
Cribl LogStream Documentation Manual

Version: v2.4.4

Generated: 2021-03-30 23:57:56

INTRODUCTION 7

About Cribl LogStream 7

Basic Concepts 9

Getting Started Guide 13

DEPLOYMENT 32

Deployment Types 32

Single-Instance Deployment 34

Distributed Deployment 43

Splunk App Deployment * 58

Bootstrap Workers from Master 62

Kubernetes Master Deployment 66

Kubernetes Worker Deployment 75

Sizing and Scaling 84

Config Files 88

cribl.yml 90

inputs.yml 91

outputs.yml 92

licenses.yml 94

regexes.yml 95

breakers.yml 96

mappings.yml 97

instance.yml 98

Licensing 99

Access Management 106

Authentication 107

Local Users 113

Roles 115

Version Control 123

Persistent Queues 135

Securing 138

Monitoring 142

Internal Metrics 150

Upgrading 154

Uninstalling 159

WORKING WITH DATA 160

Event Model 160

Event Processing Order 162

Routes 164

Pipelines 170

Data Onboarding 176

Functions 180

Auto Timestamp 186

Aggregations 190

CEF Serializer 197

Clone 199

Comment 200

DNS Lookup 202

Drop 206

Dynamic Sampling 207

Eval 211

Flatten 214

GeoIP 216

Grok 219

JSON Unroll 221

Lookup 223

Mask 227

Numerify 233

Parser 235

Publish Metrics 243

Regex Extract 248

Redis 252

Regex Filter 255

Rename 256

Rollup Metrics 258

Sampling 260

Serialize 262

Suppress 265

Tee 268

Trim Timestamp 271

Unroll 272

XML Unroll 274

Prometheus Publisher (beta) 277

Reverse DNS (deprecated) 279

Sources 281

Splunk TCP 285

Splunk HEC 288

Syslog 292

Elasticsearch API 296

TCP JSON 300

TCP (RAW) 303

HTTP/S (Bulk API) 307

Raw HTTP/S 311

Kafka 314

Kinesis 318

Kinesis Firehose 322

Azure Blob Storage 325

Azure Event Hubs 335

Metrics 337

Prometheus 340

SQS 343

S3 348

Office 365 Services 355

Office 365 Activity 358

Office 365 Message Trace 361

SNMP Trap 364

Datagens 366

Cribl Internal 368

AppScope 371

Collectors 374

Filesystem/NFS 378

S3 382

Script 387

REST / API Endpoint 391

Scheduling and Running 399

Destinations 405

Output Router 409

Splunk Single Instance 411

Splunk Load Balanced 415

Splunk HEC 423

S3 Compatible Stores 427

Kinesis Streams 432

CloudWatch Logs 435

SQS 438

Filesystem/NFS 442

Elasticsearch 445

Honeycomb 449

TCP JSON 452

Syslog 455

Kafka 459

Azure Blob Storage 464

Azure Monitor Logs 467

Azure Event Hubs 470

Google Cloud Storage 473

StatsD 476

StatsD Extended 479

Graphite 482

SNMP Trap 485

InfluxDB 487

MinIO 490

New Relic 495

Prometheus 498

Wavefront 502

SignalFx 505

Sumo Logic 508

Datadog 511

Webhook 515

DevNull 519

Default 520

Data Preview 521

Securing Data 528

Encryption 529

Decryption 534

Scripts 537

Using Datagens 539

CLI Reference 544

EXPRESSION REFERENCE 552

Introduction to Expression Syntax 552

Cribl Expressions 555

KNOWLEDGE 566

Regex Library 566

Grok Patterns Library 569

Event Breakers 571

Lookups Library 581

Parsers Library 585

Schema Library 587

Global Variables Library 589

USE CASES 591

Ingest-time Fields 591

Ingest-time Lookups 594

Sampling 598

Access Logs: Apache, ELB, CDN, S3, etc. 600

Firewall Logs: VPC Flow Logs, Cisco ASA, Etc. 603

Masking and Obfuscation 606

Lookups as Filters for Masks 610

Lookups and Regex Magic 613

Regex Filtering 622

Encrypting Sensitive Data 624

Syslog Data Reduction 630

Splunk to Elasticsearch 637

Reducing Windows XML Events 645

BEST PRACTICES 656

Managing Large Lookups 656

VIDEOS 660

Videos 660

TROUBLESHOOTING 668

Diagnosing Issues 668

Known Issues 670

THIRD-PARTY SOFTWARE 679

Credits 679

INTRODUCTION
About Cribl LogStream
Getting started with Cribl LogStream

Cribl LogStream helps you process machine data – logs, instrumentation data,
application data, metrics, etc. – in real time, and deliver them to your analysis
platform of choice. It allows you to:

Add context to your data, by enriching it with information from external
data sources.

Help secure your data, by redacting, obfuscating, or encrypting sensitive
fields.

Optimize your data, per your performance and cost requirements.

Sources, LogStream, destinations

Cribl LogStream ships in a single, no-dependencies package. It provides a
refreshing and modern interface for working with and transforming your data.
It scales with – and works inline with – your existing infrastructure, and is
transparent to your applications.

Cribl LogStream is built for administrators, managers, and users of operational
and security intelligence products and services.

What Is Cribl LogStream?

Who Is Cribl LogStream For?

Page 7 of 680

What's Next

Basic Concepts

Page 8 of 680

Basic Concepts
Notable features and concepts to get a fundamental understanding of Cribl
LogStream

As we describe features and concepts, it helps to have a mental model of Cribl
LogStream as a system that receives events from various sources, processes
them, and then sends them to one or more destinations.

Sources, LogStream, destinations

Let's zoom in on the center of the above diagram, to take a closer look at the
processing and transformation options that LogStream provides internally.
The basic interface concepts to work with are Routes, which manage data
flowing through Pipelines, which consist of Functions.

Routes, Pipelines, Functions

Page 9 of 680

Routes evaluate incoming events against filter expressions to find the
appropriate Pipeline to send them to. Routes are evaluated in order. A Route
can be associated with only one Pipeline and one output. By default, a Route-
Pipeline-Output tuple will consume matching events.

If the Route's Final flag is disabled, one or more event clones are sent down
the associated Pipeline, while the original event continues down the rest of the
Routes. This is very useful in cases where the same set of events needs to be
processed in multiple ways and delivered to di�erent destinations. For more
details, see Routes.

A series of Functions is called a Pipeline, and the order in which the Functions
are executed matters. Events are delivered to the beginning of a pipeline by a
Route, and as they're processed by a Function, the events are passed to the
next Function down the line.

Pipelines attached to Routes are called processing Pipelines. You can
optionally attach pre-processing Pipelines to individual LogStream Sources,
and attach post-processing Pipelines to LogStream Destinations. All Pipelines
are configured through the same UI; these three designations are determined
only by their placement in LogStream's data flow.

Routes

Pipelines

Page 10 of 680

Pipelines categorized by position

Events only move forward – toward the end of a Pipeline, and eventually out of
the system. For more details, see Pipelines.

At its core, a Function is a piece of code that executes on an event, and that
encapsulates the smallest amount of processing that can happen to that event.
For instance, a very simple Function can be one that replaces the term foo
with bar on each event. Another one can hash or encrypt bar . Yet another
function can add a field – say, dc=jfk-42 – to any event with source=�us�
nyc�application.log .

Functions stacked in a Pipeline

Functions

Page 11 of 680

What's Next

Getting Started Guide

Deployment Types

Functions process each event that passes through them. To help improve
performance, Functions can optionally be configured with filters, to limit their
processing scope to matching events only. For more details, see Functions.

You can scale LogStream up to meet enterprise needs in a distributed
deployment. Here, multiple LogStream Workers (instances) share the
processing load. But as you can see in the preview schematic below, even
complex deployments follow the same basic model outlined above.

Distributed deployment architecture

A Scalable Model





Page 12 of 680

Getting Started Guide

This guide walks you through planning, installing, and configuring a single-
instance deployment of Cribl LogStream. You'll capture some realistic sample
log data, and then use LogStream's built-in Functions to redact, parse, refine,
and shrink the data.

By the end of this guide, you'll have assembled all of LogStream's basic
building blocks: a Source, Route, and Pipeline, several Functions, and a
Destination. You can complete this tutorial using LogStream's included sample
data, without connections to – or licenses on – any inbound or outbound
services.

Assuming a cold start (from initial LogStream download and installation), this
guide might take about an hour. But you can work through it in chunks, and
LogStream will persist your work between sessions.

The minimum requirements for running this tutorial are the same as for a
LogStream production single-instance deployment.

Linux: RedHat, CentOS, Ubuntu, Amazon Linux (64bit)

+4 physical cores = +8 vCPUs; +8GB RAM – all beyond your basic OS/VM
requirements

5GB free disk space (more if persistent queuing is enabled)

� If you've already downloaded, installed, and launched LogStream,
skip ahead to Add a Source.

Requirements for this Tutorial

OS

System

Page 13 of 680

Firefox 65+, Chrome 70+, Safari 12+, Microso� Edge

By default, LogStream listens on the following ports:

You can override these defaults as needed.

For higher processing volumes, users typically enable LogStream's
Distributed Deployment option. While beyond the scope of this tutorial, that
option has a few additional requirements, which we list here for planning
purposes:

Port 9000 or 4200 must be available on the Master Node for Workers'
communications.

Git (1.8.3.1 or higher) must be installed on the Master Node, to manage
configuration changes.

See Sizing and Scaling for further details about configuring LogStream to
handle large data streams.

Download the latest version of LogStream at https://cribl.io/download/.

ℹ We assume that 1 physical core is equivalent to 2
virtual/hyperthreaded CPUs (vCPUs). For details, see
Recommended AWS, Azure, and GCP Instance Types.

Browser Support

Network Ports

UI default 9000

HTTP Inbound, default 10080

User options + Other data ports as required.

Plan for Production

Download and Install LogStream

Component Default Port

Page 14 of 680

Un-tar the resulting .tgz file in a directory of your choice (e.g., /opt/).
Here's general syntax, and a specific example:

You'll now have LogStream installed in a cribl subdirectory, by default:
/opt/cribl/ . We'll refer to this cribl subdirectory throughout this

documentation as $CRIBL_HOME .

In your terminal, switch to the $CRIBL_HOME/bin directory (e.g,:
/opt/cribl/bin). Here, you can start, top, and verify the LogStream server

using these basic ./cribl CLI commands:

Start: ./cribl start

Stop: ./cribl stop

Get status: ./cribl status

Next, in your browser, open http:��<hostname��9000 (e.g.,
http:��localhost:9000) and log in with default credentials (admin ,
admin).

Register your copy of LogStream if desired.

A�er registering, you'll be prompted to change the default password.

You are now ready to configure a working LogStream installation – with a
Source, Destination, Pipeline, and Route – and to assemble several built-in
Functions to refine sample log data.

Each LogStream Source represents a data input. Options include Splunk,
Elastic Beats, Kinesis, Kafka, syslog, HTTP, TCP JSON, and others.

tar xvzf cribl��version��<build��<arch>.tgz
tar xvzf cribl-2.3.1-1d4e05c5-linux�x64.tgz

Run LogStream

� For other available commands, see CLI Reference.

Get Data Flowing

Add a Source

Page 15 of 680

For this tutorial, we'll enable a LogStream built-in datagen (i.e., data generator)
that generates a stream of realistic sample log data.

Addiing a datagen Source

1. From LogStream's top menu, select Data > Sources.

2. From the Data Sources page's tiles or le� menu, select Datagens.

(You can use the search box to jump to the Datagens tile.)

3. Click Add New to open the New Datagen source pane.

4. In the Input ID field, name this Source businessevent .

5. In the Data Generator File drop-down, select businessevent.log .

This generates...log events for a business scenario. We'll look at their
structure shortly, in Capture and Filter Sample Data.

6. Click Save.

The On slider in the Enabled column indicates that your datagen Source has
started generating sample data.

Configuring a datagen Source

Page 16 of 680

Each LogStream Destination represents a data output. Options include Splunk,
Kafka, Kinesis, InfluxDB, Snowflake, Databricks, TCP JSON, and others.

For this tutorial, we'll use LogStream's built-in DevNull Destination. This
simply discards events – not very exciting! But it simulates a real output, so it
provides a configuration-free quick start for testing LogStream setups. It's
ideal for our purposes.

To verify that DevNull is enabled, let's walk through setting up a Destination,
then setting it up as LogStream's default output:

1. From LogStream's top menu, select Data > Destinations.

2. Select DevNull from the Data Destinations page's tiles or le� menu.

(You can use the search box to jump to the DevNull tile.)

3. On the resulting devnull row, look for the Live indicator under Enabled.
This confirms that the DevNull Destination is ready to accept events.

4. From the Data Destinations page's le� nav, select the Default Destination
at the top.

5. On the resulting Manage Default Destination page, verify that the
Default Output ID drop-down points to the devnull Destination we just
examined.

We've now set up data flow on both sides. Is data flowing? Let's check.

From the top menu, select Monitoring. This opens a summary dashboard,
where you should see a steady flow of data in and out of LogStream. The le�
graph shows events in/out. The right graph shows bytes in/out.

Add a Destination

Monitor Data Throughput

Page 17 of 680

Monitoring dashboard

Monitoring displays data from the preceding 24 hours. You can use the
Monitoring submenu to open detailed displays of LogStream components,
collection jobs and tasks, and LogStream's own internallogs. Click Sources on
the lower (white) submenu to switch to this view:

Monitoring Sources

This is a compact display of each Source's inbound events and bytes as a
sparkline. You can click each Source's Expand button (highlighted at right) to
zoom up detailed graphs.

