeline

Create a Pipeline

Page 1485 of 1835

Configure a Route similar to the example below, replacing the names/IDs shown with the actual names/IDs
from your setup.

Example Route

In Sumo Logic, search for _source=<name> , replacing <name> with the name of the Source you created. The
search should return event data that is broken out into fields.

If your Webhook Destination specifies Source Expression as _raw , host , you should see output similar to
this, where the added field (host) appears at the end of the _raw string.

Sumo Logic Search Results with an Added Field

Create a Route

Verify that Sumo Logic Is Receiving Data

Page 1486 of 1835

;

Page 1487 of 1835

Tanium is a security platform that provides rapid searches across multiple endpoints. Tanium integrates with
a finite number of tools using its Tanium Connect module, but this can still leave gaps in conforming Tanium
output to the specific data formats required by unsupported tools and destinations.

Cribl Stream can help collect, reduce, enrich, transform, and route data from Tanium to any destination. This
includes SIEM (Security Information and Event Management) tools, logging tools, or other analytics
platforms. In this guide, we'll explain how to configure Tanium Connect to send Tanium-captured data to
Cribl Stream. For further details, see Tanium's Configuring SIEM Destinations topic.

A Tanium Connection is essentially a scheduled search/collection of data linked to a destination. Tanium
translates queries into Questions. It formats the Questions into the Tanium Search Language for a search,
providing near real-time results.

The first step in configuring Tanium Connect is to set up a Question. A Question can be a Saved Search,
Question Log, Client Status, or an Event.

To configure a new connection, go to the Tanium Module page and click Tanium Connect. On the
Connect Overview page, scroll to the Connections section, and click Create Connection.

Name: A unique name for your connection.

Description: An optional description for this connection.

Advanced Settings: Optionally, configure the following fields:

Log Level: Defaults to Information. Change the Log Level to Trace or Debug if plan to debug the
connection. Alternatively, set the Log Level to Warning, Error, or Fatal to reduce the amount of logging.

Minimum Pass Percentage: Minimum percentage of the expected rows to process for the connection to
succeed.

Memory Ceiling (GB): Maximum memory for the node process to run the connection.

11.2.11. Tanium to Cribl Stream

Configure Tanium Connect

Specify General Connection Information

Page 1488 of 1835

General Connection Information tab

This section enables you to specify the type of data you are sending to your destination. The data is usually
information from Tanium, such as a Saved Question, Question Log, Client Status, or Event. The settings vary
depending on the Source.

Configure the Connection Source

Page 1489 of 1835

Connection Source Configuration

In this section, we'll configure Cribl Stream as the destination, using the following fields.

Destination: Select the destination type. For our example, we'll configure it as a Socket Receiver .

New: Configure a new destination.

Name: Specify a unique name for your new destination. (This field is displayed only when configuring a new
destination.)

Existing: Update the settings on an existing destination. (Note that this will a�ect all the connections that use
this destination.)

Destination Name: Drop-down list where you can specify a preconfigured destination. Displayed only when
updating an existing destination.

Copy Settings: Copy settings from a preconfigured destination.

Host: Specify the destination'server host.

Network Protocol: Specify how to connect to the server (e.g., TCP).

Port: Enter the port number to listen on.

Configure Your Destination

Page 1490 of 1835

Secure: Select this option to use TLS encryption.

Trust on First Use: Select this option to accept the certificate presented from the server, and to trust only
that certificate for future connection runs.

Sample Cribl Stream Configured Destination

When you select a destination, the expected data format is displayed by default. For example, if you select
Splunk, the Syslog RFC 5424 automatically pre-populates the Format Type field. However, you can
customize the format as needed. (For details, see Tanium's Format Types topic.)

Format Type: When sending to Cribl Stream, select the JSON data format for best results.

In the Columns section, configure the columns that you want to pass on to your Destination. (For details, see
Tanium's Column Customizations topic.)

Format the Data

Page 1491 of 1835

Source: Check the box next to each Source to include the columns in your Destination.

Destination Labels: You can optionally assign a new column heading. Defaults to the Source name.

Value Types: You can change the data type to String , Numeric , or Data/Time value.
If you select a Numeric value, you must specify a default value. It can be any integer.

If you select a Data/Time value, specify the format to apply for the column. R(For details, see
Tanium's Time Stamp Variables topic.)

Configure your columns

Connections can run at a highly configurable time interval – anywhere from multiple times per hour, to daily,
weekly, or monthly intervals. The Schedule section allows you to enable and configure the scheduler.

Enable Schedule: If you do not enable the scheduler here, the connection will run only when you explicitly
run it.

Schedule the Connection

Page 1492 of 1835

Schedule Type: Select Basic to build a schedule with the provided controls.

Advanced – Define as a Cron Expression: Select this field to view or edit the cron expression directly.

Configure your columns

When you are done configuring your connection, click Save.

To view details when the connection runs, select the Logs tab. To inspect an individual run log, expand the
row table.

For help on resolving errors, see Taniuum's Troubleshooting topic.

If the user who owns a connection is deactivated, future instances of a scheduled connection will not
run. For details, see Tanium's Deleted User Troubleshooting topic.

Save and Verify the Connection

You can also click Run and Save to save and immediately run the connection. Connection details will
be displayed for successful connections.

Page 1493 of 1835

On your Cribl Stream instance, configure a TCP Source to receive the data from your configured Tanium
connection. For a video demo of this step, see this Tanium blog post.

;

Configure Cribl Source

Page 1494 of 1835

11.3. Lookup Applications

To enrich events with new fields from external sources (such as .csv files), we use Cribl Stream's out-of-the-
box Lookup Function. Ingestion-time lookups are not only great for normalizing field names and values, but
also ideal for use cases where:

Fast access via the looked-up value is required. For example, when you don't have a datacenter field
in your events, but you do have a host-to-datacenter map, and you need to search by datacenter .

Looked-up information must be temporally correct. For example, assume that you have a highly
dynamic infrastructure, and you need to resolve a resource name (e.g., a container name) to its address.
You can't a�ord to defer this to search time/runtime, as the resource and its records might no longer
exist.

Let's assume we have the following lookup file. Given the field conn_state in an event, we would like to add
a corresponding ingestion-time field called action .

11.3.1. Ingest-Time Lookups
Enriching Data in Motion

To use large binary databases (like GeoIP .mmdb files) for Cribl Stream lookups, see Managing Large
Lookups. To achieve faster lookups, use Cribl Stream's Redis Function.

Working with Lookups – Example 1

Page 1495 of 1835

First, make sure you have a Route and Pipeline configured to match desired events.

Next, let's add a Lookup function to the Pipeline, with these settings:

Lookup file path: $SPLUNK_HOME/etc/apps/Splunk_TA_bro/lookups/bro_conn_state.csv (note
that Environment variables are allowed in the path).

Lookup Field Name in Event set to conn_state .

Corresponding Field Name in Lookup set to conn_state .

Output Field Name from Lookup set to action .

Lookup Field Name in Event set to action .

action,"conn_state","conn_state_meaning"
dropped,S0,"Connection attempt seen, no reply."
allowed,S1,"Connection established, not terminated."
allowed,SF,"Normal establishment and termination."
blocked,REJ,"Connection attempt rejected."
allowed,S2,"Connection established and close attempt by originator seen (but no
reply from responder)."
allowed,S3,"Connection established and close attempt by responder seen (but no reply
from originator)."
allowed,RSTO,"Connection established, originator aborted (sent a RST)."
allowed,RSTR,"Established, responder aborted."
dropped,RSTOS0,"Originator sent a SYN followed by a RST, we never saw a SYN-ACK from
the responder."
dropped,RSTRH,"Responder sent a SYN ACK followed by a RST, we never saw a SYN from
the (purported) originator."
dropped,SH,"Originator sent a SYN followed by a FIN, we never saw a SYN ACK from the
responder (hence the connection was 'half' open)."
dropped,SHR,"Responder sent a SYN ACK followed by a FIN, we never saw a SYN from the
originator."
allowed,OTH,"No SYN seen, just midstream traffic (a 'partial connection' that was
not later closed)."

Page 1496 of 1835

Lookup Function to add action field

To confirm success, verify that this search returns expected results: sourcetype="bro" action::allowed .
Change the action value as necessary.

Let's assume we have the following lookup file, and given both the fields impact and priority in an event,
we would like to add a corresponding ingestion-time field called severity .

Working with Lookups – Example 2

Page 1497 of 1835

First, make sure you have a Route and Pipeline configured to match desired events.

Next, let's add a Lookup function to the Pipeline, with these settings:

Lookup file path:
$SPLUNK_HOME/etc/apps/Splunk_TA_sourcefire/lookups/cisco_sourcefire_severity.csv

(note that Environment variables are allowed in the path).

Lookup Field Name(s) in Event set to impact and priority .

Corresponding Field Name(s) in Lookup set to impact and priority .

Output Field Name from Lookup set to severity .

Lookup Field Name in Event set to severity .

impact,priority,severity
1,high,critical
2,high,critical
3,high,high
4,high,high
0,high,high
"*",high,high
.....
"*",medium,medium
1,low,medium
2,low,medium
3,low,low
4,low,low
0,low,low
"*",low,low
1,none,low
2,none,low
3,none,informational
4,none,informational
0,none,informational
"*",none,informational

Page 1498 of 1835

Lookup Function to add severity field

To confirm success, verify that this search returns expected results: sourcetype="cisco:sourcefire"
severity::medium . Change the severity value as necessary.

;

Page 1499 of 1835

This page o�ers a general approach to managing large lookup files. While Cribl Stream's Git integration
normally helps manage configuration changes, large lookups are exceptions. In many cases, you might want
to exclude these files from Git, to reduce excessive deploy tra�ic. This approach can also prevent Git Push
commands from encountering large file errors.

Good scenarios for this approach are:

Large binary files – like databases – which don't benefit from Git's typical e�icient storage of only the
deltas between versions. (With binary files, Git must replace the whole file for each new version.)

Files updated frequently and/or files updated independent of Cribl Stream.

Files replicated on many Worker Nodes.

We'll illustrate this with an example that o�en combines all three conditions: setting up the free, popular
MaxMind GeoLite2 City database to support Cribl Stream's GeoIP lookup Function. This example anticipates a
Cribl Stream production distributed deployment, where the GeoLite database is updated nightly across
multiple Workers.

This example includes complete instructions for this particular setup. However, you can generalize the
example to other MaxMind databases, and to other large lookup files – including large .csv 's that similarly
receive frequent updates.

The general approach for handling large lookups is:

Do not place these files in the standard $CRIBL_HOME/data/lookups .

11.3.2. Managing Large Lookups

The steps below assume access to a command line and (more importantly) to your OS' filesystem.
Where you lack such access – for example, in a Cribl Cloud deployment – load lookup files of all sizes
via Cribl Stream's UI, as outlined in Lookups Library.

About the MaxMind GeoLite Example

Reducing Deploy Tra�ic

Page 1500 of 1835

Instead, place them in a $CRIBL_HOME subdirectory that's excluded from Git version control, through
inclusion in the $CRIBL_HOME/.gitignore file. Deploying the files to the Leader Node and all desired
Workers will require a manual procedure and will be required for the initial deployment as well as
subsequent updates.

The example below uses $CRIBL_HOME/state subdirectory, which is already listed in the default
.gitignore file that ships with Cribl Stream.

Let's move on to the MaxMind GeoLite specifics.

To enable the GeoIP Function using the MaxMind GeoLite 2 City database, your first steps are:

1. Create a free MaxMind account, at the page linked above.

2. Log in to your MaxMind account portal and select Download Databases.

3. On the Download page, look for the database you want. (In this example, you'd locate the GeoLite2 City
section.) Note the Format: GeoIP2 Binary, and select Download GZIP.

GeoLite2 City database: Download binary GZIP

4. Extract the archive to your local system.

If you prefer, you can use a di�erent path, which might be a path outside $CRIBL_HOME . If you choose
this alternative, be sure to add that path to .gitignore .

However, Cribl recommends using a $CRIBL_HOME subdirectory like $CRIBL_HOME/state , because
this inherits appropriate permissions and simplifies backup/restore operations.

Download and Extract the Database

Page 1501 of 1835

5. Change to the directory created when you extracted the archive. This directory's name will correspond
to the date you downloaded the file, so in the above 2020-10-06 example, you would use:
$ cd GeoLite2-City_20201006

In distributed deployments, Cribl recommends copying the MaxMind database separately to the Leader and
all Worker Nodes, e.g.. placing it in the $CRIBL_HOME/state path. This will minimize the Git commit/deploy
overhead around nightly updates to the binary database file.

Once in the database's directory, execute commands of this form:

The above commands copy the .mmdb database file into your user's home directory on each Node. Next,
weʼll move it to $CRIBL_HOME/state on each Node. Execute these commands on both the Leader and
Worker Nodes:

Now that the database is in place, your Pipelines can use the GeoIP Function to enrich data. In the Function's
GeoIP file (.mmdb) field, insert the complete $CRIBL_HOME/state/<filename>.mmdb file path.

In smaller deployments, you might choose to copy this MaxMind database only to the Leader Node, and to let
Workers receive updates via Git commit/deploy. In this case, the final commands above might look like this:

Shell

Copy the Database File to the Leader and Worker Nodes
(Recommended)

$ scp *.mmdb <user>@<master-node>:
$ scp *.mmdb <user>@<worker-node>:

Copy the file to each Worker in the Worker Group where you intend to use Cribl Stream's GeoIP
Function.

$ sudo mv ~/*.mmdb <$CRIBL_HOME>/state/
$ sudo chown -R cribl:cribl <$CRIBL_HOME>/state/

Copy the Database File Only to the Leader (Alternative)

Page 1502 of 1835

To set up automatic updates, see MaxMind's Automatic Updates for GeoIP2 and GeoIP Legacy Databases
documentation. You'll need two modifications specific to Cribl Stream:

This must be set up on the Leader, and on each Worker in any Group that uses GeoIP lookups.

The default setting in GeoIP.conf writes output to /usr/local/share/GeoIP . You must change this
setting to the path where your databases actually reside. If you're using the recommended architecture
above, you'd set: DatabaseDirectory <$CRIBL_HOME>/state/ .

Storage aside, large lookup files can also require additional RAM on each Worker Node that processes the
lookups. For details, see Memory Sizing for Large Lookups.

;

$ sudo cp ~/*.mmdb /opt/cribl/groups/<group-name>/data/lookups/
$ cd /opt/cribl/groups/<group-name>/data/lookups/
$ sudo chown cribl:cribl *.mmdb

Automatic Updates to the MaxMind Database

Memory Considerations

Page 1503 of 1835

You can make your data architecture more maintainable by using Lookups to route and transform events
within Cribl Stream. This use case demonstrates an unusual solution, but one that served one Cribl
customer's particular goals (which might overlap with yours):

Ingest many – hundreds of – di�erent sourcetype / index field combinations.

Send all this data through a common Pipeline.

Stack four Mask Functions in the Pipeline.

Evaluate and process each sourcetype / index field combination only within its applicable Mask
Functions – either two or three Masks per combination.

To enable this approach, the example below centralizes masking logic for multiple conditions in a Lookup
table and corresponding Lookup Functions. The Lookup's output filters events to the applicable Mask
Functions. Specifically, we'll show how to instruct Cribl Stream to:

Check for a particular index / sourcetype combination in each event, and

Based on that combination, determine which Masks to apply to that event.

To use a lookup as a filter, you'd start by creating a comma-separated lookup table in this format, and adding
it to Cribl Stream:

11.3.3. Lookups as Filters for Masks

Overview

This last restriction reduces latency, by preventing Mask Functions from evaluating non-applicable
events, simply to ignore them.

Just to reiterate, this use case outlined here responded to this customer's requirements – one
Pipeline combining multiple Mask Functions, for many sourcetype / index combinations.
More typically, you'd use multiple Pipelines to process di�erent sourcetype / index combinations.

Design the Lookup

index,sourcetype,masks
apache_common, sourcetypec, ssn|credit_card|auth_token
syslog,sourcetypeb,ssn|auth_token
weblog,sourcetypea,auth_token|bearer_token

Page 1504 of 1835

Below the header, each row specifies an index, a sourcetype, and (in the third column) a pipe-delimited list of
applicable masks.

To make this example work, the table must have only one row for each index/sourcetype combination. (This
unusual restriction is particular to this scenario.) So, as you build out the lookup table, you cannot add new
masks for existing index/sourcetype combinations by appending new rows. Instead, you must modify the
third column of the existing rows.

Create a Cribl Stream Pipeline with a Lookup Function configured like this, pointing to your lookup table:

Lookup Function's configuration

This Function keys against both the index and sourcetype fields. When it finds a matching combination, it
adds a new key-value pair to your event for future filtering.

The key of that key-value pair (namely, __masks) starts with a double underscore, to make it a Cribl Stream
internal field. This convention ensures that the key-value pair will not get passed along to the Destination.

Configure the Pipeline

Page 1505 of 1835

However, you might prefer to export the key-value pair. For example, you might want a Splunk Destination to
index the list of masks applied to a given event, alongside that event. (This approach applies to many
forensic use cases.) If so, remove the double underscore from the above Function's Lookup Field Name in
Event value, and from the subsequent Filter expressions for each Mask Function.

Each Mask Function has a JavasScript Filter that breaks the pipe-delimited string into an array, and
determines whether the tag for that type of mask (e.g., bearer_auth) is in the __masks key-value pair. If so,
it applies the mask processing. If not, the event moves on to the Pipeline's next Mask Function.

Here are the four Mask Functions below the Lookup Function:

Mask Functions

In this particular example, the pipe-delimited mask tags in the lookup table's third column match the Mask
Functions' names, as well as matching their Filter conditions. This is just for simplicity – the Functions could
have any names, as long as the Filter expressions match the tags.

;

Page 1506 of 1835

Regular expressions are not just for field extractions – they can also be used inside lookup tables, and in
Functions, to replace and manipulate values within fields. Let's walk through a Pipeline that demonstrates
four di�erent ways to leverage regular expressions in Cribl Stream.

When organizations use host naming standards, it is easy to understand things like regions, availability zones
(AZs), IP addresses, and more. For example, consider an Amazon host called:

ec2-35-162-133-145.us-west1-a.compute.amazonaws.com

This is an EC2 host with a (dashed) IP address 35-162-133-145 , in the us-west1 region, in Availability
Zone a . You can also see the domain: compute.amazonaws.com .

While we can understand the enriched host names, we don't know which indexes to route the data to, nor
which sourcetypes to assign to the events, without looking up this information from another source. Doing so
is o�en a huge challenge for organizations. To solve this challenge, let's combine Regex Extract, Lookup, and
Eval Functions with some sample events to demonstrate the power of Cribl Stream.

The events below have timestamps broken out, but no indexes, sourcetypes, or other details have been
assigned yet:

11.3.4. Lookups and Regex Magic

Why Lookup Tables Matter

Sample Events

Page 1507 of 1835

Before we can assign an index or sourcetype, we need to extract the host , region , az , and domain fields
from the events. We can use a Regex Extract Function with this regular expression to extract all four fields:

GMT:\s+(?<host>[^.]+)\.(?<region>\w+-\w+\d+)-(?<az>[^.]+)\.(?<domain>[^:]+):

Here's that Regex Extract in a Cribl Stream Pipeline:

The Regex Extract Function

Page 1508 of 1835

On the OUT tab of Cribl Stream's Preview pane, the extracted fields of az , domain , host , and region now
appear below the _raw event. You can use these extracted fields for searching in your preferred search
solution.

We still need to determine the index and sourcetype. Cribl Stream's Lookup Function enriches events with
external fields. We'll use it with the newly extracted region field to assign an index and sourcetype to
these events.

First, we need to create a lookup table for the Function to reference. For this, we'll use regex again.

In the table below, five simple regular expressions map the extracted region field to the appropriate index
and sourcetype . For example, the region us-west1-a starts with us , so it matches the first regular
expression: us.+

Results of the Regex Extract Function

Lookups

Lookup File

Page 1509 of 1835

We use this lookup table's first row to assign an index of usa_index_tier , and a sourcetype of cloud-
init , to each matching event. The region patterns in the table's four remaining rows work the same way.

With the lookup table saved as region_index_sourcetype.csv , the Lookup Function below matches the
events' extracted region field against the regular expressions, and returns the matching index and
sourcetype .

There's actually more here than meets the eye. Note that we've specified no Output Fields. From the Lookup
Function's documentation, we know this means that the Function will default to outputting all fields in the
lookup table. So we get the contents of both remaining columns in the table we saw above: index and
sourcetype .

Lookup Function

Page 1510 of 1835

With the Lookup Function added to our Pipeline, the Preview pane's OUT tab shows that the index and
sourcetype are now added to each event.

Since the IP address is present in the host field, we can create the host_ip field using an Eval Function
with this replace method:

host.replace(/\w+-(\d+)-(\d+)-(\d+)-(\d+)/,'$1.$2.$3.$4')

This regular expression uses capture groups and pulls the four IP octets present in the hostname to build the
host_ip . These four capture groups are noted as $1.$2.$3.$4 , respectively. This method is very fast, and
removes the need to perform a DNS lookup from the host field to get the host's IP address. Magic!

Results of the Lookup Function

Getting Host IP Address from Host Name

Page 1511 of 1835

The host_ip field is now added to the events, displayed below host :

Results of the Eval Function and Replace Method

Page 1512 of 1835

Finally, let's put some sense into the sourcetype field, using another Eval Function. By combining the
values of the ${sourcetype}_${region}_${az} , the sourcetype becomes cloud-init_us-west1_a – so
now you can understand much more about the sourcetype at a glance.

Examine this Eval Function's value expression, taking careful note of the backticks (` `) and braces ({ })
that surround the field names, and the underscore (_) that separates them.

Take a look at the updated sourcetypes, and enjoy exploring Cribl Stream with your new knowledge!

Customizing the Sourcetype

Results of the Eval Function to Combine Values

Page 1513 of 1835

Below you'll find the lookup table, Pipeline, and sample events demonstrated in this use case. Create the
lookup file first, and then import the Pipeline. (The order matters, because the Pipeline import depends on
the lookup table's presence.)

To create the lookup table in Cribl Stream's UI, select Knowledge > Lookups, then click + Add New and
select Create with Text Editor.

Copy and paste in the header and rows listed below, then save the result as:
region_index_sourcetype.csv .

Try This at Home

Lookup Table

Page 1514 of 1835

Below is an export of the whole Cribl Stream Pipeline presented here. Import this JSON to get a Pipeline
named: setting_index_by_region_availability_zone.json .

Magic Pipeline

region,index,sourcetype
us.+,usa_index_tier,cloud-init
asia.+,apac_index_tier,cloud-init
europe.+,emea_index_tier,cloud-init
northamerica.+,na_index_tier,cloud-init
southamerica.+,ltam_index_tier,cloud-init

Pipeline

Page 1515 of 1835

{
"id": "setting_index_by_region_availability_zone",
"conf": {
"output": "default",
"groups": {},
"asyncFuncTimeout": 1000,
"functions": [
{
"filter": "true",
"conf": {
"comment": "This pipeline demonstrates four different ways to leverage

regular expressions in a Cribl Stream Pipeline including field extraction, lookup,
replace, and field value manipulation."

},
"id": "comment"

},
{
"filter": "true",
"conf": {
"source": "_raw",
"iterations": 100,
"overwrite": false,
"regex": "/GMT:\\s+(?<host>[^.]+)\\.(?<region>\\w+-\\w+\\d+)-(?<az>

[^.]+)\\.(?<domain>[^:]+):/"
},
"id": "regex_extract",
"disabled": false,
"description": "Extract host, region, availability_zone, and domain"

},
{
"filter": "true",
"conf": {
"matchMode": "regex",
"matchType": "specific",
"reloadPeriodSec": 60,
"addToEvent": false,
"inFields": [
{
"eventField": "region"

}
],
"ignoreCase": false,
"file": "region_index_sourcetype.csv"

},
"id": "lookup",
"disabled": false,
"description": "Lookup index and sourcetype using regex matching"

},
{
"filter": "true",
"conf": {
"add": [
{
"name": "host_ip",
"value": "host.replace(/\\w+-(\\d+)-(\\d+)-(\\d+)-

(\\d+)/,'$1.$2.$3.$4')"
}

]
},

Page 1516 of 1835

And here's a sample of raw events that you can upload or copy/paste into Cribl Stream's Preview pane to test
the Pipeline's Functions:

From here, modify the sample data, lookup table, and Functions to adapt this approach to your own needs!

"id": "eval",
"description": "Create IP from hostname, removing DNS requirement",
"disabled": false

},
{
"filter": "true",
"conf": {
"add": [
{
"name": "sourcetype",
"value": "`${sourcetype}_${region}_${az}`"

}
]

},
"id": "eval",
"description": "Append region and az to sourcetype",
"disabled": false

}
]

}
}

Sample Events

Feb 06 2021 02:18:31.286 GMT: ec2-35-162-133-145.us-west1-a.compute.amazonaws.com:
cloud-init[2929]: url_helper.py[DEBUG]: [0/1] open
'http://145.133.162.42/latest/api/token' with {'url':
'http://145.133.162.36/latest/api/token', 'headers': {'X-aws-ec2-metadata-token-ttl-
seconds': '21600', 'User-Agent': 'Cloud-Init/19.3-5.amzn2'}, 'allow_redirects':
True, 'method': 'PUT', 'timeout': 1.0} configuration
Feb 06 2021 03:33:30.302 GMT: ec2-48-169-111-182.us-east2-b.compute.amazonaws.com:
cloud-init[2929]: __init__.py[DEBUG]: Looking for data source in: ['Ec2', 'None'],
via packages ['', u'cloudinit.sources'] that matches dependencies ['FILESYSTEM']
Feb 06 2021 06:29:11.841 GMT: ec2-21-187-232-201.asia-northeast3-
a.compute.amazonaws.com: cloud-init[2929]: atomic_helper.py[DEBUG]: Atomically
writing to file /var/lib/cloud/data/status.json (via temporary file
/var/lib/cloud/data/tmpS7ibzJ) - w:[644] 489 bytes/chars
Feb 06 2021 12:59:44.232 GMT: ec2-76-187-246-132.europe-west3-
b.compute.amazonaws.com: cloud-init[2929]: stages.py[DEBUG]: Running module power-
state-change (<module 'cloudinit.config.cc_power_state_change' from
'/usr/lib/python2.7/site-packages/cloudinit/config/cc_power_state_change.pyc'>) with
frequency once-per-instance
Feb 06 2021 17:04:16.921 GMT: ec2-67-205-202-104.northamerica-northeast1-
c.compute.amazonaws.com: cloud-init[2929]: util.py[DEBUG]: Running command ['lxc-is-
container'] with allowed return codes [0] (shell=False, capture=True)
Feb 06 2021 19:45:47.687 GMT: ec2-87-209-176-201.southamerica-east1-
a.compute.amazonaws.com: DataSourceEc2.py[DEBUG]: Removed the following from
metadata urls: ['http://instance-data.:8773']

Page 1517 of 1835

;

Page 1518 of 1835

11.4. Sampling Applications

Let's say that you wanted to analyze and troubleshoot with highly verbose/voluminous data – for example,
CDN logs, ELB Access Logs, or VPC Flows – but you were concerned about storage requirements and search
performance. With Sampling, you can bring in enough samples that your analysis remains statistically
significant, and also do all the necessary troubleshooting.

See the example below, or see more details in Access Logs and Firewall Logs.

Let's use the out-of-the-box Sampling function to sample all events from
sourcetype=='access_combined' where status is '200' . We'll sample these at 5:1 (and all other events
at 1:1). This should lower the volume of all verbose successes (200 s), but still bring in all potentially
erroneous events (400 s, 500 s, etc.) that can be used for troubleshooting.

First, make sure you have a Route and Pipeline configured to match desired events.

Next, let's add a Regex Extract Function to extract the status field from _raw , and let's call the resulting
field __status . Remember, fields that start with __ are special fields in Cribl Stream, and can be used
anywhere in a Pipeline.

11.4.1. Sampling
Sampling at Ingest-Time

Sampling Example

Page 1519 of 1835

Extracting the __status field

Next, let's add a Sampling function, and scope it to all events where sourcetype=='access_combined' .
Let's apply a filter condition of __status == 200 , and a Sample Rate of 5 .

Sampling success responses

To confirm that sampling works, compare the event count of all 200 s before and a�er.

Each time an event goes through the Sampling function, an index-time sampled::<rate> field is
added to it. You can use this field in your statistical functions, as necessary.

Page 1520 of 1835

;

Page 1521 of 1835

Collecting samples of the event data you plan to work with in Cribl Stream can make your Cribl Stream
onboarding experience even quicker and more e�icient than if you don't.

When you set out to collect sample data, first decide whether to collect before or a�er the sending agent
processes it.

If you can, collect the data a�er the agent processes it. Then you can set up Cribl Stream Pipelines more
accurately the first time. The best option is live capture with Cribl Stream. Next best is gathering files.

If the only practical option is to collect data before it reaches the agent, that works, too. (This will
usually be a matter of gathering files.) Since setting up Pipelines is an iterative process, you can still
arrive at an optimal setup even if it takes a bit longer.

Regardless of what sending agent you're using, either the Capturing Data with Cribl Stream or the Gathering
Original Files section will apply.

Beyond that, there are two supplemental sections: one about how to export data from Elasticsearch, and the
other about exporting from Splunk. Of course, these are only two possibilities in a long list of sending agents.
If you are using a sending agent that's not covered here, please join us on Cribl's Community Slack at
https://cribl‑community.slack.com/ and share your questions about collecting sample logs.

For every group of sample files, create a README file which includes:

Sourcetype (e.g., the type of log you're collecting samples from).

Originating app or appliance.

Delivery mechanism (e.g., syslog, Filebeat, Splunk UF, or something else).

Whether the was data collected before or a�er processing by the agent.

A brief description of the data.

Though not always the easiest, this is the best option, because samples are captured exactly as they will look
when handed o� to Cribl Stream in production. You'll set Cribl Stream up as a passthrough which gets
samples “right o� the wire” and dumps them to DevNull.

11.4.2. Sample Logs

Describing Sample Data

Capturing Data with Cribl Stream

Page 1522 of 1835

In Cribl Cloud:

Check the landing page to see whether the pre-defined Sources (Elastic, syslog, and Splunk, among others)
are su�icient for your needs. If you need others, configure them using ports in the range 20000-20010.

Or, if your deployment is on-prem or in a private cloud:

Download and install Cribl Stream.

Open localhost:9000 in a browser.

Configure the Source you need. For simplicity, use port 1024 or higher. (If you must use lower ports you'll
need to follow a di�erent installation procedure.)

Point your sending agent at the Cribl Stream Source you created above. How you do this depends on what
sending agent you use. See this Cribl blog for a how-to that focuses on Cribl Cloud but also applies to on-
prem deployments.

Once data has begun flowing, click the Live button for your chosen Source.

The Live button initiates capture

Configuring Sources

$ mkdir /opt; cd /opt
$ curl -Lso - $(curl https://cdn.cribl.io/dl/latest-x64) | tar zxvf -
$ cribl/bin/cribl start

Directing Data to Cribl Stream

Live-capturing Data

Page 1523 of 1835

Grab 100 to 500 events, at a minimum. Try to capture as much variety as possible, even if that requires
multiple captures.

When finished, click Save as Sample File. Note the file name (and rename if you like). Close the sample
window.

In the Routing > Data Routes tab, select the Route you are using.

Your sample file(s) should appear in the Sample Data pane on the right. If the Sample Data pane does not
appear, type] (right square bracket) key to unhide it.

For each file you want to download:

Click the file name.

Click the ⚙ (gear icon) for Advanced Settings:

The Advanced Settings icon

In the resulting pop-up, select Save > NDJSON.

Once the file finishes downloading:
Move the file into the directory you've created for that set of sample files - which should also
include a README as described above.

When all files have been moved into the directory, compress the directory as a .tgz archive.

If live-capturing data with Cribl Stream is impractical for you, gather sample files that the sending agent has
not yet processed, using the following general workflow:

Gathering Original Sample Files

Page 1524 of 1835

Create a directory in which to store samples.

Copy a sample file into the new directory.

Repeat until all desired sample files have been copied.

Add a README file to the directory, as described above.

Redact sensitive content in the data, if required.

Archive the directory (e.g., with a command like tar -czf samples.tgz samples) for portability;
send it to your Cribl representative, if you are working with one.

If your data is in Elastic or Splunk, and you can neither capture live nor obtain original samples, use one of
the following export procedures. Then complete the workflow above, using the exported files instead of
original sample files.

1. Elastic o�en transforms the data it stores. To the extent possible, note any particulars about the shape
and content of the original data before it reached Elastic. Take special care to record the e�ects of any
Logstash pipeline configs on the sample data. Record all this information in the README you create. This
will make it easier to create the most e�ective filters in Cribl Stream.

2. Install the Logstash plugins logstash-input-elasticsearch and logstash-output-csv:

3. Compose a query to retrieve the data you want. Be sure to include the message field, whose value
should be the original event.

4. Substitute your query for the placeholder in the following config snippet, and save the snippet as
output-csv.conf :

Exporting Data from a Platform

If Splunk uses props and/or transforms to modify the _raw data of your logs, you must obtain your
sample data from the source, because the exported data will not include events in their original form.

Exporting Data from Elastic

$ cd /opt/logstash
$ bin/logstash-plugin install logstash-input-csv
$ bin/logstash-plugin install logstash-output-csv

Page 1525 of 1835

5. Run your export operation:

You can export logs from Splunk using the GUI or command line.

In the Splunk GUI:

1. Run a search that returns the appropriate sample of target logs. Adjust the number of samples by
appending | head <number_of_samples_desired> to your search. For example, to grab 100 samples
of Cisco ASA firewall data:

2. Adjust the search as needed to exclude or include the events you want to send.

3. When your search is collecting the desired samples, export the search results:

input {
 elasticsearch {
 hosts => "elastic-host:9200"
 index => "target-index"
 query => '
 {"query": {
 # your ES query here
 }
 }
 }
}}'
}

}
output {
 csv {
 fields => ["message", "field1", "field2"]
path => "/home/user/ES-sourcetype-export.csv"
}

}

/opt/logstash/bin/logstash -f output-csv.conf

Exporting Data from Splunk

index=firewall sourcetype=cisco:asa | head 100

Page 1526 of 1835

Exporting search results

4. Then select Raw Events, name the file a�er the source or sourcetype, and save.

Exporting raw events

Or, in the Splunk CLI:

You can obtain the same results as described in the previous section using commands like the following.

;

% $SPLUNK_HOME/bin/splunk search "index=firewall sourcetype=cisco:asa | head 100" -
output rawdata > cisco_asa_sample.txt

Page 1527 of 1835

Access logs are extremely common. They're o�en emitted by web servers or similar/related technologies
(proxies, loadbalancers, etc.), and tend to be highly voluminous. Typical examples include Apache access
logs, and CDN logs such as those from Amazon Cloudfront, Amazon S3 Server Access Logs, AWS ELB Access
Logs, etc.

For large installations, bringing everything into an analytics tool is o�en so cost-prohibitive (storage,
resources, license, etc.) that most users don't even bother. However, some of the logs contain relevant
information when looked at individually (e.g., errors). The much larger majority contains relevant
information when looked at in the aggregate (e.g., successes to determine tra�ic patterns, etc.).

It would be great if we could find a middle ground. With the Sampling Function, you can! Specifically, you
can:

Ingest enough sample events from the majority category that your aggregate analysis remains
statistically significant.

Ingest all events from the minority categories, and perform troubleshooting and introspection with full-
fidelity data.

Most of the access logs (including the ones mentioned above) have very similar formats. One quick way to
sample is to look at the value of the status field. 2XX s indicate success and tend to be, by far, the most
common ones – with 200 being the top. Therefore, 200 is the perfect candidate for sampling. All other
statuses occur much less frequently, indicate conditions that o�en need to be looked at, and can be brought
in with full fidelity.

1. Add a Regex Extract Function that looks at these sourcetypes: sourcetype=='access_combined' ||
sourcetype=='aws:s3:accesslogs'

11.4.3. Access Logs: Apache, ELB, CDN, S3, etc.

Recipe for Sampling Access Logs

Using status as the Sampling Condition

Sample Status 200 at 5:1

Page 1528 of 1835

2. Configure that Function to extract a field called __status with this regex: /HTTP\/\d\.\d"\s(?
<__status>\d+)/

Defining the Regex Extract Function

3. Add a Sampling Function to sample 5:1 when __status==200 .

4. Save.

Sampling success reponses

Note About Sampling

Page 1529 of 1835

Each time an event goes through the Sampling Function, an index-time sampled::<rate> field is added to
it. Use this field in your statistical Functions, as necessary.

Examples of other sourcetypes that will benefit from sampling, but might need a di�erent __status
extraction regex:

SOURCETYPE FILTER EXPRESSION

Amazon Cloudfront Access Logs sourcetype=='aws:cloudfront:accesslogs'

Amazon ELB Access Logs sourcetype=='aws:elb:accesslogs'

;

Other Sourcetypes

Page 1530 of 1835

Firewall logs are another source of important operational (and security) data. Typical examples include
Amazon VPC Flow Logs, Cisco ASA Logs, and other technologies such as Juniper, Checkpoint, pfSense, etc.

As with Access Logs, bringing in everything for operational analysis might be cost-prohibitive. But sampling
with Cribl Stream can help you:

Ingest enough sample events from the majority category that your aggregate analysis remains
statistically significant. E.g., sample all ACCEPT s at 5:1 .

Ingest all events from the minority categories, and perform troubleshooting and introspection with full-
fidelity data. E.g., bring in all REJECT s.

AWS' VPC Flow Logs feature enables you to capture information about the IP tra�ic going to and from
network interfaces in your VPC. Flow Log data can be published to Amazon CloudWatch Logs and Amazon S3.

Typical VPC Flow Logs look like this:

Let's use a very simple Filter condition and only look for ACCEPT events:

1. Add a Regex Extract Function that looks at: sourcetype=='aws:cloudwatchlogs:vpcflow'

2. Configure that Function to extract a field called __action with this regex: /(?<__action>ACCEPT)/

11.4.4. Firewall Logs: VPC Flow Logs, Cisco ASA,
Etc.

Recipe for Sampling Firewall Logs

Sampling VPC Flow Logs

2 123456789010 eni-abc123de 172.31.16.139 172.31.16.21 20641 22 6 20 4249 1418530010
1418530070 ACCEPT OK
2 123456789010 eni-abc123de 172.31.9.69 172.31.9.12 49761 3389 6 20 4249 1418530010
1418530070 REJECT OK

Page 1531 of 1835

Extracting the __action field

3. Add a Sampling Function to sample 5:1 when __action=="ACCEPT" .

4. Save.

Sampling ACCEPT events

Each time an event goes through the Sampling Function, an index-time field is added to it:
sampled: <rate> . It's advisable that you use that in your statistical functions, as necessary.

Note About Sampling

Page 1532 of 1835

Other sourcetypes that will benefit from sampling, but might need a di�erent __action extraction regex:

SOURCETYPE FILTER EXPRESSION

Cisco ASA Logs sourcetype=='cisco:asa'

Related sourcetypes to consider sampling:
sourcetype=='cisco:fwsm'
sourcetype=='cisco:pix'

;

Other Sourcetypes

Page 1533 of 1835

11.5. Using Other Functions

The Code Function introduced in Cribl Stream version 3.1 is a powerful way to transform events without
needing to write a custom function. Using JavaScript methods such as map , reduce , forEach , some , and
every is possible.

Cribl still recommends that you use Cribl Stream's basic, built-in Functions, like Eval, as much as possible.
But these use cases demonstrate some basic ways to use the new Code Function to solve questions asked in
the Cribl's Slack Community.

The first several examples below use the following JSON object as a sample event. You can copy and paste
this event into Cribl Stream's Sample Data pane. Add the Do Not Break Ruleset to your Source, select the
noBreak1MB Event Breaker, and under your Source's Advanced Settings, enable Parse JSON Event .

To access a field inside an event, you can use the __e special variable. The __e prefix allows for access to
the (context) event inside a JavaScript expression. For example, if you want to access the extracted field
field‐name , use the following syntax:

11.5.1. Code Function Examples

Basic Examples

Example Event Data

{
"cpus": [
{"number": 1, "name": "CPU1", "value": 2.3},
{"number": 2, "name": "CPU2", "value": 3.1},
{"number": 3, "name": "CPU3", "value": 5.1},
{"number": 4, "name": "CPU4", "value": 1.3}

],
"arch": "Intel x64"

}

Accessing Fields in an Event

__e['field-name']

Page 1534 of 1835

In other words, think of your code executing in a context like this:

To create a new field, it is as simple as assigning the field to a value. For example, if you want to create a field
test with the value Hello, Goats! , use the following syntax:

To filter the cpus array inside the event, you can use the filter function to keep only certain values, based
on a logic condition. In the example below, only entries where the value is greater than or equal to 3 are
kept, and placed into a new field called cpus_filtered .

function(__e: Event) {
 // your code here
}

Eval a Field

__e['test'] = 'Hello, Goats!'

JSON Filter

__e['cpus_filtered'] = __e['cpus'].filter(entry => entry.value >= 3)

Page 1535 of 1835

Code Function example: JSON Filter

The reduce method allows you to summarize data across an array, with a returned accumulator value. In
the example below, a new field, cpus_reduce , will be created with a value of 11.8 .