Click Destinations on the lower submenu. This displays a similar sparklines
view, where you can confirm data flow out to the devnull Destination:

Monitoring Destinations

Page 18 of 680

With confidence that we've got data flowing, let's send it through a LogStream
Pipeline, where we can add Functions to refine the raw data.

A Pipeline is a stack of LogStream Functions that process data. Pipelines are
central to refining your data, and also provide a central LogStream workspace
– so let's get one going.

1. From the top menu, select Pipelines.

You now have a two-pane view, with business on the le� and party on the
right a Pipelines list on the le� and Sample Data controls on the right.
(We'll capture some sample data momentarily.)

2. At the Pipelines pane's upper right, click + Add Pipeline, then select
Create Pipeline.

3. In the new Pipeline's ID field, enter a unique identifier. (For this tutorial,
you might use slicendice .)

4. Optionally, enter a Description of this Pipeline's purpose.

5. Click Save.

Your empty Pipeline now prompts you to preview data, add Functions, and
attach a Route. So let's capture some data to preview.

Pipeline prompt to add Functions

The right Sample Data pane provides multiple tools for grabbing data from
multiple places (inbound streams, copy/paste, and uploaded files); for

Create a Pipeline

Capture and Filter Sample Data

Page 19 of 680

previewing and testing data transformations as you build them; and for saving
and reloading sample files.

Since we've already got live (simulated) data flowing in from the datagen
Source we built, let's grab some of that data.

1. In the right pane, click Capture New.

2. In the Capture Sample Data modal, immediately change the generated File
Name to a name you'll recognize, like be_raw.log .

3. Click Capture, then accept the drop-down's defaults – click Start.

4. Click Save as Sample File. This saves to the File Name you entered above.
You're now previewing the events in the right pane. (Note that this pane's
Preview Simple tab now has focus.)

5. Click Show more to expand one or more events.

By skimming the key-value pairs within the data's _raw fields, you'll notice the
scenario underlying this preview data (provided by the businessevents.log
datagen): these are business logs from a mobile-phone provider.

To set up our next step, find at least one marketState K=V pair. Having
captured and examined this raw data, let's use this K=V pair to crack open
LogStream's most basic data-transformation tool, Filtering.

1. Click the right pane's Sample Data tab.

2. Again click Capture New.

3. In the Capture Sample Data modal, replace the Filter Expression field's
default true value with this simple regex:
_raw.match(/marketState=TX/)

We're going to Texas! If you type this in, rather than pasting it, notice how
LogStream provides typeahead assist to complete a well-formed
JavaScript expression.

You can also click the Expand button at the Filter Expression field's right

Capture New Data

Filter Data and Manage Sample Files

Page 20 of 680

edge to open a modal to validate your expression. The adjacent drop-
down enables you to restore previously used expressions

4. Click Capture, then Start.

Using the Capture drop-down's default limits of 10 seconds and 10 events,
you'll notice that with this filter applied, it takes much longer for
LogStream to capture 10 matching events.

5. Click Cancel to discard this filtered data and close the modal.

6. On the right pane's Sample Data tab, click Simple beside be_raw.log .

This restores our preview of our original, unfiltered capture. We're ready to
transform this sample data in more interesting ways, by building out our
Pipeline's Functions.

Functions are pieces of JavaScript code that LogStream invokes on each event
that passes through them. By default, this means all events – each Function has
a Filter field whose value defaults to true . As we just saw with data capture,
you can replace this value with an expression that scopes the Function down to
particular matching events.

In this Pipeline, we'll use some of LogStream's core Functions to:

Redact (mask) sensitive data

Extract (parse) the _raw field's key-value pairs as separate fields.

Add a new field.

Delete the original _raw field, now that we've extracted its contents.

Rename a field for better legibility..

In the right Preview pane, notice each that event includes a social key, whose
value is a (fictitious) raw Social Security number. Before this data goes any
further through our Pipeline, let's use LogStream's Mask Function to swap in
an md5 hash of each SSN.

Refine Data with Functions

Mask: Redact Sensitive Data

Page 21 of 680

1. In the le� Pipelines pane, click + Add Function .

2. Search for Mask , then click it.

3. In the new Function's Masking Rules, click the into Match Regex field.

4. Enter or paste this regex, which simply looks for digits following social= :
(social=)(\d+)

5. In Replace Expression, paste the following hash function. The backticks
are literal: `${g1}${C.Mask.md5(g2)}`

6. Note that Apply to Fields defaults to _raw . This is what we want to target,
so we'll accept this default.

7. Click Save.

You'll immediately notice some obvious changes:

The Preview pane has switched from its IN to its OUT tab, to show you the
outbound e�ect of the Pipeline you just saved.

Each event's _raw field has changed color, to indicate that it's undergone
some redactions.

Now locate at least one event's Show more link, and click to expand it. You can
verify that the social values have now been hashed.

Mask Function and hashed result

Having redacted sensitive data, we'll next use a Parser function to li� up all the
_raw field's key-value pairs as fields:

1. In the le� Pipelines pane, click + Add Function .

2. Search for Parser , then click it.

Parser: Extract Events

Page 22 of 680

3. Leave the Operation Mode set to its Extract default.

4. Set the Type to Key=Value Pairs .

5. Leave the Source Field set to its _raw default.

6. Click Save.

Parser configured to extract K=V pairs from _raw

You should see the Preview pane instantly light up with a lot more fields,
parsed from _raw . You now have rich structured data, but not all of this data
is particularly interesting: Note how many fields have NA ("Not Applicable")
values. We can enhance the Parser Function to ignore fields with NA values.

1. In the Function's Fields Filter Expression field (near the bottom), enter this
negation expression: value��'NA'

Note the single-quoted value. If you type (rather than paste) this
expression, watch how typeahead matches the first quote you type.

2. Click Save, and watch the Preview pane.

Filtering the Parser Function to ignore fields with 'NA' values

Several fields should disappear – such as credits , EventConversationID ,
and ReplyTo . The remaining fields should display meaningful values.

Page 23 of 680

Congratulations! Your log data is already starting to look better-organized and
less bloated.

Toggling a Function o� and on

Next, let's add an extra field, and conditionally infer its value from existing
values. We'll also remove the _raw field, now that it's redundant. To add and
remove fields, the Eval Function is our pal.

Let's assume we want to enrich our data by identifying the manufacturer of a
certain popular phone handset. We can infer this from the existing phoneType
field that we've li�ed up for each event.

1. In the le� Pipelines pane, click + Add Function .

2. Search for Eval , then click it.

Missed It?�

If you didn't see the fields change, slide the Parser Function O�, click
Save below, and watch the Preview pane change. Using these
toggles, you can preserve structure as you test and troubleshoot
each Function's e�ect.

Note that each Function also has a Final toggle, defaulting to O�.
Enabling Final anywhere in the Functions stack will prevent data
from flowing to any Functions lower in the UI.

Be sure to toggle the Function back On, and click Save again, before
you proceed!

Eval: Add and Remove Fields

Add Field (Enrich)

Page 24 of 680

3. Click into the new Function's Evaluate Fields table.

Here you add new fields to events, defining each field as a key-value pair. If
we needed more key-value pairs, we could click + Add Field for more
rows.

4. In Name, enter: phoneCompany .

5. In Value Expression, enter this JS ternary expression that tests
phoneType 's value:
phoneType.startsWith('iPhone') ? 'Apple' : 'Other' (Note the ?

and : operators, and the single-quoted values.)

6. Click Save. Examine some events in the Preview pane, and each should
now contain a phoneCompany field that matches its phoneType .

Adding a field to enrich data

Now that we've parsed out all of the _raw field's data – it can go. Deleting a
(large) redundant field will give us cleaner events, and reduced load on
downstream resources.

1. Still in the Eval Function, click into Remove Fields

2. Type: _raw and press Tab or Enter.

3. Click Save.

The Preview pane's di� view should now show each event's _raw field
stripped out.

Remove Field (Shrink Data)

Page 25 of 680

Removing a field to streamline data

Our log data has now been cleansed, structured, enriched, and slimmed-down.
Let's next look at how to make it more legible, by giving fields simpler names.

1. In the le� Pipelines pane, click + Add Function .

This rhythm should now be familiar to you.

2. Search for Rename , then click it.

3. Click into the new Function's Rename Fields table.

This has the same structure you saw above in Eval: Each row defines a key-
value pair.

4. In Current Name, enter the longhaired existing field name:
conversationId .

5. In New Name, enter the simplified field name: ID .

6. Watch any event's conversationId field in the Preview pane as you click
Save at le�. This field should change to ID in all events.

We've already refined our data substantially. To further slim it down, a Pipeline
can entirely remove events that aren't of interest for a particular downstream
service.

Here, let's drop all events for customers who use prepaid monthly phone
service (i.e., not postpaid):

Rename: Refine Field Names

Drop: Remove Unneeded Events

� As the "Pipeline" name implies, your LogStream installation can
have multiple Pipelines, each configured to send out a data stream
tailored to a particular Destination. This helps you get the right data
in the right places most e�iciently.

Page 26 of 680

1. In the le� Pipelines pane, click + Add Function .

2. Search for Drop , then click it.

3. Click into the new Function's Filter field.

4. Replace the default true value with this JS negation expression:
accountType��'PostPaid'

5. Click Save.

Now scroll through the right Preview pane. Depending on your data sample,
you should now see multiple events struck out and faded – indicating that
LogStream will drop them before forwarding the data.

Torture the data enough, and it will confess. By what factor have our
transformations refined our data's volume? Let's check.

In the right Preview pane, click the Basic Statistics button:

Displaying Basic Statistics

Even without the removal of the _raw field (back in Eval) and the dropped
events, you should see a substantial % reduction in the Full Event Length.

Data reduction quantified

Woo hoo! Before we wrap up our configuration: If you're curious about
individual Functions' independent contribution to the data reduction shown

A Second Look at Our Data

Page 27 of 680

here, you can test it now. Use the toggle O� > Save > Basic Statistics sequence
to check various changes.

We've now built a complete, functional Pipeline. But so far, we've tested its
e�ects only on the static data sample we captured earlier. To get dynamic data
flowing through a Pipeline, we need to filter that data in, by defining a
LogStream Route.

1. At the Pipelines page's top le�, click Attach Pipeline to Route.

This displays the Routes page. It's structured very similarly to the Pipelines
page, so the rhythm here should feel familiar.

2. Click + Add Route .

3. Enter a unique, meaningful Route Name, like demo .

4. Leave the Filter field set to its true default, allowing it to deliver all
events.

Because a Route delivers events to a Pipeline, it o�ers a first stage of
filtering. In production, you'd typically configure each Route to filter events
by appropriate source , sourcetype , index , host , _time , or other
characteristics. The Filter field accepts JavaScript expressions, including
AND (��) and OR (��) operators.

5. Set the Pipeline drop-down to our configured slicendice Pipeline.

6. Set the Output drop-down to either devnull or default .

This doesn't matter, because we've set default as a pointer to devnull .
In production, you'd set this carefully.

7. You can leave the Description empty, and leave Final set to Yes.

8. Grab the new Route by its le� handle, and drag it above the default
Route, so that our new Route will process events first. You should see
something like the screenshot below.

9. Click Save to save the new Route to the routing table.

Add and Attach a Route

Page 28 of 680

Configuring and adding a Route

The sparklines should immediately confirm that data is flowing through your
new Route:

Live Routes

To confirm data flow through the whole system we've built, select Monitoring >
Routes from LogStream's top menu and examine demo .

Monitoring data flow through Routes

Page 29 of 680

Also select Monitoring > Pipelines and examine slicendice .

Monitoring data flow through Pipelines

Look at you! Give yourself a pat on the back! In this short, scenic tour – with no
hit to your cloud-services charges – you've build a simple but complete
LogStream system, exercising all of its basic components:

Downloaded, installed, and run LogStream.

Configured a Source to hook up an input.

Configured a Destination to feed an output.

Monitored data throughput, and checked it twice.

Built a Pipeline.

Configured LogStream Functions to redact, parse, enrich, trim, rename,
and drop event data.

Added and attached a Route to get data flowing through our Pipeline.

Interested in guided walk-throughs of more-advanced LogStream features? We
suggest that next, you check out:

LogStream Sandboxes: Work through general and specific scenarios in
containers. with terminal access and free, hosted data inputs and outputs.

Use Cases documentation: Bring your own services to build solutions to
specific challenges.

Cribl Concept: Pipelines – Video showing how to build and use Pipelines at
multiple LogStream stages.

Cribl Concept: Routing – Video about using Routes to send di�erent data
through di�erent paths.

What Have We Done?

Next Steps

Page 30 of 680

What's Next

Deployment Types

Oh yeah, you've still got the LogStream server running, with its
businessevent.log datagen wtill firing events. If you'd like to shut these

down for now, in reverse order:

1. Go to Data > Sources > Datagens.

2. Slide businessevent to O�, and click Save. (Refer back to the screenshot
above.)

3. In your terminal's $CRIBL_HOME/bin directory, shut down the server with:
./cribl stop

That's it! Enjoy using LogStream.

Cleaning Up



Page 31 of 680

DEPLOYMENT
Deployment Types
Deployment guide to get you started with Cribl

There are at least two key factors that will determine the type of Cribl
LogStream deployment in your environment:

Amount of Incoming Data: This is defined as the amount of data planned to
be ingested per unit of time. E.g. How many MB/s or GB/day?

Amount of Data Processing: This is defined as the amount of processing
that will happen on incoming data. E.g., is most data passing through and
just being routed? Or are there a lot of transformations, regex extractions,
field encryptions? Is there a need for heavy re-serialization?

When volume is low and/or amount of processing is light, you can get started
with a single instance deployment.

To accommodate increased load, we recommend scaling up and perhaps out
with multiple instances.

If you have an existing Splunk Heavy Forwarder infrastructure that you want to
use, you can deploy Cribl App for Splunk. See the note below before you plan.

Single Instance Deployment

Distributed Deployment

Splunk App Deployment

Cribl App for Splunk Deprecation Notice⚠

Click here.

Page 32 of 680

What's Next

Single-Instance Deployment

Distributed Deployment

Splunk App Deployment *

Bootstrap Workers from Master

Kubernetes Master Deployment

Kubernetes Worker Deployment













Page 33 of 680

Single-Instance Deployment
Getting started with Cribl LogStream on a single instance

For small-volume or light processing environments – or for test or evaluation
use cases – a single instance of Cribl LogStream might be su�icient to serve all
inputs, event processing, and outputs. This page outlines how to implement a
single-instance deployment.

OS:
Linux: Red Hat, CentOS, Ubuntu, Amazon Linux (64bit)

System:
+4 physical cores, +8GB RAM

5GB free disk space (more if persistent queuing is enabled)

Architecture

Requirements

⚠ Mac OS is no longer supported as of v. 2.3, due to
LogStream's incorporation of Linux-native components.

ℹ We assume that 1 physical core is equivalent to 2
virtual/hyperthreaded CPUs (vCPUs). All quantities listed
above are minimum requirements. To fulfill the above

Page 34 of 680

Browser Support: Firefox 65+, Chrome 70+, Safari 12+, Microso� Edge

By default, LogStream listens on the following ports:

The above ports can be overridden in the following configuration files:

Cribl UI port (9000): Default definitions for host , port , and other
settings are set in $CRIBL_HOME/default/cribl/cribl.yml , and can be
overridden by defining alternatives in
$CRIBL_HOME/local/cribl/cribl.yml .

Data Ports: HTTP In (10080), TCPJSON in (10420) Splunk to Cribl
(10000) : Default definitions for host , port and other settings are set in
$CRIBL_HOME/default/cribl/inputs.yml , and can be overridden by

defining alternatives in $CRIBL_HOME/local/cribl/inputs.yml .

Install the package on your instance of choice. Download it here.

Ensure that required ports are available (see Network Ports).

Un-tar in a directory of choice, e.g., /opt/ :
tar xvzf cribl��version��<build��<arch>.tgz

requirements using cloud-based virtual machines, see
Recommended AWS, Azure, and GCP Instance Types.

Network Ports

UI 9000

HTTP In 10080

Splunk to Cribl LogStream data port
localhost:10000 (Cribl App

for Splunk)

| criblstream Splunk search command to
Cribl LogStream

localhost:10420 (Cribl App
for Splunk)

User options + Other data ports as required.

Overriding Default Ports

Installing on Linux

Component Default Port

Page 35 of 680

Go to the $CRIBL_HOME/bin directory, where the package was extracted
(e.g.: /opt/cribl/bin). Here, you can use ./cribl to:

Start: ./cribl start

Stop: ./cribl stop

Reload: ./cribl reload

Restart: ./cribl restart

Get status: ./cribl status

Switch a distributed deployment to single-instance mode:
./cribl mode�single (uses the default address:port 0.0.0.0�9000)

Next, go to http:��<hostname��9000 and log in with default credentials
(admin:admin). You can now start configuring Cribl LogStream with Sources
and Destinations, or start creating Routes and Pipelines.

Cribl LogStream ships with a CLI utility that can update your system's
configuration to start LogStream at system boot time. The basic format to
invoke this utility is:

Newer systems use systemd to start processes at boot, while older ones use
initd .

Running

ℹ Executing the restart or stop command cancels any currently
running collection jobs. For other available commands, see
CLI Reference.

ℹ In the case of an API port conflict, the process will retry binding for 10
minutes before exiting.

Enabling Start on Boot

[sudo] $CRIBL_HOME/bin/cribl boot�start [enable|disable] [options] [args]

ℹ You will need to run this command as root, or with sudo . For options
and arguments, see the CLI Reference.

Page 36 of 680

To enable Cribl LogStream to start at boot time with systemd, you need to run
the boot‑start command. Make sure you first create any user you want to
specify to run LogStream. E.g., to run LogStream on boot as existing user
cribl , you'd use:

sudo $CRIBL_HOME/bin/cribl boot�start enable �m systemd �u cribl

This will install a unit file (as below) and start Cribl LogStream at boot time as
user cribl . A ‑configDir option can be used to specify where to install the
unit file. If not specified, this location defaults to /etc/systemd/system .

If necessary, change ownership for the Cribl LogStream installation:

[sudo] chown -R cribl $CRIBL_HOME

Next, use the enable command to ensure that the service starts on system
boot:

[sudo] systemctl enable cribl

To disable starting at boot time, run the following command:

sudo $CRIBL_HOME/bin/cribl boot�start disable

Note the file's default 65536 limit on maximum open files. Cribl recommends
going no higher than this value.

Installed systemd File

Using systemd

[Unit]
Description=Systemd service file for Cribl LogStream.
After=network.target

[Service]
Type=forking
User=cribl
Restart=on�failure
RestartSec=5
LimitNOFILE=65536
PIDFile=/install/path/to/cribl/pid/cribl.pid
ExecStart=/install/path/to/cribl/bin/cribl start
ExecStop=/install/path/to/cribl/bin/cribl stop
ExecStopPost='/bin/rm �f /install/path/to/cribl/pid/cribl.pid'
ExecReload=/install/path/to/cribl/bin/cribl reload
TimeoutSec=60

[Install]
WantedBy=multi�user.target

Page 37 of 680

To enable Cribl LogStream to start at boot time with initd, you need to run the
boot�start command. If the user that you want to run LogStreams does not

exist, create it prior to executing. E.g., running LogStream as user cribl on
boot:

sudo $CRIBL_HOME/bin/cribl boot�start enable �m initd �u cribl

This will install an init.d script in /etc/init.d/cribl.init.d , and start
Cribl LogStream at boot time as user cribl . A ‑configDir option can be
used to specify where to install the script. If not specified, this location defaults
to /etc/init.d .

If necessary, change ownership for the Cribl LogStream installation:

[sudo] chown -R cribl $CRIBL_HOME

To disable starting at boot time, run the following command:

sudo $CRIBL_HOME/bin/cribl boot�start disable

Do NOT Run LogStream as Root!⚠

If LogStream is required to listen on ports 1–1024, it will need
privileged access. You can enable this on systemd by adding this
configuration key:

[Service]
AmbientCapabilities=CAP_NET_BIND_SERVICE

Using initd

Do NOT Run LogStream as Root!⚠

If LogStream is required to listen on ports 1–1024, it will need
privileged access. On a Linux system with POSIX capabilities, you can
achieve this by adding the CAP_NET_BIND_SERVICE capability.
For example: # setcap cap_net_bind_service=�ep
$CRIBL_HOME/bin/cribl

On some OS versions (such as CentOS), you must add an �i switch
to the setcap command. For example: # setcap �i
cap_net_bind_service=�ep $CRIBL_HOME/bin/cribl

Page 38 of 680

You can direct all outbound HTTP/S requests to go through proxy servers. Initial
configuration and changing these variables requires restarting LogStream on
the a�ected nodes if the application is already running when the changes are
applied. You do so by setting a few environment variables before starting
LogStream, as follows:

Configure the HTTP_PROXY and HTTPS_PROXY environment variables either
with your proxy's IP address, or with a DNS name that resolves to that IP
address. Optionally, follow either convention with a colon and the port number
to which you want to send queries.

HTTP_PROXY examples:

HTTPS_PROXY examples:

If you are proxying outbound tra�ic with systemd, list your proxy environment
variables in the systemd unit file's [Service] section by adding statements of
this form:

Installed systemd File

Upon starting the LogStream server, a Port xxx is already in
use error might indicate that setcap did not successfully execute.

System Proxy Configuration

$ export HTTP_PROXY=http:��10.15.20.25�1234
$ export HTTP_PROXY=http:��proxy.example.com:1234

$ export HTTPS_PROXY=http:��10.15.20.25�5678
$ export HTTPS_PROXY=http:��proxy.example.com:5678

Case Conflictsℹ

The environment variables' names can be either uppercase or
lowercase. However, if you set duplicate versions of the same name,
the lowercase version takes precedence. E.g., if you've set both
HTTPS_PROXY and https_proxy , the IP address specified in
https_proxy will take e�ect.

Proxy Confguration with systemd

Page 39 of 680

This will prevent LogStream from throwing "failed to send anonymized
telemetry metadata" errors.

You can use HTTP Basic authentication on HTTP or HTTPS proxies. Specify the
user name and password in the proxy URL. For example:

If you've set the above environment variables, you can negate them for
specified (or all) hosts. Set the NO_PROXY environment variable to identify
URLs that should bypass the proxy server, and instead be sent as direct
requests. Use the following format:

$ export NO_PROXY="<list of hosts/domains>"

Usage notes:

Within the list, separate the host/domain names with commas or spaces.

Optionally, each host/domain entry can be followed by a port. If specified,
the port must match. If not specified, the protocol's default port is
assumed.

If specified, subdomain names must match. E.g.,
NO_PROXY=foo.example.com will send requests directly to

https://foo.example.com, but https://bar.example.com requests will go
through the proxy.

You can use leading wildcards like NO_PROXY="*.us, .org" .

NO_PROXY="*" disables all proxies.

NO_PROXY with an empty list disables no proxies.

[Service]
���
Environment=https_proxy=<yourproxy>
Environment=https_proxy=http:��proxy.example.com:1234
Environment=https_proxy=http:��10.10.1.1�8080

Authenticating on Proxies

$ export HTTP_PROXY=http:��username:password@proxy.example.com:1234
$ export HTTPS_PROXY=http:��username:password@proxy.example.com:5678

Bypassing Proxies with NO_PROXY

Page 40 of 680

Proxy configuration is relevant to the following LogStream components that
make outbound HTTP/S requests:

S3 Compatible Stores

AWS Kinesis Streams

AWS CloudWatch Logs

AWS SQS

Azure Blob Storage

Azure Event Hubs

Azure Monitor Logs

Elasticsearch

Honeycomb

Splunk HEC

AWS Kinesis Streams

AWS SQS

AWS S3

Azure Event Hubs

S3 Collector

LogStream stores authentication tokens based on each http header's URI
scheme, host, and port information. Within a given browser, LogStream
enforces a same-origin policy to isolate instances.

This means that if you want to run multiple proxied LogStream instances in one
browser session, you must assign them di�erent URI schemes, hosts, and/or
ports. Otherwise, logging into an extra LogStream instance will expire the prior
instance's session and log it out.

Where Proxies Apply

Destinations

Sources

Collectors

Proxying Multiple LogStream Instances in One Browser

Page 41 of 680

For example, assume that you've set up this pair of Apache proxy forward rules:

https://web/cribla forwards to cribl_hosta:8001/cribla .

https://web/criblb forwards to cribl_hostb:8001/criblb .

These two proxied addresses cannot be run simultaneously in the same
browser session. However, this pair – which lead with separate URI schemes –
could:

https://web/cribla forwards to cribl_hosta:8001/cribla .

https://web2/criblb forwards to cribl_hostb:8001/criblb .

Where separate instances must share URI formats, a workaround is to open the
second instance in an incognito/private browsing window, or in a completely
di�erent browser.

A single-instance installation can be configured to scale up and utilize as many
resources on the host as required. See Sizing and Scaling for details.

Scaling Up

Page 42 of 680

Distributed Deployment
Getting started with Cribl LogStream on a distributed deployment

To sustain higher incoming data volumes, and/or increased processing, you can
scale from a single instance up to a multi-instance, distributed deployment.
Instances in the deployment independently serve all inputs, process events, and
send to outputs.

The instances are managed centrally by a single Master Node, which is
responsible for keeping configurations in sync, and for tracking and monitoring
the instances' activity metrics.

Single Instance – a single Cribl LogStream instance, running as a standalone
(not distributed) installation on one server.

Master Node – a LogStream instance running in Master mode, used to centrally
author configurations and monitor Worker Nodes in a distributed deployment.

Worker Node – a LogStream instance running as a managed Worker, whose
configuration is fully managed by a Master Node. (By default, will poll the
master for configuration changes every 10 seconds.)

Worker Group – a collection of Worker Nodes that share the same
configuration. You map Nodes to a Worker Group using a Mapping Ruleset.

Worker Process – a Linux process within a Single Instance, or within Worker
Nodes, that handles data inputs, processing, and output. The process count is
constrained by the number of physical or virtual CPUs available; for details, see
Sizing and Scaling.

Distributed Deployment

� For some use cases for distributed deployments, see Worker Groups
– What Are They and Why You Should Care.

Concepts

Page 43 of 680

Mapping Ruleset – an ordered list of filters, used to map Workers Nodes into
Worker Groups.

To clarify how the above concepts add up hierarchically, let's use a military
metaphor involving toy soldiers:

Worker Process = soldier.

Worker Node = multiple Worker Processes = squad.

Worker Group = multiple Worker Nodes = platoon.

Multiple Worker Groups are very useful in meeting organizational or geographic
constraints reflected in configuration. E.g., you might have a U.S. Worker Group
with certain TLS certificates and output settings, versus and APAC Worker
Group and an EMEA Worker Group that each have distinct certs and settings.

This is an overview of a distributed LogStream deployment's components.

Distributed deployment architecture

⚠ A Worker Node's local running config can be manually
overridden/changed, but changes won't persist on the filesystem. To
permanently modify a Worker Node's config, save, commit, and
deploy it from the Master. See Deploying Configurations below.

LogStream 2.4 introduces role-based access control, at the
Worker Group level. Users will be able to access Workers only within
those Worker Groups on which they've been granted access.