Reduce

__e['cpus_reduce'] = __e['cpus'].reduce((accumulator, entry) => accumulator +
entry.value, 0)

Page 1536 of 1835

Code Function example: Reduce

The some and every methods return a boolean result (true / false).

The some method checks that there is at least one logic validation that returns true . In the example below,
cpus_some would be set to true because there is at least one object with a value greater than or equal to
3 .

The every method checks that every entry in the array returns true . If so, the result is true ; otherwise,
this returns false . In the example below, the value for cpus_every would be false , because not all
values in the event are greater than or equal to 10 .

Some/Every

__e['cpus_some'] = __e['cpus'].some(entry => entry.value >= 3)

__e['cpus_every'] = __e['cpus'].every(entry => entry.value >= 10)

Page 1537 of 1835

Code Function example: Some/Every

In this example, each cpus member will have its name field transformed to lowercase. Object.assign is used
to keep the original object, while assigning the name field to the desired value.

Advanced Examples

Transform a Specific Field

__e['cpus'] = __e['cpus'].map(entry => Object.assign(entry, {'name':
entry.name.toLowerCase()}))

Page 1538 of 1835

Code Function example: Transform a Field

The forEach method loops over each element of an array. However, unlike the map method, it does not
return the value, and it requires a separate temporary variable for result collection.

forEach

let test = {};
__e['cpus'].forEach((entry, index) => test[entry.name] = entry.value);
__e['cpus_foreach'] = test;

Page 1539 of 1835

Code Function example: forEach

You could also accomplish the same result by replacing the middle line above with the map method below:

In this example, we create a new array to include some of the original values from each object in the cpus
array, but we also dynamically inject a new field containing the arch field (CPU architecture) from the
original event's top level.

__e['cpus'].map(item => test[item.name] = item.value);

Building a New Array

Page 1540 of 1835

Code Function example: Build a new array

Cribl Stream provides the following options for tuning the logic you build with the Code Function.

__e['cpus_new'] = __e['cpus'].map(entry => {
 const container = {};

 for (const [key, value] of Object.entries(entry)) {
 container[key] = value;
 }

 container['arch'] = __e['arch'];

 delete container.name;
 return container;
})

Managing and Troubleshooting Code Execution

Page 1541 of 1835

Users can access the log messages generated by their Function from the Preview Log.

Log messages from a Code Function

The Code Functionʼs execution context defines a helper function called debug that can be used for
debugging purposes.

Debugging a Code Function

Logging

Debugging

Page 1542 of 1835

Messages logged by this debug helper function are shown in the Preview Log by default.

Debugging a Code Function with the Preview Log

You can also route these messages to regular logs, although this requires setting the Function's log level
(func:code) to debug .

Debugging a Code Function with regular logs

By using the expanded editor, users can run the expression against a sample event, and can preview the
transformation:

Previewing

Page 1543 of 1835

Previewing a Code Function's transformation of an event

The Code Function keeps watching user-defined functions to detect infinite loops that would cause
processing to hang. To limit the number of iterations allowed per instance of your Code Function, adjust the
Advanced Settings > Maximum number of iterations option. This defaults to 5,000 ; the maximum
number allowed is 10,000 . Once the limit is reached, the Code Function will stop processing whatever is
a�er the statement that exhausted the allowed maximum.

Infinite-Loop protection in a Code Function

All JavaScript loops and statements are allowed: for , for-of , while , do-while , switch , etc.

Users can define their own functions to better organize their code. Both traditional and arrow functions are
allowed.

Infinite-Loop Protection

Loops

Functions

Page 1544 of 1835

From the Codeʼs Function body, you can access Cribl Stream's global C.* object and its
methods/expressions.

The global C.* object of a Code Function

;

Access to C.* Global Object

Page 1545 of 1835

To add new fields to any event, we use the out-of-the-box Eval Function. We can either apply a Filter to select
the events, or we can use the default true Filter expression to apply the Function to all incoming events.

Let's see how we add dc::nyc-42 to all events with sourcetype=='access_combined' :

First make sure you have a Route and Pipeline configured to match desired events.

Next, let's add a Eval function to it:

Defining the Eval Function's filter expression

Next, let's click on + Add Field, add our dc field, and click Save.

11.5.2. Ingest-time Fields

Adding Fields to Data in Motion

Adding Fields Example

Page 1546 of 1835

Adding the dc field

To confirm, verify that this search returns results: sourcetype="access_combined" dc::nyc-42

You can add more conditions to the filter, if you'd like. For example, to limit the field to only events from
hosts that start with web-01 , we can change the filter input as below:

Page 1547 of 1835

Refining the filter

This is a very powerful method to change incoming events in real time. In addition to providing the right
context at the right time, users can further benefit substantially by using tstats for faster analytics.

You can remove fields by listing and/or wildcarding field names. Let's see how we can remove all fields that
start with date_ .:

First, make sure you have a Route and Pipeline configured to match desired events.

Next, let's add a Eval function to it (as above).

Next, in Remove Fields, add date_* and hit Save.

Goodbye date_ field

To confirm, verify that this search: sourcetype="access_combined" date_minute=* will soon stop
returning results. Enjoy a more e�icient Splunk!

Removing Fields

Page 1548 of 1835

;

Page 1549 of 1835

To mask patterns in real time, we use the out-of-the-box Mask Function . This is similar to sed , but with
much more powerful functionality.

The Mask Function accepts multiple replacement rules, and accepts multiple fields to apply them to.

Match Regex is a JS regex pattern that describes the content to be replaced. It can optionally contain
matching groups. By default, it will stop a�er the first match, but using /g will make the Function replace all
matches.

Replace Expression is a JS expression or literal to replace matched content.

Matching groups can be referenced in the Replace Expression as g1 , g2 ... gN , and the entire match as
g0 .

There are several masking methods that are available under C.Mask. :

C.Mask.random : Generates a random alphanumeric string C.Mask.repeat : Generates a repeating
char/string pattern, e.g., XXXX C.Mask.REDACTED : The literal 'REDACTED' C.Mask.md5 : Generates a MD5
hash of given value C.Mask.sha1 : Generates a SHA1 hash of given value C.Mask.sha256 : Generates a
SHA256 hash of given value

Almost all methods have an optional len parameter which can be used to control the length of the
replacement. len can be either a number or string. If it's a string, its length will be used. For example:

11.5.3. Masking and Obfuscation

Masking and Anonymization of Data in Motion

Masking Capabilities

Page 1550 of 1835

Defining the replacement length

Let's look at the various ways that we can mask a string like this one: cardNumber=214992458870391 . The
Regex Match we'll use is: /(cardNumber=)(\d+)/g . In this example:

g0 = cardNumber=214992458870391

g1 = cardNumber=

g2 = 214992458870391

Replace Expression: `${g1}${C.Mask.random()}`

Result: cardNumber=HRhc

Replace Expression: `${g1}${C.Mask.random(7)}`

Result: cardNumber=neNSm8r

Masking Examples

Random Masking with default character length (4):

Random Masking with defined character length:

Random Masking with length preserving replacement:

Page 1551 of 1835

Replace Expression: `${g1}${C.Mask.random(g2)}`

Result: cardNumber=DroJ73qmyaro51u3

Replace Expression: `${g1}${C.Mask.repeat()}`

Result: Result: cardNumber=XXXX

Replace Expression: `${g1}${C.Mask.repeat(6, 'Y')}`

Result: cardNumber=YYYYYY

Replace Expression: `${g1}${C.Mask.repeat(g2)}`

Result: cardNumber=XXXXXXXXXXXXXXX

Replace Expression: `${g1}${C.Mask.REDACTED}`

Result: cardNumber=REDACTED

Replace Expression: `${g1}${C.Mask.md5(g2)}`

Result: cardNumber=f5952ec7e6da54579e6d76feb7b0d01f

Replace Expression: `${g1}${C.Mask.md5(g2, 12)}`

Result: cardNumber=d65a3ddb2749 *Replacement length will not exceed that of the hash algorithm
output; MD5: 32 chars, SHA1: 40 chars, SHA256: 64 chars.

Repeat Masking with default character length (4):

Repeat Masking with defined character choice and length:

Repeat Masking with length preserving replacement:

Literal REDACTED masking:

Hash Masking (applies to: md5, sha1 and sha256):

Hash Masking with le� N-length* substring (applies to: md5, sha1
and sha256):

Hash Masking with right N-length* substring (applies to: md5,
sha1 and sha256):

Page 1552 of 1835

Replace Expression: `${g1}${C.Mask.md5(g2, -12)}`

Result: cardNumber= 933bfcebf992 *Replacement length will not exceed that of the hash algorithm
output; MD5: 32 chars, SHA1: 40 chars, SHA256: 64 chars.

Replace Expression: `${g1}${C.Mask.md5(g2, g2)}`

Result: cardNumber= d65a3ddb27493f5 *Replacement length will not exceed that of the hash
algorithm output; MD5: 32 chars, SHA1: 40 chars, SHA256: 64 chars.

;

Hash Masking with length* preserving replacement (applies to:
md5, sha1 and sha256):

Page 1553 of 1835

Here, we demonstrate how to use just a few Cribl Stream Functions to parse WindowsXML events and reduce
their volume by 34–70%, dramatically reducing your downstream infrastructure requirements.

Cribl Stream's internal C.Text.parseWinEvent method parses Windows XML strings and returns a prettified
JSON object. You can use this function within an Eval Function to parse an event or an ad hoc XML string. It
works like C.Text.parseXml, but with Windows events, it produces more-compact output.

As you can see from its signature, C.Text.parseWinEvent accepts an optional nonValues parameter that
can further reduce an event's size by discarding characters that you specify as redundant.

When working with XML, an anonymous Reddit user's quote sums up the challenge: "Some languages can be
read by humans, but not by machines, while others can be read by machines but not by humans. XML solves
this problem by being readable to neither." An example of a Windows XML event only reinforces this quote:

11.5.4. Reducing Windows XML Events

Using Eval and C.Text.parseWinEvent

(method) C.Text.parseWinEvent(xml: string, nonValues?: string[]): any

@param – xml – an XML string; or an event field containing the XML.

@param – nonValues – array of string values. Elements whose value equals any of the values in this
array will be omitted from the returned object. Defaults to ['-'] , meaning that elements whose
value equals - will be discarded.

@returns – an object representing the parsed Windows Event; or undefined if the input could not be
parsed.

XML: Threat or Menace?

Page 1554 of 1835

This Windows XML _raw event is 1.36KB in size:

In our initial Eval Function below, the Value Expression uses C.Text.parseWinEvent to simply parse the
_raw Windows XML event and turn it into a prettified JSON object:

The resulting JSON event is now down to 921.00B in size, a 34.07% reduction of the event:

Eval to the Rescue

Page 1555 of 1835

But we can do better. The fields containing essentially null values ('0','0x0', or '‐') bloat events,
demanding extra infrastructure and storage:

The C.Text.parseWinEvent(_raw,[]) call yields verbose output that includes XML attributes. If
you want flatter output, you can substitute C.Text.parseXml(_raw, false) .

Removing Unnecessary Fields with a Better Eval

Page 1556 of 1835

Let's amplify the reduction by removing all of the fields whose values are in the set: ['0','0x0','-'] . This
improved version of our Eval Function parses the Windows XML event, and discards ['0','0x0','-']
values. (Its preceding row also tidies up events by removing tabs and curly braces, and replacing newlines
and returns with commas.) The result is an even smaller prettified JSON object:

Page 1557 of 1835

If you compare this Preview-pane screenshot to the Preview screenshot above, you can confirm that the
fields with values matching [‘0’,‘0x0’,’-’] are removed:

Page 1558 of 1835

The event is now down to 678.00B in size, translating to a 51.47% reduction from the original event:

Page 1559 of 1835

Cribl Stream's Flatten Function is designed to flatten fields out of a nested structure. Let's flatten the JSON
object within _raw , to see if we can further reduce the event's size before we send it to our preferred
destinations:

Using Flatten, we've successfully created top-level fields from the nested JSON structure:

Flatten Function

Page 1560 of 1835

The flattened field names are extracted from _raw and delimited with _ . These field names are quite long.
We can optimize them using the Rename Function.

Rename is designed to change fields' names, or to reformat their names (e.g., to normalize names to
camelcase). You can use Rename to change specified fields (much like Eval), or to accomplish bulk renaming
based on a JavaScript expression (much like the Parser Function). But Rename o�ers a streamlined way to
alter only field names, without other e�ects.

Let's use Rename to remove any unnecessary prefixes from the field names, to further shrink our events. In
the Renaming Expression, we build a JavaScript expression to match the field names' prefixes (up to the
underscore):

The resulting field names are now much more compact, and easier to work with and manage:

Don't worry about the _raw field's deletion (red strikeout). This is the Flatten Function's default
behavior. We'll restore _raw a�er we clean and reduce the event even more.

Rename Function

Page 1561 of 1835

We started with bloated Windows XML data, and we've parsed and prettified it into JSON. Next, we'll extract
key-value pairs. We'll use the Serialize Function, which serializes an event's content into a predefined format.

We set Serialize to change the Type to key-value pairs. (The Function's other supported target Types include
JSON Object and CSV.) Here, Serialize takes the extracted fields and puts them back into _raw :

Serialize Function

Page 1562 of 1835

In the Preview pane, the _raw field is now back, serialized into compact, tidy key-value pairs:

The last step is to remove any of the extracted fields you don't need before sending events to your
destinations. We'll again call on the Eval Function, which adds or removes fields in events. (For a Splunk

Page 1563 of 1835

destination, these are index-time fields.) This final Eval Function looks like this:

To sum up, we've successfully transformed the original Windows XML event into key-value pairs:

And we've dramatically reduced the event's size, while retaining all of the necessary fields. The event is now
down to 513.00B in size, translating to a 63.28% reduction from the original Windows XML:

Page 1564 of 1835

Below is an export of the whole Cribl Stream Pipeline presented here. Import this JSON to experiment with it
and modify it to match your own needs:

Win XML Pipeline

Try This at Home

Page 1565 of 1835

{
"id": "Windows_Security_Events",
"conf": {
"output": "default",
"groups": {},
"asyncFuncTimeout": 1000,
"functions": [
{
"filter": "true",
"conf": {
"comment": "This Cribl Stream Pipeline reduces Microsoft Windows XML

events, retains full fidelity of the data, and dramatically reduces license and
storage costs by up to 70%.\n\nAuthor: David Maislin - (david@cribl.io) - Find me on
our Community Slack"

},
"id": "comment"

},
{
"filter": "true",
"conf": {
"add": [
{
"name": "_raw",
"value": "_raw.replace(/[{}\\t]/gm,'').replace(/[\\n\\r]+/gm,',')"

},
{
"name": "_raw",
"value": "C.Text.parseWinEvent(_raw,['0x0','0','-'])"

}
]

},
"id": "eval",
"disabled": false,
"description": "Remove tabs & curly braces; replace newlines & returns with

commas. Parse the Windows XML event, removing null or unnecessary fields &
whitespace."

},
{
"filter": "true",
"conf": {
"fields": [
"_raw"

],
"prefix": "",
"depth": 5,
"delimiter": "_"

},
"id": "flatten",
"disabled": false,
"description": "Flatten the object into key value fields"

},
{
"filter": "true",
"conf": {
"baseFields": [],
"renameExpr": "name.replace(/_raw_Event_\\w+_/,'')",
"rename": []

},
"id": "rename",

Page 1566 of 1835

Finally, here's a sample of Windows XML events that you can upload to Cribl Stream's Preview pane to try this
out:

Sample data

"disabled": false,
"description": "Rename the top level fields and remove the log suffix"

},
{
"filter": "true",
"conf": {
"type": "kvp",
"fields": [
"!_*",
"!cribl_*",
"!index",
"!host",
"!source",
"!sourcetype",
"*"

],
"dstField": "_raw",
"cleanFields": false

},
"id": "serialize",
"disabled": false,
"description": "Serialize top level events back into _raw in the desired

type."
},
{
"filter": "true",
"conf": {
"keep": [
"_time",
"_raw"

],
"remove": [
"*"

]
},
"id": "eval",
"disabled": false,
"description": "Drop unnecessary fields."

}
]

}
}

Page 1567 of 1835

;

<Event xmlns='http://schemas.microsoft.com/win/2004/08/events/event'><System><Provider
3E3B0328C30D}'/><EventID>4625</EventID><Version>0</Version><Level>0</Level><Task>12544<
SystemTime='2020-11-12T17:27:33.608596000Z'/><EventRecordID>1598720</EventRecordID><Cor
<Channel>Security</Channel><Computer>EC2AMAZ-CPMK6J5.cribl.poc</Computer><Security/></S
Name='SubjectUserName'>-</Data><Data Name='SubjectDomainName'>-</Data><Data Name='Subje
Name='TargetUserName'>ADMINISTRATOR</Data><Data Name='TargetDomainName'></Data><Data Na
Name='SubStatus'>0xc000006a</Data><Data Name='LogonType'>3</Data><Data Name='LogonProce
<Data Name='WorkstationName'>-</Data><Data Name='TransmittedServices'>-</Data><Data Nam
Name='ProcessId'>0x0</Data><Data Name='ProcessName'>-</Data><Data Name='IpAddress'>64.2
<Event xmlns='http://schemas.microsoft.com/win/2004/08/events/event'><System><Provider
3E3B0328C30D}'/><EventID>4672</EventID><Version>0</Version><Level>0</Level><Task>12548<
SystemTime='2020-11-12T17:27:33.622556400Z'/><EventRecordID>1598721</EventRecordID><Cor
<Channel>Security</Channel><Computer>EC2AMAZ-CPMK6J5.cribl.poc</Computer><Security/></S
Name='SubjectUserName'>EC2AMAZ-CPMK6J5$</Data><Data Name='SubjectDomainName'>CRIBL</Dat
Name='PrivilegeList'>SeSecurityPrivilege
 SeBackupPrivilege
 SeRestorePrivilege
 SeTakeOwnershipPrivilege
 SeDebugPrivilege
 SeSystemEnvironmentPrivilege
 SeLoadDriverPrivilege
 SeImpersonatePrivilege
 SeDelegateSessionUserImpersonatePrivilege
 SeEnableDelegationPrivilege</Data></EventData></Event>
<Event xmlns='http://schemas.microsoft.com/win/2004/08/events/event'><System><Provider
3E3B0328C30D}'/><EventID>4624</EventID><Version>2</Version><Level>0</Level><Task>12544<
SystemTime='2020-11-12T17:27:33.622676800Z'/><EventRecordID>1598722</EventRecordID><Cor
<Channel>Security</Channel><Computer>EC2AMAZ-CPMK6J5.cribl.poc</Computer><Security/></S
Name='SubjectUserName'>-</Data><Data Name='SubjectDomainName'>-</Data><Data Name='Subje
Name='TargetUserName'>EC2AMAZ-CPMK6J5$</Data><Data Name='TargetDomainName'>CRIBL.POC</D
Name='LogonType'>3</Data><Data Name='LogonProcessName'>Kerberos</Data><Data Name='Authe
<Data Name='LogonGuid'>{A9F7AB8C-F5DA-B736-AF84-F1A02DFA3FA4}</Data><Data Name='Transmi
Name='KeyLength'>0</Data><Data Name='ProcessId'>0x0</Data><Data Name='ProcessName'>-</D
Name='ImpersonationLevel'>%%1833</Data><Data Name='RestrictedAdminMode'>-</Data><Data N
Name='TargetOutboundDomainName'>-</Data><Data Name='VirtualAccount'>%%1843</Data><Data
Name='ElevatedToken'>%%1842</Data></EventData></Event>
<Event xmlns='http://schemas.microsoft.com/win/2004/08/events/event'><System><Provider
3E3B0328C30D}'/><EventID>4634</EventID><Version>0</Version><Level>0</Level><Task>12545<
SystemTime='2020-11-12T17:27:33.624089200Z'/><EventRecordID>1598723</EventRecordID><Cor
<Channel>Security</Channel><Computer>EC2AMAZ-CPMK6J5.cribl.poc</Computer><Security/></S
Name='TargetUserName'>EC2AMAZ-CPMK6J5$</Data><Data Name='TargetDomainName'>CRIBL</Data>
</EventData></Event>
<Event xmlns='http://schemas.microsoft.com/win/2004/08/events/event'><System><Provider
3E3B0328C30D}'/><EventID>4625</EventID><Version>0</Version><Level>0</Level><Task>12544<
SystemTime='2020-11-12T17:27:36.185955600Z'/><EventRecordID>1598724</EventRecordID><Cor
<Channel>Security</Channel><Computer>EC2AMAZ-CPMK6J5.cribl.poc</Computer><Security/></S
Name='SubjectUserName'>-</Data><Data Name='SubjectDomainName'>-</Data><Data Name='Subje
Name='TargetUserName'>SCAN</Data><Data Name='TargetDomainName'></Data><Data Name='Statu
Name='SubStatus'>0xc0000064</Data><Data Name='LogonType'>3</Data><Data Name='LogonProce
<Data Name='WorkstationName'>-</Data><Data Name='TransmittedServices'>-</Data><Data Nam
Name='ProcessId'>0x0</Data><Data Name='ProcessName'>-</Data><Data Name='IpAddress'>163.

Page 1568 of 1835

To filter events in real time (data in motion), we use the out-of-the-box Regex Filter Function. This is similar
to nullqueueing with TRANSFORMS in Splunk, but the matching condition is way more flexible.

Let's see how we can filter out any sourcetype=='access_combined' events whose _raw field contains
the pattern Opera :

First, make sure you have a Route and Pipeline configured to match desired events.

Next, let's add a Regex Filter Function to it:

Defining the Regex Filter Function

Next, verify that this search does not return any results: sourcetype="access_combined" Opera

You can add more conditions to the Filter input field. For example, to further limit the filtering to only events
from hosts with domain dnto.ca , change the filter input as shown below:

11.5.5. Regex Filtering

Regex Filtering Example

Page 1569 of 1835

Filtering by host

This is a very flexible method for filtering incoming events in real time, on virtually any arbitrary conditions.

;

Page 1570 of 1835

11.6. Using Collectors

Cribl Stream's Replay options o�er organizations fundamentally new ways to manage data, by providing an
easy way to selectively ingest, and re‑ingest, data into systems of analysis. Let's walk through how to use
this feature, step by step.

For simplicity, weʼll treat the storage destination here as Amazon S3, although it could just as easily be MinIO,
or any of several other options.

You can write data out of Cribl Stream in either of two formats – JSON or raw.

With this option, the parsed event, with all metadata and modifications it contains at the time it reaches the
Destination step, will be wrapped in a JSON object. Each event is one line. This is newline-delimited JSON
(abbreviated NDJSON). For example, here is syslog data using the JSON format option:

JSON-formatted event

With this option, the contents of the eventʼs _raw field – unparsed, at the time it reaches the Destination
step – are written out in plaintext. Each event is one line. For example, here's the same syslog data, except
unmodified and unparsed, as written out with the raw option:

11.6.1. Using S3 Storage and Replay

Choosing JSON vs. Raw Format

JSON

Raw

Page 1571 of 1835

Raw-formatted

Cribl recommends using the default JSON format. Here, we expect that timestamp extractions and other vital
enhancements have already been performed. Reusing that information makes sense, and will make your
replay simpler.

Notice that in the screen capture above, the raw format simply contains the original data. There might be
cases where you want this; but usually, exporting the preprocessed event is more desirable.

The Worker Nodes stage files until certain limits are reached: Time open, idle time, size, or number of files.
These settings are available on the Destination configuration modal's Advanced Settings tab (see S3 details
here).

Once any of the configured limits is reached, the Worker gzips the file and drops it into the object store. If you
reach the open-file limit, the oldest file will be targeted.

The S3 Destination's settings also allow you to define how the uploaded files are partitioned. Host, time,
sourcetype, source – all the metadata is available to you for this purpose. When youʼre replaying data from
the store, these partitions will be handy, to make your replay searches faster.

We can map segments of the path back to variables (including time) that you can use to zero in on the exact
logs you need to replay, without requiring checking _raw .

Which Format?

The S3 Collector does not (as of v.3.5.3) support ingesting data in the Parquet format. Therefore, you
currently cannot replay data that has been exported as Parquet.

Writing the Data Out

For examples of the expressions Cribl recommends, see the example Destination definition below.

Page 1572 of 1835

With events stored in an object store, we can now point Cribl Stream to that store to Replay selected events
back through the system. We want to use data in the file path as an initial level of filtering, to exclude as
much data as we can from download. Object retrieval and unpacking imposes a big resource hit in the Replay
process, so minimize your impact radius. Searching against _raw data is also possible, but should be
secondary to _time , sourcetype , index , host , etc.

Retrieval details: The Leader picks one Node to do the discovery exploration, to find the potential objects
that are in play. That list of targets is then doled out to the Worker Group to actually pull down the objects,
and to examine them for content matches, before executing final delivery. All Worker Nodes share the
workload of retrieving and re-injecting the data.

Finally, we need to process the data coming back to extract each event. As with any incoming data stream on
a compatible Source, Cribl Stream can use default, or custom, Event Breaker definitions. In this case, we
recommended above to use JSON as the format of the events when we write to disk, so weʼll use the Cribl
Event Breaker ruleset on this Source. This Event Breaker contains a newline-delimited-JSON definition.

With the above concepts established, let's put them to work. We'll round-trip data through our Destination
and replay it in Cribl Stream.

Object storage, or any shared storage, will work. As long as all the Cribl Stream Nodes can see it, weʼre ready
to go. For the purposes of this post, letʼs stick with an S3-compatible store.

Youʼll need all the credentials, keys, secret keys, endpoints, etc., required to access the bucket that you
intend to use in your object store. (For details on cross-account access, see this blog post.) Obviously, the
bucket should be able to grow to the size intended for your long-term archival needs.

Retrieving the Events

Setting Up and Running Replay

The Store

Cribl Stream Collectors and Replay features are not compatible with "deep-freeze" storage classes
that have long retrieval times. This excludes the S3 Glacier and Deep Glacier storage tiers, and also
excludes Azure's archive tier.

The Destination Definition

Page 1573 of 1835

In your Cribl Stream Worker Group config, create a new S3 Destination. The screenshot below is an example
built for this demo.

Use the Destination's Advanced Settings tab to adjust the limits, if needed. The defaults are fine for most
situations, but depending on your partitioning scheme, we could be talking about 100+ files. So make sure
your staging area has enough space.

In particular, set the Max open files option appropriately. It overrides the size and time limits.
We recommend that the staging area be its own volume, so that you donʼt fill up a more-vital volume by
mistake.

Page 1574 of 1835

Partitioning and filename expressions

The screen capture above includes the partitioning and filename prefix expressions. Below is the full text of
each expression. In a nutshell, weʼre using time and other metadata to construct a path in the object store,
which will be useful to us at replay time:

Partitioning (one line):

Filename:

Weʼve also included a Key Prefix from Cribl Stream's Processing > Knowledge > Global Variables. You could
use this to partition your logs by environment, or any other qualifier. But this is optional, not a required field.

Create a new Cribl Stream Route called Archival that matches everything you want to archive. In this case,
we've set it to !__replayed , and set this internal field in the Source (see the next step). Any event that is not
coming from the defined Replay process will be archived.

Select the passthru Pipeline, or create an empty Pipeline and use that. Select the S3 Destination you
created above. And finally, make sure Final is not set. We want data to flow through this Route, not stop at it.
So, position the Archival Route at or near the top of the Routing table. Save your work, commit, and
deploy.

Year/Month/Day/index/host/sourcetype/HHMM-foobar.gz

`${C.Time.strftime(_time ? _time : Date.now() / 1000, '%Y/%m/%d')}/${index ? index :
'no_index'}/${host ? host : 'no_host'}/${sourcetype ? sourcetype : 'no_sourcetype'}`

`${C.Time.strftime(_time ? _time : Date.now() / 1000, '%H%M')}`

The Archival Route

Page 1575 of 1835

Pipeline configuration

Once saved and deployed, data should be flowing to your object store. Check your work: Go to the
Monitoring dashboard and select Data > Destinations at the top. You want to see a green checkmark on the
right side for your S3 Destination. If itʼs not green, find out why.

A green (healthy) destination

From the top nav of your Cribl Stream Worker Group or single instance, select Data > Sources > Collectors >
S3, and create a new S3 Collector with the ID Replay . Use the Auto‑populate from option to pull in the
configs from your S3 Destination.

You can also use an S3-capable browser, like Cyberduck, to check the files more manually. (Specific
troubleshooting steps are outside the scope of this doc.)

The Replay Collector

Page 1576 of 1835

In the Path field, we need to establish the tokens to extract from the path on the S3 store. If you used the
recommended partitioning scheme in the above example Destination definition, we recommend specifying
these tokens here:

If you chose to leave out C.Vars.MYENV , exclude the first segment. It is vital that this scheme match your
partitioning scheme in the Destination definition.

With these tokens defined, you can now define filters that exclude and include relevant files before
Cribl Stream is required to download and open them. This cuts down on the work required, by orders of
magnitude.

Finally, under Result Settings > Event Breakers, select the Cribl Ruleset. This Ruleset understands how to
parse the JSON packaged events stored by the Archive Destination.

Cribl Event Breaker Ruleset

To make it easier to identify events that have been replayed, create a field (Result Settings > Fields) named
__replayed and set it to true . You could filter on this field in Routes and Pipelines later. Because itʼs a
double-underscore field, itʼs internal-only, and wonʼt be passed on to your final destinations. In a previous
step, we used it to prevent replayed events from being re-archived:

/${MYENV}/${_time:%Y}/${_time:%m}/${_time:%d}/${index}/${host}/${sourcetype}/${_time:%H

This is a core concept. We want to avoid having to open files to check for matches, by instead relying
on key data in the path. Cribl Stream can immediately exclude, without downloading, the files that
have no chance of matching our target events.

Using _time , sourcetype , host , and index , it can accurately zero in on the target files. A�er this
high-level filtering, Cribl Stream will download and interrogate the contents of whatʼs le�, and will
send the matches along to the Routing table.

Page 1577 of 1835

__replayed field

Now save your Collector, and commit and deploy.

A�er youʼve accumulated some data in your S3 store, head over to Pipelines and start a capture. For the filter,
use __replayed , and run it for 300 seconds, 10 max events.

Once itʼs running, in a new browser window, navigate back to Collectors, and run your Replay Collector. Filter
on true , and set the Earliest time to -1h and the Latest to now .

You can run it in Preview mode to make sure you get results, and then come back and do a full run. (Or you
can just do a full run right o� the bat if youʼre confident.)

With a running job, you can click on the job ID to follow its progress. You can also pop back over to the
Capture browser window or tab, and you should see events there.

In a full run, the events will proceed through your Routes as normal, and will land wherever your original
Routes and Pipelines dictate. In this case, they landed in Splunk, and we could easily see duplicate events –
that is, exact duplicate events – in the 1‑hour timeframe that the Collector job defined.

Once defined, this Collector can be controlled via scheduling, manual runs, or API calls. And in production
use, when configuring the job's Run configuration or Schedule configuration modal, youʼd want to fill in
the Filter expression to meet your needs.

;

Testing Replay

Page 1578 of 1835

The REST/API Endpoint Collector is powerful, but complex. This use case demonstrates several examples of
building and running REST Collectors to pull data from public and simulated REST endpoints.

This example performs an HTTP GET operation against an external Joke API. This API uses a license key
header to authenticate the user.

Discover type: None

Collect URL: 'https://matchilling-chuck-norris-jokes-v1.p.rapidapi.com/jokes/random'

Collect parameters: None

Collect headers:

accept: 'application/json'

x-rapidapi-key: 'e4068647ffmsh65536596798f49dp17e998jsn342bac862377'

x-rapidapi-host: 'matchilling-chuck-norris-jokes-v1.p.rapidapi.com'

useQueryString: true

Pagination: None

Authentication: None

Event Breaker: JSON Newline Delimited – use Cribl Stream's built-in Cribl > ndjson rule, and associate it
with the Collector to parse the JSON document.

11.6.2. Using REST/API Collectors

1. Basic HTTP GET

Page 1579 of 1835

Collector configuration for basic HTTP GET

When run (in preview mode), the Collector should return a single JSON record. If the Collector is set up with
an NDJSON event breaker, it will look like this:

Returned event

The REST Collector's Pagination feature (available in Cribl Stream 2.4.3 and above) allows collection to
retrieve 1–N pages of data, using attributes returned in either the response body or response header. The
returned attribute can either be a URL (referencing the next page), or a token that can be added to
subsequent request headers or parameters.

Results

2. HTTP GET with Pagination via URL Attribute

Page 1580 of 1835

In this example, a returned response-body attribute contains a URL that references the next page. Pagination
will continue until either the Collector's Max Pages setting is reached, or no more pages are present (i.e., the
returned attribute is not present in the response body).

This example's API retrieves near-Earth asteroid data from NASA. The example uses a JSON Array Event
Breaker to extract individual records from an array attribute in the response.

Discover type: None

Collect URL: 'http://www.neowsapp.com/rest/v1/neo/browse?
api_key=oDa6w0fjsKEb1N3bMA5dMLhatMJ4WC5XtOBTrLrk'

Collect parameters: None – Parameters in this example are added to the header. Static parameters (i.e.,
parameters that donʼt reference variables) can safely be added to the URL. Any parameters that do reference
variables should always be added in the Collect parameters section, to allow filtering of values that evaluate
as undefined.

Collect headers: None

Pagination: Response Body Attribute

Response attribute: next

Authentication: None

Event Breaker: JSON Array

Page 1581 of 1835

Event Breaker configuration

Page 1582 of 1835

Collector configuration for HTTP GET, paginated via URL Attribute

When run (in Preview mode), the collector should return multiple records extracted from the Event Breaker.
In this example, we limited output to 10 pages of data. This particular dataset has over 1,000 total pages, so
itʼs a good idea to limit output to avoid a job that runs too long.

Paginated events

This API allows a certain number of calls/month. Cribl recommends that you not schedule this
Collector – run it ad-hoc, for testing only.

Page 1583 of 1835

This example uses Response Body Attribute pagination, which returns a token that is passed as a request
parameter to retrieve subsequent pages of data. The only di�erence between this example and Example 2 is
how the Response Body Attribute is used.

Discover type: None

Collect URL: 'https://api.greynoise.io/v2/experimental/gnql'

Collect method: GET

Collect parameters:

query: 'last_seen:1d'

scroll: `${scroll}`

Collect headers:

accept: 'application/json'

key: '<your-GreyNoise-API-key-here>'

Pagination: Response Body Attribute

Response attribute: scroll

Max pages: 10 (or 0 to pull all data)

Authentication: None

Event Breaker: JSON Array – use the configuration shown here:

3. HTTP GET with Pagination via Response Body
Attribute

To authenticate against the GreyNoise endpoint used in this example, set up a trial account according
to GreyNoise's Setting Up a Trial Account documentation.

Page 1584 of 1835

Event Breaker configuration

Page 1585 of 1835

In this example, the response body returns an attribute named scroll , which is a token that references the
next page of data to fetch. We reference the attribute in Collect parameters using the JavaScript expression:
`${scroll}` . If present, this will be passed to retrieve subsequent pages of data, until either the Collector's
Max Pages setting is reached, or no more pages are present.

Collector configuration for HTTP GET, paginated via Response Body Attribute

Paginated events

Collector Output

Page 1586 of 1835

For a more detailed use case around this particular API, see Cribl's Enrichment at Scale! blog post.

This example leverages pagination using a Response Header Attribute value. The value returned can be
either a URL (of the next page) or a token value (a request attribute that is passed to retrieve the next page of
data).

This example is based around a local Web server on port 3001. The server returns a response header when
another page of data is available, and the header contains the URL of the next page. Here's how the header
looks in developer tools:

Next-page URL passed as Response Header Attribute

Discover type: None

Collect URL: 'http://localhost:3001/api/v1/pagination/nextLinkHeader?num=1&maxPages=16'

Collect parameters: None

Collect headers: None

This API allows a certain number of calls/month. Cribl recommends that you not schedule this
Collector – run it ad-hoc, for testing only.

4. HTTP GET with Pagination via Response Header URL

Collector Configuration

Page 1587 of 1835

Pagination: Response Header Attribute

Response attribute: nextLink

Authentication: None

Event Breaker: None

Collector configuration for HTTP GET, paginated via Response Header URL

You can modify the maxPages URL parameter to control how many pages this call returns.

Collector Output

Page 1588 of 1835

Paginated events

In some cases, you must run an HTTP Request discovery to identify the items to collect. This example will do
the following:

1. Perform a Login (POST with body containing the login credentials), to obtain an auth token that will
passed in the Authorization header in all subsequent REST calls.

2. Run a REST call to discover items to be collected – in this case, log files.

3. For each log file discovered, collect the contents of that file.

4. We'll also demonstrate URL-encoding of a path element. You'd need to manually encode part of the URL
in cases where unsafe ASCII characters might be present in the path element (e.g., space, $, / , or =).

Discover type: HTTP Request

Discover URL: 'http://localhost:9000/api/v1/system/logs'

Discover method: GET

Discover parameters: None

Discover headers: None

Discover data field: items

5. HTTP Discover and Collect with Login Authentication

Page 1589 of 1835

Collect URL: 'http://localhost:9000/api/v1/system/logs/' + C.Encode.uri(`${id}`)

Collect parameters: None

Collect headers: None

Pagination: None

Authentication: Login

Login URL: http://localhost:9000/api/v1/auth/login

Username: admin (or other user)

Password: admin (or other user's corresponding password)

[Authentication] POST Body: `{ "username": "${username}", "password": "${password}" }`

Token Attribute: token

Authorize Expression: `Bearer ${token}`

Event Breaker: JSON Array

Array Field: items.events

Page 1590 of 1835

Event Breaker configuration

Page 1591 of 1835

Collector configuration for HTTP Discover and Collect with Login authentication

The login call sends a POST to the login URL, passing the string derived from the POST Body JavaScript
expression. Note that the variables ${username} and ${password} are available to this call, and are taken
from the username and password text fields.

Upon successful login (200 response code), the login token will be extracted from the response bodyʼs token
attributes, as specified by the Token Attribute field.

Finally, the value derived from the Authorize Expression field will be added to the Authorization header for
all subsequent calls (here, Discover and Collect). The variable name used in the Authorize Expression

Login

Page 1592 of 1835

should be the same name specified in the Token Attribute call.

The Discover call here is used to discover the list of log files that can be collected. The data returned by this
call has this format:

The Discover Data Field is used to define the array in Discover results that contains the list of items to
discover. Here, each item is an object, with an attribute ID that is referenced in the Collect calls. So the
Discover call generates a list of items for which Collect tasks will be created.

From the Discover task's returned list of items, each item will cause one Collect task to be created and run.
An object containing the Discover item (along with some internal variables) will be passed to the Collect task.

You can reference this object's attributes as variables in the Collect taskʼs URL, request parameters, and
request headers. When running a preview, you can see the object's contents in the __collectible internal
variable. (Enable Show Internal Fields, and expand __collectible to view the variables available).

For example, hereʼs one of the events returned by this example's Collect operation. The __collectible
attribute contains details identifying the page number and the URL used to obtain the data:

Discover

{
"count": 0,
"items": [
{
"id": "logFileName",
"path": "pathToFile"
}

]
}

Collect

Page 1593 of 1835

__collectible internal variable, expanded to show its contents

As you can see, __collectible contains a __pageNum variable, which shows which page of data the event
was received in. Also, __collectible contains an id variable, available for use in the Collect operation.
Here's how this variable is referenced in the Collect operationʼs URL:

'http://localhost:9000/api/v1/system/logs/' + C.Encode.uri(`${id}`)

Because the variable is used in the path, and it might contain unsafe ASCII characters (specifically, space), we
need to URL-encode the variable. This is the only case where the REST Collector requires URI encoding –
variables that are defined directly as part of the URL. (Request parameters, not contained directly in the URL,
are automatically encoded.)

The data returned by the Collect call has the following format:

The real data that we want to access is located at items.events . We can use a JSON Array event breaker to
convert data from events.items into individual events that will be sent to Routes and processed by
Cribl Stream. The output looks like this in Preview:

{
"items": [
{
"file": "access.log",
"nextOffset": "",
"previousOffset": "0:2236637",
"events": [

{
"time": "2021-02-15T23:39:23.043Z",
"src": "127.0.0.1",
"user": "admin",
"method": "GET",
"url": "/api/v1/jobs/1613432361.24",
"status": 200,
"message": "GET /api/v1/jobs/1613432361.24",
"response_time": 2
},
{
"time": "2021-02-15T23:39:22.366Z",
"src": "127.0.0.1",
"user": "admin",
"method": "GET",
"url": "/api/v1/system/logs/worker%2F7%2Fcribl.log",
"status": 200,
"message": "GET /api/v1/system/logs/worker%2F7%2Fcribl.log",

 "response
...