Aggregating Workers

Architecture

Page 44 of 680

OS:

Linux: RedHat, CentOS, Ubuntu, AWS Linux (64bit)

System:

+4 physical cores, +8GB RAM

5GB free disk space

Git: git must be available on the Master Node. See details below.

Browser Support: Firefox 65+, Chrome 70+, Safari 12+, Microso� Edge

See Single-Instance Deployment for requirements and Sizing and Scaling for
capacity planning details.

In a distributed deployment, Workers communicate with the Master Node on
these ports. Ensure that the Master is reachable on those ports from all
Workers.

Master Node Requirements

ℹ We assume that 1 physical core is equivalent to 2
virtual/hyperthreaded CPUs (vCPUs). All quantities listed above are
minimum requirements.

⚠ Mac OS is no longer supported as of v. 2.3, due to LogStream's
incorporation of Linux-native features.

Worker Node Requirements

Network Ports – Master Node

Heartbeat 4200

Network Ports – Worker Nodes

Component Default Port

Page 45 of 680

By default, all LogStream Worker instances listen on the following ports:

See Single-Instance Deployment, as the installation procedures are identical.

LogStream requires git (version 1.8.3.1 or higher) to be available locally on
the host where the Master Node will run. Configuration changes must be
committed to git before they're deployed.

If you don't have git installed, check here for details on how to get started.

The Master node uses git to:

Manage configuration versions across Worker Groups.

Provide users with an audit trail of all configuration changes.

Allow users to display di�s between current and previous config versions.

You can configure a Master Node through the UI, through the instance.yml
config file, or through the command line.

In Settings > Distributed Settings > Distributed Management >
General Settings, select Mode Master. Supply the required Master settings
(Address and Port). Customize the optional settings if desired. Then click Save
to restart.

UI 9000

User options + Other data ports as required.

Installing on Linux

Version Control with git

Setting up Master and Worker Nodes

1. Configuring a Master Node

Using the UI

Worker UI Access�

Component Default Port

Page 46 of 680

Worker UI access

In $CRIBL_HOME/local/_system/instance.yml , under the distributed
section, set mode to master :

$CRIBL_HOME/local/_system/instance.yml

You can configure a Master Node using a CLI command of this form:

./cribl mode�master [options] [args]

For all options, see the CLI Reference.

If you enable the nearby Distributed Settings > Master Settings >
Worker UI access option (enabledWorkerRemoteAccess key), you
will be able to click through from the Master's Manage Worker Nodes
screen to an authenticated view of each Worker's UI. An orange
header labeled Viewing Worker: <host/GUID> will appear to confirm
that you are remotely viewing a Worker's UI.

Using CLI

Using YAML Config File

distributed:
 mode: master
 master:
 host: <IP or 0.0.0.0>
 port: 4200
 tls:
 disabled: true
 ipWhitelistRegex: /.��
 authToken: <auth token>
 enabledWorkerRemoteAccess: false
 compression: none
 connectionTimeout: 5000
 writeTimeout: 10000

Using the Command Line

2. Configuring a Worker Node

Page 47 of 680

On each LogStream instance you designate as a Worker Node, you can
configure the Worker through the UI, the instance.yml config file,
environment variables, or the command line.

In Settings > Distributed Settings > Distributed Management >
General Settings, select Mode Worker. Supply the required Master settings
(Address and Port). Customize the optional settings if desired. Then click Save
to restart.

In $CRIBL_HOME/local/_system/instance.yml , under the distributed
section, set mode to worker :

$CRIBL_HOME/local/_system/instance.yml

You can configure Worker Nodes via environment variables, as in this example:

CRIBL_DIST_MASTER_URL=tcp:��criblmaster@masterHostname:4203

./cribl start

See the Environment Variables section for more details.

You can configure a Worker Node using CLI commands of this form:

Using the UI

Using YAML Config File

distributed:
 mode: worker
 envRegex: /^CRIBL_/
 master:
 host: <master address>
 port: 4200
 authToken: <token here>
 compression: none
 tls:
 disabled: true
 connectionTimeout: 5000
 writeTimeout: 10000
 tags:
 - tag1
 - tag2
 - tag42
 group: teamsters

Using Environment Variables

Using the Command Line

Page 48 of 680

The -H and �p parameters are required. For other options, see the CLI
Reference. Here is an example command:

LogStream will need to restart a�er this command is issued.

Compared to a single-instance deployment, deploying in distributed mode
changes LogStream's menu structure in a few ways. The top menu adds
Worker Groups, Workers, and Mappings tabs – all to manage Workers and their
assignments.

Distributed deployment: menu structure

If you have a LogStream Free or LogStream One license, the Worker Groups tab
instead reads Default Group, because these license types allow only this single
group. Therefore, throughout this documentation, interpret any reference to
the "Worker Groups tab" as "Default Group tab" in your installation.

Distributed deployment with LogStream Free/One license

To access the Data (drop-down), Routes, Pipelines, and Knowledge items on
the light-colored submenu shown above, click the Worker Groups tab, then

./cribl mode�worker -H <master�hostname�or-IP> �p <port> [options] [args]

./cribl mode�worker -H 192.0.2.1 �p 4200 �u myAuthToken

Menu Changes in Distributed Mode

Page 49 of 680

click into your desired Worker Group to display its submenu. This submenu
also adds a System Settings tab, through which you can manage configuration
per Worker Group.

(With a LogStream Free or LogStream One license, you'd click the
Default Group tab, whose System Settings submenu tab configures only that
single group.)

For comparison, here is a single-instance deployment's single-level top menu:

Single-instance deployment: single-level menu

The Master Node has two primary roles:

1. Serves as a central location for Workers' operational metrics. The Master
ships with a monitoring console that has a number of dashboards, covering
almost every operational aspect of the deployment.

2. Serves as a central location for authoring, validating, deploying, and
synchronizing configurations across Worker Groups.

⚠ This repositioning of Data, Routes, Pipelines, and Knowledge tabs to
the Worker Groups (or Default Group) submenu also applies to
several instructions and screenshots that you'll see throughout this
documentation.

Where procedures are written around a single-instance scenario, just
click into your appropriate Worker Group to access the same tabs on
its submenu.

How Do Workers and Master Work Together

Page 50 of 680

Master Node/Worker Nodes relationship

UI access to Master Node: TCP 9000.

Worker Node to Master Node: TCP 4200 (Heartbeat/Metrics/other).

Workers will periodically (every 10 seconds) send a heartbeat to the Master. This
heartbeat includes information about themselves, and a set of current system
metrics. The heartbeat payload includes facts – such as hostname, IP address,
GUID, tags, environment variables, current so�ware/configuration version, etc.
– that the Master tracks with the connection.

The failure of a Worker Node to successfully send two consecutive heartbeat
messages to the Master will cause the respective Worker to be removed from
the Workers page in the Master's UI until the Master receives a heartbeat
message from the a�ected Worker.

When a Worker Node checks in with the Master:

The Worker sends heartbeat to Master.

The Master uses the Worker’s facts and Mapping Rules to map it to a Worker
Group.

The Worker Node pulls its Group's updated configuration bundle, if
necessary.

Network Port Requirements (Defaults)

Master/Worker Node Communication

Page 51 of 680

Config bundles are compressed archives of all config files and associated data
that a Worker needs to operate. The Master creates bundles upon Deploy, and
manages them as follows:

Bundles are wiped clean on startup.

While running, at most 5 bundles per group are kept.

Bundle cleanup is invoked when a new bundle is created.

The Worker pulls bundles from the Master and manages them as follows:

Last 5 bundles and backup files are kept.

At any point in time, all files created in the last 10 minutes are kept.

Bundle cleanup is invoked a�er a reconfigure.

Worker Groups facilitate authoring and management of configuration settings
for a particular set of Workers. To create a new Worker Group, go to the Worker
Groups top-level menu and click + Add New.

Click on the newly created Group to display an interface for authoring and
validating its configuration. You can configure everything for this Group as if it
were a single Cribl LogStream instance – using exactly the same visual interface
for Routes, Pipelines, Sources, Destinations and System Settings.

Mapping Rulesets are used to map Workers to Worker Groups. Within a ruleset,
a list of rules evaluate Filter expressions on the information that Workers send
to the Master.

Config Bundle Management

Worker Groups

Configuring a Worker Group

Can't Log into the Worker Node as Admin User?⚠

To explicitly set passwords for Worker Groups, see User
Authentication.

Mapping Workers to Worker Groups

Page 52 of 680

Only one Mapping Ruleset can be active at any one time, although a ruleset can
contain multiple rules. At least one Worker Group should be defined and
present in the system.

The ruleset behavior is similar to Routes, where the order matters, and the
Filter section supports full JS expressions. The ruleset matching strategy is
first-match, and one Worker can belong to only one Worker Group.

To create a Mapping Ruleset, start on the Mappings top-level menu, then click +
Add New.

Click on the newly created item, and start adding rules by clicking on + Add Rule.
While you build and refine rules, the Preview in the right pane will show which
currently reporting and tracked workers map to which Worker Groups.

A ruleset must be activated before it can be used by the Master. To activate it, go
to Mappings and click Activate on the required ruleset. The Activate button will
then change to an Active toggle. Using the adjacent buttons, you can also
Configure or Delete a ruleset, or Clone a ruleset if you'd like to work on it
o�line, test di�erent filters, etc.

Although not required, Workers can be configured to send a Group with their
payload. See below how this ranks in mapping priority.

Within a Mapping Ruleset, click + Add Rule to define a new rule. Assume that you
want to define a rule for all hosts that satisfy this set of conditions:

IP address starts with 10.10.42 , AND:

More than 6 CPUs OR CRIBL_HOME environment variable contains w0 ,
AND:

Belongs to Group420 .

Rule Name: myFirstRule

Creating a Mapping Ruleset

ℹ The Mappings top-level menu appears only when you have started
LogStream with Distributed Settings > Mode set to Master.

Add a Mapping Rule – Example

Rule Configuration

Page 53 of 680

Filter: (conn_ip.startsWith('10.10.42.') �� cpus > 6) ��
env.CRIBL_HOME.match('w0')

Group: Group420

When a LogStream instance runs as Master, the following are created
automatically:

A default Worker Group.

A default Mapping Ruleset,
with a default Rule matching all (true).

Priority for mapping to a group is as follows: Mapping Rules > Group sent by
Worker > default Group.

If a Filter matches, use that Group.

Else, if a Worker has a Group defined, use that.

Else, map to the default Group.

Your typical workflow for deploying LogStream configurations is the following:

1. Work on configs.

2. Save your changes.

3. Commit (and optionally push).

4. Deploy.

Deployment is the last step a�er configuration changes have been saved and
committed. Deploying here means propagating updated configs to Workers.
You deploy new configurations at the Group level: Locate your desired Group
and click on Deploy. Workers that belong to the group will start pulling updated
configurations on their next check-in with the Master.

Default Worker Group and Mapping

Mapping Order of Priority

Deploying Configurations

Can't Log into the the Worker Node as Admin User?⚠

When a Worker Node pulls its first configs, the admin password will
be randomized, unless specifically changed. This means that users

Page 54 of 680

On the Master, a Worker Group's configuration lives under:
$CRIBL_HOME/groups/<groupName>/local/cribl/ .

On the managed Worker, a�er configs have been pulled, they're extracted
under: $CRIBL_HOME/local/cribl/ .

On the Master, a Group's lookup files live under:
$CRIBL_HOME/groups/<groupName>/data/lookups .

On the managed Worker, a�er configs have been pulled, lookups are extracted
under: $CRIBL_HOME/data/lookups . When deployed via the Master, lookup
files are distributed to Workers as part of a configuration deployment.

If you want your lookup files to be part of the LogStream configuration's
version control process, we recommended deploying using the Master Node.
Otherwise, you can update your lookup file out-of-band on the individual
Workers. The latter is especially useful for larger lookup files (> 10 MB, for
example), or for lookup files maintained using some other mechanism, or for
lookup files that are updated frequently.

For other options, see Managing Large Lookups.

During a restart, to minimize ingestion disruption and increase availability of
network ports, Worker Processes on a Worker Node are restarted in a rolling
fashion. 20% of running processes – with a minimum of one process – are

won't be able to log in on the Worker Node with default credentials.
For details, see User Authentication.

Configuration Files

Lookup Files

ℹ Some configuration changes will require restarts, while many others
require only reloads. See here for details.

Restarts/reloads of each Worker Process are handled automatically
by the Worker. Note that individual Worker Nodes might temporarily
disappear from the Master's Workers tab while restarting.

Worker Process Rolling Restart

Page 55 of 680

restarted at a time. A Worker Process must come up and report as started
before the next one is restarted. This rolling restart continues until all
processes have restarted. If a Worker Process fails to restart, configurations will
be rolled back.

If data flows in via Load Balancers, make sure to register all instances. Each Cribl
LogStream node exposes a health endpoint that your Load Balancer can check
to make a data/connection routing decision.

CRIBL_DIST_MASTER_URL – URL of the Master Node. Format:
<tls|tcp����<authToken>@host:port?

group=defaultGroup&tag=tag1&tag=tag2&tls.<tls�settings below> .
tls.privKeyPath – Private Key Path.

tls.passphrase – Key Passphrase.

tls.caPath – CA Certificate Path.

tls.certPath – Certificate Path.

tls.rejectUnauthorized – Validate Client Certs. Boolean, defaults
to false .

tls.requestCert – Authenticate Client (mutual auth). Boolean,
defaults to false .

tls.commonNameRegex – Regex matching peer certificate > subject >
common names allowed to connect. Used only if tls.requestCert is
set to true .

CRIBL_DIST_MODE – worker | master . Defaults to worker i�
CRIBL_DIST_MASTER_URL is present.

CRIBL_HOME – Auto setup on startup. Defaults to parent of bin directory.

CRIBL_CONF_DIR – Auto setup on startup. Defaults to parent of bin
directory.