Page 1594 of 1835

Collected data

This example demonstrates situations where the Item List discovery mechanism is useful: enabling collection
based on a predefined list of items. Here, we want to collect weather information for a static list of states –
each returned from Discover results as a single collection task.

Let's assume we are interested in weather for the following U.S. locations: Nashville, Dallas, and Denver.
When the Discover operation runs, it will return a collectible object for each location (each representing its
own collection task): { id: ‘’}, {id: ‘TX’}, {id: ‘TN’} .

Discover type: Item List

Discover items: Nashville, Dallas, Denver

Collect URL: 'https://community-open-weather-map.p.rapidapi.com/find'

Collect parameters:

type: 'link'

units: 'imperial'

If this example fails with errors of the form statusCode: 429...Too many requests – see
Common Errors and Warnings to resolve this by relaxing the login rate limit.

6. Item List Discovery

Page 1595 of 1835

q: `${id}`

Collect headers:

x-rapidapi-host: 'community-open-weather-map.p.rapidapi.com'

x-rapidapi-key: '78934c846cmsh70cb53f75a8a54bp119d21jsn29df549b4fd6'

useQueryString: true

Pagination: None

Authentication: None

Event Breaker: JSON Newline Delimited – Use a rule like Cribl > ndjson to parse each event and extract
fields.

Fields (Metadata):

job: weather-${__collectible.id}

city: ${__collectible.id}

Collector configuration for Discovery via Item List

Page 1596 of 1835

Fields (Metadata) configuration

One interesting thing about this example is the addition of Fields (Metadata) to each event, using content
from the internal __collectible attribute. This __collectible attribute contains results from the
Discover operation, and is available in each event collected.

This demonstrates how information from the Discover operation can be transferred to events generated
during the Collect operation. Note the attributes __collectible , city , and job in the Collector output
below:

Collected events

Collector Output

This API allows a certain number of calls/month. Cribl recommends that you not schedule this
Collector – run it ad-hoc, for testing only.

Page 1597 of 1835

Like Item List discovery, Discover type: JSON Response allows you to discover a predefined, static list of
items. JSON Response's advantage is its ability to return an object containing more than one attribute that
the Collect operation can use.

Sticking with our weather example above, imagine that we needed to use both longitude and latitude
(instead of just city or state) when performing collection. This is the perfect use case for JSON Response
discovery.

Discover type: JSON Response

Discover result: {"items": [{"city": "Nashville", "lat": 36.174465, "lon": 86.767960},
{"city": "Dallas", "lat": 32.779167, "lon": -96.808891}, {"city": "Denver", "lat":

39.742043, "lon": -104.991531}] }

Discover data field: items

Collect URL: ''http://api.openweathermap.org/data/2.5/weather''

Collect headers: None

Collect parameters:

lat: `${lat}`

lon: `${lon}`

appid: '438d61a1db9e713240b30140e9ddfea2'

Pagination: None

Authentication: None

Event Breaker: JSON Newline Delimited – Use a rule like Cribl > ndjson to parse each event and extract
fields.

Fields (Metadata):

job: `weather-${__collectible.city}`

city: `${__collectible.city}`

7. JSON Response Discovery

Page 1598 of 1835

Collector configuration for JSON Response Discovery

Notice how attributes present in the Discover Result JSON objectʼs items array (`${lat}` , `${lon}` ,
`city`) are used in Collect Request Parameters, and in metadata Fields. Any other attribute present in the
items array can similarly be referenced in the URL, request parameters, or request headers.

Item List preview

Collector Output

This API allows a certain number of calls/month. Cribl recommends that you not schedule this
Collector – run it ad-hoc, for testing only.

Page 1599 of 1835

;

Page 1600 of 1835

You can configure the Lacework v2 API within Stream. This enables you to collect data from the Lacework API
without introducing custom scripts or add-ons into your Lacework environment.

Your workflow will be based on the Discover and Collect pattern that's standard for REST/API Collectors. In
the Lacework API variation described here, the Discover job will generate the access token that the collection
job uses in requests to the API. As an example, we'll configure Cribl Stream to collect Host Vulnerability data,
using optional filters available in the Lacework API.

Before you begin, make sure you have a Lacework API KeyID and secretKey , or create them as described
in the Lacework docs.

From the top nav of a Cribl Stream instance or Group, select Data > Sources, then select Collectors > REST
from the Data Sources page's tiles or the Sources le� nav. Click + Add New to open the REST > New
Collector modal. Enter a Collector ID, then complete the following options and fields.

From the Discover type drop-down, select HTTP Request . Then complete the Discover settings as follows.

Discover URL: Enter the URL at which Cribl Stream should access the Lacework v2/access/tokens
endpoint.

Discover method: From the drop-down, select POST with Body .

Discover POST Body: Enter `{"keyId":"<keyID>", "expiryTime":3600}` , substituting your
Lacework API KeyID for the placeholder.

Discover headers: Create the two headers specified in the table below, substituting your Lacework API
secretKey for the placeholder.

11.6.3. Lacework API Collection

Configuring the REST Collector

Collector Sources currently cannot be selected or enabled in the QuickConnect UI.

For additional details about all the configuration options specified here, see our REST/API Endpoint
and Scheduling and Running topics.

Discover Settings

Page 1601 of 1835

NAME VALUE

U-LW-UAKS '<secretKey>'

Content-Type 'application/json'

Your Collector configuration should look similar to this:

Discover Settings

Collect URL: Enter the URL at which Cribl Stream should access the Lacework
v2/Vulnerabilities/Hosts/search endpoint.

Collect method: From the drop-down, select POST with Body .

Collect POST body: Enter the following request body.

Collect Settings

Page 1602 of 1835

Here's what's happening in the request body example:

In our example, we've chosen to collect data only about hosts where one particular vulnerability, CVE-2018-
11233 , was detected. To accomplish this, we've added a filters element that specifies that the value of
the vulnId field must equal CVE-2018-11233 .

Note the earliest and latest variables. Later, in the Run Collector modal, you'll set Time Range values
that will populate these variables when the Collector runs. Both variables are formatted as UNIX epoch time,
in seconds units. (When using them in contexts that require milliseconds resolution, multiply them by 1,000
to convert to ms.) If you omit these variables, jobs will run for a period of 24 hours.

Collect Headers

We know that the Discover job, which we will run before the Collect job, will make a request to the Lacework
API v2/access/tokens endpoint, and that the Lacework API's response body will include an access token.
That means that the access token will be available to the Collect job, to pass in a Collect header.

Create the two Collect headers specified in the table below. The first will convey the access token.

NAME VALUE

Authorization `Bearer ${token}`

Content-Type 'application/json'

Your Collect settings should look similar to this:

 `{"timeFilter": { "startTime": "${C.Time.strftime(earliest || new
Date().getTime()/1000-(24*60*60), '%Y-%m-%dT%H:%M:%SZ')}", "endTime":
"${C.Time.strftime(latest || new Date().getTime()/1000, '%Y-%m-
%dT%H:%M:%SZ')}"},"filters": [{ "expression":"eq","field":"vulnId", "value": "CVE-
2018-11233" }] }`

Page 1603 of 1835

Adding a Collect header

Pagination

From the Pagination drop-down, select Response Header Attribute . In the Response Attribute field,
enter nextPage . This configures your Collector to work with the Lacework API response body, which
includes nested fields of pagination metadata, such that urls contains nextPage , whose value is the Next
Page URL.

You should see something like this:

Configuring pagination

The Lacework API authentication mechanism requires HTTP header parameters. Since Cribl Stream
does not (currently) support header parameters for authentication, we cannot use that

Page 1604 of 1835

Tags: Optionally, add tags that you can use for filtering and grouping in Cribl Stream. Use a tab or hard return
between (arbitrary) tag names.

Every call to the Lacework API v2/Vulnerabilities/Hosts/search endpoint returns data formatted as a
single event. Every event contains multiple nested JSON arrays, where each array is a data element. We'll
now create an Event Breaker that parses the larger structure into individual events – one for each data
element.

1. From Cribl Stream's top nav, select Processing > Knowledge.

2. Click the Event Breaker Rules le� tab. From the resulting Event Breaker Rulesets form,
click + Add New to open the New Ruleset modal.

3. Enter an ID for the new ruleset, and optionally add a Description and Tags.

4. Click + Add Rule.

In the resulting Rules modal, name the Rule, and configure it as follows:

Filter Condition: Enter true .

Enabled: Toggle to Yes .

Event Breaker Type: Select JSON Array .

Array Field: Enter data .

Optionally, you can use the Timestamp Settings to return events whose timestamp (_time) matches the
startTime or endTime field defined in the Lacework data.

authentication method, and you should skip the Authentication settings. This is why we use the
Discover job to obtain an access token, and then include that token in the Collect job.

Additional Settings

Result Settings

Page 1605 of 1835

Creating a ruleset

Click OK to return to the previous New Ruleset modal, then click Save.

Then return to your REST Collector's configuration modal, and:

1. Select the Result Settings > Event Breakers le� tab.

2. Under Event Breaker rulesets, click + Add ruleset.

Page 1606 of 1835

3. From the drop-down that now appears above the System Default Rule, select your new ruleset.

4. Click Save.

We'll start with the Discovery run:

1. On the Manage REST Collectors page, click Run beside your new Collector.

2. In the resulting Run Collector modal, select Mode > Discovery.

3. Configure a Time range, if desired.

4. Click Run to retrieve Discovery results.

A�er inspecting these results, launch the Collector run:

1. Back on the Manage REST Collectors page, again click Run beside your new Collector.

2. In the resulting Run Collector modal, this time select Mode > Full Run.

3. Configure a Time range, if desired.

4. Click Run.

Once the Lacework API responds, you should see data similar to this:

Discovering and Collecting

Page 1607 of 1835

Data from the Lacework API

;

Page 1608 of 1835

The Microso� Graph API provides access to data in the Microso� Cloud. This page explains how to configure a
Cribl Stream REST/API Collector to ingest data using the Microso� Graph API.

Before you start, you'll need to do the following in the Azure portal:

Register the app you'll use to interact with Graph API.

Generate a Client Secret for the app.

Write down the Application ID, Tenant ID, and Secret Value defined for the app.

Decide which API calls you expect to use, then, for each of those API calls:
Configure the corresponding API permissions for your app.

Examine how the Graph API structures events, and decide whether you want to change that
structure using an Event Breaker.

For example, if you plan to call the Audit Logs API (as demonstrated in this walkthrough), do the following:

Configure your app with AuditLog.Read.All API permissions, which Audit Logs API calls require.

Notice that the API structures Azure Active Directory (AD) Audit Logs data as a single JSON object with
events nested under the value field. With an Event Breaker, you can split this into individual events for
each AD Audit Log activity.

To retrieve data using the Microso� Graph API, your Collector first obtains a Bearer token by sending an HTTP
POST request to the Microso� identity platform. Once it has the Bearer token, your Collector can send an
HTTP GET request to the Graph API, which responds with the data you requested. Configuring your Collector
will be more intuitive if you keep this pattern in mind.

From the top nav of a Cribl Stream instance or Group, select Data > Sources, then select Collectors > REST
from the Manage Sources page's tiles or le� nav. Click + Add New to open the REST > New Collector modal,
which provides the following options and fields.

11.6.4. Microso� Graph API Collection

How the REST Collector Interacts with Microso� APIs

Configuring a Graph API REST Collector

Page 1609 of 1835

These settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., ms_graph_42 .

Collect URL: An expression that produces a URL for the collect operation. The URL can be any of the Graph
API endpoints. In this example, we want to retrieve Azure AD Audit logs, so we use the Audit Logs endpoint:

'https://graph.microsoft.com/v1.0/auditLogs/directoryAudits'

Collect method: GET .

Collect headers: Add the following header.

Name: content-type .

Value: application/x-www-form-urlencoded

To authenticate against the Microso� Graph API, the REST Collector uses a POST call whose body is a
template. The content-type header tells the Graph API that the template is a URL-encoded (not JSON-
encoded) form. See Authentication Settings > POST Body below.

Use the Authentication method buttons to select Login, then enter the following information:

Username: The Application (Client) ID listed on your app's Overview page in Azure.

Password: The Secret Value listed on your app's Certificate & Secret page in Azure.

Login URL: The token API endpoint for the Microso� identity platform. Use the string:
‘https://login.microsoftonline.com/<tenant_id>/oauth2/v2.0/token’ , substituting your
Azure AD tenant ID for <tenant_id> .

A POST body template for the token request that the Collector sends to the Microso� identity platform.
Use the string:

The sections described below are spread across several tabs. Click the tab links at le� to navigate
among tabs. Click Save when you've configured your Collector.

Collector Settings

Collect Settings

Authentication Settings

Page 1610 of 1835

`client_secret=${password}&scope=https://graph.microsoft.com/.default&client_id=${us

ername}&grant_type=client_credentials` . When the Collector sends the request, it will populate
the template with the Username and Password that you entered above.

The Token attribute: The field that contains the Bearer token, within the Microso� identity platform's
response to the token request. Use access_token .

The Authorize expression, a JavaScript expression that computes the Authorization header the
Collector uses in calls to the Graph API. Use `Bearer ${token}` . The Collector will populate the
${token} variable with the token obtained from the Microso� identity platform.

As explained above, the Microso� Graph API delivers Azure Active Directory Audit Logs data as a single JSON
object, with events nested under the value field. Cribl recommends using an Event Breaker to split this into
separate name/value pairs.

You'll create the Event Breaker in the Result Settings > Event Breakers tab. But first, you must save a sample
file, and create a ruleset for the Event Breaker to use.

On the Manage REST Collectors page, click Run beside the REST Collector you configured. This opens the
Run configuration modal, in Preview mode. Click Run to open the Capture Sample Data modal.

When data appears, notice that it's a large JSON object with multiple events nested under the value field:

Result Settings

Saving a Sample File

Page 1611 of 1835

Audit Logs data in original form

Click Save as Sample File and note the file name and location.

From the top menu, open Knowledge > Event Breaker Rules, then click + Add New to open the
New Ruleset modal. Enter an ID and a Description for the ruleset, then click Rules > + Add Rule to open the
Rules modal.

Here's what we want the ruleset to do:

1. Remove the leading @odata.context statement. For this example, we'll assume that OData is not
important for your use case.

2. Structure each of the fields nested within the value element as a separate event, where the value of the
activityDateTime field becomes the value of the _timestamp field.

Name the ruleset, then:

Creating an Event Breaker Ruleset

Page 1612 of 1835

From the Event Breaker Type drop-down, choose JSON Array. This detects that the value element is
a JSON array, and breaks it into key-value pairs. It also discards the @odata.context element, because
that falls outside the detected JSON array.

In the Timestamp Anchor field, enter activityDateTime between the slashes.

Upload your sample file.

Compare the In and Out panes. You should see output similar to this:

Audit Logs data broken into individual events

Click OK to return to the New Ruleset modal.

You should see a result similar the screenshot below. Click Save.

Creating an Event Breaker ruleset for Audit Logs data

In the Collector's Result Settings > Event Breakers tab:

Event Breakers

Page 1613 of 1835

From the Event Breakers drop-down, select the ruleset that you created and saved.

Click Save.

Run the Collector again. Now you should see an individual JSON-formatted event for each AD Audit Log
activity.

Audit Logs data from the finished Collector

;

Page 1614 of 1835

This topic covers how to configure Cribl Stream REST Collectors to gather data via ServiceNow (SNOW) REST
APIs and then enrich the data using Pipelines and the Redis Function.

From among the 100-or-so SNOW REST APIs, we've chosen the CMDB Instance for this tutorial. You can adapt
this material for use with other SNOW REST APIs. You'll need to create a separate Collector for each SNOW API
you connect to.

The prerequisites for this setup are a ServiceNow instance, which you can obtain here, and the URL for the
Redis store you wish to use.

A common pattern in REST APIs is to expose two related endpoints:

One endpoint takes a category identifier as a URL parameter, and returns a list of instances of the
category, with an individual identifier for each item in the list.

A second endpoint takes the instance identifier as a URL parameter, and returns full details about the
instance.

The SNOW CMDB Instance REST API follows this pattern. The API is called "CMDB" because it exposes a
Configuration Management Database which contains records that describe how pieces of hardware are
configured. The categories for di�erent kinds of hardware are specified by "classnames," and the description
of an individual piece of hardware is called a Configuration Item (CI) record. The relevant API calls look like
this:

The GET /now/cmdb/instance/{classname} call takes a classname (e.g., cmdb_ci_appl ,
cmdb_ci_linux_server , cmdb_ci_apache_web_server) as a URL parameter, and returns a list of
instances of the classname. Each instance has a sys_id and a name .

The GET /now/cmdb/instance/{classname}/{sys_id} call takes a sys_id as a URL parameter, and
returns the detailed CI record for the instance that the sys_id refers to.

In this tutorial, you'll create a Collector that uses the first API call to discover the systems for a given
classname. Then you'll iterate the second API call over the list of sys_id s we discovered, to collect the CI
records of interest. This discover and collect pattern works for any Cribl Stream Collector.

11.6.5. ServiceNow API Collection

Using the Discover and Collect Pattern

Page 1615 of 1835

You'll have the Collector store the CI data in Redis. Then whatever Source you choose that has events to
enrich, can do that by pulling the collected CI record data from Redis. That's the goal: enriching data.

How might this be useful? Here's one scenario: Suppose you have log data in which server names appear.
Assuming that the servers in question have records in your CMDB, you can enrich the events with data about
the server, such as its sys_id or the name of the user who updated it last.

Before creating the SNOW Collector itself, you'll set up the two Pipelines that the Collector needs. Both
pipelines use the Cribl Stream Redis Function.

The process pipeline attaches to the Collector and performs a set to add events to Redis.

The enrichment pipeline performs a Redis get to retrieve the values with which we'll enrich events in
the Collector.

Create a pipeline called SNOW_Instance_Process with the following Functions and values:

Operation Mode: Extract

Type: JSON Object

Source Field: _raw

Note that each event this Function will parse is the reponse body from a GET
/now/cmdb/instance/{classname}/{sys_id} call—i.e., a result object. That object has an attribute
called attributes whose value is itself an object containing dozens of key/value pairs. To enrich our data,
we'll treat one of those (name , meaning server name) as a key whose value will be two more (sys_id and
sys_updated_by), comma-separated. We'll specify all three as Evaluate Fields in the next Function.

Evaluate Fields:

NAME VALUE EXPRESSION

name result.attributes.name

Preparing Pipelines

Create the Process Pipeline

Parser Function

Eval Function

Page 1616 of 1835

NAME VALUE EXPRESSION

sys_id result.attributes.sys_id

sys_updated_by result.attributes.sys_updated_by

The Redis function stores our fields in the key/value relationship described earlier.

Command: set .

Key: `${name}` .

Args: `${sys_updated_by},${sys_id}` .

Redis URL: The URL for your Redis store, e.g., redis://10.0.0.1:6379 .

Create a pipeline called SNOW_Instance_Enrich with the following Functions and values:

Command: get .

Result field: Args .

Key: `${name}` .

Args: Leave blank.

Redis URL: The URL for your Redis store, e.g., redis://10.0.0.1:6379 .

Operation Mode: Extract .

Type: CSV .

Source Field: Args .

List of Fields: sys_updated_by sys_id .

Remove Fields: Args .

Redis Function

Create the Enrichment Pipeline

Redis Function

Parser Function

Eval Function

Page 1617 of 1835

From the top nav of a Cribl Stream instance or Group, select Data > Sources, then select Collectors > REST
from the Manage Sources page's tiles or le� nav. Click + Add New to open the REST > New Collector modal,
which provides the following options and fields.

These settings determine how data is discovered and collected before processing. You'll see the power of the
discover and collect pattern here: from the results of a single Discover API call, we will generate an entire set
of Collect API calls. There is more about this pattern in the REST Collector documentation.

Collector ID: Unique ID for this Collector. E.g., snow_42-a .

Discover Type: HTTP Request

Discover URL: An expression that produces a URL for the discover operation. We can enter this URL as a
constant, e.g.:

'https://dev111111.service-now.com/api/now/cmdb/instance/cmdb_ci_appl'

Discover method: GET

Discover Data Field: result

We specify result for the Discover Data Field because that is the key of the JSON array that our Discover
call retrieves. For example:

Configuring a SNOW Collector

The sections described below are spread across several tabs. Click the tab links at le�, or the Next
and Prev buttons, to navigate among tabs. Click Save when you've configured your Collector.

Collector Settings

Discover Settings

Page 1618 of 1835

This array becomes the list of items for which Collect tasks will be created. We'll reference one of its
attributes, namely sys_id , as a variable in the Collect task's URL.

Collect URL: An expression that produces a URL for the collect operation. We enter the first part of the URL as
a constant, then for the final URL parameter, we use an expression to reference the sys_id returned by the
Discover call:

We use the C.Encode.uri Cribl expression to encode the sys_id in case any sys_id contains unsafe
characters.

Collect method : GET .

Use the Authentication method buttons to select one of these options:

None: Don't use authentication.

Basic: Use HTTP token authentication.

Basic (credentials secret): Select a stored text secret in the resulting drop-down, or click Create to
configure a new secret.

Login: This option requires you to provide:

The Username and Password fields for your HTTP Basic authentication credentials.

The Login URL that SNOW should use to connect to Cribl Stream.

"result": [
 {
 "sys_id": "3a290cc60a0a0bb400000bdb386af1cf",
 "name": "PS LinuxApp01"
 },
 {
 "sys_id": "3a5dd3dbc0a8ce0100655f1ec66ed42c",
 "name": "PS LinuxApp02"
 }
]

Collect Settings

'https://dev111111.service-now.com/api/now/cmdb/instance/cmdb_ci_appl'+
C.Encode.uri(`${sys_id}`)

Authentication

Page 1619 of 1835

A POST Body template for the request SNOW uses when logging in. You must edit this if your
credentials' location di�ers from that specified by default.

The Token Attribute, which is the path to the token attribute in login response body. Nested
attributes are OK.

The Authorize Expression, a JavaScript expression that computes the Authorization header to
pass in Discover and Collect calls. The value ${token} references the token obtained from login.

Login (credentials secret): Provide username and password credentials referenced by a secret. Select a
stored text secret in the resulting Credentials secret drop-down, or click Create to configure a new
secret. You must also provide the Login URL, POST Body, Token Attribute, and Authorize Expression,
as in the plain Login option.

These settings enable the Collector you've been configuring to use your process Pipeline.

Toggle Send to Routes to No .

Choose the SNOW_Instance_Process pipeline from the dropdown.

Choose whatever Destination suits your purposes; a DevNull Destination would make sense given that the
purpose of this Collector is simply to get data into Redis.

At this point, you have a Collector which stores CI record data in Redis. Assuming that you have a Source with
events you want to enrich, you should now configure that Source to use the enrich Pipeline you created
earlier.

In Processing Settings > Pre-Processing, choose SNOW_Instance_Enrich from the Pipeline drop-down.

This procedure should demonstrate that your setup is working, or help you troubleshoot.

1. Send a request to the SNOW Instance API to verify that it returns data.

Result Settings

Result Routing

Adding a Source with Data to Enrich

Verifying the Enrichment of Events

Page 1620 of 1835

Try the query builder.

2. Run the Collector once. Since you have attached the process Pipeline to the Collector, it should update
Redis with set calls.

When you're ready to move towards production, you can run the Collector on a schedule, to update
Redis periodically.

3. Run a get command on the Redis command line, using the key for your chosen API, to verify that Redis
was updated as expected.

4. Check the Source whose data you are enriching, to verify that the fields you added are showing up.

;

Page 1621 of 1835

Cribl's flagship product introduced Collectors in Logstream 2.2, and they have since evolved to become a
critical part of the platform. You can think of Collectors as jobs that retrieve data from an external service.
You can also schedule them to run periodically, like a Linux cron job.

We built the Collection framework to be extensible like Cribl Stream Functions. This means that you can
create new Collectors on the fly. This page covers the Collection process, schema files, and their
implementation – to give you some context – before walking you though the steps of creating your own
Collector.

At its simplest, collection is a two-step process: Discover, and Collect.

This step identifies the items to collect. The Discover call generates a list of items, and Collect tasks will be
created for those items. Note that:

The Discover call can return zero to many items. The Collection phase will run only if Discover returned
at least one item.

Your Collector's purpose (and definition) determines the actual data that Discover will return.

If the Collector pulls data from files on disk, the Discover call lists the files in the directory to determine
how many items match the criteria (matching by filter and/or date range). Assuming that there are 100
files to collect from, the Discover call will return 100 items (each specifying a file path and size).

Each item, from the Discover phase's returned list of items, will trigger one Collect task for Cribl Stream to
create and run. More on Collect:

Generally, there is a single Collect task per item returned by Discover.

In distributed deployments, you configure Collectors at the Worker Group level, and Worker Nodes
execute the tasks. However, the Leader Node oversees the task distribution, and tries to maintain a fair
balance across jobs.

11.6.6. Creating a Custom Collector

Collection Process

Discover

Collect

Page 1622 of 1835

The Collector schema files, conf.schema.json and conf.ui-schema.json , describe the structure of the
UI for configuring a new or existing Collector. As an example, here's a Script Collector's Configuration modal:

Script Collector Configuration Screen

The conf.schema.json below defines all the fields displayed on that Collector Settings form:

Collector Schema Files

Page 1623 of 1835

The conf-ui-schema.json file further refines the field specifications in conf.schema.json . In the
example below, it specifies that the discoverScript and collectScript fields should use the
TextareaUpload widget with 5 rows. This file also gives each text field some placeholder (ghost) text, to
display when no data is present in the field.

Schemas can be simple, like the Script Collector, or complex like the REST Collector. This guide doesn't cover
all the possibilities of working with schemas, which do get complex. However, you can check out other
existing Collectors as examples of how to apply schemas for your own use case.

{
"type": "object",
"title": "",
"required": ["discoverScript", "collectScript"],
"properties": {
"discoverScript": {
"type": "string",
"title": "Discover Script",
"minLength": 1,
"description": "Script to discover what to collect. Should output one task per

line in stdout."
},
"collectScript": {
"type": "string",
"title": "Collect Script",
"minLength": 1,
"description": "Script to run to perform data collections. Task passed in as

$CRIBL_COLLECT_ARG. Should output results to stdout."
},
"shell": {
"type":"string",
"title": "Shell",
"description": "Shell to use to execute scripts.",
"default": "/bin/bash"

}
}

}

{
"discoverScript": {
"ui:widget": "TextareaUpload",
"ui:options": {
"rows": 5

},
"ui:placeholder": "Discover script"

},
"collectScript": {
"ui:widget": "TextareaUpload",
"ui:options": {
"rows": 5

},
"ui:placeholder": "Collect script"

}

Page 1624 of 1835

The Collector's implementation logic is part of index.js , and resides in the same directory as the Collector
schema files. You must define the following attributes and methods for the Collector:

Collector Implementation

Page 1625 of 1835

// Jobs can import anything from the C object, to see what's available use the
// Stream UI and an Eval Function to discover options.
const { Expression, PartialEvalRewrite } = C.expr;
const { httpSearch, isHttp200, RestVerb, HttpError, wrapExpr, DEFAULT_TIMEOUT_SECS }
= C.internal.HttpUtils;

exports.name = 'Weather';
exports.version = '0.1';
exports.disabled = false; // true to disable the collector
exports.destroyable = false;
exports.hidden = false; // true to hide collector in the UI

// Define Collector instance variables here: i.e.:
// let myVar; // Initialize in init, discover, or collect.

// init is called before the collection job starts. Gives the Collector a chance
// to validate configs and initialize internal state.
exports.init = async (opts) => {
// validate configs, throw Error if a problem is found.
// Initialize internal attributes here

}

// The Discover task's main job is to determine 'what' to collect. Each item
// to collect (i.e. a file, an API call, etc) is reported via the job object
// and will execute a collection task.
// Note that different instances of the Collector will be used for the Discover
// and Collect operations. Do not set internal Collector state in Discover
// and expect it to be present in Collect. The _init method will be called
// prior to Discover orCcollect.
exports.discover = async (job) => {
// Job is an object that the collector can interact with, for example
// we can use the job to access a logger.

 job.logger().info('Discover called');

// In this case, reporting 2 hard coded items to be collected. Normally,
// collectors dynamically report items to collect based on input from
// an API or library call.
await job.addResults([{"city": "San Francisco"},{"city": "Denver"}]);
// Can also add results one at a time using await job.addResult("city": "San

Francisco"})
}

// One invocation of the Collect method is made for each item reported by the
// discover method. The collectible object contains the data reported by discover.
// In our example collect will be called twice, once for each item returned
// by discover's addResults call:
// Invocation 1: {"city": "San Francisco"}
// Invocation 2: {"city": "Denver"}
exports.collect = async (collectible, job) => {
 job.logger().info('In collect', { collectible });

try {
// Do actual data collection here. In this case we might make a REST API call
// to retrieve current weather conditions for the city in collectible.
const myReadableStream = doGetWeather(collectible.city);

} catch (error) {
// If the collector encounters a fatal error, pass the error to the job. This
// will make the error visible in the Job inspector UI.

 job.reportError(error)
return;

Page 1626 of 1835

Now to the exciting part. Here's an overview of how to add a Collector:

1. Create a directory where Collector files will reside. All files associated with the Collector should be in this
directory.

2. Create the schema files and add them to the directory. The following schema files describe the structure
of the UI for configuring a new or existing Collector:

schema.json

ui-schema.json

3. Create a JavaScript file named index.js , with naming attributes and required methods.

4. Test and validate the Collector.

5. Install the Collector in Cribl Stream.

A few things to note before we start the process of adding a custom Collector:

1. For a standalone install of a running Cribl Stream instance, add new directories and files to the
$CRIBL_HOME/local/cribl/collectors directory (e.g., /opt/cribl).

2. The Collector will show up in the UI only if all schema files and the index.js file successfully compile. If
the Collector is not showing up in the UI, check whether there was a problem compiling one of the files.
You can check the errors through the API Server Logs.

3. Develop your Collector in a local test environment, as a best practice. A�er making changes to the
Collector, you might need to restart/and or deploy your system.

4. Collectors can access all Node.js built-in modules, using the require directive to import each module.

5. You can include third-party Node.js modules into a custom Collector by installing them in the Collectorʼs
home directory.

}
// Return result of the collect operation should be Promise<Readable>
// which will be piped to routes or to the configured pipeline and destination.
return Promise.resolve(myReadableStream)

}

Set Up a New Collector

Before You Start

Page 1627 of 1835

6. Cribl Stream ships with out-of-the-box Collectors which reside in the
$CRIBL_HOME/default/cribl/collectors directory. Feel free to copy contents from one of the
existing Collectors to your $CRIBL_HOME/local/cribl/collectors (local directory) as a starting
point/example of how to build more-complex schemas.

For this example, our sample Collector's goal is to generate events – containing a random quote obtained
from an internal list – for a list of users. Here is a breakdown of this Collector's requirements:

1. Provide a random quote to a predefined or random list of usernames.

2. Accept the names of users for whom to generate quotes.

3. Accept randomly generated usernames, by specifying the number of usernames to generate.

4. Generate a single event containing a random quote for each user.

5. Pick the random quotes from a hard-coded list, or optionally, use a REST API instead.

For this sample Collector, we'll reference a third-party Node module to generate random usernames, and to
give you a basic understanding of how to reference external code packages.

For this guide, we'll build a custom Collector in a standalone Cribl Stream install running in Docker. To adapt
the steps for a distributed environment:

1. Build the Collector on the Leader Node.

2. The Collector directory will reside in the filesystem at:
$CRIBL_HOME/groups/<workerGroup>/local/cribl/collectors/quote_generator . For example,
to build in the default Worker Group, work in the directory:
$CRIBL_HOME/groups/default/local/cribl/collectors/quote_generator .

Never modify a Collector in the default directory ($CRIBL_HOME/default/cribl/collectors/*).
Because:

1. Doing so changes the behavior of a Collector in your installed system.

2. Contents of the default directory will be overwritten during upgrades.

When creating your own Collector, always make a copy to a directory in the local
$CRIBL_HOME/local/cribl/collector/<yourCollector>

Sample Collector Requirements

Set Up Your Environment

Page 1628 of 1835

3. Before running the Collector, commit and deploy changes for the parent Worker Group.

1. Start the Docker instance by running the following command:
docker run -d -p 19000:9000 cribl/cribl:latest

2. List Docker containers by running docker ps , as shown here:

3. Access the Cribl Stream UI at port: http://localhost:19000

4. Connect to the container:
docker exec -it <Container ID> bash

(e.g., docker exec -it 544370698fb5 bash)

5. Update the apt installer:
apt update

6. Install Vim (or an editor of your choice):

vim: apt install vim

nano: apt install nano

A�er this, remain connected to the Docker container, and follow the steps below to create the Collector.

In your terminal, type the following commands:

1. cd /opt/cribl/local/cribl

Deploy a Single Instance of Cribl Stream in Docker

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
544370698fb5 cribl/cribl:3.4.1-RC1 "/sbin/entrypoint.sh…" 4 minutes ago
Up 4 minutes 0.0.0.0:19000->9000/tcp nervous_wozniak

Remember to leave the Docker container running while you work on the Collector. Also, remember to
explicitly back up your files before stopping the Docker container.

Build a Collector (Single-Instance Environment)

Page 1629 of 1835

2. mkdir collectors

3. cd collectors

4. mkdir quote_generator

5. cd quote_generator

6. cp ../../../../default/cribl/collectors/script/* .

7. chmod +w index.js *.json

8. Edit index.js to change the following, to assign a unique name to the Collector:

9. Next, restart Cribl Stream with the following command:

$ /opt/cribl/bin/cribl restart

10. A�er Cribl Stream restarts, you must log out and log back in for the new Collector tile to display under
Sources.

1. From your Cribl Stream UI's top nav, select Data > Sources, then select Collectors > Quote Generator
from the Data Sources page's tiles or the Sources le� nav.

Quote Generator Collector (Missing an Icon)

2. Click + Add New to open the Quote Generator > New Collector modal.

3. Enter the following in the Collector Settings tab, then click Save:

exports.name = 'Quote Generator';

Configure the Collector in Cribl Stream

Page 1630 of 1835

Collector ID: Hello_World

Discover Script: echo "hello world"

Collect Script: echo "{ message: \"$CRIBL_COLLECT_ARG\" }"

Collector Settings Tab

4. On the Manage Quote Generator Collectors page, click Run next to the Collector.

Run the Collector

5. In the Run configuration modal, click Run again. Note that you can set the Collector's debug level in the
modal's Advanced Options section. For details, see Run Configurations and Shared Settings.

Page 1631 of 1835

Run the Collector

6. A�er the Collector runs, the following event will be generated:

Run the Collector

Now that we have a basic shell for our Collector, let's change the UI and index.js to add our custom
Collector logic. Before making any additional changes, delete the Collector we just created.

Page 1632 of 1835

7. On the Manage Quote Generator Collectors page, click the check box next to your Collector, then click
Delete selected Collectors.

Delete the Collector

1. Replace the contents of conf.schema.json with the following:

Edit the Schema Files

Page 1633 of 1835

Two interesting things to note in the conf.schema.json file:

When you disable – set to false – the boolean toggle autoGenerateNames , the UI displays a Names
field requesting a list of user names for which to retrieve quotes.

When you enable – set to true – the boolean toggle autoGenerateNames , the UI displays a
Number of names to enter field requesting the number of names to auto-generate.

The dependency allows dynamic onscreen behavior based on the field's value.

{
"type": "object",
"title": "",
"properties": {
"autoGenerateNames": {
"type": "boolean",
"title": "Auto generate names",
"description": "Turn on to autogenerate names, use num names to specify

how many names to generate. Turn off to specify a static list of names",
"default": false

}
},
"dependencies": {
"autoGenerateNames": {
"oneOf": [
{
"required": ["numNames"],
"properties": {
"autoGenerateNames": { "enum": [true] },
"numNames": {
"type": "number",
"title": "Num names",
"minimum": 1,
"maximum": 1000,
"description": "The number of names to auto generate, each name

will turn into a collection task."
}

}
},
{
"required": ["names"],
"properties": {
"autoGenerateNames": { "enum": [false] },
"names": {
"type": "array",
"title": "Names",
"minLength": 1,
"description": "List of user names to retrieve quotes for.",
"items": {"type": "string"}

}
}

}
]

}
}

}

Page 1634 of 1835

2. Replace the contents of conf.ui-schema.json with the following:

The UI schema, in this case, further refines the widget (“Tags”) used for the Names field. We will see this
in action a bit later.

3. Finally, replace the contents of index.js with the following:

{
"names": {
"ui:field": "Tags",
"ui:placeholder": "Enter names",
"ui:options": {
"separator": ","

}
}

}

Page 1635 of 1835

4. Next, restart Cribl Stream with the following command:

$ /opt/cribl/bin/cribl restart

exports.name = 'Quote Generator';
exports.version = '0.1';
exports.disabled = false;
exports.destroyable = false;

const Readable = require('stream').Readable;
const os = require('os');
const host = os.hostname();
const logger = C.util.getLogger('myCollector'); // For use in debugging init,
search worker logs for channel 'myCollector'

let conf;
let batchSize;
let filter;
let autoGenerate = false;
let numNames = 0;
let names;

exports.init = async (opts) => {
 conf = opts.conf;
//logger.info('INIT conf', { conf });

 batchSize = conf.maxBatchSize || 10;
 filter = conf.filter || 'true';
 autoGenerate = conf.autoGenerateNames
 names = conf.names || [];
 numNames = conf.numNames ?? 3;
//logger.info('INIT VALUES', { autoGenerate, names, numNames });
return Promise.resolve();

};

exports.discover = async (job) => {
for (let i = 0; i < names.length; i++) {

 job.addResult({"name": names[i]});
}

}

exports.collect = async (collectible, job) => {
 job.logger().debug('Enter collect', { collectible });
const quote = "Carpe Diem!"; // Hard coded quote for now.

// Must return a readable stream from the collect method. Here we are
returning
// the result string wrapped in a Readable.
const s = new Readable();

 s.push(JSON.stringify({ host, name: collectible.name, quote }));
 s.push(null);

// Return readable to stream collected data
return Promise.resolve(s)

};

Page 1636 of 1835

5. A�er Cribl Stream restarts, you must log out and log back in for the new Collector tile to display under
Sources.

1. In the Cribl Stream UI, navigate to the Quote Generator Collector and click + Add New to open the
Quote Generator > New Collector modal.

2. Type the following into the Collector Settings tab, then click Save:

Collector ID: firstCollector

Auto generate names: No

Names: Jane, John, Rover

New Collector Settings

3. On the Manage Quote Generator Collectors page click Run next to the Collector.

Run the Collector

4. In the Run configuration modal:

Configure a New Collector Instance

Page 1637 of 1835

For Mode, click Preview.

For Log Level, select debug.

Click Run again.

Run Collector Settings

4. If the Collector works, a successful run displays a results dialog, including an event for each name that
was added.

Page 1638 of 1835

Collector Events

5. Close the Preview dialog.

6. On the Manage Quote Generator Collectors page, click Latest ad hoc run.

Latest Ad Hoc Run column

7. This will open a dialog from the Job Inspector with information about the run, including job status,
items returned by the Discover call, and logs. Click the Discover Results tab to see data returned from
the Collectorʼs Discover call:

Discover Results

Page 1639 of 1835

The Collector method separately. invokes each item returned The Collector argument is the content from
each row in the table.

8. Click the Logs tab to view logs from the run. This is where you can locate anything logged by
job.logger .

View Logs

The exceptions are anything logged by our Collector in init . Notice that index.js defined another logger
to use when debugging init :

const logger = C.util.getLogger('myCollector');

You can view the relevant Worker Process' logs on the Monitoring page.

Next, we'll integrate a third-party package to randomly generate names in the Discover method.

1. In your terminal, follow these steps to install npm (Node Package Manager) into the virtual machine
running Cribl Stream:

apt update

apt install npm

When prompted, select a Region .

When prompted, select a Timezone .

2. Run the following commands in your Collector directory:

Integrate a Third-Party Package

Page 1640 of 1835

cd /opt/cribl/local/cribl/collectors/quote_generator

npm init : Answer all questions with default answers. The values are not important for our
purposes.

npm install username-generator --save

This will install the third-party username-generator package in
/opt/cribl/local/cribl/collectors/quote_generator/node_modules .

3. Next, update the Collector's index.js with the following content, to use this new package to auto-
generate names:

Page 1641 of 1835

exports.name = 'Quote Generator';
exports.version = '0.1';
exports.disabled = false;
exports.destroyable = false;

const UsernameGenerator = require('username-generator');
const Readable = require('stream').Readable;
const os = require('os');
const host = os.hostname();
const logger = C.util.getLogger('myCollector'); // For use in debugging init,
search worker logs for channel 'myCollector'

let conf;
let batchSize;
let filter;
let autoGenerate = false;
let numNames = 0;
let names;

exports.init = async (opts) => {
 conf = opts.conf;
//logger.info('INIT conf', { conf });

 batchSize = conf.maxBatchSize || 10;
 filter = conf.filter || 'true';
 autoGenerate = conf.autoGenerateNames
 names = conf.names || [];
 numNames = conf.numNames ?? 3;
//logger.info('INIT VALUES', { autoGenerate, names, numNames });
return Promise.resolve();

};

exports.discover = async (job) => {
if (autoGenerate) {
// Auto generate usernames using 3rd party package.

 names = [];
for (let i = 0; i < numNames; i++) {

 names.push(UsernameGenerator.generateUsername('_'));
}

 job.logger().info('Successfully generated usernames', { numGenerated:
names.length });
}
for (let i = 0; i < names.length; i++) {

 job.addResult({"name": names[i]});
}

}

exports.collect = async (collectible, job) => {
 job.logger().info('Enter collect', { collectible });
const quote = "Carpe Diem!"; // Hard coded quote for now.

// Must return a readable stream from the collect method. Here we are
returning
// the result string wrapped in a Readable.
const s = new Readable();

 s.push(JSON.stringify({ host, name: collectible.name, quote }));
 s.push(null);

// Return readable to stream collected data

Page 1642 of 1835

4. Now, in Cribl Stream's UI, update the existing Collector to use the auto-generate feature. Add these
settings, then click Save:

Auto generate names: Yes

Num names: 10

Update Existing Collector

5. Run the Collector, notice that 10 Events are now displayed and each username is randomized:

Update Existing Collector

6. Next, update the Collector's index.js with the following content to create a static list of random
quotes in the Collect method. You can optionally retrieve a random quote from a REST API instead.

return Promise.resolve(s)
};

Page 1643 of 1835

exports.name = 'Quote Generator';
exports.version = '0.1';
exports.disabled = false;
exports.destroyable = false;

const UsernameGenerator = require('username-generator');
const Readable = require('stream').Readable;
const os = require('os');
const host = os.hostname();
const { httpSearch, isHttp200, RestVerb } = C.internal.HttpUtils;

const logger = C.util.getLogger('myCollector'); // For use in debugging init,
search worker logs for channel 'myCollector'

// Quotes to randomize
const quotes = [
"Spread love everywhere you go. Let no one ever come to you without leaving

happier. -Mother Teresa",
"When you reach the end of your rope, tie a knot in it and hang on. -Franklin

D. Roosevelt",
"Always remember that you are absolutely unique. Just like everyone else. -

Margaret Mead",
"Don't judge each day by the harvest you reap but by the seeds that you plant.

-Robert Louis Stevenson",
"The future belongs to those who believe in the beauty of their dreams. -

Eleanor Roosevelt",
"Tell me and I forget. Teach me and I remember. Involve me and I learn. -

Benjamin Franklin",
"The best and most beautiful things in the world cannot be seen or even

touched - they must be felt with the heart. -Helen Keller",
"It is during our darkest moments that we must focus to see the light. -

Aristotle",
"Whoever is happy will make others happy too. -Anne Frank",
"Do not go where the path may lead, go instead where there is no path and

leave a trail. -Ralph Waldo Emerson",
"You will face many defeats in life, but never let yourself be defeated. -Maya

Angelou",
"The greatest glory in living lies not in never falling, but in rising every

time we fall. -Nelson Mandela",
"In the end, it's not the years in your life that count. It's the life in your

years. -Abraham Lincoln",
"Never let the fear of striking out keep you from playing the game. -Babe

Ruth",
"Life is either a daring adventure or nothing at all. -Helen Keller",
"Many of life's failures are people who did not realize how close they were to

success when they gave up. -Thomas A. Edison",
"You have brains in your head. You have feet in your shoes. You can steer

yourself any direction you choose. -Dr. Seuss",
"If life were predictable it would cease to be life and be without flavor. -

Eleanor Roosevelt",
"In the end, it's not the years in your life that count. It's the life in your

years. -Abraham Lincoln",
"Life is a succession of lessons which must be lived to be understood. -Ralph

Waldo Emerson",
"You will face many defeats in life, but never let yourself be defeated. -Maya

Angelou",
]

let conf;

Page 1644 of 1835

7. Run the Collector to randomly retrieve the quotes from the list:

let batchSize;
let filter;
let autoGenerate = false;
let numNames = 0;
let names;

exports.init = async (opts) => {
 conf = opts.conf;
//logger.info('INIT conf', { conf });

 batchSize = conf.maxBatchSize || 10;
 filter = conf.filter || 'true';
 autoGenerate = conf.autoGenerateNames
 names = conf.names || [];
 numNames = conf.numNames ?? 3;
//logger.info('INIT VALUES', { autoGenerate, names, numNames });
return Promise.resolve();

};

exports.discover = async (job) => {
if (autoGenerate) {
// Auto generate usernames using 3rd party package.

 names = [];
for (let i = 0; i < numNames; i++) {

 names.push(UsernameGenerator.generateUsername('_'));
}

 job.logger().info('Successfully generated usernames', { numGenerated:
names.length });
}
for (let i = 0; i < names.length; i++) {
await job.addResult({"name": names[i]});

}
}

exports.collect = async (collectible, job) => {
const quote = quotes[Math.trunc(Math.random()*100)%quotes.length];
// Must return a readable stream from the collect method. Here we are

returning
// the result string wrapped in a Readable.
const result = { host, name: collectible.name, quote };

 job.logger().info('collect returning quote', { collectible, quote });
const s = new Readable();

 s.push(JSON.stringify(result));
 s.push(null);

// Return readable to stream collected data
return Promise.resolve(s)

};

Page 1645 of 1835

Run the Collector

8. In the next few steps, you'll back up the files, by opening a shell window on your local machine and
running the indicated commands.

9. List Docker containers by running docker ps , as shown here:

In this example, the Container ID is 208db8d1d8f7. You'd paste this into the next commands.

10. Run: docker exec -it 208db8d1d8f7 tar cvzf /tmp/container_source.tgz
/opt/cribl/local/cribl/collectors/quote_generator

11. Run: docker cp 208db8d1d8f7:/tmp/container_source.tgz

You can locate the archive file containing the source code in the current directory. A�er you back up the
source code, it is safe to shut down the Docker container.

When you create a Collector in a distributed environment, the directory path is slightly di�erent from the
single–instance example above. E.g., for the default group , you should create Collectors on the
Leader Node in the directory: opt/cribl/groups/default/local/cribl/collectors .

The format of the path is: /opt/cribl/groups/<workerGroup>/local/cribl/collectors

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
208db8d1d8f7 cribl/cribl:latest "/sbin/entrypoint.sh…" 6 hours ago Up 6
hours 0.0.0.0:19000->9000/tcp serene_galileo

Building a Collector (Distributed Environment)

Page 1646 of 1835

For example, assuming you want to create a new Collector in group is myGroup , the path would be:
/opt/cribl/groups/myGroup/local/cribl/collectors .

You'd proceed as follows:

1. Connect to the Leader Node.

2. cd $CRIBL_INSTALL/groups/default/local/cribl

$CRIBL_INSTALL refers to the directory where Stream is running, e.g.: /opt/cribl

3. mkdir collectors

4. cd collectors

5. mkdir quote_generator

6. cd quote_generator

7. cp ../../../../default/cribl/collectors/script/* .

Building the Collector in a distributed environment works the same as in single-instance environment with
exception of a few di�erences:

1. You must add the files to a Worker–Group directory, as described above.

2. You must commit and deploy changes to the Workers.

Given the extra steps, we recommend that you first build the Collector in a standalone environment, before
deploying it to a distributed environment.

;

Page 1647 of 1835

11.7. Securing Cribl Stream

Cribl uses multiple AWS accounts for di�erent purposes, including our public Cribl Cloud service
(deployment details here). We built our account strategy from the ground up using the AWS Control Tower
framework, as summarized in our Logging in a Multi-Account AWS Environment blog post.

However, some organizations use a legacy account structure that doesnʼt consolidate logs to a single
account. This creates a challenge in collecting data or logs from peer accounts, as permission boundaries
now need to be crossed. Whether you need to collect data from, or write data to, another account, the
AssumeRole permission allows for cross-account access without the need to generate static IAM keys.

A usage example is a central logging account that has access to other organization accounts to consume logs,
but not to perform other actions. Letʼs say we have two AWS accounts, A and B. We want account A to be able
to access resources in account B. We can build a policy inside account B that allows permissions to access the
target resources. We can then specify, in account B, that we trust account A to be allowed to use this role. The
diagram below illustrates how the AssumeRole action permits the Trusted Account (A) access to resources in
the Trusting Account (B).

11.7.1. AWS Cross-Account Data Collection

AssumeRole Example

Page 1648 of 1835

Using STS and temporary credentials to access an S3 bucket and SQS queue across accounts

Here's how Cribl Stream would work with AssumeRole permissions inside AWS:

1. The Cribl Stream Worker has an EC2 instance role attached.

2. The IAM role in Account A permits the EC2 instance to assume the role in Account B (and Account B
trusts Account A).

3. Temporary IAM credentials are returned to the EC2 instance.

4. Cribl Stream uses the temporary IAM credentials to access the resources in Account B.

First, in account A, we build a policy that allows only the ability to assume the role inside account B. This
policy restricts users from being able to access any resources that they donʼt need to see. We can also revoke
this trust relationship at any time, without having to worry about an account still having keys and (therefore)
access to the data.

In our example, we want to access VPC Flow logs inside an S3 bucket in account B (ID 222222222222) from
account A (ID 111111111111). Weʼll start building the two policies in account B, and then move to account A.

Configure IAM AssumeRole Permissions

Page 1649 of 1835

In account B, we build a policy to enable access to the S3 bucket (vpc-flow-logs-for-cribl) with the
least privileges required for Cribl Stream. This policy is the one that changes depending on what you need to
accomplish – e.g., reading from an S3 bucket, writing to Kinesis Streams, etc.

Next, we need to attach a Trust Relationship to Account B's IAM role to permit the AssumeRole action from
account A:

Account B Configuration

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::vpc-flow-logs-for-cribl/*"

},
{
"Effect": "Allow",
"Action": "s3:ListBucket",
"Resource": "arn:aws:s3:::vpc-flow-logs-for-cribl"

}
]
}

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::111111111111:role/account-a-logstream-assumerole-role"

},
"Action": "sts:AssumeRole",
"Condition": {
"StringEquals": {
"sts:ExternalId": "cribl-s3cre3t"

}
}

}
]
}

If you are creating a Trust Relationship for a Cribl Cloud Worker managed by Cribl, you would instead
paste the AWS Worker's role ARN in the format shown below. This option applies only to Cribl-
managed Workers, not to hybrid Workers on customer-managed Cribl Stream instances:

Page 1650 of 1835

It is important to configure an AWS External ID, especially if you have third parties accessing your AWS
accounts. The External ID protects from the confused deputy problem, where a third party obtains access
through an intermediary. The External ID is not a password or secret, but it should still be protected from
accidental sharing.

Mitigating the confused deputy vulnerability

In account A, we next configure a new IAM role with the following policy.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::111111111111:role/worker-in.logstream"

},
"Action": "sts:AssumeRole",
"Condition": {
"StringEquals": {
"sts:ExternalId": "cribl-s3cre3t"

}
}

}
]
}

Why an External ID Condition in the Trust Policy?

Account A Configuration

If you are creating a Trust Relationship for a Cribl-managedCribl Cloud Worker, skp this section. Cribl
has implicitly preconfigured Account A for you.

Page 1651 of 1835

For our example, we only want the role to be able to use the AssumeRole action, but you can add additional
statements to meet your needs:

Since we need our EC2 instance to be able to assume this role, we will configure the Trust Relationship as
follows:

Now that our AssumeRole policies have been built, we can configure Cribl Stream to assume the correct role
to access the resources we need. Configure your Source, Collector, or Destination with the appropriate
AssumeRole ARN and External ID. While this screenshot shows an S3 collector specifically, all AWS sources
and destinations support Assume Role functionality.

{
"Version": "2012-10-17",
"Statement": {
"Effect": "Allow",
"Action": "sts:AssumeRole",
"Resource": "arn:aws:iam::222222222222:role/account-b-logstream-role-to-assume"

}
}

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "ec2.amazonaws.com"

},
"Action": "sts:AssumeRole"

}
]
}

Configure Cribl Stream

Page 1652 of 1835

Cribl Stream Assume Role configuration

;

Page 1653 of 1835

With Cribl Stream, you can encrypt your sensitive data in real time before it's forwarded to and stored at a
destination. Using the out-of-the-box Mask function, you can define patterns to encrypt with specific key IDs
or key classes. To decrypt in Splunk, you will need to install Cribl App for Splunk on your search head. (The
app will default to mode-searchhead .)

Symmetric encryption keys can be configured through the CLI or the UI. They're used to encrypt the patterns,
and users are free to define as many keys as required.

Key classes are collections of keys that can be used to implement multiple levels of access control. Users (or
groups of users) that have access to data with encrypted patterns can be associated with key classes. You can
use these classes to provide more-granular access rights, such as read versus decryption permissions on a
dataset.

1. Define one or more keys and key classes on Cribl Stream. (See UI- and CLI-based instructions.)

2. Sync auth with the decryption side (Splunk Search Head). (The Splunk-side directory is
$SPLUNK_HOME/etc/apps/cribl/local/cribl/auth/ .)

3. Apply the Mask function to patterns of interest, using C.Crypto.encrypt().

4. Decrypt on the Splunk search head, using Role-Based Access Control on the decrypt command.

11.7.2. Encrypting Sensitive Data

Encryption at Ingest-Time and Decryption in Splunk

Keys and Key Classes

Encrypting in Cribl Stream and Decrypting in Splunk

Page 1654 of 1835

Encrypting in Cribl Stream, decrypting in Splunk

Generate keys via the UI, in global ⚙ Settings (lower le�) > Security > Encryption Keys:

Adding a new encryption key

Or generate one or more keys via the CLI. In a single-instance deployment:

Example

Encryption Side

Page 1655 of 1835

$CRIBL_HOME/bin/cribl keys add -c 1 -i ... $CRIBL_HOME/bin/cribl keys add -c <N> -i

In a distributed deployment, to generate keys on a Worker Group named uk :

$CRIBL_HOME/bin/cribl keys add -c 1 -i -g uk ... $CRIBL_HOME/bin/cribl keys add -c
<N> -i -g uk

Add -e <epoch> to the above commands if you'd like to set expiration for your keys.

Download the Cribl Stream App for Splunk from Cribl's Download Cribl Stream page: In the On Prem
section, select the Splunk app from the drop-down list, as shown. Clicking the orange button downloads
a file named: cribl-splunk-app-<version‐#>-<hash‐#>-linux-x64.tgz .

Downloading Cribl's Splunk app

To install the Cribl Stream App for Splunk on your search head, untar the package into your
$SPLUNK_HOME/etc/apps directory. The app will default to mode-searchhead .

Assign permissions to the decrypt command, per your requirements.

For all command/syntax options, see Adding Keys.

Decryption Side

Page 1656 of 1835

Assign capabilities to your Roles, per your requirements. Capability names should follow the format
cribl_keyclass_N , where N is the Cribl Key Class. For example, a role with capability
cribl_keyclass_1 has access to all key IDs associated with key class 1 . You can use more capabilities,
as long as they follow this naming convention.

Selecting capabiities

In the $SPLUNK_HOME/etc/apps/cribl/local/cribl/auth/ directory, sync
cribl.secret | keys.json . (To successfully decrypt data, the decrypt command will need access to
the same keys that were used to encrypt, in the Cribl instance where encryption happened.)

In a single-instance deployment, the cribl.secret and keys.json files reside in:
$CRIBL_HOME/local/cribl/auth/ .

In a distributed deployment, these files reside on the Leader Node in:
$CRIBL_HOME/groups/<group‐name>/local/cribl/auth/ .

When using Cribl Stream's UI, you can download these files by clicking the Get Key Bundle button.

Sync/copy these files over to their counterparts on the search head (decryption side). In a non-Splunk
integration, you would copy these assets to wherever decryption will take place.

Modifying Keys

Page 1657 of 1835

Before Encryption: Sample un-encrypted events. Notice the values of fieldA and fieldB .

Events before encryption

Next, encrypt fieldA values with key class 1 , and fieldB with key class 2 .

Encrypting two fields with separate key classes

A�er Encryption: again, notice the values of fieldA and fieldB .

When you update keys by editing the keys.json file, you must add them back to the directories
above (respectively, on a single instance or on a distributed deployment's Leader Node).

Usage

Page 1658 of 1835

Both fields encrypted

Here, we've decrypted fieldB but not fieldA . This is because the logged-in user has been assigned the
capability cribl_keyclass_2 , but not cribl_keyclass_1 .

One field decrypted

;

Page 1659 of 1835

This page explains how to make Cribl Stream work correctly with SELinux in enforcing mode.

If you're unsure about SELinux and its modes, here's some background:

Security-Enhanced Linux (SELinux) is a mandatory access control (MAC) security mechanism
implemented in the kernel. (Source: CentOS Wiki.)

SELinux defines access controls for the applications, processes, and files on a system. It uses security
policies, which are a set of rules that tell SELinux what can or can't be accessed, to enforce the access
allowed by a policy. (Source: Red Hat.)

Processes and files are labeled with an SELinux context that contains additional information, such as
an SELinux user, role, type, and, optionally, a level. When running SELinux, all of this information is used
to make access control decisions. (Source: Red Hat.)

SELinux has two modes, enforcing and permissive. When running in enforcing mode, SELinux enforces
the SELinux policy and denies access based on SELinux policy rules. (Source: Red Hat.)

Cribl Stream is typically used for in-stream processing, where the processes and files that Cribl Stream
Workers need to access are known beforehand. This makes it easy to write an SELinux policy that's relatively
restrictive of processes and files.

For network ports, though, the policy should be more permissive, because users can configure those within
the UI.

SELinux problems usually surface when you try to start the Cribl Stream service. Users immediately receive
an error like the following:

Cribl Stream fails to start

11.7.3. SELinux Configuration

SELinux and Cribl Stream

SELinux Troubleshooting

Page 1660 of 1835

One indication that the problem is in SELinux configuration, not in the Cribl Stream service itself, is when (1)
nothing has been logged in $CRIBL_HOME/log/cribl.log , and (2), when you run journalctl -xe you see
errors like the following:

Errors from journalctl -xe

You can confirm that SELinux configuration is the issue by verifying that the Cribl Stream service is able to
start up on its own. To do this, run the cribl start command.

Here are three commands that you can think of as a basic SELinux troubleshooting toolkit:

getenforce verifies that SELinux is enabled and enforcing policy.

sestatus -v shows details of the SELinux policy that's in e�ect.

ls with the -Z or --context option shows the SELinux tags on files and/or folders. In the output, the
fi�h column reports the SELinux context in the form user:role:type:level .

Suppose you run ls -lZ /opt/cribl to see the SElinux context for /opt/cribl .

If the output looks like the following, there is a problem: the presence of "home" among the type part of the
Linux context. In this case, user_home_t is the o�ending type. When the type is user_home_t or
admin_home_t , SELinux will not permit the service to read, write, or execute files.

Problematic SELinux context output

Job for cribl.service failed because the control process exited with error code.
See "systemctl status cribl.service" and "journalctl -xe" for details.

cribl.service: Failed to execute command: Permission denied
cribl.service: Failed at step EXEC spawning /opt/cribl/bin/cribl: Permission denied

cribl.service: Control process exited, code=exited status=203
cribl.service: Failed to execute command: No such file or directory
cribl.service: Failed at step EXEC spawning /bin/rm -f /opt/cribl/pid/cribl.pid:
Permission denied

Example Problem

Page 1661 of 1835

To fix the labeling, download Cribl Stream again directly to /opt . Do not download Cribl Stream to a user's
home directory, or to root (/), and then move it to /opt - that was what caused our example problem.

Downloading Cribl Stream to /opt

A simpler option is to revert the labels using restorecon, an SELinux policy utility that's in the
policycoreutils-python-utils package.

Reverting labels with restorecon

Once you correct the problem, the output will look like the following. Instead of *home_t listings in the
type field, this SELinux context has usr_t , a type that will satisfy SELinux's criteria for allowing the service
to read, write, and execute files.

Corrected SELinux context output

$ ls -laZ /opt/cribl
total 0
drwxr-xr-x. 6 cribl cribl unconfined_u:object_r:user_home_t:s0 62 Feb 16 08:31 .
drwxr-xr-x. 3 root root system_u:object_r:usr_t:s0 19 Feb 16 19:54 ..
drwxr-xr-x. 2 cribl cribl unconfined_u:object_r:user_home_t:s0 202 Feb 16 08:31 bin
drwxr-xr-x. 5 cribl cribl unconfined_u:object_r:user_home_t:s0 49 Feb 16 08:20 data
drwxr-xr-x. 6 cribl cribl unconfined_u:object_r:user_home_t:s0 59 Feb 16 08:31
default
drwxr-xr-x. 3 cribl cribl unconfined_u:object_r:user_home_t:s0 22 Feb 16 08:31
thirdparty

Example Solution

curl -Lso - $(curl -s https://cdn.cribl.io/dl/latest) | sudo tar zxvf - -C /opt

restorecon -R -v /opt/cribl
systemctl restart cribl

Page 1662 of 1835

;

ls -laZ /opt/cribl
total 0
drwxr-xr-x. 6 cribl cribl unconfined_u:object_r:usr_t:s0 62 Feb 16 08:31 .
drwxr-xr-x. 3 root root system_u:object_r:usr_t:s0 19 Feb 16 20:05 ..
drwxr-xr-x. 2 cribl cribl unconfined_u:object_r:usr_t:s0 202 Feb 16 08:31 bin
drwxr-xr-x. 5 cribl cribl unconfined_u:object_r:usr_t:s0 49 Feb 16 08:20 data
drwxr-xr-x. 6 cribl cribl unconfined_u:object_r:usr_t:s0 59 Feb 16 08:31 default
drwxr-xr-x. 3 cribl cribl unconfined_u:object_r:usr_t:s0 22 Feb 16 08:31 thirdparty

Page 1663 of 1835

You can direct all outbound HTTP/S requests to go through proxy servers. You do so by setting a few
environment variables before starting Cribl Stream, as follows:

Configure the HTTP_PROXY and HTTPS_PROXY environment variables, either with your proxy's IP address, or
with a DNS name that resolves to that IP address. Optionally, follow either convention with a colon and the
port number to which you want to send queries.

HTTP_PROXY examples:

HTTPS_PROXY examples:

In the above examples, note that when you set an HTTPS_PROXY environment variable, the referenced URL
should generally be in http format.

Several Cribl Stream endpoints rely on the HTTPS protocol – the Cribl telemetry endpoint, which must be
accessed with some license types, as well as the CDN used to propagate application updates and certain
documentation features (API Reference and docs PDFs).

11.7.4. System Proxy Configuration

$ export HTTP_PROXY=http://10.15.20.25:1234
$ export HTTP_PROXY=http://proxy.example.com:1234

$ export HTTPS_PROXY=http://10.15.20.25:5678
$ export HTTPS_PROXY=http://proxy.example.com:5678

Restarts and Case Conflicts

Initial configuration of, and changes to, these variables require restarting Cribl Stream on the a�ected
Nodes, if the application is already running when you apply the changes.

The environment variables' names can be either uppercase or lowercase. However, if you set
duplicate versions of the same name, the lowercase version takes precedence. E.g., if you've set both
HTTPS_PROXY and https_proxy , the IP address specified in https_proxy will take e�ect.

HTTP and/or HTTPS?

Page 1664 of 1835

You might configure certain other Cribl Stream features (such as REST API Collectors) that require access to
HTTP endpoints. For maximum flexibility, consider setting environment variables to handle both the HTTPS
and HTTP protocols.

If you are proxying outbound tra�ic and starting Cribl Stream using systemd, add your proxy environment
variables to the systemd override file (see Persisting Overrides). Add statements of this form:

This will prevent Cribl Stream from throwing "failed to send anonymized telemetry metadata" errors.

You can use HTTP Basic authentication on HTTP or HTTPS proxies. Specify the username and password in
the proxy URL. For example:

If you've set the above environment variables, you can negate them for specified (or all) hosts. Set the
NO_PROXY environment variable to identify URLs that should bypass the proxy server, to instead be sent as
direct requests. Use the following format:

$ export NO_PROXY="<list of hosts/domains>"

Proxy Configuration with systemd

[Service]
Environment=http_proxy=<yourproxy>
Environment=https_proxy=<yourproxy>
Environment=no_proxy=<no_proxy_list>

Authenticating on Proxies

$ export HTTP_PROXY=http://username:password@proxy.example.com:1234
$ export HTTPS_PROXY=http://username:password@proxy.example.com:5678

If your username or password contains special characters, Cribl Stream will try to use these fields as
the proxy address. As a workaround, URL‑encode these fields.

Bypassing Proxies with NO_PROXY

NO_PROXY Usage

Page 1665 of 1835

Cribl recommends including the Leader Node's host name in the NO_PROXY list.

Within the list, separate the host/domain names with commas or spaces.

Optionally, each host/domain entry can be followed by a port. If specified, the port must match. If not
specified, the protocol's default port is assumed.

If specified, subdomain names must match. E.g., NO_PROXY=foo.example.com will send requests
directly to https://foo.example.com, but https://bar.example.com requests will go through the proxy.

You can use leading wildcards like NO_PROXY="*.us, .org" .

NO_PROXY="*" disables all proxies.

NO_PROXY with an empty list disables no proxies.

You must include any cloud metadata endpoints (such as the AWS Instance Metadata Service) in the
NO_PROXY list:

AWS EC2 and Azure VM instances must include 169.254.169.254 in the list. If using IPv6 on AWS EC2,
add fd00:ec2::254 to the list.

AWS ECS Fargate tasks must include 169.254.170.2 .

GCP (Google Cloud Platform) VM instances must include metadata.google.internal and
169.254.169.254 .

Proxy configuration is relevant to the following Cribl Stream components that make outbound HTTP/S
requests:

S3 Compatible Stores

AWS Kinesis Streams

AWS CloudWatch Logs

AWS SQS

Cloud NO_PROXY Usage

Where Proxies Apply

Destinations

Page 1666 of 1835

Azure Blob Storage

Azure Monitor Logs

Elasticsearch

Honeycomb

Splunk HEC

AWS Kinesis Streams

AWS SQS

AWS S3

S3 Collector

To initially test your proxy configuration, consider setting up a simple, free proxy server like mitmproxy
(https://mitmproxy.org/), and then monitoring tra�ic through that server. Verify that you can trace proxied
requests from your Cribl Stream instance, and can validate that outgoing requests (to Destinations) are
working properly.

Cribl Stream stores authentication tokens based on each http header's URI scheme, host, and port
information. Within a given browser, Cribl Stream enforces a same-origin policy to isolate instances.

This means that if you want to run multiple proxied Cribl Stream instances in one browser session, you must
assign them di�erent URI schemes, hosts, and/or ports. Otherwise, logging into an extra Cribl Stream
instance will expire the prior instance's session and log it out.

For example, assume that you've set up this pair of Apache proxy forward rules:

https://web/cribla forwards to cribl_hosta:8001/cribla .

https://web/criblb forwards to cribl_hostb:8001/criblb .

Sources

Collectors

Testing Proxies

Proxying Multiple Cribl Stream Instances in One
Browser

Page 1667 of 1835

These two proxied addresses cannot be run simultaneously in the same browser session. However, this pair –
which lead with separate URI schemes – could:

https://web/cribla forwards to cribl_hosta:8001/cribla .

https://web2/criblb forwards to cribl_hostb:8001/criblb .

Where separate instances must share URI formats, a workaround is to open the second instance in an
incognito/private browsing window, or in a completely di�erent browser.

;

Page 1668 of 1835

If you are a Cribl Stream admin and want to o�er single sign-on (SSO) to your Cribl Stream users, you first
choose OpenID Connect as the authentication type, then choose an SSO provider for OpenID Connect. Once
configuration is complete (several steps later), the Cribl Stream login page will send users to the SSO provider
login page.

The provider can be Okta or Google, among others. This page describes how to configure SSO with Okta as
the provider. SSO with Okta is supported only in Cribl Stream (LogStream) versions 3.0.0 and newer.

In Okta, admins organize their users in groups. In Cribl Stream, there are no user groups, but there are Roles.
Your task includes mapping Okta groups to Cribl Stream Roles.

Mapping groups to Roles is possible only for Cribl Stream deployments that are in Distributed mode,
with an Enterprise license applied.

If you are running Cribl Stream in Single-instance mode, you cannot map Okta groups to Cribl Stream
Roles, although you can still set up SSO with Okta.

As you think through how best to map your Okta groups to Cribl Stream Roles, keep these principles in mind:

A Cribl Stream Role can map to more than one Okta group.

An Okta group can map to more than one Cribl Stream Role.

The example mappings below illustrate these principles. Clearly, the groups in Mapping b and c each
map to multiple Roles. And both the reader_all and editor_cloud Roles map to multiple groups.

MAPPING OKTA GROUP CRIBL STREAM ROLE(S)

a. Cribl Admins admin

b. Cloud Admins reader_all , editor_cloud

c. Security Team reader_all , editor_cloud , editor_firewall

If a user has multiple Roles, Cribl Stream applies the union of the most permissive levels of access.

Cribl Stream automatically assigns the default Role to any user who has no mapped Roles.

11.7.5. SSO/Okta Configuration

Page 1669 of 1835

1. Log in to your Okta tenant admin console.

2. In the le� menu, select Applications > Applications.

3. Click Create App Integration.

For Sign-in method, select OIDC - OpenID Connect .

For Application type, select Web Application .

4. Click Next to open the New Web App Integration page.

In the App integration name field, enter Cribl Stream .

(Optional:) In the Logo field, upload the Cribl logo. You can use a logo from the Cribl Media Kit.

5. In the Sign-in redirect URIs field, replace the default with your Leader base URL, and with
/api/v1/auth/authorization‐code/callback as the path. This is the Cribl Stream callback API
endpoint.

6. (Optional) In the Sign-out redirect URIs field, append /login to the pre-filled path.

7. In the Assignments > Controlled access area:

If all your Okta users need access to Cribl Stream, select Allow everyone in your organization to
access.

To permit specific Okta groups to access Cribl Stream, select Limit access to selected groups.
Then, in the field below, add the groups you want to include. A�er you finish creating the app, if you
need to add or remove groups, do that in the Applications > Assignments tab.

8. Click Save.

Okta should show an Application Created Successfully message.

Integrate Okta with Cribl Stream

Page 1670 of 1835

Page 1671 of 1835

Completing the new app integration in Okta

In the Client Credentials panel, copy both the Client ID and Client Secret, and temporarily store them
locally. You will need them in the next step, when you configure Cribl Stream.

In Cribl Stream, select Settings > Access Management > Authentication.

1. Choose OpenID Connect from the Type dropdown.

2. Choose Okta from the Provider dropdown.

3. In the Audience field, enter your Cribl Stream UI base URL. Do not append a trailing slash.

4. In the Client ID and Client secret fields, enter the respective values that you copied from the Okta UI in
the previous step.

5. If your Cribl Stream is in Enterprise Distributed mode:

In the Scope field, add the scope groups to the default space-separated list of scopes, which is openid
profile email .

6. Obtain the authentication, token, user info, and logout URLs for your Okta app, by sending a request to
the OpenID Connect Discovery endpoint.

This endpoint has the URL
https://<tenant>.okta.com/.well‐known/openid‐configuration , where <tenant> is your
Okta tenant name. For example:

https://dev‐12345678.okta.com/.well‐known/openid‐configuration .

You can view the discovery document in your web browser, or use jq to extract the needed values,
as in the following example:

curl -s https://<tenant>.okta.com/.well‐known/openid‐configuration | jq '. |

{"auth": (.authorization_endpoint), "token":(.token_endpoint), "userinfo":

(.userinfo_endpoint), "logout": (.end_session_endpoint)}'

Copy Your Okta App's Client ID and Client Secret

Configure Cribl Stream

Page 1672 of 1835

Sample response:

7. Populate the Authentication URL Token URL fields with the respective auth and token URLs.

8. If you configured Okta to use groups, populate the User info URL field with the userinfo URL.

This is necessary because Okta does not send group information in the id_token passed to
Cribl Stream.

9. If you want Account > Log out in Cribl Stream to log the user out globally, populate the Logout URL
field with the logout URL. This means that when a user clicks the Accounts > Log out link in
Cribl Stream, they are logged out of both Cribl Stream and Okta.

{
 "auth": "https://dev-416897.oktapreview.com/oauth2/v1/authorize",
 "token": "https://dev-416897.oktapreview.com/oauth2/v1/token",
 "userinfo": "https://dev-416897.oktapreview.com/oauth2/v1/userinfo",
 "logout": "https://dev-416897.oktapreview.com/oauth2/v1/logout"
}

Page 1673 of 1835

Authentication settings in Cribl Stream

An Okta tenant's user groups can be mastered either inside Okta, outside Okta, or both.

Configure Response to Okta /userinfo Endpoint

Page 1674 of 1835

When the /userinfo endpoint is queried, Okta returns the appropriate groups membership of the user back
to Cribl Stream:

For groups mastered inside Okta only, the app should pass a Filter type groups claim to Cribl Stream.

For groups mastered outside Okta (e.g., Active Directory), or both inside and outside, the app should
pass an Expression type groups claim back to Cribl Stream.

See the Okta documentation on dynamic allow lists and using Okta together with Active Directory.

In Okta, you should still be in the panel for the app you created. If not, you can get there by opening
Applications > Applications and selecting the app.

For groups mastered inside Okta only, complete this procedure.

For groups mastered outside Okta, or both inside and outside, complete this procedure.

Open the Sign On tab. Then, in the OpenID Connect ID Token panel:

1. Click Edit to change the value of Groups claim filter to groups and show filter options.

2. Leave Groups claim type set to Filter.

3. Choose Matches regex from the dropdown, and enter .* as the regex.

4. Click Save.

Configure Groups Inside of Okta

Page 1675 of 1835

Role mapping, beginning

Open the Sign On tab, if necessary. Then, in the OpenID Connect ID Token panel:

1. Click Edit to change the value of Groups claim filter to groups and show filter options.

2. Set Groups claim type set to Expression.

3. In the Groups claim expression, enter an expression field that matches the groups you want passed to
Cribl Stream. See the Okta documentation for more details.

For example, to match on Active Directory groups that contain the string okta , use the following
expression:

4. Click Save.

Configure Groups Outside of Okta

Groups.contains("active_directory", "cribl", 10)

Page 1676 of 1835

Role mapping, continued

1. In Okta, open the Security > API page.

2. In the Authorization Servers tab, click the edit (pencil) button for the desired Authorization Server.

3. In the resulting page, click the Claims tab.

4. If your groups claim already exists, click the edit (pencil) button. Otherwise, click Add Claim.

5. In the Include in token type drop-downs, choose ID Token and Always , respectively.

Configure ID Token to Include Groups Claim

Okta can recognize your groups only if your ID token includes your groups claim, as you'll configure
here.

Page 1677 of 1835

Including the groups claim in the token ID

6. Configure the remaining settings in the way that suits your groups claim.

7. Click Save (or Create if you're adding the claim for the first time).

You can assign a Cribl Stream Role to each Okta group name, and you can specify a default Role for users
who are not in any groups.

1. In Cribl Stream, select Settings > Access Management > Authentication.

2. Scroll down to the ROLE MAPPING section.

Cribl recommends that you set the default Role to user , meaning that this Role will be assigned to
users who are not in any groups.

3. Add mappings as needed.

The Okta group names in the le� column are case-sensitive, and must match the values returned by
Okta (those you saw earlier when configuring Okta).

Role mapping, concluded

Map Okta Group Names to Cribl Stream Roles

Verify that SSO with Okta Is Working

Page 1678 of 1835

1. Log out of Cribl Stream, and verify that Okta is now an option on the login page.

2. Click Log in with Okta.

3. You should be redirected to Okta to authenticate yourself.

4. The OpenID connect flow should complete the authentication process.

;

Page 1679 of 1835

The following topics provide expanded configuration options for selected Cribl Stream integrations
(Collectors, Sources, Destinations, and Notifications):

Cribl Edge to Cribl Stream

Configuring Upstream Logging Agents

Azure AD + OpenID Configuration

Azure Event Hubs Integrations

Splunk Cloud and BYOL Integrations

Webhook/BigPanda Integration

Webhook/Sumo Logic Integration

Zscaler NSS Integration

;

12. Setup Guides

Page 1680 of 1835

Cribl Edge automatically discovers logs, metrics, application data, etc. – in real time – from your configured
endpoints, and delivers them to Cribl Stream or any supported destination. Meanwhile, Cribl Stream can help
collect, reduce, enrich, transform, and route data from Cribl Edge to any destination. And using a Cribl TCP
Source, you can collect and route data from Edge Nodes to Stream Worker Nodes connected to the same
Leader, without incurring additional cost.

This guide outlines how to route data from an Edge Node (or an entire Fleet) to an existing Stream
Worker Group for additional processing, using the Cribl TCP Source and Destination.

In Cribl Stream, start by configuring and enabling a Cribl TCP Source. The key requirement here is to set the
Port to listen on. By default, the Cribl TCP Destinations listen on Port 10300 . To simplify our scenario, we will
set the Cribl TCP Source to listen on the same Port. (Optionally, you can also configure TLS, Event Breakers,
metadata fields, and/or a pre-processing Pipeline.)

Configuring a Cribl TCP Source

When done, Commit and Deploy your changes. Before moving on to the next step, confirm that your Source
is healthy.

12.1. Cribl Edge to Cribl Stream

While this use case connects Edge Nodes to Workers through the Cribl TCP Source and Destination,
you can also use the Cribl HTTP Source and Destination in certain circumstances – such as when a
firewall or proxy blocks raw TCP egress.

Configure the Cribl TCP Source on Cribl Stream

Page 1681 of 1835

Status of the Cribl TCP Source

Next, we'll configure the Exec Source on your Edge Node. This Source will break the incoming streams of data
into discrete events, and send them to Cribl Stream.

The Exec Source enables you to periodically execute a command and collect its stdout output. In the
Exec Source's configuration modal, specify:

Which command to execute.

The number of times to attempt running the command.

The interval between attempts.

In our example, we are running the ps command to list and retrieve running processes every 10 seconds.

Configuring an Exec Source

If we don't configure an Event Breaker, then with each capture we run on the dataset, each process will be
ingested as its own event, without the header information. So to structure the data, we'll add an
Event Breaker.

Configure the Exec Source on Cribl Edge

In this step, you can swap out the Exec Source by instead configuring a System Metrics or
 File Monitor Source. Or, configure multiple Sources to connect to the same Destination.

Page 1682 of 1835

On the Exec Source configuration modal's le� tab, select Event Breaker. In the Event Breaker rulesets drop-
down, select Cribl – Do Not Break Ruleset .

Apply an Event Breaker

Next, preview your data on the modal's Live Data tab.

Preview Live Data

To get the data flowing, we'll configure the Cribl TCP Destination on your Edge Node. A few things to note
when configuring this Destination:

Set the Port to listen on. For this example, we'll use the default 10300 . If you configure a di�erent Port,
make sure the Source points to the same Address and Port.

If you don't have a load balancer in front of your Workers, you can configure load balancing directly on
this Destination.

Optionally, define your Compression, Throttling, and Backpressure behavior requirements.

Configure the Cribl TCP Destination on Cribl Edge

Page 1683 of 1835

Once you've configured your Destination, test it to verify that your Edge Node can communicate with the
Stream Worker Group.

Testing your Destination

Finally, configure a Route to send your data to Cribl Stream. In this example, we are using the passthru
Pipeline.

Configure a Route to Send the Data

Page 1684 of 1835

Routing your data

To confirm that your data is flowing, navigate back to Cribl Stream's Cribl TCP Source. Run a Live Data
capture on the Source.

Confirm the Data Flow

Page 1685 of 1835

Data flow in the Source

You can also check the Monitoring page's Data submenu, to isolate the throughput on your Source.

Monitoring the Source throughput

;

Page 1686 of 1835

This page explains how to quickly connect a wide selection of common logging agents and other log sources
to Cribl Stream. The examples below are equally valid for Cribl.Cloud and customer-managed Cribl Stream
instances.

Whichever source you choose, start by doing a live capture on the corresponding Source in Cribl Stream.
Verify that data is coming in. Then save your capture to a sample file, which will help you build your
Pipelines.

Both Fluent Bit (written in C) and fluentd (written in Ruby) are open-source log collectors, processors, and
aggregators.

Of Fluent Bit's many output options, several work with Cribl Stream. Here's how to connect a Cribl Stream
Splunk HEC Source to Fluent Bit with the Splunk HEC formatting option.

You'll need to copy and paste the following:

From the Cribl.Cloud Network tab, the in_splunk_hec Ingest Address.

From Cribl Stream's Sources > Splunk HEC > <source_name> > Auth Tokens tab, the HEC token.