CRIBL_NOAUTH – Disables authentication. Careful here!!

Auto-Scaling Workers and Load-Balancing
Incoming Data

curl http:��<host��<port>/api/v1/health {"status":"healthy"}

Environment Variables

Health Check Endpoint Healthy Response

Page 56 of 680

CRIBL_VOLUME_DIR – Sets a directory that persists modified data between
di�erent containers or ephemeral instances.

Deprecated variables: CRIBL_CONFIG_LOCATION ,
CRIBL_SCRIPTS_LOCATION

When you install and first run the so�ware, a GUID is generated and stored in a
.dat file located in CRIBL_HOME/bin/ , e.g.:

cat CRIBL_HOME/bin/676f6174733432.dat

{"it"�1570724418,"phf"�0,"guid":"48f7b21a-0c03-45e0-a699-

01e0b7a1e061"}

When deploying Cribl LogStream as part of a host image or VM, be sure to
remove this file, so that you don't end up with duplicate GUIDs. The file will be
regenerated on next run.

Workers GUID

Page 57 of 680

Splunk App Deployment *
Getting started with Cribl App for Splunk

In a Splunk environment, Cribl LogStream can be installed and configured as a Splunk app (Cribl App
for Splunk). Depending on your requirements and architecture, it can run either on a Search Head or
on a Heavy Forwarder. Cribl App for Splunk cannot be used in a Cribl LogStream Distributed
Deployment as a Master or managed as Worker.

When running on an SH, Cribl LogStream is set to mode-searchhead, the default mode for the app. It
listens for localhost tra�ic generated by a custom command: | criblstream . The command is used
to forward search results to the LogStream instance's TCP JSON input on port 10420 , but it's also
capable of sending to any other LogStream instance listening for TCP JSON.

Once received, data can be processed and forwarded to any of the supported Destinations. In
addition, several out-of-the box saved searches are ready to run and send their results to Cribl with a
single click.

Select an instance on which to install.

Ensure that ports 10000 , 10420 , and 9000 are available. See the Requirements section for
more info.

Get the bits here, and install as a regular Splunk app.

Restart the Splunk instance.

Go to https:��<instance>/en-US/app/cribl or https:��<instance��9000 , and log in with
Splunk admin role credentials.

Working with search results in a Cribl LogStream pipeline.

Cribl App for Splunk for HFs Is Deprecated as of Cribl LogStream v.2.1⚠

Cribl will continue to support this package, but customers are advised to begin planning
now for the eventual removal of support.

See Single-Instance Deployment and Distributed Deployment for alternatives.

Deploying Cribl App for Splunk

Running on a Search Head (SH)

Installing the Cribl App for Splunk on an SH

Typical Use Cases for Search Head Mode

Page 58 of 680

Sending search results to any Destination supported by Cribl LogStream.

When running on an HF, Cribl LogStream is set to mode-hwf. It receives events from the local Splunk
process per routing configurations in props.conf and transforms.conf . Data is parsed and
processed first by Splunk pipelines, and then by LogStream. By default, all data except internal
indexes is routed out right a�er the Typing pipeline.

Cribl LogStream is capable of accepting data streams (unbroken events) or events from other
sources. In this case, the HF will deliver events locally to LogStream, which processes them and sends
them to one or more destinations downstream. When receivers are Splunk indexers, LogStream can
also load-balance across them.

Select an instance on which to install.

Running on a Heavy Forwarder (HF)

Installing the Cribl App for Splunk on an HF

Page 59 of 680

Ensure that ports 10000 , 10420 , and 9000 are available. See here.

Get the bits here, and install as a regular Splunk app.

Set Cribl to mode-hwf: $SPLUNK_HOME/etc/apps/cribl/bin/cribl mode�hwf .

Restart the Splunk instance.

Go to https:��<instance��9000 and log in with Splunk admin role credentials.

When Cribl App for Splunk is installed on an HF (in mode�hwf), below are the relevant sections in
configuration files that enable Splunk to send data to Cribl LogStream:

apps/cribl/default/outputs.conf

apps/cribl/default/inputs.conf

apps/cribl/default/transforms.conf

⚠ The SPLUNK_HOME environment variable must be defined.

Note About Splunk Warnings�

If you come across messages similar to the following example, on startup or in logs,
please ignore them. They are benign warnings.

Invalid value in stanza [route2criblQueue]/[hecCriblQueue] in

/opt/splunk/etc/apps/cribl/default/transforms.conf, line 11� (key:

DEST_KEY, value: criblQueue) / line 24� (key: DEST_KEY, value: $1)

Relevant configurations in Cribl App for Splunk on an HF

[tcpout]
disabled = false
defaultGroup = cribl

[tcpout:cribl]
server=127.0.0.1�10000
sendCookedData=true
useACK = false
negotiateNewProtocol = false
negotiateProtocolLevel = 0

[splunktcp]
route=has_key:_replicationBucketUUID:replicationQueue;has_key:_dstrx:typingQueue;has_key:��CRIBB

[route2cribl]
SOURCE_KEY = _MetaData:Index
REGEX = ^[^_]
DEST_KEY = _TCP_ROUTING
FORMAT = cribl

Page 60 of 680

apps/cribl/default/props.conf

The props.conf stanza above will apply the above transforms to everything. Depending on your
requirements, you might want to target only a subset of your sources, sourcetypes, or hosts. For
example, the diagram below shows the e�ective configurations of outputs.conf , props.conf ,
and transforms.conf to send <bluedata> events through Cribl LogStream.

To send data from Cribl LogStream to a set of Splunk indexers, use the LogStream UI to go to
Destinations > Splunk Load Balanced, then enter the required information.

[route2criblQueue]
SOURCE_KEY = _MetaData:Index
REGEX = ^[^_]
DEST_KEY = queue
FORMAT = criblQueue

[default]
TRANSFORMS-cribl = route2criblQueue, route2cribl

Configuring Cribl LogStream with a Subset of Your Data

Configure Cribl LogStream to Send Data to Splunk Indexers

Page 61 of 680

Bootstrap Workers from Master
Boot fully provisioned workers

This feature of LogStream allows workers to completely provision themselves on initial boot, directly
from the master. It allows a fleet of any number of nodes to launch. and be fully functional within the
cluster, in seconds.

A LogStream Master Node (v2.2 or higher) provides a bootstrap API endpoint, at /init/install�
worker.sh , which returns a shell script. You can run this shell script on any supported machine (see
Restrictions below) without LogStream installed, fully provisioning the machine as a Worker Node.

Although you can specify the download URL when you execute the initial curl command, the
LogStream package is not downloaded until the script is generated by the API, and then later
executed.

GET http:��<master hostname or IP��9000/init/install�worker.sh

How Does It Work?

Root Access or sudo⚠

Note that the script will install LogStream into /opt/cribl , and will make system-level
changes. For systems like Ubuntu, which don't allow direct root access, you'll need to use
the sudo command when executing the script.

API Spec

Request Format

Query Strings

token optional
Master Node’s shared secret (authToken). By default, this is set to
criblmaster . You can find this secret in the the Master Node's

Distributed Settings section.

group optional Name of the cluster’s work group. If not specified, falls back to default .

download_url optional
Provide the complete URL to a Cribl LogStream installation binary. This is
especially useful if the Worker Nodes don’t have access to the Internet to
download from cribl.io.

String Required? Description

Page 62 of 680

HTTP

Shell

Example HTTP Request

GET http:��<master hostname or IP��9000/init/install�worker.sh?token=79364d6e�dead�beef-4c6e-554

Response

��/bin/sh

��� START CRIBL MASTER TEMPLATE SETTINGS ���

CRIBL_MASTER_HOST="<Master FQDN/IP>"
CRIBL_AUTH_TOKEN="<Auth token string>"
CRIBL_VERSION="<Version>"
CRIBL_GROUP="<Default group preference>"
CRIBL_MASTER_PORT="<Master heartbeat port>"
CRIBL_DOWNLOAD_URL="<download url>"

��� END CRIBL MASTER TEMPLATE SETTINGS ���

Set defaults
checkrun() { $1 ��help >/dev/null 2>/dev/null; }
faildep() { [$? �eq 127] �� echo "$1 not found" �� exit 1; }
[�z "${CRIBL_MASTER_HOST}"] �� echo "CRIBL_MASTER_HOST not set" �� exit 1
CRIBL_INSTALL_DIR="${CRIBL_INSTALL_DIR�-/opt/cribl}"
CRIBL_MASTER_PORT="${CRIBL_MASTER_PORT�-4200}"
CRIBL_AUTH_TOKEN="${CRIBL_AUTH_TOKEN��criblmaster}"
CRIBL_GROUP="${CRIBL_GROUP��default}"
if [�z "${CRIBL_DOWNLOAD_URL}"]; then
 FILE="cribl�${CRIBL_VERSION}�linux�x64.tgz"
 CRIBL_DOWNLOAD_URL="https:��cdn.cribl.io/dl/$(echo ${CRIBL_VERSION} | cut �d '-' �f 1)/${FIL
fi
UBUNTU=0
CENTOS=0
AMAZON=0

echo "Checking dependencies"
checkrun curl �� faildep curl
checkrun adduser �� faildep adduser
checkrun usermod �� faildep usermod
BOOTSTART=1
SYSTEMCTL=1
checkrun systemctl �� [$? �eq 127] �� BOOTSTART=0
checkrun update�rc.d �� [$? �eq 127] �� BOOTSTART=0

echo "Checking OS version"
lsb_release �d 2>/dev/null | grep �i ubuntu �� [$? �eq 0] �� UBUNTU=1
cat /etc/system�release 2>/dev/null | grep �i amazon �� [$? �eq 0] �� AMAZON=1

echo "Creating cribl user"
if [$UBUNTU �eq 1]; then
 adduser cribl ��home /home/cribl ��gecos "Cribl LogStream User" ��disabled�password
fi
if [$CENTOS �eq 1] �� [$AMAZON �eq 1]; then
 adduser cribl �d /home/cribl �c "Cribl LogStream User" �m
 usermod �aG wheel cribl
fi

Page 63 of 680

An easy way of wrapping HTTP methods is to use the curl command. Here is an example, which
uses a GET operation by default, with the same URL used in the above HTTP example:

Shell

The GET and curl procedures above will only output the contents of the script that needs
executing – the script will still need to be manually executed. However, you can automate that part,
too, using the command below. This passes the script's contents to the sh shell to immediately
execute. As noted above, on Ubuntu and similar systems, you might need to insert sudo before the
sh .

Shell

We'll now graduate to the next level by adding more to the above commands. All the preceding
commands excluded the download_url parameter so, by default, the script gets configured to
download the LogStream package from the public Cribl repository.

To successfully execute the curl command while also specifying the download_url , you must
enclose the URL in double quotes. The reason for this is that the & character that joins multiple
HTTP parameters is interpreted by the shell as the operator to run commands in the background.
Quoting the URL, as shown in this example, prevents this.

Shell

i

curl Option

curl http:��<master hostname or IP��9000/init/install�worker.sh?token=79364d6e�dead�beef-4c6e-55

Chaining Script Execution

curl http:��<master hostname or IP��9000/init/install�worker.sh?token=79364d6e�dead�beef-4c6e-55

Adding Download URL

curl "http:��<master hostname or IP��9000/init/install�worker.sh?token=79364d6e�dead�beef-4c6e-5

Status Codes

200 – OK All is well. You should have received the script as a response.

403 – Forbidden Either the node is not configured as a Master, or the token provided is invalid.

Status Code Reason

Page 64 of 680

Keep the following in mind when using this feature:

Each Worker must normally have access to the internet in order to download the Cribl LogStream
installation binary from cribl.io. Where this isn’t feasible, you can use the download_url switch
to point to a binary in a restricted location.

By default, Worker Nodes communicate with the Master on port 4200. Ensure that access between
all Workers and the Master is open on this port.

TLS is not enabled by default. If enabled and configured, access to this feature will be over
https instead of http .

Red Hat, Ubuntu, CentOS, and Amazon Linux are the only supported Worker platforms.

For public-cloud customers, an easy way to use this feature is in an instance’s user data. First, be sure
to set the master node to mode = 'master'. Then use the following script (changing the command as
needed. based on the information above). Upon launch, the Worker Node will reach out to the Master,
download the script, download the LogStream package from the specified location, and then install
and configure LogStream:

Shell

Restrictions

User Data

��/bin/bash
curl http:��<master�node�ip/host�address��9000/init/install�worker.sh?token=<auth�token> | sh -

Page 65 of 680

Kubernetes Master Deployment
Boot a fully provisioned Master Node via Helm

This page outlines how to deploy a Cribl LogStream Master Node (or single instance) to AWS
via Kubernetes, using a Cribl-provided Helm chart.

As built, Cribl's chart will deploy a Master Server for LogStream, consisting of a deployment, two
services, and a number of persistent volumes.

Deployment schematic

Note that this chart creates two load-balanced services:

The main one (named a�er the Helm release), which is intended as the primary service interface
for users.

The "internal" one (named <helm�release��internal), which is intended for the
workergroup-to-master communication.

⚠ This chart is a work in progress, provided as-is. Cribl expects to further develop and refine
it.

Deployment

� By default, this chart installs only a LogStream Master Node. To also deploy LogStream
Worker Groups via Helm, you can use the Set Up Worker Groups/Mappings override
described below

Page 66 of 680

This section covers both general and specific prerequisites, with a bias toward the EKS‑oriented
approach that Cribl uses for its own deployments.

Install the AWS CLI, version 2, according to AWS' instructions.

Next, create or modify your ~/.aws/config file to include (at least) a [profile] section with the
following SSO (single-sign-on) details:

~/.aws/config

You will, of course, need kubectl set up on your local machine or VM. Follow Kubernetes'
installation instructions.

You must modify your ~/.kube/config file to instruct kubectl what cluster (context) to work with.

1. Run a command of this form:
aws ��profile <profile‑name> eks update�kubeconfig ��name <cluster‑name>

This should return a response like this:
Added new context arn:aws:eks:us�west-2�424242424242:cluster/<cluster‑name> to

/Users/<username>/.kube/config

2. In the resulting ~/.kube/config file's args section, as the new first child, insert the profile
argument that you provided to the aws command. For example:

/.kube/config

You can also use Cribl's separate logstream-workergroup chart. For details, see Kubernetes
Deployment: Worker Group in this documentation.

AWS and Kubernetes Prerequisites

Set Up AWS CLI

[profile <your�profile�name>]
sso_start_url = https:��<your�domain>/start#/
sso_region = <your-AWS-SSO-region>
sso_account_id = <your-AWS-SSO-account-ID>
sso_role_name = <your-AWS-role�name>
region = <your-AWS-deployment�region>

Set Up kubectl

Add a Cluster to Your kubeconfig File

args:
- ��profile=<profile‑name>
- ��region
[���]

Page 67 of 680

3. Also change the command: aws pair to include the full path to the aws executable.
This is usually in /usr/local/bin , in which case you'd insert: command:
/usr/local/bin/aws .

This section of ~/.kube/config should now look something like this:

~/.kube/config

With these AWS and Kubernetes prerequisites completed, you're now set up to run kubectl
commands against your cluster, as long as you have an active aws SSO login session.

Next, do the Helm setup.

1. You'll need Helm (preferably v.3.x) installed. Follow the instructions here.

2. Add Cribl's repo to Helm, using this command:
helm repo add cribl https:��criblio.github.io/helm�charts/

The chart requires persistent storage. It will use your default StorageClass, or (if you prefer) you can
override config.scName with the name of a specific StorageClass to use.

Cribl has tested this chart primarily using AWS EBS storage, via the CSI EBS driver. The volumes are
created as ReadWriteOnce claims. For details about storage classes, see Kubernetes'
Storage Classes documentation.

If you're running on EKS, Cribl highly recommends that you use Availability Zone–specific node
groups. For details, see eksctl.io's Autoscaling documentation.

args:
 - ��profile=<profile‑name>
 - ��region
 - us�west-2
 - eks
 - get�token
 - ��cluster�name
 - lab
 command: /usr/local/bin/aws
 env:
 - name: AWS_PROFILE
 value: <profile�name>

Install Helm and Cribl Repo

Persistent Storage

AWS-Specific Notes

Page 68 of 680

You'll want to override some of the chart's default values. The easiest way is to copy this chart's
default values.yaml file from our repo. save it locally, modify it, and install it in Helm:

1. Copy the raw contents of:
https://github.com/criblio/helm-charts/blob/master/helm-chart-sources/logstream-
master/values.yaml

2. Save this as a local file, e.g.: /bar/values.yaml

3. Modify values as necessary (see Values to Override below).

4. Install your updated values to Helm, using this command:
helm install �f /bar/values.yaml

This section covers the most likely values to override. To see the full scope of values available, run:
helm show values cribl/logstream�master

⚠ Do not allow a single node group to spans AZs. This can lead to trouble in mounting
volumes, because EBS volumes are AZ-specific.

Configure the Chart's Values

Values to Override

config.adminPassword String [No default]
The password you want to assign to the
admin user.

config.token String [No default]

The auth key you want to set up for
Worker access. If you set this value, the
LogStream instance will be configured
only as a Master server for a distributed
deployment. (You can also configure
this later via the LogStream UI, a�er
launching the instance in single-
instance mode.)

config.license String [No default]

The license for your LogStream
instance. If you do not set this, it will
default to the Free license. You can
change this in the LogStream UI as well.

config.groups List [No default]

Array of Worker Group names to
configure for the Master instance. This
will create a mapping for each Group,
which looks for the tag <groupname> ,
and will create the basic structure of
each Group's configuration.

Key Type Default Value Description

Page 69 of 680

Cribl recommends that you use the same LogStream version on Worker Nodes versus the
Master Node. So if, for any reason, you're not yet upgrading your Workers to the version in the
Master's default values.yaml > criblImage.tag , be sure to override that criblImage.tag value
to match the version you're running on all Workers.

config.scName String The StorageClass name for all of the
persistent volumes.

config.

rejectSelfSignedCerts
Number 0

Either 0 (allow self-signed certificates)
or 1 (deny self-signed certs).

config.healthPort number 9000
The port to use for health checks
(readiness/live).

service.ports
Array of
Maps

The ports to make available, both in the
deployment and in the service. Each
"map" in this list needs the following
values set:

name
A descriptive name, identifying
what the port is being used for.

port
The container port to be made
available.

protocol
The protocol in use for this port
(UDP or TCP).

external
Set to true to expose the port
on the external service, or false
to not expose it.

service.annotations String [No default]

Annotations for the the service
component – this is where you'll want
to put load-balancer–specific
configuration directives.

image.tag String latest

The container image tag to pull from.
Cribl will increment this tag per
LogStream version. By default, this will
use a version equivalent to the chart's
appVersion value. You can override

this with latest to get the latest
LogStream version, or with a specific
LogStream version number (like "2.3.3").

- name: api
 port: 9000
 protocol: TCP
 external: true
- name: mastercomm
 port: 4200
 protocol: TCP
 external: false

Match Versions

Page 70 of 680

If you're deploying to EKS, many annotations are available for the load balancer. Set these as values
for the service.annotations key. Internally, we typically use the annotations for logging to S3, like
this:

values.yaml [excerpt]

For an exhaustive list of annotations you can use with AWS's Elastic Load Balancers, see the
Kubernetes Service documentation.

With the above prerequisites and configuration completed, you're ready to install our chart to deploy
a LogStream Master Node. Here are some example commands:

To install the chart with the release name logstream�master :

helm install logstream�master cribl/logstream�master

To install the chart using the storage class ebs�sc :

helm install logstream�master cribl/logstream�master ��set config.scName='lebs�

sc

If you don't override its default values, this Helm chart e�ectively creates a single-instance
deployment of LogStream, using the standard container image. You can later configure distributed
mode, licensing, user passwords, etc., all from the LogStream UI. However, you also have the option
to change these configuration details upfront, by installing with value overrides. Here are some
common examples.

If you have a standard or enterprise license, you can use the config.license parameter to add it as
an override to your install:

helm install logstream�master cribl/logstream�master ��set config.license="<long

encoded license string redacted>"

EKS-Specific Values

service.beta.kubernetes.io/aws�load�balancer�access�log�enabled: "true"
 service.beta.kubernetes.io/aws�load�balancer�access�log�emit�interval: "5"
 service.beta.kubernetes.io/aws�load�balancer�access�log�s3-bucket�name: "<bucket name>"
 service.beta.kubernetes.io/aws�load�balancer�access�log�s3-bucket�prefix: "ELB"

Basic Chart Installation

Change the Configuration

Apply a License

Set the Admin Password

Page 71 of 680

Normally, when you first install LogStream and log into the UI, it prompts you to change the default
admin password. You can skip the password-change challenge by setting your admin password via
the config.adminPassword parameter:

helm install logstream�master cribl/logstream�master ��set config.adminPassword="

<new password>"

As mentioned above, the chart's default is to install a vanilla deployment of LogStream. If you are
deploying as a Master, you can use the config.groups parameter to define the Worker Groups you
want created and mapped. Each group in the list you provide will be created as a Worker Group, with a
Mapping Rule to seek a tag with that Worker Group's name in it:

helm install logstream�master cribl/logstream�master ��set config.groups=

{group1,group2,group3}

The example above will create three Worker Groups – group1 , group2 , and group3 – and a
Mapping Rule for each.

LogStream 2.4.0 introduced the $CRIBL_VOLUME_DIR environment variable, which simplifies the
persistent-storage requirement for logstream‑master .

Instead of maintaining multiple persistent volumes (one each for $CRIBL_HOME/{.git, data,
state, local, groups, log}), you can consolidate all needed directories into a single volume.

Note that $CRIBL_VOLUME_DIR , when set, overrides $CRIBL_HOME .

In the Helm chart, we handle this via the helm upgrade command. For the chart's 2.4.0 version, the
upgrade option creates a new, larger volume, and consolidates the data from the original volumes to
that volume. An initContainer handles the logistics. When the initContainer completes, the
logstream�master pod comes back up with a single consolidated volume.

Set Up Worker Groups/Mappings

Optimizing Volume Management

Upgrading from Pre-2.4.0

Back Up Your Data First�

While we've tested this upgrade repeatedly, di�erences in environments can always cause
problems. Therefore, we recommend that you back up your data before running the
upgrade command. This is best done with a combination of kubectl and tar :

kubectl exec <pod name> �n <namespace> �� bash �c "cd /opt/cribl; tar cf - {state,data

Page 72 of 680

Helm makes upgrades easy. You simply need to run helm repo update to ensure you have the latest
repo updates available, followed by helm upgrade to actually upgrade the containers.

For example, if you've installed the Helm charts in the logstream namespace, named your release
ls�master , and set up your Helm repo according to the prerequisites section above (i.e., named it
cribl), run the following:

While there should be no major problems running a 2.4.0 master and 2.3.4 workers, Cribl does not
recommend this. Instead, upgrade the master Helm chart to 2.4.0 first, and then upgrade the workers.
(For details, see Kubernetes Worker Deployment.)

The upgrade operation performs a potentially destructive action in coalescing the 4 volumes to a
single volume. But that operation proceeds only if the single volume has no data on it. Once the
upgrade is performed the first time, any further upgrade operations will e�ectively skip that
coalescence operation, without causing any additional issues.

If the upgrade fails, the suggested recovery path is to remov the Helm chart, reinstall it, and then run
this command to restore the data from the backup:

This will restore the data into the "new" volume (which is mounted as /opt/cribl/config�volume).
If you want to double-check that:

This command executes the tar -based backup of all four volumes, and outputs it to a
local .tar file (cribl_backup.tar).

Running the Upgrade

helm repo update
helm upgrade ls�master �n logstream cribl/logstream�master

Upgrade Order of Operations

Idempotency of Upgrade

Recovering from a Failed Upgrade

cat cribl_backup.tar| kubectl �n <namespace> exec ��stdin <pod name> �� bash �c "cd /opt/cribl/c

kubectl �n <namespace> exec <pod name> �� bash �c "ls �alR /opt/cribl/config�volume"

Uninstall the Infrastructure

Page 73 of 680

To spin down deployed pods, use the helm uninstall command – where <release‑name> is the
namespace you assigned when you installed the chart:

helm uninstall <release�name>

You can append the ��dry�run flag to verify which releases will be uninstalled before actually
uninstalling them:

helm uninstall <release�name> ��dry�run

Cribl's current architecture supports only TCP ports in Worker Groups' service > ports
configuration. This restriction might be removed in future versions.

The upgrade process creates an initContainer , which will run prior to any instance of the
LogStream pod. Because the coalescence operation will not overwrite existing data, this is not a
functional problem. But depending on your persistent-volume setup, the initContainer 's
precedence might cause pod restarts to take additional time while waiting for the volume claims
to release. The only upgrade path that will have this issue is 2.3.* -> 2.4.0. In the next iteration,
we'll remove the initContainer from the upgrade path.

The upgrade process leaves the old PersistentVolumes and PersistentVolumeClaims
around. This is, unfortunately, necessary for this upgrade path. In follow-on versions, we will
remove these volumes from the chart.

Known Issues

Page 74 of 680

Kubernetes Worker Deployment
Boot a fully provisioned Worker Group via Helm

This page outlines how to deploy a Cribl LogStream Worker Group to AWS via Kubernetes, using a
Cribl-provided Helm chart.

As built, Cribl's chart will deploy a simple Worker Group for LogStream, consisting of a deployment,
a service, a horizontal pod autoscaler configuration, and a secret used for configuration.

Deployment schematic

This section covers both general and specific prerequisites, with a bias toward the EKS‑oriented
approach that Cribl uses for its own deployments.

Install the AWS CLI, version 2, according to AWS' instructions.

Next, create or modify your ~/.aws/config file to include (at least) a [profile] section with the
following SSO (single-sign-on) details:

~/.aws/config

Deployment

� This chart will deploy only a LogStream Worker Group. To deploy a LogStream
Master Node, see Kubernetes Deployment: Master.

AWS and Kubernetes Prerequisites

Set Up AWS CLI

Page 75 of 680

You will, of course, need kubectl set up on your local machine or VM. Follow Kubernetes'
installation instructions.

You must modify your ~/.kube/config file to instruct kubectl what cluster (context) to work with.

1. Run a command of this form:
aws ��profile <profile‑name> eks update�kubeconfig ��name <cluster‑name>

This should return a response like this:
Added new context arn:aws:eks:us�west-2�424242424242:cluster/<cluster‑name> to

/Users/<username>/.kube/config

2. In the resulting ~/.kube/config file's args section, as the new first child, insert the profile
argument that you provided to the aws command. For example:

/.kube/config

3. Also change the command: aws pair to include the full path to the aws executable.
This is usually in /usr/local/bin , in which case you'd insert: command:
/usr/local/bin/aws .

This section of ~/.kube/config should now look something like this:

~/.kube/config

[profile <your�profile�name>]
sso_start_url = https:��<your�domain>/start#/
sso_region = <your-AWS-SSO-region>
sso_account_id = <your-AWS-SSO-account-ID>
sso_role_name = <your-AWS-role�name>
region = <your-AWS-deployment�region>

Set Up kubectl

Add a Cluster to Your kubeconfig File

args:
- ��profile=<profile‑name>
- ��region
[���]

args:
 - ��profile=<profile‑name>
 - ��region
 - us�west-2
 - eks
 - get�token
 - ��cluster�name
 - lab
 command: /usr/local/bin/aws
 env:

Page 76 of 680

With these AWS and Kubernetes prerequisites completed, you're now set up to run kubectl
commands against your cluster, as long as you have an active aws SSO login session.