Decide how to adjust the match parameter for your use case. For example, an asterisk (wildcard) value will
send all events to Cribl Stream.

Edit the Fluent Bit settings accordingly. They're usually in /etc/td-agent-bit/td-agent-bit.conf , in a
form similar to this:

12.2. Configuring Upstream Logging Agents

Fluent Bit and Fluentd

Fluent Bit to HEC

[OUTPUT]
 name splunk
 match *
 host in.logstream.<cloud_instance>.cribl.cloud
 port 8088
 splunk_token <HEC_token>
 tls on
 # optional
 event_source logs_from_fluentd

Page 1687 of 1835

Save the changes and restart the td-agent-bit service.

If you donʼt already have it, install the splunk_hec fluentd mod:

sudo gem install fluent-plugin-splunk-hec

You'll need to copy and paste the following:

From the Cribl.Cloud Network tab, the in_splunk_hec Ingest Address.

From Cribl Stream's Sources > Splunk HEC > <source_name> > Auth Tokens tab, the HEC token.

Decide how to adjust the match parameter for your use case. Use an asterisk (wildcard) if you want to send
all events to Cribl Stream.

Edit the <match section of the fluentd settings accordingly. They could be in /etc/fluent/fluent.conf or
another location, as described in the fluentd docs.

Save the changes and restart fluentd.

Cribl Stream can directly ingest the native Splunk2Splunk (S2S) protocol. As a result, both Splunk universal
and heavy forwarders can send log data to Cribl Stream.

In Cribl Stream, create a Splunk TCP Source.

Fluentd to HEC

<match **>
 @type splunk_hec
 @log_level info
 hec_host in.logstream.<cloud_instance>.cribl.cloud
 hec_port 8088
 hec_token <HEC_token>
 index <index_name>
 source_key <file_path>
 <format>
 @type json
 </format>
</match>

Splunk

Splunk Forwarder (Universal or Heavy) to Splunk TCP

Page 1688 of 1835

Cribl recommends setting an authorization token so that your receiver will accept only your tra�ic. This
setting is in Cribl Stream's Sources > Splunk TCP > Auth Tokens tab.

If you're using a Splunk heavy forwarder, youʼll also want to decide whether to create filters in Splunk, or to
let all of your tra�ic through to Cribl Stream. In the snippet below, we assume that you want all tra�ic
delivered.

Adapt the following snippet to your use case and add it to $splunk/etc/system/local/outputs.conf .

Save the changes and restart the Splunk service.

In the Elastic ecosystem, Elastic Filebeat is an agent that functions as a lightweight shipper for forwarding
and centralizing log data.

Cribl Stream can ingest the native Elasticsearch streaming protocol directly.

Cribl recommends setting an authorization token so that your receiver will accept only your tra�ic. This
setting is in the Auth Tokens field of Cribl Stream's Sources > Elasticsearch API > General Settings tab.

If you want to enable Basic authentication:

Concatenate your username and password with a colon in between, like this: username:password .

Encode the username:password string using base64.

Prepend the string Basic (including the trailing space) to the encoded string.

Enter the resulting string in the Auth tokens field as described above.

You'll see something like this:

[tcpout]
disabled = false
defaultGroup = criblcloud

[tcpout:criblcloud]
server = in.logstream.<cloud_instance>.cribl.cloud:9997
sslRootCAPath = $SPLUNK_HOME/etc/auth/cacert.pem
useSSL = true
sendCookedData = true
token = <optional-but-recommended>

Elastic

Elastic Filebeat

Page 1689 of 1835

Basic auth in the Cribl Stream Elasticsearch API Source

To receive syslog data in Cribl Stream, create a native Syslog Source. See Cribl's best practices for working
with syslog data.

Cribl recommends using TLS over TCP to send data from syslog-ng to Cribl Stream.

Here's an example of syslog-ng.conf edited such that all event data will be encrypted on the way to
Cribl Cloud. Adapt the snippet to your use case and edit syslog-ng.conf accordingly.

output.elasticsearch:
 hosts: ["in.logstream.<cloud_instance>.cribl.cloud:9200/search"]
 protocol: "https"
 ssl.verification_mode: "full"
 username: <some_username>
 password: <some_password>

syslog

Cribl recommends not using UDP over the public internet. UDP examples are included here for test
purposes only.

UDP, by definition, does not guarantee delivery. While TCP mitigates this problem, using either UDP
or TCP without TLS over the public internet exposes unencrypted data.

syslog-ng (TLS over TCP)

Page 1690 of 1835

Save the changes and restart the syslog-ng service.

Here's an example of syslog-ng.conf – for test purposes only, because it does not use TLS.

Adapt the snippet to your use case, and edit syslog-ng.conf accordingly. You can change tcp to udp to
switch protocols.

Save the changes and restart the syslog-ng service.

You can forward logs from syslog-ng to multiple Cribl Stream Workers through a redundant, load-balanced
output by using the syslog-ng elasticsearch-http output module. With this arrangement, syslog-ng
receives syslog messages over TCP and/or UDP and outputs events over the Elasticsearch HTTP Bulk API to
Cribl Stream Workers.

destination d_syslog {
 syslog("in.logstream.<cloud_instance>.cribl.cloud"
 transport("tls")
 port(6514)
 tls(
 peer-verify(required-trusted)
 ca-dir("/etc/syslog-ng/ca.d")
)
);
};

log {
 source(s_network);
 destination(d_syslog);
};

syslog-ng (UDP or TCP)

destination d_syslog {
 syslog("in.logstream.<cloud_instance>.cribl.cloud"
 transport("tcp")
 port(9514)
);
};

log {
 source(s_network);
 destination(d_syslog);
};

syslog-ng with Load-Balanced Outputs

Page 1691 of 1835

Adapt the snippet to your use case, and edit syslog-ng.conf accordingly. To learn more about syslog-ng
destination flags, see the syslog-ng Administration Guide.

Save the changes and restart the syslog-ng service.

Forwarding to Cribl Stream from the syslog-ng elasticsearch-http output module requires
syslog-ng version 3.19 or higher.

To check your syslog-ng version, run the following command:

syslog-ng -V

@version: 3.33
@include "scl.conf"

Inputs
source s_network {
 # flags(no-parse) disables syslog-ng parsing of syslog messages (raw passthru)
 network(transport("tcp") port("9514") flags(no-parse));
 network(transport("udp") port("9514") flags(no-parse));
};

destination d_elasticsearch_tls {
 # https://www.syslog-ng.com/technical-documents/doc/syslog-ng-open-source-
edition/3.33/administration-guide/34
 elasticsearch-http(url("https://worker1:9200/_bulk" "https://worker2:9200/_bulk"
"https://worker3:9200/_bulk")
 batch-lines(100)
 batch-bytes(512Kb)
 batch-timeout(2500)
 persist-name("d_elasticsearch-http-load-balance")
 type("")
 index("syslog")
 # Auth token
 #headers("Authorization: <token from Stream>")
 # or Basic Auth
 #user("username")
 #password("password")
);
};

log {
 source(s_network);
 destination(d_elasticsearch_tls);
};

rsyslog (TLS over TCP)

Page 1692 of 1835

You'll need to install the rsyslog-gnutls package if itʼs not already on your system. E.g.:

apt install rsyslog-gnutls

If the rsyslog-gnutls package is not already on your system, run the following command (or equivalent)
to install it:

apt install rsyslog-gnutls

Cribl recommends using TLS over TCP to send data from rsyslog to Cribl Stream.

Here's an example of rsyslog.conf , edited such that all event data will be encrypted on the way to
Cribl Cloud. Adapt the snippet to your use case, and edit rsyslog.conf accordingly:

Save the changes and restart the rsyslog service.

Here's an example of rsyslog.conf – for test purposes only, because it does not use TLS.

Adapt the snippet to your use case, and edit rsyslog.conf accordingly. You can change tcp to udp to
switch protocols.

path to the crt file.
You will need a valid ca cert file. Most linux distros come with this
$DefaultNetstreamDriverCAFile /etc/ssl/certs/ca-certificates.crt

. action(
 type="omfwd"
 target="in.logstream.<cloud_instance>.cribl.cloud"
 port="6514"
 protocol="tcp"
 action.resumeRetryCount="100"
 queue.type="linkedList"
 queue.size="10000"
 StreamDriver="gtls"
 StreamDriverMode="1" # run driver in TLS-only mode
)

rsyslog (UDP or TCP)

Page 1693 of 1835

Save the changes and restart the rsyslog service.

Many appliances emit syslog data. At a minimum, configure your appliance(s) to send syslog over TCP with
TLS enabled, if possible.

Even better, stand up a Cribl Stream instance close to the appliances in your network topology. Have the
appliances send syslog to the nearby Cribl Stream, which can optionally transform, filter, and/or enhance the
data, and then send it to a more centralized Cribl Stream cluster in Cribl.Cloud or a customer-managed
location.

The Cribl Stream worker that's closest to the appliance will use TCP JSON, with TLS enabled, to send syslog
to the second Cribl Stream instance:

Sending syslog from an appliance to Cribl Cloud

The benefits of placing the first Cribl Stream instance close to the log producer include:

Since there are fewer network hops, UDP becomes a more viable option, if you want it.

If you're using TCP, that can be more performant here than it would be across the internet.

The first Cribl Stream instance can do data reduction and/or compression. These operations reduce the
volume of the data hitting the wire on the way to the next hop.

This can help keep data egress costs under control.

Vector is Datadog's tool for building observability pipelines.

. action(
 type="omfwd"
 target="in.logstream.<cloud_instance>.cribl.cloud"
 port="9514"
 protocol="tcp"
 action.resumeRetryCount="100"
 queue.type="linkedList"
 queue.size="10000"
)

Appliances that Send syslog

Vector

Page 1694 of 1835

Vector supports Splunk's HTTP Event Collector (HEC). Here's how to connect a Cribl Stream Splunk HEC
Source to Vector.

For Cribl Cloud especially, Cribl recommends setting an authorization token so that your receiver will accept
only your tra�ic. This setting is in Cribl Stream's Sources > Splunk HEC > Auth Tokens tab.

The snippet below references a random syslog generator called dummy_logs for testing purposes. Adapt the
snippet to your use case and edit vector.toml (or vector.yaml or vector.json) accordingly.

Vector supports Elasticsearch API. Here's how to connect a Cribl Stream Elasticsearch API Source to Vector.

The snippet below references a random syslog generator called dummy_logs for testing purposes. The
snippet also specifies Basic authentication. Follow the procedure for enabling Basic authentication
described in the Elastic Filebeat example above.

Adapt the snippet to your use case and edit vector.toml (or vector.yaml or vector.json) accordingly.

All the above data sources push data into Cribl Stream. Here are brief notes on configuring some popular
Cribl Stream-native Pull Sources:

Vector to HEC

[sinks.my_sink_id]
type = "splunk_hec"
inputs = ["dummy_logs"]
endpoint = "https://in.logstream.<cloud_instance>.cribl.cloud:8088"
compression = "gzip"
token = "<optional-but-recommended>"
encoding.codec = "json"

Vector to Elasticsearch

[sinks.elastic_test]
type = "elasticsearch"
inputs = ["dummy_logs"]
endpoint = "https://in.logstream.<cloud_instance>.cribl.cloud:9200/search"
compression = "gzip"
index = "my_es_index"
auth.user = "<some_username>"
auth.password = "<some_password>"
auth.strategy = "basic"

Pull-based Sources

Page 1695 of 1835

You can create an Amazon Kinesis Source in Cribl Stream. This is straightforward for customer-managed
Cribl Stream instances.

Cribl Cloud sits behind an network load balancer, which Kinesis Firehose does not support. For this reason,
the best option for connecting Amazon Kinesis to Cribl Cloud is to (1) have Kinesis Firehose write to an
Amazon S3 bucket, and (2) set up a Cribl Stream Amazon S3 Source to pull data from there, as described in
the next section.

Configuring an S3 Source is virtually the same for Cribl Cloud as it is for customer-managed Cribl Stream
instances.

See this in-depth article about the Cribl Stream S3 Source, whose content also applies to Cribl Cloud. Here's
an overview of the process:

Configure an S3 bucket to send s3:ObjectCreated:* events to an SQS queue.

Configure a Cribl Stream S3 (Pull) Source (not Collector) to subscribe to the SQS feed from step 1.
Be sure to properly configure permissions for the Secret/Access keys you use for authentication.

Set up Event Breaker rules as required based on the contents of your log files.

Configuring an O�ice 365 Services, Activity, or Message Trace Source is virtually the same for Cribl Cloud as it
is for customer-managed Cribl Stream instances. Note that you need to start your O�ice 365 Content
subscription from within O�ice 365, or there will be no data available to pull.

Integrating AppScope with Cribl Stream is simple and fast. The easiest way is to just set the $SCOPE_CRIBL
environment variable to define a connection between Cribl Stream and AppScope.

For example, you could "scope" the nginx command, and send the captured data using TLS over TCP:

SCOPE_CRIBL=tcp://in.logstream.<cloud_instance>.cribl.cloud:10091 scope nginx

;

Amazon Kinesis

Amazon S3

O�ice 365 Service, Activity, or Message Trace

AppScope

Page 1696 of 1835

This page outlines how to integrate Azure Active Directory with Cribl Stream's SSO/OpenID Connect
authentication.

Start at the Azure portal to configure an OpenID Connect provider: https://portal.azure.com/.

1. Open the Azure Active Directory Service.

2. In the le� nav's Manage section, select App registrations.

3. Add a new registration. For details, see Microso�'s Quickstart: Register an Application topic.
In the example below, substitute the appropriate callback URL for your own Cribl Stream Leader
instance: https:leader.cribl.io:9000/api/v1/auth/authorization-code/callback

Registering an Azure AD app

12.3. Azure AD + OpenID Configuration

Configure Azure AD App

Register Your Azure AD App

Page 1697 of 1835

You'll need to copy and paste these credentials into Cribl Stream's Authentication page below.

1. You can find the OIDC Client ID on the new app's Overview page, as the Application (client) ID.

Finding the OIDC Client ID

2. Click the Endpoints button at the page top to display the OAuth endpoints. You can use either the v2 or
the v1 endpoints.

Copying OAuth 2 v2 endpoints

1. To create a client secret: From the Azure portal's le� nav, select Certificate & secrets. Then select
New client secret.

Get the Azure AD App's Basic Credentials

Create and Copy a Client Secret

Page 1698 of 1835

Accessing client secrets

2. Add a new client secret with a descriptive name, and an expiration timeframe.

Adding a client secret

3. Click Add.

4. Immediately copy the Value and Secret ID from the resulting page. You'll need to paste the Value into
Cribl Stream's Authentication > Client secret field below.

Copy that secret!

Page 1699 of 1835

Here, you'll add the groups claim to the OIDC ID token.

1. From the Azure portal's le� nav, select Token configuration, then select Add groups claim.

Configuring a token

2. Configure the groups claim as necessary, then click Add.

This is the only time the secret is shown! Make sure you copy it while itʼs visible. (If you missed your
chance, you can start over by creating a new secret.)

Configure Token and Claims

Page 1700 of 1835

Editing the groups claim

3. Your token is now configured, and you're all done on the Azure side.

Azure AD token configuration complete

Unless you synchronize Azure AD with your on-premises Active Directory, AD will return only GUIDs
for your group names. If you've synchronized, you'll then be able to configure returning the
sAMAccountName instead.

Page 1701 of 1835

Switch to Cribl Stream, and navigate to its global ⚙ Settings (lower le�) > Access Management >
Authentication page. Configure this as indicated below (with reactions):

Type: OpenID Connect. This will expose relevant fields, setting several default values and placeholders.

Provider name: Enter an arbitrary identifier for this Azure AD integration.

Audience: Enter your Cribl Stream Leader instance's base URL. Use the format:
https://<your‐domain.ext>:9000

Client ID: Enter you r Azure AD Application (client) ID. (In the Azure portal, see above to copy this from
your app's Overview page.)

Client secret: Enter the Client secret > Value that you earlier generated and copied from the Azure
app's Certificates & secrets page.

Scope: Accept the default openid profile email scopes.

Authentication URL: Paste the OAuth 2.0 authorization endpoint that you copied above from the
Azure app's Overview > Endpoints drawer.

Token URL: Paste the OAuth 2.0 token endpoint that you copied above from the Azure app's Overview
> Endpoints drawer.

User Info URL, Logout URL: Leave both fields blank.

User identifier: Adjust this based on the endpoint you choose (v1 or v2) above. In v2, the
preferred_username , name , and email fields are set, matching this field's default values.
In v1, only the name field is included in the token by default, so an acceptable entry here might be:
`${unique_name || upn || username || name}` . You can check the token fields returned by
enabling debug-level logging on Cribl Stream's auth:sso channel.

Change the Filter type to User info filter .

Optionally, enable Allow local auth as a fallback login method.

Configure Cribl Stream Authentication

Page 1702 of 1835

Sample Cribl Stream Authentication Settings for Azure AD (v2 endpoints)

Sample User identifier entry for v1 endpoints

Next, map your Azure AD groups to Cribl Stream Roles. The group names might appear as GUIDs. You can
translate these on the Azure AD Groups page.

Map Azure AD Groups to Cribl Stream Roles

Page 1703 of 1835

Unless you synchronize Azure AD with your on-premises Active Directory, you will need to obtain the Group
GUIDs from the Azure AD Groups page. Place these GUIDs in the mappings box and then choose the
appropriate Cribl Stream Role. Here is a simple example.

Azure AD groups...

...mapped to Cribl Stream Roles

;

Page 1704 of 1835

You can create an Azure Event Hub which sends data to a Cribl Stream Azure Event Hubs Source.

Your Azure Event Hubs account must be at the Standard (or a higher) pricing tier, because the Basic pricing
tier does not support the PLAIN authentication method Cribl Stream uses for Event Hubs.

First, create an Azure Event Hub as described in the Azure documentation.

For purposes of this tutorial, we assume that in the Create Namespace page, you will use CriblTest as
your Namespace name.

Creating an Event Hubs Namespace

12.4. Azure Event Hubs Integrations

Prepare Azure Event Hubs to Send Data to Cribl Stream

Page 1705 of 1835

Collect the information you will need when configuring Cribl Stream:

1. In the Deployment page, click Go to Resource.

2. Write down the Host Name.

Finding the Host name and Shared access policies

3. Click Shared Access Policies to open the page where you can select policies for your Event Hubs
Namespace, and then click RootManageSharedAccessKey to show details for that policy.

Viewing Shared access policies

4. Copy and securely store the Connection String-primary key.

1. From the top nav of a Cribl Stream instance or Group, select Data > Sources, then select
Azure Event Hubs from the Manage Sources page's tiles or le� nav. Click + Add New to open the Azure
Event Hubs > New Source modal.

Configure the Azure Event Hubs Source in Cribl Stream

Page 1706 of 1835

2. In the General Settings tab, enter the following values:

InputId: LogStream .

Brokers: To the Host Name you wrote down earlier, append port 9093, and enter the result. For
example: CriblTest.servicebus.windows.net:9093 .

Event Hub Name: The name of your Azure Event Hub, for example: CriblTest . This is equivalent
to a Kafka topic.

Group ID: Keep (or change, if desired) the default value (Cribl).

The General Settings tab

6. In the Authentication tab, enter or select the following values:

SASL mechanism: PLAIN (the only supported option).

Username: $ConnectionString (the default generated by Azure).

Authentication Method: Select Manual to use the Connection String Key generated by Azure
Event Hubs.

Password: Enter the Connection String-primary key that you copied earlier.

Page 1707 of 1835

The Authentication tab

Before you can verify that data is reaching Cribl Stream, you must ensure that it is flowing out of your Azure
Event Hub in the first place.

One option is to configure a Datagen and a Route to send data to the Event Hub destination. We'll assume
you have done that, or gotten data flowing from your Azure Event Hub in some other way.

1. In Cribl Stream, open the Sources > Azure Event Hubs > Cribl Stream page. This should show your
Source, with a message confirming that it is working properly.

A working Source

2. Open the Live Data tab. You should see the data that is flowing from your Azure Event Hub to
Cribl Stream.

Verify that Data is Flowing from your Azure Event Hub to
Cribl Stream

Page 1708 of 1835

Viewing Live Data

;

Page 1709 of 1835

Cribl Stream can send data to these flavors of Splunk Cloud:

The free, single-instance trial version.

A distributed Splunk Cloud instance with clustered indexers.

A Bring Your Own License (BYOL) deployment, either in a non-Splunk cloud or on-prem.

You have a choice of two methods for sending the data:

Splunk HEC (HTTP Event Collector).

The S2S (Splunk-to-Splunk) protocol.

Of all the possible combinations, three have proven most useful in the field:

Using Splunk HEC with the trial version of Splunk.

Using S2S with a distributed instance of Splunk.

Using S2S with a BYOL deployment of Splunk.

Splunk HEC is fast and easy to set up. Under the hood, it uses the HTTP/S protocol. This o�ers better
compression than S2S, which is a binary protocol.

The Splunk HEC endpoints are virtual endpoints, front-ended with load balancers – ELB for AWS, or GLB for
GCP. This provides good load-balancing.

Cribl generally recommends using Splunk HEC for integrating with Splunk Cloud, because (1) it requires
fewer connections than S2S, and therefore consumes less memory; and (2) because its superior compression
yields lower egress costs.

12.5. Splunk Cloud and BYOL Integrations

Events sent to the Splunk HEC Destination will show higher outbound data volume than the same
events sent to the Splunk Single Instance or Splunk Load Balanced Destinations, which use the S2S
binary protocol.

When to Use Splunk HEC

When to Use S2S

Page 1710 of 1835

S2S allows each Cribl Stream Worker Process to connect to multiple indexers concurrently, which distributes
data very e�ectively. This helps significantly with Splunk search, by placing a smaller burden on a larger
number of indexers. This support for concurrent connections is the main advantage of S2S. Consider S2S if
you plan to route all your data through Cribl Stream first, and you prioritize search performance.

S2S enables TLS compression by default. Do not confuse TLS compression with the compressed setting in
the Splunk inputs.conf file, which is a di�erent thing, and is for non-TLS connections only.

See the Splunk documentation about the compressed setting, and about TLS, which Splunk configuration
files still refer to as SSL.

In Splunk Cloud, identify your HEC endpoint, as described in the Splunk documentation. Here are some
example URL patterns for HEC endpoints:

Free version: https://inputs.<cloud_stack_name>:8088

Paid Version in AWS: https://http-inputs-<cloud_stack_name>:443

Paid version in GCP: https://http-inputs.<cloud_stack_name>:443

A HEC endpoint for a paid version of Splunk Cloud on AWS, for a company called "Acme Group," might look
like this:

https://http-inputs-acmegroup.splunkcloud.com:443

Copy the endpoint URL for use when configuring Cribl Stream in the next section.

You need to create at least one HEC token. For deployments where you set up routing to individual indexes,
or you use HEC tokens for RBAC on Splunk, you will create multiple HEC tokens.

1. In the Splunk UI, open the Settings menu and click Data Inputs.

Using Splunk HEC

Identify Your Splunk HEC Endpoint

Create HEC Tokens

Page 1711 of 1835

Settings > Data inputs

2. In the HTTP Event Collector section of the resulting modal, click + Add new.

Adding a new HTTP Event Collector

3. Name the new token and click Next.

Page 1712 of 1835

Adding a new token

4. Do not add any indexes. This way HEC can write to any index. If you prefer a default index other than
main , choose it from the Default index drop-down.

Page 1713 of 1835

Indexes for the new token

5. Once the token has been created, copy it for use when configuring Cribl Stream in the next section.

Page 1714 of 1835

Copying the token value

From the top nav of a Cribl Stream instance or Group, select Data > Destinations, then select Splunk > HEC
from the Manage Destinations page's tiles or le� nav. Click + Add New to open the HEC > New Destination
modal.

In the General Settings tab:

Grab the values that you copied in the previous section, and paste them into the Splunk HEC Endpoint
and HEC Auth Token fields, respectively. Be sure to specify HTTPS, because the endpoint will default to
HTTP.

Click Save.

Click Commit & Deploy.

Add a Splunk HEC Destination in Cribl Stream

Page 1715 of 1835

Populating General Settings with values from Splunk

1. In Cribl Stream, open the Splunk HEC Destination that you created in the previous section.

In the configuration modal's Test tab, click Run Test.

You should see a Success message.

Testing the HEC Destination

Verify that Data is Flowing from Cribl Stream to Splunk Cloud

Be sure you have committed and deployed the newly created configuration. Otherwise, data will not
flow to Splunk Cloud, and verification will fail.

Page 1716 of 1835

2. In Splunk, search on index=main cribl_pipe=* . Events that you sent from the Cribl Stream Test tab
should appear in the search results.

Events flowing to Splunk

1. In Splunk Cloud, download the Splunk Cloud Universal Forwarder credentials app to your desktop.

2. Change the file su�ix from .spl to .tar.gz .

Using S2S

Prepare Splunk Cloud for Cribl Stream Integration

Page 1717 of 1835

Changing the credentials app file su�ix

3. Untar/unzip the directory to expose the files.

Credentials app files

4. Locate the following files. You will need them when you configure Cribl Stream in the next section.

Page 1718 of 1835

./default/<SplunkCloudInstanceName>_cacert.pem

./default/<SplunkCloudInstanceName>_server.pem

./default/outputs.conf

./local/outputs.conf

1. In Cribl Stream, select Groups > <group‐name> (or Configure > default) from the le� nav. Then, at
the upper right, select Settings > Certificates.

The Settings > Certificates submenu

2. Populate each field below with the specified content:

Certificate: Drag and drop the server.pem file.

Private Key: Copy and paste just the private key section of the server.pem file.

Passphrase: Copy and paste just the SSL password from the ../local/outputs.conf file.

CA certificate: Drag and drop the cacert.pem file.

Configure Certificate Settings in Cribl Stream

Page 1719 of 1835

Copying certificate values

The type of Destination to add depends on what form of Splunk you're using:

For a trial version of Splunk Cloud, select Splunk Single Instance.

For a paid version of Splunk Cloud, select Splunk Load Balanced. This is required because any paid
version of Splunk Cloud will have multiple indexer entries in the ../default/outputs.conf file.

1. From the top nav of a Cribl Stream instance or Group, select Data > Destinations, then select either
Splunk > Load Balanced or Splunk > Single Instance from the Manage Destinations page's tiles or le�
nav. Then click + Add New to open the corresponding New Destination modal.

Add a Splunk Destination in Cribl Stream

Page 1720 of 1835

Creating the Splunk Destination

2. In the General Settings tab, populate the Address and Port fields.

From the ./default/outputs.conf file you copied in the previous section, divide the value of the
server line between the two fields shown in the screenshot below.

The General Settings tab

3. In the TLS Settings (Client Side) tab:

From the Certificate name drop-down, select the certificate that you created.

From the ./local/outputs.conf file, paste the sslPassword value into the Passphrase field.

Click Save.

Click Commit and Deploy.

Page 1721 of 1835

TLS Settings

1. In Cribl Stream, open the Destination that you created in the previous section.

In the configuration modal's Test tab, click Run Test.

You should see a Success message.

Verify that Data is Flowing from Cribl Stream to Splunk Cloud

Be sure you have committed and deployed the newly created configuration. Otherwise, data will not
flow to Splunk Cloud, and verification will fail.

Page 1722 of 1835

Testing the Splunk Destination

2. In Splunk, search on index=main cribl_pipe=* . Events that you sent from the Cribl Stream Test tab
should appear in the search results.

Events flowing to Splunk

Page 1723 of 1835

Before you begin configuring this option, you should already have Splunk Universal Forwarders configured to
send data securely to your Splunk environment. This enables you to:

Re-use content from the .pem and outputs.conf files already in use on those Forwarders.

Follow the procedures in the in the previous section to add the certificate to Cribl Cloud.

Then, reference the certificate in the Splunk Destination configuration.

If you need to secure your Splunk indexers, see the Splunk documentation.

If a Splunk Universal or Heavy Forwarder is the source of the data you want to send to Splunk Cloud:

In Cribl Stream, create a Splunk TCP Source to receive data from the Splunk Forwarder.

This process includes configuring the Splunk Forwarder to point to the new Source in Cribl Stream, and
(optionally) securing the communication with TLS.

;

Using S2S with Splunk BYOL

When Your Data Source is a Splunk Forwarder

Page 1724 of 1835

In Cribl.Cloud, you can configure Cribl Stream to receive Windows events from the
Windows Event Forwarding (WEF) mechanism. To do this, you configure a Windows endpoint/sender to
forward events to Cribl Stream's Windows Event Forwarder Source with mutual TLS authentication.

This page picks up where the Windows Event Forwarder Source doc's upstream sender configuration section
leaves o�. Before you begin, make sure that you are running PowerShell as an administrator.

Cribl recommends using certificate auto-enrollment, via Group Policy, to configure unique device certificates
for WEF. (However, if your environment is small enough that auto-enrollment seems like too heavyweight a
procedure, skip ahead to Generating a CA and Client Certificates.)

In your Windows domain controller, edit or create a new Group Policy Object (GPO). Then, navigate to
Computer Configuration > Policies > Windows Settings > Security Settings > Public Key Policies.

Double-click the Certificate Services Client - Auto Enrollment Properties Object Type. In the resulting
modal:

From the Configuration Model drop-down, select Enabled .

Select the check box labeled:
Renew expired certificates, update pending certificates, and remove revoked

certificates .

Select the check box labeled:
Update certificates that use certificate templates .

Click OK and Apply.

12.6. Configuring WEF for Cribl Stream

Configuring Certificate Auto-Enrollment

Page 1725 of 1835

The Auto-Enrollment Properties modal

Select the Certificate Services Client – Certificate Enrollment Policy Object Type. In the resulting modal:

From the Configuration Model drop-down, select Enabled .

Click OK and Apply.

Page 1726 of 1835

The Certificate Enrollment Policy modal

Double-click the Automatic Certificate Request Settings folder. In the resulting wizard:

Select the Computer template, click Next, and follow the prompts to create a new automatic certificate
request.

Page 1727 of 1835

The Automatic Certificate Request Setup Wizard

If you followed the preceding Configuring Certificate Auto‑Enrollment section to configure certificates, skip
ahead to Setting Client Certificate Permissions.

To begin, generate a public/private key pair that constitute a new Cribl WEF Certificate Authority (CA) – i.e.,
the root CA. Then, import it into the local computer's Trusted Root CA store. The following PowerShell
commands do all of this (run as Administrator):

Now, generate the client certificate.

Generating a CA and Client Certificates

$rootca = New-SelfSignedCertificate -CertStoreLocation cert:\LocalMachine\My -
DnsName "Cribl Windows Event Forwarding CA" -subject "CN=CRIBL-CA, DC=cribl,
DC=local" -KeyUsage CertSign
Export-Certificate -Cert $rootca -FilePath C:\temp\cribl-wef-ca.cer
Import-Certificate -FilePath C:\temp\cribl-wef-ca.cer -CertStoreLocation
cert:\LocalMachine\Root

Page 1728 of 1835

You can perform this step through the Windows UI, or on the command line.

Open the Certificate Manager tool (certlm.msc).

Right-click the cribl-wef-client certificate and select All Tasks > Manage Private Keys….

Add the NETWORK SERVICE user.

Adding the Network Service user

New-SelfSignedCertificate -CertStoreLocation cert:\LocalMachine\My -DnsName cribl-
wef-client -Signer $rootca

Setting Client Certificate Permissions

Cert Permissions via UI

Page 1729 of 1835

As an alternative, you can run the following PowerShell script (as administrator):

(Source: Stack Overflow – NETWORK SERVICE user cannot read certificate Windows Server 2012.)

Your goal here is to enable the Network Service to read the security logs. To do this, you'll configure access
for the Event Log Service.

Navigate to Computer Configuration > Policies > Administrative Templates > Windows Components >
Event Log Service. Double-click Security, then in the *Settings pane, select Configure log access**.

Cert Permissions via Command Line

$issuer = "CN=CRIBL-CA, DC=cribl, DC=local"
$certs = Get-ChildItem -Path cert:\LocalMachine\My | Where {$_.Issuer -eq $issuer}

Foreach ($cert in $certs)
{
Specify the user, the permissions, and the permission type
$permission = "Network Service","FullControl","Allow"
$accessRule = New-Object -TypeName

System.Security.AccessControl.FileSystemAccessRule -ArgumentList $permission

Location of the machine–related keys
$keyPath = Join-Path -Path $env:ProgramData -ChildPath

"\Microsoft\Crypto\RSA\MachineKeys"
$keyName = $cert.PrivateKey.CspKeyContainerInfo.UniqueKeyContainerName
$keyFullPath = Join-Path -Path $keyPath -ChildPath $keyName

Get the current ACL (Access Control List) of the private key
$acl = (Get-Item $keyFullPath).GetAccessControl('Access')

Add the new ACE to the ACL of the private key
An ACE (Access Control Entry) is an individual rule in an ACL
$acl.SetAccessRule($accessRule)

Write back the new ACL
 Set-Acl -Path $keyFullPath -AclObject $acl -ErrorAction Stop

Observe the access rights currently assigned to this certificate.
 get-acl $keyFullPath| fl
}

Configuring Log Forwarding Group Policies

Page 1730 of 1835

Configuring log access

In the resulting modal, under Options > Log Access, enter the following Log Access configuration:

Then, reboot your Windows machine to apply this setting.

(Source: Microso�'s Security event log forwarding fails... topic.)

Navigate to Computer Configuration > Policies > Administrative Templates > Windows Components.
Select Event Forwarding to open the Local Group Policy Editor.

O:BAG:SYD:(A;;0xf0007;;;SY)(A;;0x7;;;BA)(A;;0x1;;;BO)(A;;0x1;;;SO)(A;;0x1;;;S-1-5-
32-573)(A;;0x1;;;S-1-5-20)

Configuring the Subscription Manager

Page 1731 of 1835

Configuring the Subscription Manager

Select Configure target Subscription Manager and enter the following template string, substituting the
appropriate values for the placeholders:

Complete this section only if your deployment is in Cribl.Cloud. (If your Cribl Stream deployment is on-prem
or hybrid, import the correct certificate for the appliance, then skip ahead to Configuring a New WEF Source.)

Server=https://in.logstream.<organization>.cribl.cloud:<port>/wsman/SubscriptionManager

If you forget your Client CA hash, run the following command to find it:

 Get-ChildItem cert:\LocalMachine\root | Where-Object {$_.Subject -Like
"CN=Cribl*"}

Configuring the CA Certificate in Cribl.Cloud

Page 1732 of 1835

First, dump the CA certificate in PEM format:

The cribl-wef-ca certificate should now be available at C:\cribl-wef-ca.pem .

Cribl Stream requires every CA certificate to be accompanied by a cert/key pair. Although Cribl Stream won't
ever use the cert/key that for the cribl-wef-ca certificate, you need to generate them to pass validation.

Run the following openssl command to generate a placeholder cert/key pair:

In the Cribl Stream Worker Group UI, navigate to Settings > Security > Certificates > New Certificates.

Paste the placeholder certificate and key into the Certificate and Private key fields, respectively.
Cribl Stream automatically pastes the cribl-wef-ca PEM contents into the CA certificate field.

If the client certificates contain a CA chain (root and intermediate signers), you must import the entire CA
chain. Concatenate the PEM files together (in any order) in the CA certificate field.

$oMachineCert=get-item cert:\LocalMachine\Root\$($(Get-ChildItem
cert:\LocalMachine\root | Where-Object {$_.Subject -Like "CN=Cribl*"}).Thumbprint)
$oPem=new-object System.Text.StringBuilder
$oPem.AppendLine("-----BEGIN CERTIFICATE-----")
$oPem.AppendLine([System.Convert]::ToBase64String($oMachineCert.RawData,1))
$oPem.AppendLine("-----END CERTIFICATE-----")
$oPem.ToString() | out-file C:\cribl-wef-ca.pem

openssl req -x509 -newkey rsa:2048 -nodes -keyout key.pem -out cert.pem -sha256 -
days 365 -subj '/CN=placeholder'
cat cert.pem key.pem

Page 1733 of 1835

Configuring certificates

When the WEF machine connects to Cribl Stream, the machine presents its certicate to Cribl Stream. To
authenticate clients that try to send logs from WEF, Cribl Stream compares the signer of the WEF machine's
certificate against the CA list (which you imported in the previous step).

To create a new Windows Event Forwarder Source:

In the QuickConnect UI: Click + New Source, or click + Add beside Sources. From the resulting drawer's
tiles, select [Push >] Windows Event Forwarder. Next, click either + Add New or (if displayed)
Select Existing to open a Windows Event Forwarder Source drawer.

Or, in the Data Routes UI: From the top nav of a instance or Group, select Data > Sources. From the resulting
page's tiles or the Sources le� nav, select [Push >] Windows Event Forwarder. Next, click + Add New to

Configuring a New WEF Source

Page 1734 of 1835

open a New Source modal.

The drawer or modal will now provide the options and fields described in the
Windows Event Forwarder Source topic. That topic describes the general case; this one covers only settings
that are specific to the use case we're describing.

In the Port field, enter a custom port between 20000 and 20010 . This is necessary because the default port
(5985) is not available in Cribl.Cloud.

From the Certificate name drop-down, choose the certificate you just created.

Configuring General Settings

General Settings

Page 1735 of 1835

Replace the contents of Private key path with /opt/criblcerts/criblcloud.key , and the contents of
Certificate path with /opt/criblcerts/criblcloud.crt . (These are the default certificates that ship with
Cribl.Cloud.)

Configuring General Settings, continued

Advanced Settings

Page 1736 of 1835

If youʼre using a shared certificate across multiple machines (meaning that your devices cannot be
configured for certificate auto-enrollment), toggle Allow MachineID mismatch to Yes . This tells Cribl
Stream to allow machine names that do not match the common name (CN) specified in the certificate.
However, certificates will still need to be signed by the Certificate Authority that you uploaded.

If your devices are configured for certificate auto-enrollment, toggle Allow MachineID mismatch to No ,
because MachineID s will match the Subject Name specified the certificate. The No setting provides better
security than Yes .

Configuring Advanced Settings

Configure a subscription to forward the type of logs you're interested in. For example, to forward all Security
logs:

In Query > Path, enter Security .

In Query > Query expression, enter *[System] .

Subscriptions

Page 1737 of 1835

Configuring Subscriptions

A full account of how to troubleshoot WEF certificate administration is beyond the scope of this guide, but
knowing about the following common errors is a good start.

Error:
The subscription <subscription> can not be created. The error code is 5004.

The error appears in the Microsoft-Windows-Eventlog-ForwardingPlugin/Operational log.

Resolution:

1. Apply the O:BAG:SYD:... permissions to make the log file readable.

2. Reboot the machine.

Error:
The forwarder is having a problem communicating with subscription manager at address…

Remember to save, commit, and deploy your new configuration as soon as you have configured
Subscriptions. This is required for the previous steps, beginning with Configuring the CA Certificate
in Cribl.Cloud, to take e�ect.

Troubleshooting

Subscription Cannot be Created

Cannot find the Certificate

Page 1738 of 1835

The WS-Management service cannot find the certificate that was requested.

For example:

Resolution:

The NETWORK SERVICE user does not have permissions to use the private key of the certificate for
authentication.

Add the NETWORK SERVICE user to the list of users allowed to use the private key.

For more context and greater detail, see:

System Center Dudes' blog post about using PowerShell to generate certs.

ATA Learning's WEF tutorial.

For more about WEF subscriptions, including sample subscription querie, see:

Microso�'s Use Windows Event Forwarding to Help with Intrusion Detection topic.

The NSA Cybersecurity Directorate's WEF Guidance.

Palantir's WEF Guidance.

;

The forwarder is having a problem communicating with subscription manager at address
https://<stream_worker>:5986/wsman/SubscriptionManager/WEC.

Error code is 2150858882 and Error Message is <f:WSManFault
xmlns:f=http://schemas.microsoft.com/wbem/wsman/1/wsmanfault Code="2150858882"
Machine="DELMD2273309.na.blkint.com"><f:Message>The WS-Management service cannot
find the certificate that was requested. </f:Message></f:WSManFault>.

Further Reading

Page 1739 of 1835

Zscaler Nanolog Streaming Service (NSS) uses a VM to stream tra�ic logs in real time from the Zscaler
Nanolog to a SIEM. Cribl Stream can take the place of the SIEM in this arrangement. Then you can use
Cribl Stream to greatly reduce the size of ZScaler logs.

Since Nanolog forwards data to a single IP address or FQDN, Cribl recommends that you use a load balancer
to distribute data among Cribl Stream Workers.

Nanolog delivers data using a raw TCP connection.

In Zscaler:

Go to Administration > Nanolog Streaming Service.

In the NSS Feeds tab, click Add NSS Feed to open the following configuration window:

12.7. Zscaler NSS Integration

Configuring NSS to Send Data to Cribl Stream

Page 1740 of 1835

Adding a Zscaler NSS feed

Enter a Feed Name that identifies this feed as one that sends data to Cribl Stream.

Enter the IP address or FQDN for either your Cribl Stream instance, or the load balancer you're using
with your Cribl Stream instances.

Select a Feed Output Type. Splunk CIM , a tab-delimited key/value format, is a typical choice.

Alternatively, you choose a di�erent option, such as CSV:

Page 1741 of 1835

Choosing a CSV output format

Cribl Stream can reduce Zscaler log size by (1) reformatting and reshaping the data, and (2) suppressing,
sampling, and dropping appropriate fields.

The following code block shows how to correctly parse tab-delimited key/value pairs.

Here's an example Pipeline that uses the parsing code above. (You can directly import this Pipeline in JSON
form.)

A Code Function parses the data:

Example Pipeline

let temp = {};

// Substr drops the timestamp from _raw, otherwise the split does not work correctly
__e['_raw'].substr(20).split('\t').forEach((element) => {
 // Split K=V on the first equal sign

let eq = element.indexOf('=')
let name = element.substr(0, eq);
let value = element.substr(eq + 1);

 // if value is none or N/A, drop the field
 value !== 'None' && value !== 'NA' ? temp[name] = value : false;
 // otherwise use this line below
 // temp[name] = value;
})

__e['_raw'] = temp;

Page 1742 of 1835

Parsing with a Code Function

An Eval Function reshapes the data:

Reshaping with Eval

And finally, a Serialize Function drops unwanted fields:

Page 1743 of 1835

Dropping fields with Serialize

To import the example Pipeline directly, copy and save the JSON below, then follow these instructions.

Zscaler Example Pipeline

Example Pipeline JSON

Page 1744 of 1835

{
"id": "zscaler",
"conf": {
"output": "default",
"groups": {},
"asyncFuncTimeout": 1000,
"functions": [
{
"id": "code",
"filter": "true",
"disabled": false,
"conf": {
"maxNumOfIterations": 5000,
"code": "let temp = {};\n\n// Substr drops the timestamp from _raw,

otherwise the split does not work
correctly\n__e['_raw'].substr(20).split('\\t').forEach((element) => {\n // Split
K=V on the first equal sign\n let eq = element.indexOf('=')\n let name =
element.substr(0, eq);\n let value = element.substr(eq + 1);\n\n // if value
is none or N/A, drop the field\n value !== 'None' && value !== 'NA' ? temp[name]
= value : false;\n // otherwise use this line below\n // temp[name] =
value;\n})\n\n__e['_raw'] = temp;"

}
},
{
"id": "eval",
"filter": "true",
"disabled": false,
"conf": {
"add": [
{
"name": "_raw.hostname",
"value": "_raw.url.startsWith(_raw.hostname) ? undefined :

_raw.hostname"
},
{
"name": "_raw.reason",
"value": "_raw.reason === _raw.action ? undefined : _raw.reason"

},
{
"name": "_raw.bwthrottle",
"value": "_raw.bwthrottle === 'NO' ? undefined : _raw.bwthrottle"

}
]

}
},
{
"id": "serialize",
"filter": "true",
"disabled": false,
"conf": {
"type": "kvp",
"fields": [
"!vendor",
"!product",
"!useragent",
"!location",
"!responsesize",
"!requestsize",
"!event_id",

Page 1745 of 1835

;

"!*transtime",
"!transactionsize",
"*"

],
"dstField": "_raw",
"cleanFields": false,
"srcField": "_raw"

}
}

]
}

}

Page 1746 of 1835

13. TROUBLESHOOTING

This page lists known issues a�ecting Cribl Stream and/or Cribl Edge.

Problem: If you've enabled the GitOps Push workflow, you will be unable to run ad hoc Collection jobs.

Workaround: There are two options. 1. Temporarily disable the Push workflow in your environment.
2. Create a scheduled Collection job (with a relaxed cron schedule) on your dev branch, and push it to
production through your Push workflow.

Fix: Version TBD.

Problem: The File Monitor Source might stop reading logs from an open file, if the log rotation service
renames that file.

Workaround: Restart the File Monitor Source.

Fix: Planned for Cribl Stream 4.0.

13.1. Known Issues

2022-10-11 – All versions through 3.5.4 – GitOps Push mode
doesn't support ad hoc Collection jobs [CRIBL‑12868]

2022-10-04 – All versions through 3.5.4 – File Monitor Source fails
with high-volume logs and file rotation [CRIBL-12762]

2022-08-29 – All versions through 3.5.3 – Sources reject
connections on ACME certs with no Subject [CRIBL‑12097]

Page 1747 of 1835

Problem: With multiple Sources, if you configure TLS mutual authentication using an ACME certificate with
an empty Subject field, Cribl Stream will reject connections – even though RFC 6125 allows for Subject to
be empty. This a�ects: Splunk Sources, Cribl internal Sources, Syslog, TCP, TCP JSON, Metrics, HTTP/S,
Amazon Firehose, Elasticsearch API, DataDog, Grafana, Loki, Prometheus, and Windows Event Forwarder.

Workaround: Enter any value in the certificate's CN field. Any entry will cause CCribl Stream to match on the
certificate's SAN (subjectAltName) extension.

Fix: Planned for Cribl Stream 4.0.1.

Problem: When Azure Event Hubs (and other Kafka-based Destinations) have Persistent Queues configured,
an interruption of inbound data flow (e.g., due to network issues) can cause the Destination to start dropping
events.

Workaround: On the Source whose events are being interrupted, configure an Always On Persistent Queue.
This bu�ering will cause the Destination to drop fewer events.

Fix: Version TBD.

Problem: On a Splunk Load Balanced Destination, enabling the Minimize in-flight data loss
(acknowledgments) field can cause high CPU drain and backpressure.

Workaround: On the the Splunk LB Destination's Advanced Settings tab, disable Minimize in-
flight data loss.

Fix: Version TBD.

2022-08-27 – All versions through 3.5.4 – Azure Event Hubs
Destination with PQ drops events when inbound data is
interrupted [CRIBL‑12649]

2022-08-25 – Version 3.4.1 – Splunk Load Balanced Destination
degradation with acks enabled [CRIBL‑12066]

Page 1748 of 1835

Problem: Events sent to the Splunk HEC Destination will show higher outbound data volume than the same
events sent to the Splunk Single Instance or Splunk Load Balanced Destinations, which use the S2S binary
protocol.

Fix: Planned for Cribl Stream 4.0.1.

Problem: Changing the Target Type while configuring a new Notification target crashes the New Target
modal.

Workaround: Set the Target type once only while the modal is open.

Fix: In Cribl Stream 3.5.3.

Problem: Cribl.Cloud's ⚙ Network Settings >: Data Sources tab lists Ingest Address ports for the new
Cribl HTTP and Cribl TCP Sources. However, these ports are not yet enabled.

Workaround: If you need these ports enabled before the next maintenance release, contact Cribl Support or
your Solutions Engineer.

Fix: In Cribl Stream 3.5.2.

2022-08-16 – All versions through 3.5.3 – Splunk HEC shows
higher outbound data volume than other Splunk Destinations

2022-08-10 – v.3.5.1 – Changing Notification target type crashes
New Target modal [CRIBL‑11848]

2022-08-03 – v.3.5.0–3.5.1 – Cribl HTTP and Cribl TCP Sources are
not enabled on Cribl.Cloud [SAAS‑1905]

2022-08-02 – v.3.3–3.5.1 – Managed Edge Nodes mistakenly
display "Unregistered" button [CRIBL‑11652]

Page 1749 of 1835

Problem: Managed Edge instances erroneously display an Unregistered button. Managed Edge Nodes
cannot be registered, because they pull their registration/licensing information from the Leader. So this
button should not appear.

Workaround: Ignore the scary button. Your managed Edge Node has inherited its Leader's registration.

Fix: In Cribl Stream 3.5.2.

Problem: On Cribl.Cloud, Cribl Stream's General Settings > Upgrade & Share Settings display a
Sharing and live help toggle, even though you cannot turn o� telemetry on Cribl- or customer-managed
(hybrid) Cloud Workers.

Workaround: Ignore this toggle. The UI controls enable you to slide the toggle to No and save the result, but
this will have no e�ect.

Fix: In Cribl Stream 3.5.2.

Problem: The Job Inspector sometimes displays a higher byte count than other Monitoring dashboards
display for the same collection job. The Job Inspector overstates the throughput because it disregards any
Event Breakers and Filter expressions applied between initial collection and Pipelines.

Workaround: Rely on the Monitoring metrics to judge accurate data flow through Pipelines to downstream
services.

Fix: In Cribl Stream 3.5.3.

2022-08-02 – v.3.x through 3.5.1 – Cribl.Cloud displays
unsupported Sharing settings [SAAS‑1899]

2022-07-21 – v.3.5.0–3.5.2 – Job Inspector shows higher Bytes In
than Monitoring dashboards [CRIBL‑11482]

2022-07-21 – v.3.4.0–3.5.1 – Data loss with Source-side persistent
queueing enabled [CRIBL‑11478]

Page 1750 of 1835

Problem: With Source-side PQ enabled, events got stuck and did not process through Pipelines. The root
cause was a Rename Function that used wildcards to rename required internal fields (specifically,
__pqSliceId and __offset).

Workaround: Where Rename Functions potentially rename internal fields (especially via
Rename expressions that include wildcards), either disable PQ on Sources that feed the parent Pipeline, or
test and narrow the expression to a�ect only the desired fields.

Fix: In Cribl Stream 3.5.2.

Problem: A�er an upgrade to v.3.5.1., a new Pack appears on the Manage Packs page. This Pack has no
Display Name and no contents.

Workaround: Delete the ghost Pack.

Fix: Version TBD.

Problem: Scrolling the Manage Worker Nodes page fails to load more than 50 Worker Nodes.

Fix: In Cribl Stream 3.5.2.

Problem: When re-running Windows installers on a system that hosts a previous Cribl version as a managed
Edge Node, the installer does not read the distributed mode or other settings. The new version might install
as a Leader instance.

2022-07-21 – v3.5.1 – Fake Pack appears a�er upgrading to
v.3.5.1. [CRIBL‑11481]

2022-07-20 – v3.5.0–3.5.1 – Manage Worker Nodes page fails to
lazy-load Workers when scrolled [CRIBL‑11474]

2022-07-20 – v3.5.0–3.5.1 – Cribl Edge/Windows: Upgrading
ignores existing mode (etc.) settings [CRIBL‑11467]

Page 1751 of 1835

Workaround: Run the new version's installer using the same mode and other options you used when
installing the preceding version.

Fix: Version TBD.

Problem: On Cribl Edge/Windows, attempting to bind the Syslog Source to a UDP port might trigger an error
of the form: bind EADDRINUSE 0.0.0.0:<port number> . The reason is that Edge currently does not fully
support the socket.bind on Windows.

Fix: In Cribl Stream 3.5.2.

Problem: A Fleet Home page's List View tab doesn't correctly filter Edge Nodes. This tab displays all the
Edge Nodes across all Fleets, instead of only those assigned to the Fleet.

Workaround: The Map View page is filtered correctly.

Fix: In Cribl Edge 3.5.2.

Problem: A Publish Metrics Function's Event field name values should contain only letters, numbers,
underscores (_), and . characters (to separate names in nested structures). Using other characters will
cause the parent Pipeline to stop sending events. Cribl Stream 3.5.0 and above check for valid characters
when you save the Function's configuration, but in prior versions, the invalid config will save without an error
message – the failure will happen at runtime, with errors echoed only in the logs.

2022-07-19 – v3.5.0–3.5.1 – Cribl Edge/Windows: Syslog Source
disallows UDP binding [CRIBL‑11439]

2022-07-13 – v3.5.0–3.5.1 – Cribl Edge: Fleet > List View tab
doesn't correctly filter Edge Nodes [CRIBL‑11183]

2022-07-04 – All versions through v.3.4.2 – No extended
characters in Publish Metrics Function > Event field name field
[CRIBL‑8968, CRIBL‑10984]

Page 1752 of 1835

Workaround: Ensure that Event field name values contain no extended characters.

Fix: Validation check was added in Cribl Stream 3.5.0. Cribl Stream 4.0 and above will skip misnamed metrics
when serializing data.

Problem: On Amazon S3–based Sources, if you concatenate the AWS Region into the Queue field's URL or
ARN, the SQS client is correctly configured to that region, but the S3 client is not. You will see authentication
errors of the form: The AWS Access Key ID you provided does not exist in our records.

Workaround: Explicitly set the Region drop-down, even if the URL/ARN already contains the same Region.

Fix: In Cribl Stream 3.5.1.

Problem: If you configure persistent queueing to both enable Compression and set a Max queue size limit,
set that limit optimistically and monitor the results. Due to an error in computing the compression factor,
Cribl Stream will not fully use Max queue size values below or equal to the volume's available disk space.
This can lead to a mostly empty disk, lost data (either blocked or dropped), and/or excessive backpressure.

Workaround: With Compression enabled, set the Max queue size to a value higher than the volume's total
available physical disk space (disregarding compression). Alternatively, leave Max queue size empty, to
impose no limit. Monitor overall throughput and the queue size (if PQ engages), to verify that Cribl Stream is
maximizing the queue.

Fix: Version TBD.

2022-07-01 – All versions through 3.5.0 – S3-based Sources'
unread Region triggers auth errors [CRIBL‑10981]

2022-06-30 – All versions through 3.5.0 – Persistent queue with
compression requires oversize max queue limit [CRIBL‑10965]

2022-06-29 – v3.4.2–3.5.1 – Can't install a new Cribl Stream
instance as a named user [CRIBL‑10907, CRIBL‑11457]

Page 1753 of 1835

Problem: Bootstrapping a new Leader or Worker with a command of this form fails, with no systemd service
created: cribl boot‐start enable ‐u <username>

The symptom is an error of the form:
error: found user=0 as owner for path=/opt/cribl/local, expected uid=1001. This does not
a�ect upgrades to existing instances.

Workaround: Issue the [sudo] chown -R <username>: /opt/cribl command a second time. Then
reattempt the cribl boot-start command.

Fix: In Cribl Stream 3.5.2.

Problem: The specified versions do not support upgrading Edge Nodes via the Leader's UI.

Workaround: Re-run the Windows installer on each Edge Node, specifying the same installation
options/parameters you used when installing the preceding version.

Fix: Planned for Cribl Edge 4.0.

Problem: If you install Cribl Edge and Cribl Stream on the same machine or VM – e.g., running Edge as root
and Stream as a cribl user – both services attempt to use the tmp/cribl_temp subdirectory. Starting
Stream a�er Edge will throw an error of the form: EPERM: operation not permitted,
rmdir '/tmp/cribl_temp' . Starting Edge a�er Stream will change the folder's ownership, blocking
subsequent restarts of Stream.

Workaround: For either Cribl Edge or Cribl Stream, set the CRIBL_TMP_DIR variable to a separate base
subdirectory like /tmp/stream/ or /tmp/edge/ before starting the app.

Fix: Cribl Stream 3.5.2 and later set separate tmp/ subdirectories by default.

2022-06-28 – v3.5.x – Cribl Edge/Windows: Cannot upgrade
Edge Nodes from the Leader's UI [CRIBL‑10870]

2022-06-27 – v.3.3.0–3.5.0 – Edge vs. Stream conflict in /tmp
directory [CRIBL‑10806]

Page 1754 of 1835

Problem: Upgrading from v.3.4.x to v.3.5.0 tripled the latency before some Leaders reported healthy status.
The presumed cause was that load time increased due to an accumulation of persistent metrics, which
progressively increased with more Worker Nodes and more uptime.

Workaround: If upgrading is not possible or insu�icient, move the existing metrics subdirectory away from
$CRIBL_HOME/state/metrics/ . Cribl Stream will re-create that as an empty subdirectory, and begin
accruing fresh metrics there.

Fix: In Cribl Stream 3.5.1.

Problem: If you select Monitoring > Logs, and then select a Worker Group from the drop-down at upper le�,
you might see no logs at the Group level. Instead, you will see an error banner of the form:
ENOENT: no such file or directory, scandir

'/opt/cribl_data/failover/log/group/<group‐name>'

Workaround: From the drop-down at upper le�, select individual Worker Nodes to view their logs.

Fix: In Cribl Stream 3.5.1.

Problem: Bootstrapping a 3.4.2 Worker fails. The terminal displays no Enabled Cribl to be managed by
... confirmation message.

Workaround: Explicitly run the boot‐start CLI command.

Fix: In Cribl Stream 3.5.1.

2022-06-24 – v.3.5.0 – Leader takes excessive time to report
healthy status [CRIBL‑10768, CRIBL‑11127]

2022-06-23 – v.3.5 – Logs not viewable at Worker Group level
[CRIBL‑10665]

2022-06-01 – v.3.4.2 – Bootstrapping fails to create SystemD
service file, or starts wrong service [CRIBL‑10250]

Page 1755 of 1835

Problem: A�er cloning a Group containing at least one Pack, the UI hangs with a spinning pinwheel and an
error banner reading Config Helper service is not available... . The root cause is that cloning the
Group failed to copy over the Pack, leaving the new Group with broken references to it.

Workaround: Use the filesystem to manually copy missing Packs from the original Group to the cloned
Group. If these Packs' contents are not needed in the new Group, it's su�icient to just create the parallel
subdirectory with: mkdir $CRIBL_HOME/groups/$destGroup/default/$packName .

Fix: In Cribl Stream 3.5.

Problem: When monitoring LVM logical volumes, the System Metrics Source omits node_filesystem_*
events.

Fix: In Cribl Stream 3.5.2.

Problem: Attempting to bring up approximately 1,000 Edge Nodes (even in small batches) can crash the
Leader.

Workaround: To support up to 1,000 Nodes, apply this Node.js setting:
export NODE_OPTIONS=--max-old-space-size=8192

Fix: Planned for Cribl Stream 4.0.

2022-05-31 – v.3.4.2 – Cloning/loading Groups page breaks with
Config Helper service is not available... error
[CRIBL‑10228, CRIBL‑10229]

2022-05-19 – v.3.3.0–3.5.1 – System Metrics Source skips
filesystem events on LVM volumes [CRIBL‑10092]

2022-05-06 – v.3.5 – Running ~1,000 Edge Nodes crashes Leader
[CRIBL‑9859]

Page 1756 of 1835

Problem: Where a REST Collector's Response Attributes contain a . character, it misinterprets this as an
attribute nested within an object, not a literal character.

Workaround: If possible, use other Response Attributes to fetch the next page. Otherwise, skip this version,
or downgrade to a known well-behaved version.

Fix: In Cribl Stream 3.4.2.

Problem: A�er opening the le� nav's Changes fly-out, the Version drop-down can display Invalid Date
instead of commits' dates.

Workaround: Upgrade your installed git client to v.2.1.1 or newer; or skip this Cribl Stream version.

Fix: In Cribl Stream 3.4.2.

Problem: A 500–Internal Server Error error banner can indicate that git is not installed on
Cribl Stream's host.

Workaround: Install git on the Leader or single instance. On a�ected Worker Nodes, install git , followed
by a git init and an empty push to a new master branch. A simpler workaround for Worker Nodes is to
just enable remote access (Stream, Edge) from the Leader.

Fix: In Cribl Stream 3.4.2.

2022-04-28 – v.3.4.0–3.4.1 – REST Collector Misinterprets .
character in Response Attributes [CRIBL‑9708]

2022-04-27 – v.3.4.1 – Git Changes drop-down returns
Invalid Date [CRIBL‑9698]

2022-04-26 – v.3.4.1 – HTTP 500 error when git is absent
[CRIBL‑9684]

Page 1757 of 1835

Problem: On a Datadog Destination, when Allow API key from events is set to Yes , the API key from a
Datadog Agent Source is not correctly emitted with metric events sent to Datadog. Instead, Cribl Stream
simply sends the static API key configured in the Destination. (This a�ects metrics events only; other data
types correctly forward the event's API key.)

Workaround: Set Allow API key from events. to No . Configure the desired API key in the Destination's static
API key field. (If you need multiple API keys, can create multiple Destinations, and route events to each
based on the __agent_api_key field value. This value contains the Agent API key per event.)

Fix: In Cribl Stream 3.4.2.

Problem: A�er changing Authentication settings, or configuring an external auth provider, Cribl Stream
might fail to restart. Indications are errors of the form: Uncaught (in promise) TypeError: Cannot read
properties of undefined (reading 'workerRemoteAccess') , or: Uncaught (in promise)
TypeError: l.api is undefined .

Workaround: Directly edit the cribl.yml file's auth: section.

Fix: In Cribl Stream 3.4.2.

Problem: On certain iPads, we've seen the Cribl.Cloud login page's le� text column repeated twice more
across the display. These unintended overlaps prevent you from selecting (or tabbing to) the
Log in with Google button.

Workaround: If you encounter this, the only current workarounds are to either use Google SSO on a desktop
browser, or else use a di�erent login method.

2022-04-22 – v.3.3.0 – Datadog Agent API key ignored when
forwarding metrics to Datadog [CRIBL‑9633]

2022-04-21 – v.3.4.1 – Failed restart, Uncaught (in promise)
error, a�er changing Authentication settings [CRIBL‑9614]

2022-04-21 – All versions – Cribl.Cloud login page distorted on
iPad [SAAS‑1141]

Page 1758 of 1835

Problem: This error message can mistakenly appear in logs: Attempted to flush previously flushed
buffer token . You can ignore it on TCP-based, load-balanced Destinations (Splunk Load Balanced,
TCP JSON, Syslog/TCP, and Cribl Stream) with persistent queueing enabled.

Fix: In Cribl Stream 3.5.

Problem: Lookup Functions within some Pipelines were skipped up to ~20% of the time. Restarting
Cribl Stream resolves this temporarily, but the failure eventually resurfaces as the new session proceeds.

Workaround: Where a Lookup Function fails, substitute an Eval Function, building a ternary JS expression
around a method.

Fix: Version TBD.

Problem: Multiple Linux distro's have backported a permissions-restriction patch from git-2.35.1 to
earlier versions, notably including Ubuntu 20.04 LTS. If you see errors of the form fatal: unsafe
repository ('/opt/cribl' is owned by someone else) on the command line or in the Cribl Stream UI,
this indicates an ownership mismatch (current user versus file base) on the directory corresponding to
$CRIBL_HOME or $CRIBL_VOLUME_DIR .

Workaround: Use chown to recursively set permissions on all files in /opt/cribl/ (or in or
$CRIBL_VOLUME_DIR 's target directory) to match the user running Cribl Stream.

Fix: In Cribl Stream 3.4.2.

2022-04-19 – v.3.3.0–3.4.2 – Spurious bu�er token flush error in
TCP-based Destinations with PQ enabled [CRIBL‑9565]

2022-04-18 – v.3.3.1–3.5.1 – Lookup Functions intermittently fail
[CRIBL‑9539]

C.Lookup

2022-04-15 – All versions – Git permission errors [CRIBL‑9530]

Page 1759 of 1835

Problem: A�er upgrading to v.3.4.0, Worker Nodes failed to report all metrics. Missing metrics were logged
with a warning of the form: failed to report metrics , and with a reason of the form:
Cannot read property 'size' of undefined .

Fix: In Cribl Stream 3.4.1.

Problem: When you hover over the Monitoring page's graphs, the expected red/yellow/green status
indicators are missing.

Fix: In Cribl Stream 3.4.2.

Problem: A�er you define a Chain Function that references a Pack, Functions on Pipelines within that Pack
will throw errors of the form: Failed to load. Function <Function‐name> is missing. Please fix,
disable, or remove the Function. You might also find that you cannot add more Functions within the
Pack. (However, data might continue to flow, despite these errors.)

Workaround: Remove the Chain Function, or its Pack reference. Refactor your flow logic to avoid this
combination.

Fix: In Cribl Stream 3.4.2.

2022-04-15 – v.3.4.0 – Workers report incomplete metrics
[CRIBL‑9524]

2022-04-14 – v.3.4.0 – Monitoring visualizations lack color
indicators [CRIBL‑9510]

2022-04-07 – v.3.4.0–3.4.1 – Chain Function referencing a Pack
triggers errors on Pack's Functions [CRIBL‑9235]

2022-04-05 – v.3.4.0 – Upgrade to 3.4.0 disables Worker/Node UI
access [CRIBL‑9175]

Page 1760 of 1835

Problem: Upon upgrading to v.3.4.0, even if the (prior, global) Worker/Node UI access option was set to Yes ,
the new per–Worker Group toggles are all set to No by default.

Workaround: On the Manage Worker Groups page, re-enable the UI access toggles as desired. If these
toggles are not displayed (with a Free license), edit groups.yml to add the key-value pair
workerRemoteAccess: true within each desired Worker Group.

Problem: Errors of this form have been observed with multiple triggers: 1. Disabling a customized Source or
Destination (it remains enabled). 2. Importing and deleting a Pack. 3. Changing a channel's logging level.

Workaround: Delete and re-create a�ected Sources and Destinations. (No workaround has been identified
for the Pack or logging errors.)

Fix: In 3.4.1.

Problem: The Monitoring page displays an error where distributed environments have more than 30
Worker Nodes.

Fix: In 3.4.1.

Problem: In a REST Collector's Collect parameters table, entering a parameter name like "earliest" as plain
text will cause it to be interpreted as a literal string. This will not be evaluated as the earliest time-range
parameter.

Workaround: Backtick the parameter name, e.g.: `earliest` .

2022-03-29 – v.3.4.0 – this.dLogger.isSilly is not a
function errors [CRIBL‑9019]

2022-03-23 – v.3.4.0 – Monitoring page error in distributed
environments with many Worker Nodes [CRIBL‑8938]

2022-03-23 – Collect parameters values not evaluated as
expressions [CRIBL‑8932]

Page 1761 of 1835

Fix: Planned for Cribl Stream 4.0.

Problem: When you explicitly upgrade a Leader Node to 3.4.0, you can't push upgrades to Workers.

Workaround: Automatic upgrades work as expected. At global ⚙ Settings (lower le�) > System > Upgrade,
set Disable Automatic upgrades to No .

Fix: In 3.4.1.

Problem: On systemd, the Cribl service can stop with an unsuccessful return code. This was caused by a
malformed ExecStopPost command in Cribl's provided cribl.service file.

Workaround: In cribl.service , delete the whole ExecStopPost=... line, and change the Restart
parameter's value from on-failure to always . (The first deletion necessitates the second change.)

Fix: Versions 3.4.1 and later install a cribl.service file incorporating both the above changes. If you are
upgrading from v.3.4.0 or earlier, and you notice dead Workers, check and update your existing
cribl.service configuration to match the changes above.

Problem: A Source with Persistent Queueing enabled can mistakenly re-engage queueing while still draining
its queue – leading to blocked throughput and backpressure. This occurs a�er a Destination goes o�line and
back online, once or more, leaving the Source in an undetermined queue state.

Workaround: Wait 60 seconds for another queue drain event, to see if PQ behavior goes back to normal. If
the problem persists, restart Cribl Stream.

2022-03-23 – Upgrading v.3.3.1 Leader to v.3.4.0 blocks upgrade
to Workers [CRIBL‑8918]

2022-03-17 – All versions through 3.4.0 – Failed systemd restarts
due to erroneous ExecStopPost command [CRIBL‑8807]

2022-03-17 – v.3.4.0 – Source PQ re-engages while draining,
causing blockage/backpressure [CRIBL‑8800]

Page 1762 of 1835

Fix: In Cribl Stream 3.4.1.

Problem: Unless git is installed locally, two Monitoring pages fail to display, with errors of the form
Versioning not supported . The pages are Monitoring > Overview and Monitoring > System >
Licensing. To resolve the errors, git must be installed even on single-instance deployments.

Workaround: Install git.

Fix: In 3.4.1.

Problem: A�er upgrading to any of the indicated versions, customers with active Splunk Destinations
noticed that CPU load increased, triggering backpressure more readily.

Workaround: Skip these versions, or downgrade to a known well-behaved version.

Fix: In 3.4.1.

Problem: In v.3.4, Cribl moved the Worker/Node UI access toggle from global ⚙ Settings > System >
Distributed Settings to per–Worker Group toggles on the Manage Worker Groups page. But with a Free
license, these controls aren't displayed in the UI at all.

Workaround: Directly edit groups.yml to add the key-value pair workerRemoteAccess: true within each
desired Worker Group.

Fix: In 3.4.1.

2022-03-17 – v.3.4.0 – Monitoring pages break without git
[CRIBL‑8799]

2022-03-16 – v.3.2.2 through 3.4.0 – Upgrading from earlier
versions degrades performance [CRIBL‑8784]

2022-03-11 – v.3.4.0 – In Free versions, Worker/Node UI access
can't be accessed via UI [CRIBL‑8707, CRIBL‑8945]

Page 1763 of 1835

Problem: If your Enterprise license expires while you have enabled the GitOps Push workflow, you will
encounter the following block: Cribl Stream is in read-only mode, triggering a Forbidden error when you try
to update your license key. But you also cannot reset the workflow from Push to None , because the expired
license disables GitOps features.

Workaround: Contact Cribl Support for help updating your license.

Fix: Version TBD.

Problem: The cribl.logstream.total.in_bytes dimension sent to Destinations can show a lower data
volume (against license quota) than cribl.logstream.index.in_bytes . This latter index.in_bytes
dimension displays the correct license usage, and matches what's reported on the Monitoring dashboard.

Workaround: Within the cribl_metrics_rollup Pipeline that ships with Cribl Stream, disable the
Rollup Metrics Function.

Fix: Couldn't reproduce the error.

Problem: A�er upgrading a distributed deployment to Cribl Stream 3.3.x or 3.4.0, Collector jobs that use
features introduced in the new version might throw errors. This has been observed only on distributed
deployments. The root cause is that the Workers are attempting to load the new conig without first reloading
the updated schema.

Workaround: Restart the a�ected Workers. Collector jobs should then work normally.

2022-03-08 – versions 3.3.1 through 3.5.0 – GitOps + License
expiration = Catch-22 [CRIBL‑8600]

2022-03-07 – versions 3.2.x through 3.4.x – Undercounted
total.in_bytes dimension metrics [CRIBL‑8572]

2022-03-04 – versions 3.3.x through 3.4.0 – Collector jobs fail
a�er upgrade [CRIBL‑8516]

Page 1764 of 1835

Fix: Planned for Cribl Stream 3.4.1.

Problem: A�er upgrading a distributed deployment to version 3.3.x, the ElasticSearch API Source might stop
receiving data. This occurs when your existing Source config's Authentication type was set to Auth Token .
The root cause is a 3.3.x schema change that unset this auth type to None .

Workaround: In the Elasticsearch API Source configuration, reset the Authentication type to Auth Token .
Then commit and deploy the restored config.

Fix: In Cribl Stream 3.4.

Problem: A�er upgrade to version 3.3.x, LogStream cannot send data to Elasticsearch indexes whose name
includes a hyphen (‐).

Workaround: In the Elasticsearch Destinations's Index or Data Stream field, surround these index names in
"quotes" or backticks.

Fix: LogStream 3.3.1 added format validation and error-checking.

Problem: With TLS enabled on Worker/Leader communications, a�er an upgrade from LogStream 3.2.x to
v.3.3.x, Workers might fail to communicate with the Leader due to an untrusted SSL certificate on the Leader.

2022-03-03 – versions 3.3.x – Elasticsearch API Source
(distributed mode) stops receiving data a�er upgrade to 3.3.x
[CRIBL‑8515]

2022-02-24 – versions 3.3.x – A�er upgrade to 3.3.0, ElasticSearch
Destination can't write to indexes whose name includes -
[CRIBL‑8451]

2022-02-18 – versions 3.3.x – Worker/Leader communications
blocked by untrusted TLS certificate a�er upgrade to 3.3.0
[CRIBL‑8361]

Page 1765 of 1835

Logs will show connection error s of the form: "unable to verify the first certificate" or
self signed certificate in certificate chain .

Workaround: On each a�ected Worker: In the instance.yml file's' distributed: master: tls: section,
set: "rejectUnauthorized: false" . Then restart Cribl Stream.

Fix: In 3.4.1.

Problem: Attempting to upgrade on-prem Workers to version 3.3.x via the UI can fail, with an error of the
form: Group <group‐name> is a managed group .

Workaround: Edit the Leader's $CRIBL_HOME/local/cribl/groups.yml file to delete all instances of the
key-value pair onPrem: false . Then, resave the file and reload the Leader.

Fix: In Cribl Stream 3.4.

Problem: The REST Collector does not consistently di�erentiate between multiple (nested) attributes that
share the same name. This can break pagination that relies on a Response Body Attribute .

Workaround: If possible, select a di�erent Pagination method, or specify a unique attribute name.

Fix: In Cribl Stream 3.4.

2022-02-18 – versions 3.3.x – Can't upgrade Workers to 3.3.x via
UI [CRIBL‑8346]

2022-02-17 – versions 3.2.2 through 3.3.x – REST Collector
pagination fails on duplicate/nested attribute names
[CRIBL‑8352]

2022-02-17 – v.3.3.0 – Do not configure InfluxDB Destination on
LogStream 3.3.0 [CRIBL‑8354]

Page 1766 of 1835

Problem: Configuring InfluxDB Destinations can fail on LogStream 3.3.0. This problem has been observed
only on distributed deployments, and data does flow to InfluxDB. But the InfluxDB config will not appear in
LogStream's UI, and the broken config will block editing of other Destinations.

Workaround: If you need to send data to InfluxDB, skip v.3.3.0, and wait for the next release. If you encounter
the broken UI, edit outputs.yml to remove any influxdb_output sections, and then restart LogStream.
This will unblock UI-based editing of other Destinations.

Fix: In LogStream 3.3.1.

Problem: The Syslog Source's General Settings > Input ID field's default filter expression is
__inputId.startsWith('syslog:in_syslog:') . The same filter appears in the Preview Full tab's
Entry Point drop-down, except without the final colon. This means that data sent using Preview Full's
version of the filter will not go through Routes that use the Input ID version.

Workaround: When sending data from Preview Full to a Route, if both use the syslog:in_syslog filter,
edit the Route's filter to remove the final colon. This will make the filter identical in both places, routing data
correctly.

Problem: A�er you create a Notification on a Destination, the new Notification might take up to several
minutes to appear on the Destination config modal's Notifications tab.

Details: This delay has not been reproduced consistently. Some Notifications appear immediately.

2022-02-10 – All versions, 3.2.1+ – Syslog Source's previewed data
doesn't proceed through Routes [CRIBL‑8210]

2022-02-10 – version 3.3 – Slow-Mo Notification Notifications
[CRIBL‑8205]

2022-02-08 – versions 3.3.x – Missing event from Datadog Agent
v.7.33.0+ [CRIBL‑8132]

Page 1767 of 1835

Problem: If ingesting metrics from Datadog Agent 7.33.0 or later (i.e., you have set the DD_DD_URL
environment variable or the dd_url YAML config key), LogStream's Datadog Agent Source will not ingest
agent_metadata events. This is due to a breaking change in Datadog Agent 7.33.0, which split out part of
the prior /intake/ endpoint into a new /api/v1/metadata endpoint.

Workaround: Use Datadog Agent v.7.32.4 or earlier.

Fix: In Cribl Stream 3.4.

Problem: In the Syslog and Metrics Sources's Logs tab, the auto-generated filter expression
(channel =='input:in_syslog') is not specific enough and yields no results, because it doesn't address
these Sources' two channels (input:in_syslog:tcp and input:in_syslog:udp).

Workaround: Replace this default filter expression with channel.startsWith('input:<input_ID>') .
For example: channel.startsWith('input:in_syslog:') .

Fix: In Cribl Stream 3.4.

Problem: Okta (OpenID Connect) authentication on Cribl Stream fails behind a proxy, when using
environment variables (http_proxy or https_proxy).

Workaround: Configure the proxy to work in transparent mode, to bypass the http*_proxy variables. If the
proxy is required, leave the User Info URL empty, and Cribl Stream can obtain user details from the JWT
token .

Fix: In 3.4.1.

2022-02-08 – All versions through 3.x – Syslog and Metrics
Sources' default filter expression needs correction [CRIBL‑8115]

2022-02-07 – v.3.2.2 – Okta integration fails a�er upgrading from
v.3.1.3 to v.3.2.2 [CRIBL‑8105]

Page 1768 of 1835

Problem: A post-processing Pipeline with a Mask Function can slow down drastically, showing high CPU
usage on Workers.

Workaround: If practical, promote the same Mask Function to a pre-processing or processing Pipeline.

Fix: In Cribl Stream 3.4.1.

Problem: A JSON Serialize Function in a post-processing Pipeline will throw errors of the form: Failed to
process event in Function: Maximum call stack size exceeded .

Workaround: Promote the Serialize Function to a processing Pipeline, upstream from the Destination.

Fix: In 3.4.1.

Problem: Upgrading a Pack overwrites any customizations you've made to the Pack's original/default
Lookup tables and sample-data files.

Workaround: Duplicate the Pack's default Lookup tables and sample-data files, and customize your
duplicate copies. Upgrading the Pack will not overwrite your local copies.

Fix: Planned for Cribl Stream 4.0.

2022-02-04 – versions 3.2.2 through 3.4.0 – Mask Function slows
down post-processing Pipeline [CRIBL‑8043]

2022-2-03 – All versions – JSON Serialize Function in post-
processing Pipeline won't process [CRIBL‑8013]

2022-02-02 – All 3.x versions – Upgrading a Pack overwrites
Lookup and sample-data customizations [CRIBL‑7998]

2022-01-11 – v.3.2.2 – Git Collapse Actions disaggregates
[CRIBL‑7638]

Page 1769 of 1835

Problem: With Git Settings > Collapsed actions enabled, the combined Commit & Push button appears in
the modal as expected, but then saving a new change splits it back into two separate buttons: Commit and
Deploy.

Workaround: Disable the Collapse actions setting, then commit and deploy separately.

Fix: In LogStream 3.3.

Problem: Usernames containing certain letters can cause some API requests to fail with an Invalid
character in header content ["cribl-user"] error. This can happen even when the username is valid
for an Identity Provider.

Workaround: In your usernames, make sure that the letters you use are limited to the letters in Latin
alphabet no. 1 as defined in the ISO/IEC 8859-1 standard.

Fix: In LogStream 3.3.

Problem: In current Cribl Stream versions, the Diagnostics > System Info page/tab omits certain statistics
(sysctl , ulimits , network stats , etc.) that were previously displayed below the cpus and nets
elements.

Workaround: The hidden information is nevertheless available within diagnostic bundles.

Fix: Planned for Cribl Stream 3.4.1.

2022-01-19 – v.3.2.2 – Usernames containing certain letters cause
some API requests to fail [CRIBL‑7728]

2022-01-18 – versions 3.2.0 through 3.4.0 – Diagnostics >
System Info page omits some entries [CRIBL‑7731]

2022-01-04 – v.3.2.x – Enabling GitOps deletes LogStream's bin ,
logs , and pidsubdirectories [CRIBL‑7513]

Page 1770 of 1835

Problem: Enabling GitOps with LogStream 3.2.x, via either CLI or UI, can cause the deletion of the bin ,
logs , and pid subdirectories. This disables LogStream. The root cause is that git versions 2.13.1 and
lower did not fully respect paths listed in .gitignore .

Workaround: Upgrade your git client to v.2.13.2 or higher, to correct the underlying behavior.

Fix: In LogStream 3.3.

Problem: A 3.2.1 Leader's UI cannot upgrade Workers running LogStream versions prior to 3.2.0. The upgrade
will fail with errors of the form: Error checking upgrade path and Cannot read property
'greaterThan' of undefined .

Workaround: Upgrade the Workers via the filesystem.

Fix: Does not a�ect Workers running Cribl Stream (LogStream) 3.2.0 or higher.

Problem: Chaining Pipelines via the Chain Function can increase CPU load, and can signficantly slow down
data throughput.

Workaround: Consolidate all Functions – per processing scenario – into a single Pipeline.

Fix: In Cribl Stream 3.5.2.

Problem: On file-based Destinations, enabling the Remove staging dirs toggle can trigger a race condition
when inbound events per second reach a high rate. This leads to backpressure.

2022-01-03 – v.3.2.1 Leader cannot upgrade pre-v.3.2.0 Workers
[CRIBL‑7498]

2021-12-21 – v.3.2.2 through 3.5.0 – Chain Function degrades CPU
load and throughput [CRIBL‑7445]

2021-12-15 – v.3.2.1 through 3.2.2 – Backpressure when writing
to S3 and other file-based Destinations [CRIBL‑7364]

Page 1771 of 1835

Workaround: Disable LogStream's native Remove staging dirs option. Instead, as the user running
LogStream, set up a cron job like this:
crontab -e
0 1 * * * find <stagingdir> -type d -empty -mtime +1 -delete

Fix: In LogStream 3.3.

Problem: Using the UI to upgrade LogStream versions prior to 3.1.2 will silently delete sample data files
created by users. This a�ects using a Leader's UI (any version) to upgrade Workers running LogStream
version 3.1.1 or earlier. It also a�ects using the UI to upgrade the Leader itself, or a Single-Instance
deployment, from v.3.1.1 or earlier to any newer version.