Next, do the Helm setup.

1. You'll need Helm (preferably v.3.x) installed. Follow the instructions here.

2. Add Cribl's repo to Helm, using this command:
helm repo add cribl https:��criblio.github.io/helm�charts/

3. Display the default values available to configure Cribl's logstream�workergroup chart:
helm show values cribl/logstream�workergroup

You'll want to override some of the values you've just displayed. The easiest way is to copy this
chart's default values.yaml file from our repo. save it locally, modify it, and install it in Helm:

1. Copy the raw contents of:
https://github.com/criblio/helm-charts/blob/master/helm-chart-sources/logstream-
workergroup/values.yaml

2. Save this as a local file, e.g.: /foo/values.yaml

3. Modify values as necessary (see Values to Override below).

4. Install your updated values to Helm, using this command:
helm install �f /foo/values.yaml

This section covers the most likely values to override.

 - name: AWS_PROFILE
 value: <profile�name>

Install Helm and Cribl Repo

Configure the Chart's Values

Values to Override

config.tag String kubernetes The tag/group
to include in the
URL. (This is
included as
both a tag value

Key Type Default Value Description

Page 77 of 680

and a group
value.)

config.token String criblmaster

The
authentication
token for your
LogStream
Master.

config.host String
logstream�

master

The resolveable
hostname of
your LogStream
Master.

config.

rejectSelfSignedCerts
Number 0

One of: 0 –
allow self-
signed certs, or
1 – deny self-

signed certs.

service.ports Array of
Maps

The ports to
make available,
both in the
deployment
and in the
service. Each
"map" in this
list needs the
following
values set:

name
A
descriptive
name,
identifying
what the
port is
being used
for.

port
The
container
port to be
made
available.

protocol
The
protocol in
use for this

- name: tcpjson
 port: 10001
 protocol: TCP
- name: s2s
 port: 9997
 protocol: TCP
- name: http
 port: 10080
 protocol: TCP
- name: https
 port: 10081
 protocol: TCP
- name: syslog
 port: 5140
 protocol: TCP
- name: metrics
 port: 8125
 protocol: TCP
- name: elastic
 port: 9200
 protocol: TCP

Page 78 of 680

port (UDP
or TCP).

service.annotations String [No default]

Annotations for
the the service
component –
this is where
you'll want to
put load-
balancer–
specific
configuration
directives.

criblImage.tag String 2.3.3

The container
image tag to
pull from. Cribl
will increment
this tag per
LogStream
version. By
default, this will
use a version
equivalent to
the chart's
appVersion

value. You can
override this
with latest to
get the latest
LogStream
version, or with
a specific
LogStream
version number.

autoscaling.minReplicas Number 2

The minimum
number of
LogStream
pods to run.

autoscaling.maxReplicas Number 10

The maximum
number of
LogStream
pods to scale
up to.

autoscaling.targetCPUUtilizationPercentage Number 50 The CPU
utilization
percentage that
triggers scaling
action.

Page 79 of 680

Cribl recommends that you use the same LogStream version on Master Nodes versus
Worker Group Nodes. So, if you're not yet upgrading your Master to the version in the current
values.yaml > criblImage.tag , be sure to override that criblImage.tag value to match the

version you're running on the Master.

If you're deploying to EKS, many annotations are available for the load balancer. Set these as values
for the service.annotations key. Internally, we typically use the annotations for logging to S3,
like this:

values.yaml [excerpt]

For an exhaustive list of annotations you can use with AWS's Elastic Load Balancers, see the
Kubernetes Service documentation.

rbac.create Boolean false

Enable
Service Account,
Cluster Role,
and
Role Binding
creation.

rbac.resources List ["pods"]

Set the resource
boundary for
the role being
created (K8s
resources).

rbac.verbs List
["get",

"list"]

Set the API
verbs allowed
the role
(default: read
ops).

Match Versions

EKS-Specific Values

service:
 type: LoadBalancer
 annotations: {
 service.beta.kubernetes.io/aws�load�balancer�access�log�enabled: "true"
 service.beta.kubernetes.io/aws�load�balancer�access�log�emit�interval: "5"
 service.beta.kubernetes.io/aws�load�balancer�access�log�s3-bucket�name: "<bucket name>"
 service.beta.kubernetes.io/aws�load�balancer�access�log�s3-bucket�prefix: "ELB"
 }

Install the Chart

Page 80 of 680

With the above prerequisites and configuration completed, you're ready to install our chart to
deploy a LogStream Worker Group. Here are some example commands:

To install the chart with the release name logstream�wg :

helm install logstream�wg cribl/logstream�workergroup

To install the chart using the LogStream Master logstream.lab.cribl.io :

helm install logstream�wg cribl/logstream�workergroup ��set

config.host='logstream.lab.cribl.io

To install the chart using the LogStream Master logstream.lab.cribl.io in the namespace
cribl‑helm :

helm install logstream�wg cribl/logstream�workergroup ��set

config.host='logstream.lab.cribl.io' �n cribl�helm

You upgrade using the helm upgrade command. But it's important to ensure that your Helm
repository cache is up to date, so first issue this command:

A�er this step, invoke:

For the example above, where the release is logstream�wg and is installed in the cribl�helm
namespace, the command would be:

This Helm chart's upgrade is idempotent, so you can use the upgrade mechanism to upgrade the
chart, but you can also use it to change its configuration (as outlined in Change the Configuration).

Starting in version 2.4.0, the chart provides options for Worker Groups to access the Kubernetes
API. The values.yaml file provides three relevant options:

rbac.create – enables the creation of a Service Account, Cluster Role, and Role Binding
(which binds the first two together) for the release.

rbac.resources - specifies the Kubernetes API resources that will be available to the release.

Upgrading

helm repo update

helm upgrade <release> �n <namespace> cribl/logstream�workergroup

helm upgrade logstream�wg �n cribl�helm cribl/logstream�workergroup

Optional: Kubernetes API Access

Page 81 of 680

rbac.verbs - specifies the API verbs that will be available to the release.

For more information on the verbs and resources available, see Kubernetes' Using RBAC
Authorization documentation.

Once you've installed a release, you can get its values.yaml file by using the helm get values
command. For example, assuming a release name of logstream‑wg , you could use this
command:

helm get values logstream�wg �o yaml > values.yaml

This will retrieve a local values.yaml file containing the values in the running release, including
any values that you overrode when you installed the release.

You can now make changes to this local values.yaml file, and then use the helm upgrade
operation to "upgrade" the release with the new configuration.

For example, assume you wanted to add an additional TCP-based syslog port, listening on port
5141, to the existing logstream�wg release. In the values.yaml file's service > ports
section, you'd add the three key-value pairs shown below:

values.yaml (excerpt)

Then you'd run:

helm upgrade logstream�wg cribl/logstream�workergroup �f values.yaml

To spin down deployed pods, use the helm uninstall command – where <release‑name> is the
namespace you assigned when you installed the chart:

helm uninstall <release�name>

You can append the ��dry�run flag to verify which releases will be uninstalled before actually
uninstalling them:

Change the Configuration

service:
 [���]

 ports:
 [���]
 - name: syslog
 port: 5141
 protocol: TCP

Uninstall the Infrastructure

Page 82 of 680

helm uninstall <release�name> ��dry�run

If you installed in a namespace, you'll need to include the �n <namespace> option in any
helm command.

In the above syslog example, you'd still need to configure a corresponding syslog Source in
your LogStream Master, and then commit and deploy it to your Worker Group(s).

The chart currently supports only TCP ports in service > ports for Worker Groups.
This restriction might be removed in future versions.

Notes on This Example

Known Issues

Page 83 of 680

Sizing and Scaling

A Cribl LogStream installation can be scaled up within a single instance and/or
scaled out across multiple instances. Scaling allows for:

Increased data volumes of any size.

Increased processing complexity.

Increased deployment availability.

Increased number of destinations.

A LogStream installation can be configured to scale up and utilize as many
resources on the host as required. In a single-instance deployment, you govern
resource allocation through the General Settings > Worker Processes Settings
section.

In a distributed deployment, you allocate resources per Worker Group.
Navigate to Worker Groups > Group Name > System Settings > Worker
Processes.

Either way, these controls are available:

Process count: Indicates the number of Worker Processes to spawn.
Positive numbers specify an absolute number of Workers. Negative
numbers specify the number of Workers relative to the number of CPUs in
the system. like this:
{ number of CPUs available minus this setting }.
A 0 setting is interpreted as 1 Worker Process. LogStream corrects for
excessive negative o�sets by guaranteeing at least 1 Process. Defaults to
-2 .

Memory (MB): Amount of memory available to each Worker Process, in MB.
Defaults to 2048 .

Scale Up

ℹ Throughout these guidelines, we assume that 1 physical core is
equivalent to 2 virtual/hyperthreaded CPUs (vCPUs). Each LogStream

Page 84 of 680

For example, assuming a Cribl LogStream system with 6 physical cores (12
vCPUs):

If Process count is set to 4 , then the system will spawn 4 processes, using
up to 4 vCPUs, leaving 8 free.

If Process count is set to -2 , then the system will spawn 10 processes (12-
2), using up to 10 vCPUs. This will leave 2 vCPUs free.

It's important to understand that worker processes operate in parallel, i.e.,
independently of each other. This means that:

1. Data coming in on a single connection will be handled by a single worker
process. To get the full benefits of multiple Worker Processes, data should
come over multiple connections..

E.g., it's better to have 5 connections to TCP 514, each bringing in
200GB/day, than one at 1TB/day.

2. Each Worker Process will maintain and manage its own outputs. E.g., if an
instance with 2 worker processes is configured with a Splunk output, then
the Splunk destination will see 2 inbound connections.

As with most data processing applications, Cribl LogStream's expected
resource utilization will be commensurate with the type of processing that is
occurring. For instance, a function that adds a static field on an event will likely
perform faster than one that applies a regex to finding and replacing a string.
At the time of this writing:

A Worker Process will use up to 1 physical core, or 2 vCPUs.

instance requires the following resources to run, beyond those
reserved for the vCPU's operating system:

+4 physical cores, +8GB RAM

5GB free disk space (more if persistent queuing is enabled)

ℹ LogStream incorporates guardrails that prevent spawning more
processes than available vCPUs.

Capacity and Performance Considerations

Page 85 of 680

Processing performance is proportional to CPU clock speed.

All processing happens in-memory.

Processing does not require significant disk allocation.

Current guidance for capacity planning is: Allocate 1 physical core for each
400GB/day of IN+OUT throughput. So, to estimate the number of cores
needed: Sum your expected input and output volume, then divide by 400GB.

Example 1: 100GB IN -> 100GB out to each of 3 destinations = 400GB total =
1 physical core.

Example 2: 3TB IN -> 1TB out = 4TB total = 10 physical cores.

Example 3: 4 TB IN -> full 4TB to Destination A, plus 2 TB to Destination B =
10TB total = 25 physical cores.

You could meet the requirement above with multiples of the following
instances:

AWS – Compute Optimized Instances. For other options, see here.

Azure – Compute Optimized Instances

GCP – Compute Optimized Instances

Estimating Requirements

Recommended AWS, Azure, and GCP Instance Types

c5d.2xlarge (4 physical cores,
8vCPUs)
c5.2xlarge (4 physical cores,
8vCPUs)

c5d.4xlarge or higher (8 physical cores,
16vCPUs)
c5.4xlarge or higher (8 physical cores,
16vCPUs)

Standard_F8s_v2 (4 physical cores,
8vCPUs)

Standard_F16s_v2 or higher (8 physical
cores, 16vCPUs)

c2-standard-8 (4 physical cores,
8vCPUs)
n2-standard-8 (4 physical cores,
8vCPUs)

c2-standard-16 or higher (8 physical cores,
16vCPUs)
n2-standard-16 or higher (8 physical cores,
16vCPUs)

Minimum Recommended

Minimum Recommended

Minimum Recommended

Page 86 of 680

When data volume, processing needs, or other requirements exceed what a
single instance can sustain, a Cribl LogStream deployment can span multiple
nodes. This is known as a Distributed Deployment, and it can be configured
and managed centrally by a single master instance. See Distributed
Deployment for more details.

Scale Out

Page 87 of 680

Config Files

Even though all the Routes, Pipelines, and Functions can be managed from the
UI, it's important to understand how the configuration works under the hood.
At the time of this writing this is how configuration paths and files are laid on
the filesystem.

All paths below are relative to $CRIBL_HOME .

Understanding Configuration Paths and Files

Local
Configurations

local/cribl

System
Configuration

(default|local)/cribl/cribl.yml

See cribl.yml

API Configuration (default|local)/cribl/api.yml

Source
Configuration

(default|local)/cribl/inputs.yml

See inputs.yml

Destination
Configuration

(default|local)/cribl/outputs.yml

See outputs.yml

License
Configuration

(default|local)/cribl/licenses.yml

Regexes
Configuration

(default|local)/cribl/regexes.yml

Breakers
Configuration

(default|local)/cribl/breakers.yml

Limits
Configuration

(default|local)/cribl/limits.yml

$CRIBL_HOME

Standalone Install:
/path/to/install/cribl/

Splunk App Install:
$SPLUNK_HOME/etc/apps/cribl/

Default
Configurations

default/cribl

Page 88 of 680

Any configuration changes resulting from UI interactions, for instance,
changing the order of functions in a pipeline, or changing the order of
routes, do not require restarts.