Workarounds: 1. Upgrade pre-3.1.2 versions via the filesystem. 2. If you choose to upgrade pre-3.1.2 versions
via the UI, first save to the filesystem any custom sample files that you want to preserve. (Or, to copy directly
from the filesystem, LogStream stores sample files internally at $CRIBL_HOME/data/samples , and stores an
index of all sample files in /$CRIBL_HOME/local/cribl/samples.yml .)

Fix: Does not a�ect Workers running Cribl Stream (LogStream) 3.1.2 or higher. Does not a�ect self-upgrades
of Leaders or Single Instances running v.3.1.2 or higher.

Problem: Our documentation's API Reference has temporarily lost some visual styling, while we swap in a
new rendering component.

Workaround: Manually expand accordions, as needed.

Fix: Published as of 12/20/2021.

Problem: File-based Destinations' Backpressure behavior drop-down misleadingly displays a
Persistent Queue option, which is not really available on these Destinations. (Applies to Filesystem and

2021-12-13 – v.2.4.4 through 3.1.1 – Upgrades via UI delete
sample files [CRIBL‑7347]

2021-12-10 – All Versions – API Reference is temporarily unstyled

2021-12-09 – v.3.2.1 – File-based Destinations display an
unavailable Persistent Queue option [CRIBL‑7293]

Page 1772 of 1835

some Amazon, Azure, and Google Cloud Destinations.) Selecting this option displays an error, and the
configuration cannot be saved.

Workaround: Don't fall for clicking that fake Persistent Queue option.

Fix: In LogStream 3.2.2.

Problem: For a newly created Worker Group, the Workers page's Config Version column can show an
indefinitely spinning progress spinner for that Group's Workers. This happens because Workers always
expect a config bundle to be available to download from the Leader, but no config has been deployed yet.

Workaround: Click the Deploy option to deploy a config to the a�ected Workers' Group.

Problem: A�er clicking the System Metrics Source's Help link, the drawer displays the error: "Unable to load
docs. Please check LogStream's online documentation instead." This Source's documentation is also missing
from the 3.2.1 docs PDF.

Workaround: Go to the live System Metrics docs page.

Fix: In LogStream 3.2.1, as duplicate of CRIBL-6319.

Problem: CPU load increases over time, with a slow increase in memory usage. Restarting LogStream
temporarily resolves these symptoms. The root cause is needlessly collecting a high volume of full-fidelity
metrics from the CriblMetrics source.

Workaround: Disable the CriblMetrics Source.

2021-12-09 – All versions through 3.2.1 – Worker's Config Version
value spins indefinitely [CRIBL‑7306]

2021-12-07 – v.3.2.1 – System Metrics Source's documentation
doesn't open in Help drawer

2021-12-07 – v3.1.2, 3.1.3 – Increasing CPU load over time
[CRIBL‑7268]

Page 1773 of 1835

Fix: Upgrade to LogStream 3.2.1, which provides an option to disable the CriblMetrics Source's Full Fidelity
toggle.

Problem: If a processing Pipeline has been inserted between a QuickConnect Source and Destination,
selecting the Pipelines page, and then selecting Preview Full with a data sample, doesn't show the
Pipeline's e�ects on the OUT tab. This a�ects only Pipelines inserted in a QuickConnect connection line.
(Attaching a pre-processing Pipeline to a QuickConnect Source doesn't inhibit Preview.)

Workarounds: 1. Remove the Pipeline from QuickConnect, and re-create the same Source ‑> Pipeline ‑>
Destination architecture under Routing > Data Routes. 2. Rely on Preview Simple.

Problem: Routes are not recognizing data from Collectors and from the following Collector-based Sources:
Prometheus Scraper, O�ice 365 Activity, O�ice 365 Services, and O�ice 365 Message Trace. This data will not
flow through Routes, but will be sent to the default Destination(s).

Workarounds: 1. In Collectors' config modals, open the Result Routing tab, Disable the Send to Routes
default, and directly specify a Pipeline and Destination. (This option is not available in Prometheus Scraper
or in the O�ice 365 Sources.) 2. Skip v.3.2.0.

Fix: In LogStream 3.2.1.

Problem: Sources whose TLS config uses a (known good) passphrase will fail to decrypt private keys. You will
see a connect error, or an error of the form: TLS validation error, is passphrase correct?

2021-11-24 – v3.2.0 – With processing Pipelines in QuickConnect,
Preview Full doesn't show Functions' results [CRIBL‑7113]

2021-11-24 – v3.2.0 – Data from Collectors and Collector-based
Sources isn't reaching Routes [CRIBL‑7109]

2021-11-17 – v3.2.0 – TLS certs that use passphrases won't
decrypt private keys [CRIBL‑7049]

Page 1774 of 1835

Workarounds: 1. Edit the Leader's or single instance's inputs.yml file to insert a plaintext TLS passphrase.
(See paths here.) Then commit and deploy the new config (distributed mode), or reload or restart the
LogStream server (single instance). 2. Use a cert and key that do not require a passphrase. 3. Skip v.3.2.0.

Fix: In LogStream 3.2.1.

Problem: If you add more than one Chain Function to a Pipeline, only the first will take e�ect. Chain
Functions lower in the stack will simply pass the data down to the next Function.

Workaround: Design your data flow to require at most one Chain Function per Pipeline.

Fix: In 3.2.1.

Problem: Exporting a Pack to a di�erent Worker Group via the UI succeeds, but opening the Pack on the
target Group fails with a Cannot read property...undefined error.

Workaround: To resolve the error and make the target Pack accessible, restart the Leader. To prevent the
error, export and import the Pack as a file.

Fix: In LogStream 3.2.1.

Problem: When you change a Function group from disabled to enabled, all of its Functions are enabled,
regardless of their individual enabled/disabled states when the group was disabled.

Workaround: Avoid disabling and re-enabling Functions as a group (e.g., for testing or stepwise debugging
purposes).

2021-11-17 – v3.2.0 – Only one Chain Function works per Pipeline
[CRIBL‑7044]

2021-11-17 – v3.2.0 – Exporting a Pack to another Group requires
a Leader restart [CRIBL‑7043]

2021-11-17 – versions 2.1 through 3.2.1 – Re-enabling a Function
group mistakenly re-enables all its Functions [CRIBL‑7053]

Page 1775 of 1835

Fix: Planned for Cribl Stream 3.4.

Problem: Some QuickConnect connections send data to an unintended Destination. We've observed this in
single-instance deployments that include the Cribl-supplied cribl_metrics_rollup Pipeline, or include
other Pipelines/Packs with stateful Functions like Rollup Metrics or Aggregations. Data will either flow
through Routes instead of your specified QuickConnect Destination, or will continue flowing to the original
QuickConnect Destination a�er you drag the connection to a di�erent Destination.

Workaround: Use the Data Routes interface to manage the Pipeline and stateful Functions indicated above.
If your QuickConnect data doesn't oblige a changed QuickConnect Destination, restart LogStream. This will
stop data flow to the unintended Destination, and redirect it to the intended Destination.

Problem: Collectors can retrieve data from undesired time ranges, instead of from the range specified. If
paths are organized by date/time, this can also cause Collectors to retrieve data from the wrong paths. The
root cause is that in the Collector's Run and Schedule configuration modals, time ranges are set based on the
browser's time zone, whereas LogStream's backend assumes UTC.

Workaround: O�set the Earliest and Latest date/time values based on your browser's o�set from UTC.

Fix: In Cribl Stream/LogStream 3.2.2 and later, the Run and Schedule modals provide a Range Timezone
drop-down to prevent these errors.

2021-11-16 – v3.2.0 – QuickConnected Source goes to wrong
Destination [CRIBL‑7013, CRIBL‑7047]

2021-10-11 – versions 2.x through 3.2.1 – Collectors do not filter
correctly by date/time range [CRIBL‑6440]

2021-10-06 – v3.1.2 – Monitoring page omits Collector Sources'
data [CRIBL‑6412]

Page 1776 of 1835

Problem: With functioning O�ice 365 Activity and O�ice 365 Services Sources, the Job Inspector reports data
being retrieved, and Monitoring > Data > Destinations reports data being sent out. However, Monitoring >
Data > Sources falsely reports no data being received. The problem is isolated to this Sources page. It might
also a�ect the O�ice 365 Message Trace and Prometheus Scraper Sources.

Workaround: Use the Source modal's Live Data tab, the Monitoring > System > Job Inspector page, and/or
the Monitoring > Data > Destinations page to monitor throughput.

Fix: In LogStream 3.1.3.

Problem: Configuring the Kafka Source or Destination with Kerberos authentication can send LogStream
Workers into a continuous loop of restarts.

Workaround (multi-step):
1. In krb5.conf , set dns_lookup_realm = false and dns_lookup_kdc = false .
2. From krb5.conf 's [realms] section, extract the realm name (from the element name) and the FQDN
(from the kdc key's value, stripping any port number).
3. Run nslookup on either or both of the realm name and the FQDN. E.g.:
nslookup mysubdomain.confluent.io and nslookup kdc.kerberos-123.local .
4. Add at least one of the returned IP addresses (which might be identical) to the etc/hosts file, as values in
the format your platform expects.

Fix: Planned for Cribl Stream 3.4.

Problem: Enabling the CriblMetrics Source causes high event count and high CPU load.

Workaround: Adjust the cribl_metrics_rollup pre-processing Pipeline to roll up a wider Time Window
of metrics.

Fix: Upgrade to LogStream 3.2.1, which provides an option to disable the CriblMetrics Source's Full Fidelity
toggle.

2021-10-02 – All v.3.2.x – Kafka with Kerberos causes Workers'
continuous restart [CRIBL‑6674]

2021-09-30 – v.3.1.2 – High CPU load with CriblMetrics Source
[CRIBL‑6319]

Page 1777 of 1835

Problem: Configuring multiple Collectors can lead to gradual but cumulative memory leaks. Due to a
caching error, the memory can be recovered only by restarting LogStream.

Workaround: Restart LogStream on the a�ected Worker Nodes.

Fix: In LogStream 3.1.3.

Problem: Upon upgrading the Azure Blob Source and/or Destination from v.3.0.4 to v.3.1.1, you might receive
an error of the form: Unable to extract accountName with provided information.

Workaround: Change the key, and then reset it back to your desired connection string.

Problem: The Google Cloud Pub/Sub Source substantially increases CPU usage, which stays high even a�er
data stops flowing. This causes throughput degradation, and more-frequent failed to acknowledge
errors.

Workaround: Configure the Google Cloud Pub/Sub Source's Advanced Settings > Max backlog to 1000 .

Fix: In 3.2.0, which defaults the Max backlog to 1000 , and also relaxes the retry interval from 10 seconds to
30 seconds.

2021-09-29 – v.3.0.2, 3.1.1 – Memory leak with multiple Collectors
[CRIBL‑6310]

2021-09-21 – v3.1.1 – Azure Blob Storage Source/Destination
authentication error on upgrade from v.3.0.4 [CRIBL‑6236]

2021-09-15 – v.3.0.0–3.1.3 – High CPU usage with Google Cloud
Pub/Sub Source [CRIBL‑6182]

2021-09-14 – v.3.1.1 – Modifying Collector > Preview > Capture
settings can break Capture elsewhere[CRIBL‑6166]

Page 1778 of 1835

Problem: Modifying the capture settings in a Collector's Run > Preview > Capture modal can improperly
modify the Filter expression in Capture modals for other Collectors, Sources, and Routes/Pipelines.

Fix: In LogStream 3.1.2.

Problem: When configuring certificates at Groups > <group‐name> > Settings > API Server Settings > TLS,
certificates configured on the Leader incorrectly appear on the Certificate name drop-down.

Fix: In LogStream 3.1.2.

Problem: With Collapsed Actions enabled, clicking the Commit & Push button has no e�ect. (The
Commit & Deploy button works properly.)

Workaround: Disable Collapsed Actions, to restore separate Commit and Git Push buttons.

Fix: In LogStream 3.1.2.

Problem: Where Sources and Destinations connect over UDP, they currently support IPv4 only, not IPv6. This
applies to Syslog, Metrics, and SNMP Trap Sources; and to Syslog, SNMP Trap, StatsD, StatsD Extended, and
Graphite Destinations.

Workaround: Integrate via IPv4 if possible.

Fix: UDP Sources and Destinations gained IPv6 support in LogStream 3.1.2.

2021-09-10 – v.3.1.1 – Worker Group certificate name drop-down
shows certificates from the Leader [CRIBL‑6142]

2021-09-10 – v.3.1.1 – Git Collapsed Actions broken in 3.1.1
[CRIBL‑6134]

2021-09-08 – All versions through v.3.1.1 – UDP support is
currently IPv4-only [CRIBL‑6106, CRIBL‑6115]

Page 1779 of 1835

Problem: When LogStream's Google Cloud Pub/Sub Source and Destination attempt authentication through
a proxy, using the https_proxy environment variable, they send an HTTP request to
http://www.googleapis.com:443/oauth2/v4/token. This request fails with 504/502 errors. The root cause is a
mismatch in dependency libraries, whose correction has been identified, but requires broader testing.

Workaround: Configure the proxy in transparent mode, to avoid relying on environment variables.

Fix: In 3.1.2.

Problem: LogStream 3.1.0 added code-execution safeguards that inadvertently increased CPU load, and
decreased throughput, with several Functions and most expressions.

Workaround: Downgrade to v.3.0.4.

Fix: Upgrade to v.3.1.1 or later.

Problem: Clicking a 3.1.0 Collector modal's Clone Collector button simply closes the modal. (If you have
unsaved changes, you'll first be challenged to confirm closing the parent modal – but the expected cloned
modal won't open.)

Workaround: Click + Add New to re-create your original Collector's config from scratch, adding any desired
modifications.

Fix: In LogStream 3.1.1.

2021-09-02 – v.3.1.0 – Google Pub/Sub authentication via proxy
environment variable fails [CRIBL‑6086]

2021-08-24 – v.3.1.0 – High CPU load with LogStream version
3.1.0 [CRIBL‑6039, CRIBL‑6044]

2021-08-18 – v.3.1.0 – Clone Collector option broken [CRIBL‑5977]

Page 1780 of 1835

Problem: When docs with tabbed code blocks are opened in the Help drawer, the default (le�most) tab
seizes focus. Other tabs will not display when clicked.

Workaround: Click the blue/linked page title atop the Help drawer to open the same page on docs.cribl.io,
where all tabs can be selected.

Fix: In LogStream 3.1.1.

Problem: In a Splunk Load Balanced Destination with Indexer discovery enabled and a corresponding
Auth token defined, upgrading to LogStream 3.1.0 corrupts the Auth token field's value.

Workaround: Set the Authentication method to Manual and resave the token's value.

Fix: In 3.1.1.

Problem: Calling the C.Secret() internal method within a Collector field resolves incorrectly to an
undefined substring. E.g., in URL fields, C.Secret() values will resolve to /undefined/ path substrings.

Workarounds: 1. Use C.vars and a Global Variable, instead of using this method. 2. Root cause is that
C.Secret() in Collectors and Pipeline Functions has access only to secrets that were created before the last
restart. Therefore, restart Worker Processes to refresh the method's access.

Fix: In 3.1.1.

2021-08-18 – All versions through 3.1.0 – Tabbed code blocks
broken on in-app docs [CRIBL‑5972]

2021-08-14 – v.3.1.0 – Splunk Load Balanced Destination does not
migrate auth type [CRIBL‑5940]

2021-08-11 – v.3.1.0 – C.Secret() values are undefined in
Collectors [CRIBL‑5926]

Page 1781 of 1835

Problem: Attaching a pre-processing Pipeline to a Source breaks the Monitoring > Flows (beta) page's
display. Attempting to remove Sources/Destinations from that page's selectors throws a cryptic Sankey
error.

Workaround: Temporarily detach pre-processing Pipelines if you want to check Flows.

Fix: Planned for LogStream 3.1.1, but couldn't reproduce the error.

Problem: Upgrading from v.3.0.x via the UI requires the cribl user to be granted write permission on the
parent directory above $CRIBL_HOME . The symptom is an error message of the form: Upgrade failed:
EACCES: permission denied, mkdir '/opt/unpack.xxxxxxx.tmp' .

Workaround: Either adjust permissions, or upgrade via the filesystem. For complete instructions, see
Upgrading.

Fix: Does not a�ect LogStream 3.1 or higher.

Problem: If a Pack references a lookup file that's missing from the Pack, pushing the Pack to a Worker Group
will block access to the Group's UI. You will see an error message of the form: "The Config Helper service is
not available because a configuration file doesn't exist... Please fix it and restart LogStream."

Workaround: On the Leader Node, review the config helper logs
($CRIBL_HOME/log/groups/<group>/*.log) to see which references are broken. (In a single-instance
deployment, see $CRIBL_HOME/log/*.log .) Then manually resolve these references in the Pack's
configuration.

Fix: Planned for LogStream 3.1.1, but couldn't reproduce the error.

2021-08-10 – v.3.1.0 – Pre-processing Pipelines break Flows
display [CRIBL‑5909]

2021-07-29 – v.3.0.2 through 3.0.4 – Upgrades via UI require
broader permissions [CRIBL‑5774]

2021-07-26 – v.3.0.x–3.1.0 – Packs with orphaned lookups block
access to Worker Groups [CRIBL‑5738]

Page 1782 of 1835

Problem: You cannot add Functions to a Pipeline if the Pipeline is named config , because this name
conflicts with the reserved route for the Create Pipeline dialog.

Workarounds: Don'tcha name your Pipelines config .

Fix: In Cribl Stream 3.4.1.

Problem: Multiple Workers have identical GUIDs. This creates problems in Monitoring, upgrading and
versioning, etc., because all Workers show up as one.

Cause: This is caused by configuring one Worker and then copying its cribl/ directory to other Workers, to
quickly bootstrap a deployment.

Workaround: Don't do this! Instead, use the Bootstrap Workers from Leader endpoint.

Fix: Planned for Cribl Stream 3.4.

Problem: When uploading (attaching) a sample data file, the file's final line is not displayed in the
Add Sample Data modal.

Workarounds: This is a UI bug only. LogStream correctly processes the complete sample data, which should
show up when viewing the sample a�erwards (e.g., within a Pipeline's preview pane).

Fix: In LogStream 3.1.0.

2021-07-20 – v.3.0.3 – Can't add Functions to a Pipeline named
config [CRIBL‑5706]

2021-07-06 – All versions through 3.1.x – Duplicate Workers/
Worker GUIDs [CRIBL‑5611]

2021-07-02 – v.3.0.2–3.0.3 – Sample file's last line not displayed
upon upload [CRIBL‑5595]

Page 1783 of 1835

Problem: In Preview or Capture, incoming events like _raw will be displayed in the right pane with an α
symbol that indicates string data. However, calling new Date() and then C.Time.strptime() methods in
an Eval Function will return null on the OUT tab.

Cause: Due to the nature of JSON serialization, the incoming event's Date field is misleadingly subsumed
under the event's α string symbol. It's actually a structured type, not a string...yet.

Workaround: If you see unexpected null results, stringify the datetime field as you extract it, e.g.: new
Date().toISOString() . Feeding the resulting field to Time methods should return datetime strings as
expected.

Problem: The C.Text.relativeEntropy() internal method is missing from JavaScript expressions'
typeahead drop-downs. You can manually type or paste in the method, and save your Function and Pipeline,
but LogStream's right Preview pane will (misleadingly) always show the method returning 0 .

Workarounds: Use other means (such as the Live button) to preview and verify that the method is (in fact)
returning valid results.

Fix: In LogStream 3.0.3.

Problem: A�er upgrade to LogStream 3.0.0, including any of the following Functions in a Pipeline can break
the Pipeline: GeoIP, Redis, DNS Lookup, Reverse DNS, Tee. Symptom is an error of the form: Pipeline
process timeout has occurred. Less seriously, including these Functions in a Pipeline can suppress
Preview's display of fields/values.

2021-07-02 – All versions – Date fields misleadingly preview with
string symbol [CRIBL‑5594]

2021-06-22 – v.3.0.0–3.0.2 – Internal C.Text.relativeEntropy()
method – broken typeahead and preview [CRIBL‑5534]

2021-05-20 – 3.0.0 – Multiple Functions Break LogStream 3.0
Pipelines [CRIBL‑5311, CRIBL‑5766]

Page 1784 of 1835

Workarounds: If you use these Functions in your Pipelines, stay with (or restore) a pre-3.0 version until
LogStream 3.0.1 is available.

Fix: In LogStream 3.0.1.

Problem: In the Leader's le� nav, the Changes fly-out remains stuck open a�er you commit pending
changes.

Workarounds: Hover or click away. Then hover or click back to reopen the fly-out.

Fix: In LogStream 3.0.1.

Problem: Exporting a Pack with the export mode set to Merge omits schemas and custom Functions
configured within the Pack's Knowledge > Schemas.

Workarounds: 1. Change the export mode to Merge safe , and export again. 2. If that doesn't preserve the
schema and Functions, revert to Merge export mode; install the resulting Pack onto its target(s); and then
manually copy/paste the schema(s) and Functions from the source Pack's UI to the target Pack's UI.

Fix: In LogStream 3.0.1.

Problem: Enabling HashiCorp Vault or AWS KMS on a Worker Group, a�er installing a LogStream license on
the same Group, fails with a spurious External KMS is prohibited by the current license error
message.

Workaround: On the Leader, navigate to Settings > Worker Processes. Restart the a�ected Worker Group's
CONFIG_HELPER process. Then return to that Worker Group's Security > KMS Settings, re-enter the same
KMS configuration, and save.

2021-05-19 – 3.0.0 – Leader's Changes fly-out stays open a�er
Commit

2021-05-18 – 3.0.0 – Packs > Export in "Merge" mode omits
schemas and custom Functions

2021-05-17 – v.3.0.0–3.2.0 – Can't Enable KMS on Worker Group
a�er installing license

Page 1785 of 1835

Problem: When the Elasticsearch Destination has Basic Authentication enabled, and its Elastic version field
specifies Auto version discovery, LogStream fails to send the configured username and password
credentials along with its API initial request. Elasticsearch responds with an HTTP 401 error.

Workaround: Explicitly set the Elastic version to either 7.x or 6.x (depending on your Elasticsearch
cluster's version); then stop and restart LogStream to pick up this configuration change.

Fix: In LogStream 3.1.0.

Problem: The Event Breaker Rule provided for the O�ice 365 Message Trace Source mistakenly presets the
Default timezone to ETC/GMT‐0 . This setting causes LogStream to discover events but not collect them.

Workaround: Reset the Rule's Default timezone to UTC , then click OK and resave the Ruleset.

Fix: In 3.0.2.

Problem: sourcetype metrics can be suppressed when the Cribl Internal > CriblMetrics Source is enabled
and the cribl_metrics_rollup pre-processing Pipeline is attached to a Source.

Workarounds: Disabling the pre-processing pipeline restores sourcetype and any other missing data.
However, without the rollup, a much higher data volume will be sent to the indexing tier.

Fix: In LogStream 3.0.2.

2021-05-10 – 2.4.5 – Elasticsearch Destination, with Auto version
discovery, doesn't send Authorization header

2021-05-04 – 2.4.5 – O�ice 365 Message Trace Source skips events

2021-05-03 – v.2.4.4–3.01 – Rollup Function suppresses
sourcetype metrics

2021-04-20 – v.2.4.3–2.4.5 – Orphaned S3 staging directories

Page 1786 of 1835

Problem: Using the S3 Destination, defining a partitioning expression with high cardinality can proliferate a
large number (up to millions) of empty directories. This is because LogStream cleans up staged files, but not
staging directories.

Workaround: Programmatically or manually delete stale staging directories (e.g., those older than 30 days).

Fix: In LogStream 3.0.2.

Problem: LogStream's Splunk Sources do not support multiple-measurement metric data points.
(LogStream's Splunk Load Balanced Destination does.)

Fix: In LogStream 3.0.1.

Problem: The Google Cloud Storage Destination might fail to put objects into GCS buckets. This happens
with files larger than 5 MB, and causes the Google Cloud API to report a vague Invalid argument error.

Workaround: Set the Max file size (MB) to 5 MB. Also, reduce the Max file open time (sec) limit from its
default 300 (5 minutes) to a shorter interval, to prevent files from growing to the 5 MB threshold. (Tune this
limit based on your observed rate of tra�ic flow through the Destination.)

Fix: In LogStream 3.0.0.

Problem: The Log in with local user option is displayed to users even when you have disabled Settings >
Authentication > Allow local auth for an OpenID Connect identity provider.

Workaround: Advise users to ignore this button. Although visible, it will not function.

Fix: In LogStream 3.0.0.

2021-04-12 – 2.4.4 – Splunk Sources do not support multiple-
metric events

2021-04-07 – v.2.4.2–2.4.5 – Google Cloud Storage Destination
fails to upload files > 5 MB

2021-03-31 – v.2.4.4 – Local login option visible even when
disabled

2021-03-31 – v.2.4.0–2.4.4 – Splunk TCP and LB Destinations'
Workers trigger OOM errors and restart

Page 1787 of 1835

Problem: With a Splunk TCP or Splunk Load Balanced Destination created a�er upgrading to LogStream
2.4.x, Workers' memory consumption may grow without bound, leading to out-of-memory errors. The API
Process will restart the Workers, but there might be temporary outages.

Workaround: Toggle the Destination's Advanced Settings > Minimize in‑flight data loss slider to No . This
will preserve Processes killed by OOM conditions.

Fix: In LogStream 2.4.5.

Problem: Even if OpenID Connect external authentication is configured to disable Allow local auth,
LogStream's login page displays a Log in with local user button.

Workaround: Do not click that button.

Fix: In LogStream 3.0.0.

Problem: The Settings > Authentication > Type drop-down o�ers a Cribl Cloud option, which is not
currently functional. Attempting to configure and save this option could lock the admin user out of
LogStream.

Workaround: Do not select, configure, or save that option.

Fix: In LogStream 2.4.5.

Problem: In configuration modals for the Azure Blob Storage and O�ice 365 Message Trace Sources, the
Enabled slider cannot be toggled o�, and its tooltip doesn't appear.

Workaround: Disable your configured Source (where required) from the Manage Blob Storage Sources or
the Manage Message Trace Sources page.

Fix: In LogStream 2.4.5.

2021-03-31 – v.2.4.4 – OpenID Connect authentication always
shows local-auth fallback

2021-03-31 – v.2.4.4 – Authentication options mistakenly display
Cribl Cloud

2021-03-30 – v.2.4.4 – Can't disable some Sources from within
their config modals

Page 1788 of 1835

Problem: Within the SpaceOut game, you cannot shoot, and your player is immortal.

Workaround: There are other video games. A�er we defeat COVID, you'll even be able to buy a PS5.

Fix: Restored in LogStream 2.4.5.

Problem: Attempting to change the admin password via the UI triggers a 403/Forbidden message. You can
reset the password by editing , but can't save configuration changes to Settings, Pipelines,
etc., because RBAC Roles are not properly applied.

Workaround: Using a 2.3.x version of the App enables local authentication and enables changes to
Cribl/LogStream passwords and configuration/settings.

Fix: In LogStream 2.4.4.

Problem: LogStream's Azure Event Hubs Destination provides a Compression option that defaults to Gzip .
However, compressed Kafka messages are not yet supported on Azure Event Hubs.

Workaround: Manually reset Compression to None , then resave Azure Event Hubs Destinations.

Fix: In LogStream 2.4.4.

Problem: When copying/pasting List of Fields contents between Parser Functions via the Copy button, the
paste operation inserts unintended metadata instead of the original field references.

Workaround: Manually re-enter the second Parser Function's List of Fields.

Fix: In LogStream 2.4.4.

2021-03-29 – v.2.4.x – SpaceOut Destination is broken

2021-03-24 – v.2.4.x – Cribl App for Splunk blocks admin
password changes, configuration changes, and Splunk-based
authentication

users.json

2021-03-22 – v.1.7 through 2.4.3 – Azure Event Hubs Destination:
Compression must be manually disabled

2021-03-17 – v.2.4.2, 2.4.3 – Parser Function > List of Fields
copy/paste fails

Page 1789 of 1835

Problem: A�er upgrading to v.2.4.3, the UI fails to recognize valid TLS .key files, displaying spurious error
messages of the form: "File does not exist: $CRIBL_HOME/local/cribl/auth/certs/<keyname>key ." An
a�ected Master will not restart. A�ected Workers will restart, but will not apply changes made through the UI.

Workaround: Ideally, specify an absolute path to each key file, rather than relying on environment variables.
If you're locked out of the UI, you'll need to manually edit the referenced paths within these configuration
files in LogStream subdirectories: local/cribl/cribl.yml (General > API Server TLS settings) and/or
local/_system/instance.yml (Distributed > TLS settings). Contact Cribl Support if you need assistance.
A more drastic workaround is to disable TLS for the a�ected connections.

Fix: In LogStream 2.4.4.

Problem: The Redis Function, when used with a specific username and Redis 6.x's Access Control List
feature, fails due to authentication problems.

Workaround: In the Function's Redis URL field, point to the Redis default account, either with a password
(e.g., redis://default:Password1@192.168.1.20:6379) or with no password (redis://192.168.1.20:6379).
Do not specify a user other than default .

Fix: In LogStream 3.0.

Problem: For the Splunk Single Instance and Splunk Load Balanced Destinations, the in-app documentation
omits the UI's Advanced Settings section. Some fields are documented out-of-sequence, or are omitted.

Workaround: Refer to the UI's tooltips, to the corrected Splunk Single Instance and Splunk Load Balanced
online docs, and/or to the corrected PDF.

Fix: In LogStream 2.4.4.

2021-03-13 – v.2.4.3 – UI can't find valid TLS .key files, blocking
Master restarts and Worker reconfiguration

2021-03-12 – v.2.4.2 – Redis Function with specific username
can't authenticate against Redis 6.x ACLs

2021-03-09 – v.2.4.3 – Splunk Destinations' in-app docs mismatch
UI's current field order

2021-03-08 – v.2.4.3 – Enabling Git Collapse Actions breaks
Commit & Deploy

Page 1790 of 1835

Problem: A�er enabling Settings > Distributed Settings > Git Settings > General > Collapse Actions,
selecting Commit & Deploy throws a 500 error.

Workaround: Disable the Collapse Actions setting, then commit and deploy separately.

Fix: In LogStream 2.4.4.

Problem: As of v.2.4.3, LogStream's AWS-related Sources & Destinations provide options to reuse HTTP
connections, and to establish TLS connections to servers with self-signed certificates. However, the S3
Collector does not yet provide these options.

Fix: In LogStream 2.4.4.

Problem: A�er adding a rule to a Knowledge > Event Breaker Ruleset, pressing Esc closes the parent
Ruleset modal along with the child Rule modal.

Workaround: Close the Rule modal by clicking either its Cancel button or its close box.

Fix: In LogStream 2.4.3.

Problem: An Aggregations Function, when used in a post-processing Pipeline, sends data to LogStream's
Default Destination rather than to the Pipeline's attached Destination.

Workaround: If applicable, use the Function in a processing or pre-processing Pipeline instead.

Fix: In LogStream 2.4.3.

2021-03-08 – v.2.4.3 – S3 Collector lacks options to reuse HTTP
connections and allow-self signed certs

2021-03-04 – v.2.4.2 – Esc key closes both Event Breaker Ruleset
modals

2021-03-04 – v.2.4.2 – Aggregations Function in post-processing
Pipeline addresses wrong Destination

2021-02-25 – v.2.4.2 – On Safari, Event Breaker shows no OUT
events

Page 1791 of 1835

Problem: When viewing an Event Breaker's results on Safari, no events are displayed on the Preview pane's
OUT tab.

Workaround: Use another supported browser.

Fix: In LogStream 2.4.3.

Problem: Collection jobs are missing from the Monitoring > Sources page, even though they are returned by
metric queries. Also, the Job Inspector > Live modal displays an empty, unintended Configure tab.

Workaround: Use the Job Inspector to access collection results. Ignore the Configure tab.

Fix: In LogStream 2.4.4.

Problem: If a Git remote repo was previously configured, upgrading to LogStream v.2.4.2 throws errors of this
form upon startup: Failed to initialize git repository. Config versioning will not be
available...Invalid URL... . The Master cannot commit or deploy to any Worker Group.

Workarounds: 1. Downgrade back to v.2.4.1 (or your previous working version). 2. Switch from Basic
authentication to SSH authentication against the repo, to remove the username from requests.
(The apparent root cause is Basic/http auth using a valid URL and username, but missing a password.)

Fix: In LogStream 2.4.3.

Problem: If Splunk indexers have forwarder tokens enabled, and worked with LogStream 2.3.x before,
upgrading to LogStream 2.4.x causes data to stop flowing.

Workaround: If you encounter this problem, rolling back to your previously installed LogStream version
(such as v.2.3.4) resolves it.

Fix: In LogStream 2.4.3.

2021-02-22 – v.2.4.3 – Collection jobs UI errors

2021-02-19 – v.2.4.2 – Upon upgrade, Git remote repo setting
breaks, blocking Worker Groups

2021-02-19 – v.2.4.0, 2.4.1, 2.4.2 – Splunk (S2S) Forwarder access
control blocks upon upgrade to LogStream 2.4.x

Page 1792 of 1835

Problem: Splunk HEC JSON payloads containing nested objects trigger high CPU usage, due to a flaw in
JSON parsing.

Workaround: If you encounter this problem, rolling back to your previously installed LogStream version
(such as v.2.3.4) resolves it.

Fix: In LogStream 2.4.2.

Problem: Worker Nodes cannot connect to the Master a�er the Master is upgraded to v.2.4.0.

Workaround: Disable compression on the Workers. You can do so through the Workers' UI at
System Settings > Distributed Settings > Master Settings > Compression, or by commenting out this line
in each Worker's cribl.yml config file:

Fix: In LogStream 2.4.1.

Problem: S3 collection stops a�er upgrade to 2.4.0 due to secret key re-encryption.

Workaround: Re-configure S3, save and re-deploy.

Fix: In LogStream 2.4.1.

Problem: The Google Cloud Storage Destination fails to initialize, displaying an error of the form: Bucket
does not exist!

2021-02-10 – v.2.4.0, 2.4.1 – With Splunk HEC Source, JSON
payloads containing embedded objects trigger high CPU usage

2021-01-30 – v.2.4.0 – Worker Nodes cannot connect to Master

compression: gzip

2021-01-25 – v.2.4.0 – S3 collection stops working due to auth
secret key issues.

2021-01-14 – v.2.4.0 – Google Cloud Storage Destination Needs
Extra Endpoint to Initialize

Page 1793 of 1835

Workaround: In the outputs.yml file, under your cribl-gcp-bucket key endpoint, add:
https://storage.googleapis.com . (in a single-instance deployment, locate this file at
$CRIBL_HOME/local/cribl/outputs.yml . In a distributed deployment, locate it at
$CRIBL_HOME/groups/<group name>/local/cribl/outputs.yml .)

Fix: In LogStream 2.4.1.

Problem: In this release, the Worker Groups > <group‑name> > System Settings UI did not display the
expected Access Management, Authentication, and Local Users sections.

Workaround: Manually edit the users.json file.

Fix: In LogStream 2.4.1.

Problem: On the Routes page, selecting Capture New in the right pane does not copy custom Filter
expressions to the resulting Capture Sample Data modal. That modal's Filter Expression field always
defaults to true .

Workarounds: 1. Bypass the Capture New button. Instead, from the Route's own ••• (Options) menu, select
Capture. This initiates a capture with the Filter Expression correctly populated. 2. Copy/paste the
expression into the Capture Sample Data modal's Filter Expression field. Or, if the expression is displayed
in that field's history drop-down, retrieve it.

Fix: In LogStream 2.4.1.

Problem: Clicking the Help link in a Destination's configuration modal displays the error message:
"Unable to load docs. Please check LogStream's online documentation instead."

Workarounds: 1. Go directly to the online Destinations docs, starting here. 2. Follow the UI link to the docs
landing page, click through to open or download the current PDF, and scroll to its Destinations section.

2021-01-14 – v.2.4.0 – Worker Groups' Settings > Access
Management Is Absent from UI

2021-01-13 – v.2.4.0 – Route Filters Aren't Copied to Capture
Modal

2021-01-13 – v.2.4.0 – Destinations' Documentation Doesn't
Render from UI

Page 1794 of 1835

Fix: In LogStream 2.4.1.

Problem: Pressing Esc with focus on a modal's drop-down or slider doesn't close the modal as expected.
(Pressing Esc with focus on a free-text field, combo box, or nothing does close the modal – displaying a
confirmation dialog first, if you have unsaved changes.)

Workarounds: Click the X close box at upper right, or click Cancel at lower right.

Fix: In LogStream 2.4.1.

Problem: LogStream reports an expired Free license, and blocks inputs, even though Free licenses in v.2.3.0
do not expire.

Workaround: This is caused by time-limited Free license key originally entered in a LogStream version prior
to 2.3.0. Go to Settings > Licensing, click to select and expand your expired Free license, and click
Delete license. LogStream will recognize the new, permanent Free license, and will restore throughput.

Fix: In LogStream 2.4.1.

Problem: Where event fields have null values, LogStream (by default) displays them as struck-out in the right
Preview pane. The preview is misleading, because the events are still sent to the output.

Workaround: If you do want to prevent fields with null values from reaching the output, use an Eval
Function, with an appropriate Filter expression, to remove them.

Fix: Preview corrected in LogStream 2.3.4.

Problem: A�er clicking Add Rule in a new or existing Event Breaker Ruleset, the Event Breaker Rule modal's
Rule Name field is disabled. Because Rule Name is mandatory field, this also disables saving the Rule via the

2021-01-13 – v.2.4.0 – Esc Key Doesn't Consistently Close Modals

2020-12-17 – v.2.3.0+ – Free-License Expiration Notice, Blocked
Inputs

2020-11-14 – v.2.3.3 – Null Fields Redacted in Preview, but Still
Forwarded

2020-10-27 – v.2.3.2 – Cannot Name or Save New Event Breaker
Rule

Page 1795 of 1835

OK button.

Fix: In LogStream 2.3.3.

Problem: A�er inserting a new Function into a group and saving the Pipeline, deleting the Function also
deletes other Functions lower down in the same group.

Fix: In LogStream 2.3.2.

Workaround: Move the target Function out of the group, resave the Pipeline, and only then delete the
Function.

Problem: When a root user tries to enable boot-start as a di�erent user (e.g., using /opt/cribl/bin/cribl
boot-start enable -u <some‐username>), they receive an error of this form:

Fix: In LogStream 2.3.2.

Workaround: Install LogStream 2.2.3 (which you can download here), then upgrade to 2.3.1.

Problem: Upon upgrading an earlier, licensed LogStream installation to v.2.3.0, the Worker Groups tab
might be absent from the Master Node's top menu.

Fix: In LogStream 2.3.1.

Workaround: Click the Home > Worker Groups tile to access Worker Groups.

2020-10-12 – v.2.3.1 – Deleting One Function Deletes Others in
Same Group

2020-09-27 – v.2.3.1 – Enabling Boot Start as Di�erent User Fails

error: found user=0 as owner for path=/opt/cribl, expected uid=NaN.
Please make sure CRIBL_HOME and its contents are owned by the uid=NaN by running:
[sudo] chown -R NaN:[$group] /opt/cribl

2020-09-17 – v.2.3.0 – Worker Groups menu tab hidden a�er
upgrade to LogStream 2.3.0

2020-09-17 – v.2.3.0 – Cannot Start LogStream 2.3.0 on RHEL 6,
RHEL 7

Page 1796 of 1835

Problem: Upon upgrading to v.2.3.0, LogStream might fail to start on RHEL 6 or 7, with an error message of
the following form. This occurs when the user running LogStream doesn't match the LogStream binary's
owner. LogStream 2.3.0 applies a restrictive permissions check using id -un <uid> , which does not work
with the version of id that ships with these RHEL releases.

Fix: In LogStream 2.3.1.

Workaround: Update your RHEL environment's id version, if possible.

Problem: Upon upgrading an earlier LogStream installation to v.2.3.0, OIDC users might be unable to restart
the LogStream server.

Fix: In LogStream 2.3.1.

Workaround: Edit $CRIBL_HOME/default/cribl/cribl.yml to add the following lines to its the auth
section:

Problem: In a Distributed deployment, attempting to switch Distributed Settings from Worker to Master
Mode blocks with a spurious "Git not available...Please install and try again" error message.

Fix: In LogStream 2.3.0.

Workaround: To initialize git , switch first from Worker to Single mode, and then from Single to Master
mode.

Problem: Entering valid credentials on the login page (e.g., http://localhost:9000/login) yields only a
spinner.

id: 0: No such user
ERROR: Cannot run command because user=root with uid=0 does not own executable

2020-09-17 – v.2.3.0 – Cannot Start LogStream 2.3.0 with OpenId
Connect

filter_type: email_whitelist
scope: openid profile email

2020-06-11 – v.2.1.x – Can't switch from Worker to Master Mode

2020-05-19 – v.2.1.x – Login page blocks

Page 1797 of 1835

Fix: In LogStream 2.3.0.

Workaround: Trim /login from the URL.

Problem: In a Distributed deployment, deleting resources in default/ causes them to reappear on restart.

Workaround/Fix: In progress.

Problem: Using in-product upgrade feature in v.1.7 (or earlier) fails to upgrade to v2.0, due to package-name
convention change.

Workaround/Fix: Download the new version and upgrade per steps laid out here.

Problem: Using in-product upgrade feature in v1.6 (or earlier) fails to upgrade to v1.7 due to package name
convention change.

Workaround/Fix: Download the new package and upgrade per steps laid out here.

Problem: When upgrading from v1.2 with a S3 output configured, stagePath was allowed to be undefined.
In v.1.4+, stagePath is a required field. This might causing schema violations when upgrading older configs.

Workaround/Fix: Reconfigure the output with a valid stagePath filesystem path.

;

2020-02-22 – v.2.1.x – Deleting resources in default/

2019-10-22 – v. 2.0 – In-product upgrade issue on v2.0

2019-08-27 – v.1.7 – In-product upgrade issue on v1.7

2019-03-21 – v.1.4 – S3 stagePath issue on upgrade to v.1.4+

Page 1798 of 1835

If you run into issues with Cribl Stream, please first check our Known Issues page for recommended
resolutions or workarounds. For questions not addressed there, this page outlines how to engage with the
Cribl Support sta� to resolve problems as quickly as possible.

You can contact Cribl Support in multiple ways, outlined below:

Email

Intercom chat button

Community Slack

Support Portal (login required)

The best method depends on your reason for contacting Support. For quick, question-and-answer
discussions, Community Slack or Intercom chat might be su�icient. For in-depth discussions, or for
troubleshooting technical issues, create a support case for better tracking and exchange of information.

You have two options for opening a support case: via email or via the Support Portal (access here, details
below).

If you exchange diags or other files with us, note that all file-transfer methods except for email are encrypted.

Email communication imposes a total message-size limit of 25 MB (a�er MIME-encoding attachments). The
Support Portal allows file attachments of up to 100 MB each.

The simplest way to engage with Support is to email support@cribl.io, with the information outlined below.
This will automatically open a case for us to track, and will send you an auto-confirmation email that
includes your case number. A Support engineer will then contact you to begin troubleshooting.

13.2. Working with Cribl Support

Contacting Cribl Support

Creating a Support Case

Contact via Email

Email via Help Button

Page 1799 of 1835

Within Cribl Stream's UI, you can click the le� nav's (?) Help link and, from the resulting fly-out, select
Contact Support. This will prompt creation of a new email in your email client.

Email from the UI

Within Cribl Stream's UI, you can click the Intercom button at the bottom right to send Cribl Support
questions and (if necessary) screenshots and other files.

We recommend Intercom only for quick questions/answers, because it doesn't provide robust tracking of
communications or files.

Our Support sta� monitors Cribl's Community Slack for any issues customers are experiencing:
https://cribl‑community.slack.com/. If you are not already registered for our Community Slack, please
register at https://cribl.io/community/ to get started.

Contact via Intercom Button

Contact via Community Slack

Page 1800 of 1835

Slack might not get you the same timely response as an email, but it's a great way to get questions about
Cribl Stream answered by a wide range of Cribl insiders, and expert peer users, who enjoy sharing their
knowledge of the product. Check out individual channels dedicated to feature requests, docs, and other
concerns.

Our Enterprise customers have their own private channels where they can communicate directly with their
Cribl account team.

The Cribl Support Portal is available to our licensed customers. It facilitates encrypted transfer of large files,
and maintains support cases' history so that you can easily review them.

The Support Portal uses single sign-on (SSO) through an integration with Cribl.Cloud accounts. So as part of
Support Portal signup, you'll receive an invitation to create a Cribl Cloud account, if you don't already have
one. You have no obligation to use your Cribl.Cloud Organization for purposes other than SSO, if it doesn't
meet your needs.

The Support Portal enables two types of users: Standard and Admin. You can have up to four user logins per
customer account, one of which can be (but is not required to be) an Admin user.

Standard users can:

Create cases.

Manage cases.

Search cases

Upload files to cases.

Access other Cribl resources via their Cribl.Cloud portal.

Admin users can do all of the above, plus:

View all cases on the customer's account.

Edit case information, post-creation.

Private Slack Channels

Contact via Support Portal

For details about navigating Cribl.Cloud, see the Cribl Cloud Launch Guide.

Standard Versus Admin Users

Page 1801 of 1835

Invite Standard users to the portal.

You'll need to receive a Cribl.Cloud invitation from Cribl or your Support Portal Admin, and follow the
directions in the email to sign up. Both scenarios are summarized below. But first, a word from our sponsor,
us:

This video walks you through signing up for the Support Portal, and then submitting cases with enough
detail for Cribl Support to rapidly help you.

Accessing the Cribl Support Portal

To access the Cribl Support Portal if you already have a Cribl.Cloud account:

1. Contact Cribl Support to request a user login to the Support Portal.

2. Cribl Support will send an invitation to you via email.

3. Follow the link in the email to sign up, using the same email address at which you received the
invitation.

4. Log in with your existing Cribl.Cloud account.

5. Once logged in, you can create support cases, view any of your open or closed cases, etc.

To access the Cribl Support Portal without an existing Cribl.Cloud account:

Signing Up

Video Tutorial: Signing Up, Submitting Cases

06:01

How to Access the Cribl Support Portal

Standard User Signup

Page 1802 of 1835

1. Contact Cribl Support at support@cribl.io to request to be added. Cribl Support will email you an
invitation. (Your account's Support Portal Admin has the capability to invite you too.)

2. Follow the link in the email to sign up, using the same email address at which you received the
invitation.

3. Register your new Cribl.Cloud account.

4. Then log into https://portal.support.cribl.io with your new Cribl.Cloud account.

5. Once logged in, you can create support cases, view any of your open or closed cases, etc.

To access the Cribl Support Portal as an Admin user:

1. Contact Cribl Support to request Admin access.

2. If your customer account already has an Admin user, the current Admin must also contact Cribl,
requesting to transfer the account's sole Admin user role to you.
The request from the current Portal Admin must originate from the email address we have on file for
that Admin user. We can tell you who the current Admin is, if you do not know.

3. If you have an existing Cribl.Cloud account then Cribl Support will promote your account to Admin.
If you do not yet have a Cribl.Cloud account, Cribl Support will email you a Support Portal signup
invitation. Follow the link in the email to accept the invitation, using the same email address at which
you received the invitation.

All support cases must be submitted by an individual account (i.e., no shared or group accounts). However,
there are broader notification options.

When you create a new case, note the two fields for Related Teammates. Each name entered here must be
an existing Contact on your customer account. If you want to enter one of your own organizationʼs group
email addresses, contact Cribl Support to create a contact entry for that address.

When contacting Cribl Support via any means, please provide as many of the following details as you can –
the more, the better:

Your name.

Preferred contact method (phone or email).

Admin User Signup

Submitting Cases via the Portal

Relevant Information We Need

Page 1803 of 1835

Cribl Stream version number a�ected.

Description of the issue youʼre having.

What's the issue's scope? (Leader Node, specific Worker Nodes or Groups, or entire deployment; number
of nodes impacted) .

When did the issue begin, or when was it first noticed?

Did you make any known changes around that time? (Upgrade, config change, network change, etc.).

Diags for one or more a�ected systems (the Leader Node does not process data, so typically, only diags
from Workers are necessary).

Sample event data for testing Pipeline issues (provide a text file, rather than screenshots).

Any troubleshooting steps that you've already taken.

Providing us diags from your environment will speed up the time to resolution. For instructions on how to
pull a diag file, see Diagnosing Issues.

With Cribl Stream (LogStream) 2.4.1 or later, the diag is uploaded from the browser, rather than from the
LogStream Node. This means that your LogStream Worker Nodes do not need Internet access. With
LogStream 2.4.0 or earlier, youʼll need to transfer the diags from your Worker Nodes.

If your organization does not permit outbound access to https://diag-upload.cribl.io to upload from within
Cribl Stream, you can also submit diags through Intercom or directly via the Support Portal (login required).

If none of these options work with your organization's policies, please work directly with your Support
engineer to find a solution.

Pulling Diags

Diag bundles for Leader Nodes do not include diag bundles for any Worker Nodes.

If you would like to upload your diag file via the GUI or CLI, you'll need outbound Internet access to
https://diag-upload.cribl.io, plus a valid support case number (provided in your case confirmation
email).

Diag Workarounds

Peer Support: Cribl Curious Q&A Site

Page 1804 of 1835

The Cribl Curious Q&A site is a searchable slate of frequently asked questions, with answers from expert
users and Cribl insiders. If you can't find the answer to your question – post it here. If you can help out fellow
users – earn goodwill and points.

;

Page 1805 of 1835

To help diagnose Cribl Stream problems, you can share a diagnostic bundle with Cribl Support. The bundle
contains a snapshot of configuration files and logs at the time the bundle was created, and gives
troubleshooters insights into how Cribl Stream was configured and operating at that time.

The following subdirectories (and their contents) of $CRIBL_HOME are included:

.../default/*

.../local/* – except for /local/cribl/auth/ , to exclude sensitive files.

.../log/*

.../groups/*

.../state/jobs/* – will return all jobs if le� empty.

As a security measure, the bundle excludes all .crt , .pem , .cer , and .key files from all $CRIBL_HOME
subdirectories.

If you're managing your own Cribl Stream deployment (single-instance or distributed), you can create and
securely share bundles with Cribl Support either from the UI or from the CLI. In either case, you'll need
outbound internet access to https://diag‑upload.cribl.io and a valid Support Case number. That site works
only when using the cribl diag command or uploading using the Cribl Stream UI. (So connecting directly
to it with your web browser will fail.)

With a Cloud deployment, contact Cribl Support to gather a diag bundle on your behalf.

To create a bundle, go to global ⚙ Settings (lower le�) > Diagnostics > Diagnostic Bundle and click
Create Diagnostic Bundle.

To download the bundle locally to your machine, click Export.

13.3. Diagnosing Issues

What's in the Diagnostic Bundle

Creating and Exporting a Diagnostic Bundle

Using the UI

Page 1806 of 1835

To share the bundle with Cribl Support, toggle Send to Cribl Support to Yes, enter your case number,
and then click Export.

You can create a bundle from individual workers if you have the Worker UI access setting enabled. Go to
Workers > <worker-name> > Settings (top right) > Diagnostics > Diagnostic Bundle, and click
Create Diagnostic Bundle.

Previously created bundles are stored in $CRIBL_HOME/diag . They're also listed in the UI, where you can re-
download them or share them with Cribl Support.

To create a bundle using the CLI, use the diag command.

If Cribl Support asks you to grab CPU profiles of Worker Processes, follow these steps:

1. Use top or htop on the Worker Node to identify Worker PIDs consuming a lot of CPU.

Using the CLI

$CRIBL_HOME/bin/cribl diag
Usage: [sub-command] [options] [args]

Commands:
get - List existing Cribl Stream diagnostic bundles
create - Creates diagnostic bundle for Cribl Stream
send - Send Cribl Stream diagnostic bundle to Cribl Support, args:
 -c <caseNumber> - Cribl Case Number
 [-p <path>] - Diagnostic bundle path (if empty, then new bundle will be
created)

Creating a diagnostic bundle
$CRIBL_HOME/bin/cribl diag create
Created Cribl Stream diagnostic bundle at /opt/cribl/diag/cribl-logstream-
<hostname>-<datetime>.tar.gz.

Creating and sending a diagnostic bundle
$CRIBL_HOME/bin/cribl diag send -c 420420
Sent Cribl Stream diagnostic bundle to Cribl Support

Sending a previously created diagnostic bundle
$CRIBL_HOME/bin/cribl diag send -p /opt/cribl/diag/cribl-logstream-<hostname>-
<datetime>.tar.gz -c 420420
Sent Cribl Stream diagnostic bundle to Cribl Support

Including CPU Profiles

Page 1807 of 1835

2. See Sizing & Scaling > CPU Profiling for instructions on accessing the UI's Profile options (for your
deployment type), and generating and saving profiles.

3. Find the Worker Processes matching the PIDs you identified above.

4. Click Profile on each. Start with the default 10-second Duration.

5. Once the profile is displayed, save it to a JSON file. (See details at the above link.)

6. Repeat steps 3–6 for other CPU-intensive Worker Processes.

7. Upload the profile JSON files to Cribl Support.

If you encounter a memory leak, Cribl Support might request a memory snapshot of a Worker Process, to
better understand where the leak is occurring. To capture the memory snapshot, follow these instructions.

On the a�ected system, stop the LogStream process or service.

If you have bootstrapped Cribl Stream, follow the section for Persisting Systemd Overrides. Add the following
to the [Service] stanza:

Once the environment variable has been added to the override file, run the following commands to start
Cribl Stream again:

On an already CPU-starved Worker Node, profiling might fail with an error message, or just hang. In
this case, you might need a few retries to get a successful profile.

Including Memory Snapshots

Configure Node JS Debug Mode

Systemd

Environment=NODE_ENV=debug

systemctl daemon-reload
systemctl start cribl

Command Line

Page 1808 of 1835

If starting Cribl Stream from the CLI, prepend NODE_ENV=debug to your command. E.g.: NODE_ENV=debug
$CRIBL_HOME/bin/cribl start

On the Leader or Worker that you have configured for debug mode, run the following command: ps aux |
grep cribl | grep -v grep . This will generate an output similar to the following:

Make note of the --inspect-port= values.

In the next step, you will configure Google Chrome to connect to these ports. You will need to ensure network
connectivity from your machine to the Cribl Stream instance's inspect ports.

Open Google Chrome and navigate to chrome://inspect. Ensure that you are on the Devices tab.

To the right of Discover network targets, click the Configure... button.

If you have previously generated a memory snapshot using this method, delete the old hosts from this list.

Next, as shown in the example below, enter the host and port combinations that you obtained in the
previous step.

Find Inspect Ports

[root@worker ~]# ps aux | grep cribl | grep -v grep
cribl 11525 2.6 1.4 1021944 150988 ? Sl 07:36 0:25
/opt/cribl/bin/cribl server
cribl 11539 20.3 1.9 1136336 201164 ? Rl 07:36 3:21
/opt/cribl/bin/cribl --inspect=0.0.0.0:9230 --inspect-port=9230
/opt/cribl/bin/cribl.js server -r WORKER
cribl 11545 20.3 2.0 1134336 204676 ? Sl 07:36 3:21
/opt/cribl/bin/cribl --inspect=0.0.0.0:9230 --inspect-port=9231
/opt/cribl/bin/cribl.js server -r WORKER

If you don't have direct network connectivity from your machine to the Cribl Stream instance, you will
need to use SSH port forwarding. Repeat this example command for each port that you need to
forward:

ssh -L 9230:localhost:9230 cribl@example.com

Obtain Remote Snapshots Using Google Chrome

Page 1809 of 1835

Click the Done button. You will now have a list of Remote Targets that you can inspect.

Click the blue inspect link for each target. This will open a new window. Select its Memory upper tab.

Select Heap snapshot, and select the check box labeled Include numerical values in capture.

Next, click the blue Take snapshot button at the bottom of the window.

Page 1810 of 1835

Download each snapshot by clicking the save link to the right of the snapshot number. As you download
these files, be sure to append the Worker Process or inspect port number to each file name.

Then provide these files to Cribl Support.

Page 1811 of 1835

Incomplete File Names?

If you forgot to record the Worker Process from which snapshots originated, you can run the following
command:

Example output:

The above files correspond to Worker Processes 2, 4, and 1, respectively.

grep -r '/opt/cribl/state/w_' .

./Heap-20220222T113432.heapsnapshot:"/opt/cribl/log/worker/2/cribl.log",

./Heap-20220222T115411.heapsnapshot:"/opt/cribl/log/worker/4/cribl.log",

./Heap-20220222T111147.heapsnapshot:"/opt/cribl/log/worker/1/cribl.log",

Page 1812 of 1835

;

Page 1813 of 1835

This page lists common error and warning messages that you might find in Cribl Stream's internal logs
and/or UI. It includes recommendations for resolving the errors/warnings. Messages are grouped by
component (Sources, Destinations, etc.). Note that:

We've excerpted only the salient part of the error message from each event. We haven't listed full
events.

Examples don't preserve case sensitivity from the original events.

NodeJS serves as the Cribl Stream backend and has a large collection of well documented errors of its
own. Some of system-level are listed below with the appropriate action to take. The remainder are
documented at https://nodejs.org/docs/latest-v14.x/api/errors.html#errors_node_js_error_codes,
specifically in the Common system errors section of that page.

Where events are written to log files, they might reside in di�erent logs variously devoted to
data processing, cluster communication, or the REST API. (For details, see Types of Logs.) We note the
log type where necessary.

Where: In Cribl Stream's UI.

Cause: This occurs only when accessing Data > Collectors. It can occur with ad blockers, and occurs with the
Brave browser (because the newly loaded page's URL includes the string collector).

Recommendation: If you have an ad blocker, allowlist the https://<hostname>:9000/jobs/collectors
(single-instance) URL or the https://<masternode>:9000/m/<group_name>/jobs/collectors (Leader)
URL.

Failed to fetch

13.4. Common Errors and Warnings

Web UI

Error: "Failed to fetch"

Page 1814 of 1835

Cause: Occurs only on Leader Nodes. Each Worker Group relies on a config helper process that runs on its
behalf on a Leader Node, and that process is not currently running. This error is usually triggered by
restarting Cribl Stream on the Leader Node, and then trying to access its Worker Groups menu (2.x), or
Groups or Configure (3.x) menu, before the Cribl Stream server is up.

Recommendation: Try again in a few seconds. If you've made changes to the backend or filesystem
permissions, stop Cribl Stream, and make sure the cribl user owns all relevant assets, before restarting:
sudo chown -R cribl.cribl /opt/cribl

Cause: This will appear when you attempt to save KMS Settings with a Secret Path entry that references a
secret that already exists in HashiCorp Vault. It can also occur with OpenID Connect remote authentication.
Cribl Stream has aborted the remote write to avoid overwriting an external shared secret.

Recommendation: On the Leader Node, manually edit kms.yml to use provider: local . Then restart
Cribl Stream to correct the path conflict.

Where: These events will be in the Worker process logs.

Cause: Cribl Stream doesn't have proper privileges to bind to the specified IP and port. Usually, this simply
indicates that Cribl Stream is running as a non-root user, but a Source was accidentally configured to use a
privileged port below 1024.

Recommendation: Check your Cribl Stream Sources' configuration. The error's channel field will indicate
which input is a�ected. If you choose to enable access to the port range below 1024, see our configuration
instructions for systemd and initd.

Error: "The Config Helper service is not available because a
configuration file doesn't exist or the settings are invalid. Please
fix it and restart Cribl Stream."

Warning: "KMS saved, but secret exists in destination location.
No data migrated."

Sources (General)

Error: "bind EACCES 0.0.0.0:514"

Page 1815 of 1835

EACCES error

Cause: The interface and port combination is already in use by another process, which might or might not be
Cribl Stream.

Recommendation: Check your Cribl Stream Sources' configuration. The error's channel field will indicate
which Source is a�ected, but this error means that one or more other inputs are also using the same IP/port
combination.

ADDRINUSE error

Where: These events will be in the Worker Process logs.

Cause: The specified token is invalid. Note the above message is logged only at debug level.

Where: These events will be in the Worker Process logs.

Error: “bind EADDRINUSE 0.0.0.0:9514”

HTTP-based Source

Message: "Dropping request because token invalid","authToken":
"Bas...Njc="" (v2.4.5 and later)

Kafka-based Source

Page 1816 of 1835

Cause: The username does not have read permissions for the specified topic.

Where: These events will be in the Worker Process logs.

Cause: The maximum number of active Splunk TCP connections has been exceeded per worker process. The
default is 1000.

Recommendation: In the Splunk TCP input's Advanced Settings configuration, increase the Max Active
Connections value, set it to 0 for unlimited, and/or increase the # of worker processes the Worker Node(s) are
using..

Where: These events will be in the Worker Process logs.

Cause: The event is missing both event and fields fields.

Cause: Auth token(s) are defined, but the token specified in the HEC request doesn't match any defined
tokens, therefore it's invalid.

Cause: The Splunk HEC Source's Allowed Indexes field is configured with specific indexes, but the client's
HTTP request didnʼt specify any of them.

Error: "KafkaJSProtocolError: Not authorized to access topics:
[Topic authorization failed]"

Splunk TCP Source

Error: "connection rejected" with a reason of "Too many
connections"

Splunk HEC Source

Error: "Malformed HEC event"

Error: "Invalid token"

Error: "Invalid index"

Page 1817 of 1835

Note: This is not logged in Cribl Stream, but would be found in the response payload sent to your HEC client.

Cause: "Server is busy" is the equivalent of a 503 HTTP response code. The most likely cause is the Max
active requests setting in the HEC input's Advanced Settings is insu�icient to service the number of
simultaneous HEC requests. Increase the value and monitor your clients to see if the 503 response is
eliminated.

Where: These events can be in Worker Process or API logs on the Workers or Leader, depending on whether
the issue is associated with a Source or Destination, etc.

Cause: Validate server certs or Validate client certs is enabled, and the peer's certificate has expired.

Recommendation: Disable Validate server certs or Validate client certs (depending on whether
Cribl Stream is serving as the client or server), so that encryption can still occur without authentication. Or
renew the expired certificate.

Cause: Typically caused by a TLS protocol version mismatch between the client and server.

Recommendation: Verify that client's and server's TLS settings use the same minimum/maximum TLS
version.

Cause: Client canʼt validate the server certificateʼs CA (i.e., the issuer) because it doesnʼt trust the CA cert. Or
vice versa (server can't validate client's certificate CA) if mutual auth is enabled.

Recommendation: The CA certificates used by the server's leaf certificate must be trusted by the client. See
Configuring CA certs.

Error: "{"text":"Server is busy","code":9,"invalid-event-
number":0}"

TLS Errors

Error: “certificate has expired”

Error: “Client network socket disconnected before secure TLS
connection was established”

Error: “Unable to get local issuer certificate”

Page 1818 of 1835

Cause: The client or server was presented with a self-signed cert from the peer, but that cert is not trusted.

Recommendation: The self-signed certificate must be trusted by the peer to which it's presented. See
Configuring CA certs.

Variations: “Hostname/IP does not match certificateʼs altnames: host: <server hostname> is not in the certʼs
list” or: “Hostname/IP does not match certificateʼs altnames: IP: <server IP> is not in the certʼs list”

Cause: The serverʼs hostname/FQDN used on the client is not found in the CN or SAN attribute of the serverʼs
certificate.

Recommendation: Examine the CN and/or SAN attribute, to see which names are listed that can be used as
the server hostname/FQDN on the client. CN values with spaces are not supported as hostnames/FQDNS.
If there isnʼt a SAN attribute, then a new cert will need to be issued.

Cause: The highest TLS protocol available by the client is still too low for the server to support.

Recommendation: Review the minimum/maximum TLS version settings on the client and server, to ensure
that they overlap.

Cause: The client is using TLS but the server is probably not configured for TLS.

Recommendation: Review the TLS settings on the server.

Where: These events will be in the Worker Process logs.

Error: “self signed certificate”

Error: “Hostname/IP does not match certificateʼs altnames"

Error: "140244944713600:error:141E70BF:SSL
routines:tls_construct_client_hello:no protocols available:"

Error: "140251374995328:error:1408F10B:SSL
routines:ssl3_get_record:wrong version number"

REST API Collector

Page 1819 of 1835

Cause: This is due to unnecessarily encoding the Discover/Collect URL.

Recommendation: Remove the encoding function for the URL. URLs will rarely need text be encoded and
when they do it's only the parts that need it that should be encoded, otherwise if the entire URL is encoded
unnecessarily then errors like this will occur.

Invalid URL

Cause: This response is triggered by rapidly repeated authentication requests from the Collector's Discover
and Collect phases. It's especially likely when di�erent Workers run multiple Collect tasks.

Recommendation: Navigate to Settings > General > Advanced and gradually increase the Login Rate Limit
until this error response is no longer returned.

Where: These events will be in the Worker Process logs.

Full Error Text: "message":"Inaccessible host: 'sqs.us-east-1.amazonaws.com'. This service
may not be available in the 'us-east-1' region.","stack":"UnknownEndpoint: Inaccessible

host: 'sqs.us-east-1.amazonaws.com'. This service may not be available in the 'us-east-

1' region.

Error: "reason.stack == `TypeError [ERR_INVALID_URL]: Invalid
URL: https%3A%2F%2Ftype.fit%2Fapi%2Fquotes" at
onParseError (internal/url.js:258:9)"

Error: "statusCode: 429...Too many requests"

AWS Sources/ Destinations & S3-Compatible Stores

Error: "message":"Inaccessible host: 'sqs.us-east-
1.amazonaws.com'. This service may not be available..."

Page 1820 of 1835

Cause: If this is persistent rather than intermittent then it could be caused by TLS negotiation failures. For
example, AWS SQS currently does not support TLS 1.3. If intermittent then a network-related issue could be
occurring such as DNS-related problems.

Cause 1: Can occur when Authentication is set to Auto, but no IAM role is attached.

Cause 2: Can occur on LogStream 2.4.4 or earlier, when an IAM role is attached to the EC2 instance, but the
instance is using instance metadata v2.

Recommendations: Change to Manual Authentication; attach an IAM role; or if using IMDv2, switch to IMDv1
(if possible) or upgrade to LogStream 2.4.5 or later.

Missing credentials in config

Where: These events will be in the Worker Process logs, unless otherwise noted.

Cause: The Destination is blocking. This can occur with any TCP-based Destination, and is logged only a�er 1
second of blocking. This can also occur between Worker and Leadr when the Worker can't connect to the
Leader Node to send metrics data. When triggered by cluster communication, the warning will be in the
Worker's API log.

Cause: The Destination is blocking. This message is logged immediately upon detecting backpressure, for
Destinations using any protocol. Some backpressure is normal when measured over timescales under
1 second, therefore this message can appear quite frequently, and is not indicative of a problem (which is
why it's a warning).

Error: "Missing credentials in config" or "stack:Error: connect
ETIMEDOUT 169.254.169.254:80"

Destinations (General)

Warning: “sending is blocked”

Warning: "exerting backpressure" (v2.4.0-2.4.1)

Page 1821 of 1835

Cause: The Destination is blocking. Like the "sending is blocked" message, "begin backpressure" is logged
only a�er 1 second of blocking. Unlike the "exerting backpressure" message, it is logged only once while
backpressure is occurring (at the start), and it will always be followed by the "end backpressure" message.

Where: These events will be in the Worker Process logs.

Cause: The Worker is trying to use HTTP, but the server is expecting HTTPS.

Parse Error: Expected HTTP

Where: These events will be in the Worker Process logs.

Cause: A Lookup Function attempted to load a lookup table that exceeded Node.js' hard size limit of

16,777,216 (i.e., 224) rows.

Recommendation: Split the lookup table to smaller tables, or use the Redis Function.

Warning: "begin backpressure" and "end backpressure" (v2.4.2
and later)

MinIO Destination

Error: "Parse Error: Expected HTTP/"

Pipelines/Functions

Error: "failed to load function...Value undefined out of range..."

Page 1822 of 1835

Oversized lookup table error

Where: On stdout

Full Text: "WARNING: You are running Cribl Stream CLI as user=root, while the binary is owned by the
user=cribl. This may change the ownership of some files under CRIBL_HOME=/opt/cribl. Please make sure all
files under CRIBL_HOME=/opt/cribl are owned by the user=cribl."

Cause: This is caused by improper ownership on $CRIBL_HOME , and will cause some files to be missing from
the diag.

Recommendation: Execute the chown command on the entire $CRIBL_HOME directory, so that everything
can be owned by the proper user. A�erward, run the ./cribl diag create command again.

Where: These events will be in the Workers' API logs.

Diag Command

Warning: "You are running Cribl Stream CLI as user=root, while
the binary is owned by the user=cribl."

Cluster

Error: "access denied"

Page 1823 of 1835

Cause: The Worker's authtoken (located in $CRIBL_HOME/local/_system/instance.yml) is missing or
doesnʼt match the Leader's.

;

Page 1824 of 1835

This page anticipates common errors you might see in Cribl Stream's UI, or in the git CLI, when pushing a
commit.

Your first push to a remote repo might fail with one of several failed to push some refs errors.

As a first step in debugging these errors, edit the $CRIBL_HOME/.git/config file to make sure that its name
and email key values match the credentials you've set on your repo provider or git server.

Also make sure that the remote "origin" key value matches the remote you set when you connected to
the remote repo. This example shows all three keys, with placeholder values:

Next, verify the remote repo from the command line, as follows:

In response, git should echo your configured remote twice – once for fetch and once for push
operations.

If all of the above settings are correct, the push is very likely blocking because the remote repo has some
commit history, or was simply created with a readme.md file. For command-line instructions to remedy this
– by syncing your local repo to its remote – see GitHub's Dealing with Non-Fast-Forward Errors topic.

A push command might also trigger "large file" warnings or, more seriously, errors of this form (CLI/GitHub
example):

13.5. Git Push Errors

Failed to Push Some Refs

[user]
 name = <your-login-name>
 email = <email@example.com>
[remote "origin"]
 url = https://<user-name>:<token>@github.com/<username>/<repo-name>

cd $CRIBL_HOME/.git
git remote -v

Large Files Detected

Page 1825 of 1835

Cribl recommends adding such large files to , to exclude them from subsequent push
commands. As the above examples show, typical culprits are large .csv or .mmdb lookup files. A simple
option is to place these files in a $CRIBL_HOME subdirectory that's already listed in .gitignore – for details,
see Managing Large Lookups.

Other available workarounds include staging such files outside $CRIBL_HOME , or using plugins to
accommodate the large files. For GitHub-specific options, see Working with Large Files.

Git Remote Repos with Trusted CAs

;

remote: warning: File data/lookups/geo.mmdb is 60.12 MB; this is larger than
GitHub's recommended maximum file size of 50.00 MB
remote: error: GH001: Large files detected. You may want to try Git Large File
Storage - https://git-lfs.github.com.
remote: error: Trace:
[##]
remote: error: See http://git.io/iEPt8g for more information.
remote: error: File groups/default/data/lookups/largelookup.csv is 313.91 MB; this
exceeds GitHub's file size limit of 100.00 MB

.gitignore

See Also

Page 1826 of 1835

If you are using an internal Git server, a self-signed certificate might prevent Cribl Stream from successfully
pushing commits to the origin. You might see errors like these when pushing (or pulling) via the CLI:

To ensure that Git trusts your self-signed certificate, follow these steps:

1. Obtain the certificate chain (root, intermediates, and leaf) for the Git server.

2. As the cribl user, run this command: git config http.sslCAInfo /path/to/certs.pem

3. Test with this command: git push origin Verify that this throws no errors.

Use these steps to enable Worker-to-Leader mutual authentication:

If you are using an internal certificate authority, obtain a copy of the CA public certificate, then add it to
/etc/systemd/system/cribl.service :

For details, see CA Certificates and Environment Variables.

The common-name regex (if required) should omit the CN= at the beginning of the Common Name field.
The example below will match all immediate subdomains of se.lab.cribl.io , like

13.6. Git Remote Repos & Trusted CAs

SSL certificate problem: self signed certificate in certificate chain
SSL certificate problem: unable to get local issuer certificate

Resolving the Errors

Obtain the Certificate Chain (TLS/SSL)

A. Validate the Client Certs

...
[Service]
Environment="NODE_EXTRA_CA_CERTS=/opt/cribl/local/cribl/auth/certs/ca.pem"
...

B. Simplify the Common-Name Regex

Page 1827 of 1835

madsci.se.lab.cribl.io .

If you disable Validate Client Certs, Cribl Stream will match only on common names.

Common Name example

As in this example:

C. Extract SSL Certificate Info

Page 1828 of 1835

As in this example:

;

openssl x509 -in certificate.pem -text -noout

D. Dump the Certificate Chain from the Server

echo "" | openssl s_client -host www.google.com -port 443 -showcerts 2>&1 | sed -n
'/BEGIN CERTIFICATE/,/END CERTIFICATE/p'

Page 1829 of 1835

This page lists sample event series that Cribl Stream records in common login scenarios. Cribl Stream
captures event series for both successful and failed login attempts. Note that these samples omit the
following repeating fields that are captured in each log:

cid : api

channel : cribl

level : info

{"time":"2022-03-30T03:09:55.569Z","message":"Running LDAP

search","searchBase":"dc=mydomain,dc=com","filter":"(sAMAccountName=admin)","options":

{"scope":"sub","filter":"(sAMAccountName=admin)"}}

{"time":"2022-03-30T03:09:55.575Z","message":"LDAP user search

results","count":1,"username":"REDACTED","user":

{"dn":"CN=admin,CN=Users,DC=mydomain,DC=com","memberOf":

["CN=admingrp,CN=Users,DC=mydomain,DC=com"]}}

{"time":"2022-03-

30T03:09:55.582Z","channel":"LDAPMapper","level":"debug","message":"External groups

found","groups":["admingrp","Users"]}

{"time":"2022-03-30T03:09:55.583Z","message":"Successful

login","user":"admin","provider":"ldap:win2008ad1.mydomain.com:389"}

{"time":"2022-03-30T03:10:48.389Z","message":"Running LDAP

search","searchBase":"dc=mydomain,dc=com","filter":"(sAMAccountName=admin)","options":

{"scope":"sub","filter":"(sAMAccountName=admin)"}}

{"time":"2022-03-30T03:10:48.393Z","message":"LDAP user search

results","count":1,"username":"REDACTED","user":

13.7. Sample Logs for Login Scenarios

Successful Authentication Using the memberOf Attribute

Successful Authentication With Fallback When a Bad
Login Is Triggered

Page 1830 of 1835

{"dn":"CN=admin,CN=Users,DC=mydomain,DC=com","memberOf":

["CN=admingrp,CN=Users,DC=mydomain,DC=com"]}}

{"time":"2022-03-30T03:10:48.399Z","message":"Attempting fallback to local

authentication","reason":"failed

login","provider":"ldap:win2008ad1.mydomain.com:389","user":"admin"}

{"time":"2022-03-30T03:10:48.400Z","message":"Successful

login","user":"admin","provider":"local"}

{"time":"2022-03-30T03:11:54.175Z","message":"Running LDAP

search","searchBase":"dc=mydomain,dc=com","filter":"(sAMAccountName=admin)","options":

{"scope":"sub","filter":"(sAMAccountName=admin)"}}

{"time":"2022-03-30T03:11:54.178Z","message":"LDAP user search

results","count":1,"username":"REDACTED","user":

{"dn":"CN=admin,CN=Users,DC=mydomain,DC=com","memberOf":

["CN=admingrp,CN=Users,DC=mydomain,DC=com"]}}

{"time":"2022-03-30T03:11:54.184Z","level":"warn","message":"Failed

login","user":"admin","provider":"ldap:win2008ad1.mydomain.com:389","details":

{"message":"80090308: LdapErr: DSID-0C0903A9, comment: AcceptSecurityContext error, data

52e, v1db1\u0000 Code: 0x31","stack":"Error: 80090308: LdapErr: DSID-0C0903A9, comment:

AcceptSecurityContext error, data 52e, v1db1\u0000 Code: 0x31

{"time":"2022-03-30T03:04:16.400Z","level":"warn","message":"Authentication Provider

Error","provider":"ldap:win2008ad1.mydomain.com:389","fatal":{"message":"80090308:

LdapErr: DSID-0C0903A9, comment: AcceptSecurityContext error, data 52e, v1db1\u0000

Code: 0x31","stack":"Error: 80090308: LdapErr: DSID-0C0903A9, comment:

AcceptSecurityContext error, data 52e, v1db1\u0000 Code: 0x31\n at Function.parse [snip]

{"time":"2022-03-30T03:04:16.401Z","message":"Attempting fallback to local

authentication","reason":"provider

Failed Authentication with Fallback When a Bad Login Is
Disabled

Incorrect Proxy Bind Password With Fallback When a
Fatal Error Is Triggered

Page 1831 of 1835

error","provider":"ldap:win2008ad1.mydomain.com:389","user":"admin","error":

{"message":"80090308: LdapErr: DSID-0C0903A9, comment: AcceptSecurityContext error, data

52e, v1db1\u0000 Code: 0x31","stack":"Error: 80090308: LdapErr: DSID-0C0903A9, comment:

AcceptSecurityContext error, data 52e, v1db1\u0000 Code: 0x31

{"time":"2022-03-30T03:15:21.410Z","message":"Running LDAP

search","searchBase":"dc=mydomain,dc=com","filter":"(sAMAccountName=admin)","options":

{"scope":"sub","filter":"(sAMAccountName=admin)"}}

{"time":"2022-03-30T03:15:21.416Z","message":"LDAP user search

results","count":1,"username":"REDACTED","user":

{"dn":"CN=admin,CN=Users,DC=mydomain,DC=com"}}

{"time":"2022-03-30T03:15:21.422Z","message":"Running LDAP

search","searchBase":"dc=mydomain,dc=com","filter":"

(member=CN=admin,CN=Users,DC=mydomain,DC=com)","options":{"scope":"sub","filter":"

(member=CN=admin,CN=Users,DC=mydomain,DC=com)"}}

{"time":"2022-03-30T03:15:21.424Z","message":"LDAP groups search

results","count":0,"opts":{"groupSearchBase":"dc=mydomain,dc=com","memberSearch":

{"memberField":"member","memberDN":"CN=admin,CN=Users,DC=mydomain,DC=com"}},"groups":[]}

{"time":"2022-03-

30T03:15:21.425Z","channel":"LDAPMapper","level":"debug","message":"External groups

found","groups":[]}

{"time":"2022-03-30T03:15:21.427Z","message":"Successful

login","user":"admin","provider":"ldap:win2008ad1.mydomain.com:389"}

;

Successful Authentication Without memberOf to Trigger
Group Search but Without Group Memberships

Page 1832 of 1835

14. THIRD-PARTY SOFTWARE

Various components in Cribl Stream are built and enhanced with so�ware under free or open source licenses.
We thank those projects' contributors!

ag-grid-community – 19.1.2
ag-grid-react – 19.1.2
ajv – 6.9.0
ajv-errors – 1.0.1
alphanum-sort – 1.0.2
antd – 3.26.15
as-table – 1.0.36
avsc – 5.4.9
aws-sdk – 2.880.0
aws4: 1.11.0
@azure/storage-blob – 12.4.0
@azure/storage-queue – 12.4.0
bindings – 1.5.0
bl – 4.0.3
blueimp-md5 – 2.18.0
cidr-matcher – 1.0.5
clarinet – 0.12.4
classnames – 2.2.6
color-hash – 1.0.3
cron-parser – 2.15.0
d3-time – 1.1.0
d3-time-format – 2.2.3
@dabh/diagnostics – 2.0.2
date-fns – 1.29.0
di� – 3.5.0
di�2html – 3.3.1
echarts – 4.6.0
escodegen – 1.11.1
esprima – 4.0.1
express – 4.16.3
fast-array-di� – 1.0.0

14.1. Credits

Page 1833 of 1835

fast-bitset – 1.3.2
file-saver – 1.3.8
good-fences – 0.9.1
google_protobuf – 3.15.6
@google-cloud/pubsub – 2.17.0
@google-cloud/storage – 5.8.3
@grpc/grpc-js – 1.4.4
http-proxy-agent – 3.0.0
https-proxy-agent – 4.0.0
jwt-simple – 0.5.6
kafkajs – 1.11.0
kafkajs-snappy – 1.1.0
ldapts – 1.10.0
limiter – 1.1.4
lodash – 4.17.21
lz4js – 0.2.0
maxmind – 3.1.2
Node.js – 14.18.3
node-cache – 4.2.0
node-uuid – 1.4.8
numeral – 2.0.6
pako – 1.0.10
papaparse – 5.0.0-beta.0
pbf – 3.2.1
proxy-from-env – 1.0.0
query-string – 6.1.0
react – 16.13.1
react-color – 2.19.3
react-dom – 16.13.1
react-grid-layout – 0.18.3
react-markdown – 6.0.2
react-redux – 7.2.2
react-router-dom – 5.1.2
react-sortable-hoc – 1.11.0
react-split-pane – 0.1.91
react-virtual – 2.6.1
@readme/markdown – 6.22.0
redis – 3.1.2
@reduxjs/toolkit – 1.6.1
regexpp – 2.0.0
requirejs – 2.3.6

Page 1834 of 1835

resize-observer-polyfill – 1.5.0
rxjs – 6.5.5
saxen – 8.1.0
semver – 7.3.5
simple-git – 1.126.0
snappyjs – 0.6.0
snmp-native – 1.2.0
streamcount – 1.0.1
tar-stream – 2.1.4
timezone-support – 2.0.2
@types/d3-time – 1.0.10
url – 0.11.0
winston – 3.0.0
winston-transport – 4.4.0
xmlbuilder – 10.0.0 yaml – 1.3.2

;

Page 1835 of 1835