All Cribl LogStream configuration file changes resulting from direct file
manipulations in
(bin|local|default)/cribl/��� will require restarts.

Worker Nodes might temporarily disappear from the Master's Workers tab
while restarting.

In the case of a Cribl App for Splunk, Splunk configurations file changes
might or might not require restarts. Please check with recent Splunk docs.

Similar to most *nix systems, Cribl configurations in local take precedence
over those in default . There is no layering of configuration files.

Pipelines
Configuration

(default|local)/cribl/pipelines/<pname>

Each pipeline's conf is contained therein

Routes
Configuration

(default|local)/cribl/pipelines/routes.yml

Functions
(default|local)/cribl/functions/<function_name>

Each function's code, conf is contained therein

Functions Conf
(default|local)/cribl/functions/<function_name>/���

Each function's conf contained therein.

Configurations and Restart

Configuration Layering and Precedence

Editing Configuration Files Manually⚠

When config files must be edited manually, save all changes in
local .

Page 89 of 680

cribl.yml

cribl.yml contains settings for configuring API and other system properties.

$CRIBL_HOME/default/cribl/cribl.yml

api:
 # Address to bind to. Default: 0.0.0.0
 host: 0.0.0.0
 # Port to listen to. Default: 9000
 port: 9000
 # Flag to enable/disable UI. Default: false
 disabled : false
 # SSL Settings
 ssl:
 # SSL is enabled by default
 disabled: false
 # Path to private key
 privKeyPath: /path/to/privkey.pem
 # Path to certificate
 certPath: /path/to/cert.pem
auth:
 # Type of authentication.
 type: splunk
 host: localhost
 port: 8089
 ssl: true
workers: # worker processes, memory in MB
 count: 2
 memory: 2048
kms.local:
 # Encryption key management system settings. Default type: local.
 type: local
crypto:
 # Crypto settings.
 keyPath: $CRIBL_HOME/local/cribl/auth/keys.json
system:
 # Upgradability options: api, auto, false
 upgrade: api
 # Restart options: api, false
 restart: api
 # installType options: standalone, splunk�app
 installType: standalone
 # Flag to enable/disable intercom. Default: true
 intercom: true
license:
 accepted: true
distributed mode: master | worker | single
distributed:
 mode: master

Page 90 of 680

inputs.yml

inputs.yml contains settings for configuring inputs into Cribl.

$CRIBL_HOME/default/cribl/inputs.yml

inputs:
 # Input name
 local�splunk:
 # Input type
 type: splunk
 # Address to listen to for incoming events
 host: localhost
 # Port to listen to for incoming events
 port: 10000
���

 secureTCPJSON:
 type: tcpjson
 disabled: false
 host: 0.0.0.0
 port: 10002
 tls:
 disabled: false
 privKeyPath: /opt/privkey.pem
 certPath: /opt/cert.pem
 requestCert: false
 rejectUnauthorized: false
 ipWhitelistRegex: /.��
 authToken: ""

Page 91 of 680

outputs.yml

outputs.yml contains settings for configuring outputs from Cribl. Also see Destinations for more
info.

$CRIBL_HOME/default/cribl/outputs.yml

outputs:
 # Default output setting
 default:
 type: default
 defaultId: local�splunk
 # Output Name
 local�splunk:
 # Output type
 type: splunk
 # Output host address to send data from
 host: localhost
 # Output port to send data from
 port: 9999
 # Output name
 myFilesystemDestination:
 # Output type
 type: filesystem
 # Final destination path. Writable by Cribl.
 destPath: /path/to/destiation
 # Staging destination path. Writable by Cribl.
 stagePath: /tmp/foo
 # Partition schema for outputted files
 partitionExpr: >-
 `${host}/${sourcetype}`
 # Format of the output data
 format: json
 # The output filename prefix
 baseFileName: CriblOut
 # Compression options. None | Gzip
 compress: none
 # Maximum uncompressed output file size
 maxFileSizeMB: 32
 # Maximum amount of time to keep inactive files open.
 maxFileOpenTimeSec: 300
 # Maximum amount of time to keep inactive files open.
 maxFileIdleTimeSec: 30
 # Maximum number of files to keep open concurrently.
 maxOpenFiles: 100
 myS3Destination:
 # Output type
 type: s3
 # S3 bucket address
 bucket: s2.bucket.address.here
 # Prefix to append to files before uploading
 destPath: keyprefix
 # AWS API key, if not present will fallback on env.AWS_ACCESS_KEY_ID, or the meta�data endpo
 awsApiKey: key
 # AWS Secret Key. If left blank, Cribl will fallback on env.AWS_SECRET_ACCESS_KEY, or the m
 awsSecretKey: secretkey
 # Staging destination path. Writable by Cribl.

Page 92 of 680

 stagePath: /tmp/foo

Page 93 of 680

licenses.yml

licenses.yml maintains a list of licenses for Cribl.

$CRIBL_HOME/default/cribl/licenses.yml

licenses:
 # List of license keys
 - eyJ0eXAiOiJKV1QiLCJhasdfasfasdfdasfasdfa-Abo2_ogVbR_5VKeAelZlTc5b-TKQax9R1ywnoOG8guis2RC0sSB

Page 94 of 680

regexes.yml

regexes.yml maintains a list of regexes. Cribl's Regex Library ships under default .

$CRIBL_HOME/default/cribl/regexes.yml

���
"uuid":
 lib: cribl
 description: UUID/GUID
 regex: /[0-9a�f]{8}-[0-9a�f]{4}-[1-5][0-9a�f]{3}-[89ab][0-9a�f]{3}-[0-9a�f]{12}/gm
 sampleData: 9a50fa34-58b1-4a67-8b8d�ea9c0ae48c8f

 eb671525-2b9e-4140-ae21-a0a8a81b506e
 tags: uuid,guid
"aws_secret_key":
 description: AWS Secret Access Key
 regex: /(?<![A-Za�z0-9\/+=])[A-Za�z0-9\/+=]{40}(?![A-Za�z0-9\/+=])/gm
 lib: cribl
 sampleData: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
 tags: aws,access,key,secret
"aws_access_key":
 lib: cribl
 description: AWS Access Key ID
 regex: /(A3T[A-Z0-9]|AKIA|AGPA|AIDA|AROA|AIPA|ANPA|ANVA|ASIA)[A-Z0-9]{16}(?![A-Za�z0-9\/+=])/g
 sampleData: >-2
 AKIAIOSFODNN7EXAMPLE
 tags: aws,access,key
"private_key":
 description: Private key block
 regex: /-----BEGIN (DSA|RSA|EC|PGP|OPENSSH) PRIVATE KEY(\sBLOCK)?-----[\s\S]��gm
 lib: cribl
 tags: ssh,openssh,dsa,ec,rsa,private key
"slack_token":
 lib: cribl
 description: Slack Token
 regex: /xox[p|b|o|a][\s\S]��g
 sampleData: xoxp-23984754863-2348975623103

 xoxa-23984754863-2348975623103

 xoxb-23984754863-2348975623103

 xoxo-23984754863-2348975623103
 tags: slack,token
���

Page 95 of 680

breakers.yml

Cribl's default Event Breaker Library is located under $CRIBL_HOME/default/cribl/breakers.yml .

$CRIBL_HOME/default/cribl/breakers.yml

���
AWS Ruleset:
 lib: cribl
 description: Event breaking rules for common AWS data sources
 tags: flowlogs,elb,alb,loadbalancer,cdn
 rules:
 - name: AWS VPC Flow
 condition: /^\d�\s�\d�\s�eni�\w�.*(OK|NODATA|SKIPDATA)?$/.test(_raw) �� sourcetype��'aws:c
 eventBreakerRegex: /[\n\r]+/
 timestampAnchorRegex: /(?=\d{10}\s\d{10})/
 timestamp:
 type: format
 length: 150
 format: "%s"
 timestampTimezone: utc
 maxEventBytes: 1024
 - name: AWS ALB
 condition: /^(?:https?|h2|wss?)\s\d�-\d�-\d�.*?arn:aws:elasticloadbalancing/.test(_raw) ��
 eventBreakerRegex: /[\n\r]+/
 timestampAnchorRegex: /\w�\s/
 timestamp:
 type: format
 length: 150
 format: "%Y-%m�%dT%H�%M�%S.%f%Z"
 timestampTimezone: local
 maxEventBytes: 4096
 - name: AWS ELB
 condition: /^\d�-\d�-\d�.*?(?:\d�\.\d�\s){3}/.test(_raw) �� sourcetype��'aws:elb:accesslog
 eventBreakerRegex: /[\n\r]+/
 timestampAnchorRegex: /^/
 timestamp:
 type: format
 length: 150
 format: "%Y-%m�%dT%H�%M�%S.%f%Z"
 timestampTimezone: local
 maxEventBytes: 4096
���

Page 96 of 680

mappings.yml

Mapping ruleset configurations are located under
$CRIBL_HOME/local/cribl/mappings.yml .

$CRIBL_HOME/default/cribl/mappings.yml

���
rulesets:
 default: # ruleset name
 conf:
 functions:
 - filter: env.CRIBL_HOME.match('w0') # filter to match
 id: eval
 description: w0 # rule name/id
 final: true
 conf:
 add:
 - name: groupId
 value: "'myGroup42'" # group to map to
 - filter: env.CRIBL_HOME.match('w1')
 id: eval
 description: w1
 final: true
 conf:
 add:
 - name: groupId
 value: "'NewGroup22'"
 newruleset: # another ruleset
 conf:
 functions:
 - filter: (cpus>12 �� env.CRIBL_HOME.match('w0')) �� release.startsWith('18')
 id: eval
 description: catch all
 final: true
 conf:
 add:
 - name: groupId
 value: "'NewGroup2'"
���

Page 97 of 680

instance.yml

Instance configuration is located under
$CRIBL_HOME/local/_system/instance.yml .

$CRIBL_HOME/local/_system/instance.yml

distributed:
 # mode master | worker | single
 mode: master
 master:
 host: 0.0.0.0
 port: 4203
 tls:
 disabled: true
 ipWhitelistRegex: /.��
 authToken: criblmaster
 compression: none
 connectionTimeout: 5000
 writeTimeout: 10000
 group: default
 envRegex: /^CRIBL_/
 tags:
 - tag1
 - tag2
 - tag42

Page 98 of 680

Licensing

Every Cribl LogStream download package ships with a Free license that allows
for processing of up to 1 TB/day. LogStream Free and LogStream One licenses
require sending anonymized telemetry metadata to Cribl. (For details, see
Telemetry Data below). Cribl does not require a separate license for sending
data from LogStream to LogStream, such as sending from one worker group
managed by master node A to a di�erent worker group managed by master
node B. The same license used on master node A can be used on master node
B in that situation.

Enterprise, Standard, and Sales Trial licenses do not require sending telemetry
metadata, and are entitled to a defined, per-license daily ingestion volume.

This page summarizes all these license types.

You can add and manage licenses in Settings > Licensing. Click + Add License to
paste in a license key provided to you by Cribl.

Cribl o�ers five LogStream license types, summarized below.

Managing Licenses

License Expiration and Renewal�

For LogStream v.2.2 and earlier, the latest Free license expires on:
2020-12-15T00:00:00+00:00

For LogStream v.2.3 and later, Free licenses do not expire.

LogStream One and LogStream Standard licenses must be renewed
annually.

License Types

ℹ For a detailed comparison of what's included in each license type,
please see Cribl Pricing.

Page 99 of 680

This is a license available for purchase.

Up to unlimited data ingestion.

Role-based access control.

External authentication (via LDAP, Splunk, and OpenID Connect identity
providers).

Git remote backup.

All other LogStream features included.

Contact Cribl Sales at sales@cribl.io for more information.

This is a license available for purchase. Compared to an Enterprise license, it
o�ers a cost discount, in exchange for some limitations (all data volumes below
based on uncompressed data size):

Daily ingestion up to 5 TB/day.

Maximum 1 Worker Group.

Contact Cribl Sales at sales@cribl.io for more information.

Free licenses ship in the download package, and are permanent. They impose
some limitations:

Daily ingestion up to 1 TB/day.

Maximum 10 Worker Processes.

Maximum 1 Worker Group.

LogStream One is a type of free license that allows for higher processing
volume, but only to one Splunk (Single-Instance or Load-Balanced) or
Elasticsearch Destination. This combination is designed to help users explore
LogStream's value in routing large data volumes to these common services.
Contact Cribl Sales at sales@cribl.io to convert a Free license to a LogStream
One license, which must be renewed annually.

Enterprise License

Standard License

Free License

"One" License

Page 100 of 680

Daily ingestion up to 5 TB/day, only to one of either Splunk or Elasticsearch
outputs.

Maximum 50 Worker Processes

Maximum 1 Worker Group

A license type used when preparing a POC (proof of concept), or a pilot, with
requirements that go beyond those a�orded by the Free or One license.
Contact Cribl Sales at sales@cribl.io for more information.

Multiple license types can coexist on an instance. However, only a single type of
license can be e�ective at any one time. When multiple types coexist, the
following method of resolution is used:

If there are any unexpired Enterprise or Standard licenses – use only these
licenses to compute the e�ective license.

Else, if there are any Sales Trial licenses – use only Sales Trial licenses to
compute the e�ective license.

Else, if there exists a Free or One license – use only the Free or One license
to compute the e�ective license.

When an Enterprise or Standard license expires, Cribl LogStream will fall back
to the Sales Trial or Free/One types. However, an expired Sales Trial license
cannot fall back to a Free/One license.

Sales Trial License

ℹ LogStream Free and LogStream One licenses require sending of
anonymized telemetry metadata to Cribl. These licenses will block
inputs if sending fails a�er a grace period of 24 hours.

Combining License Types

License Expiration Behavior⚠

Upon expiration of a paid license, if there is no fallback license,
LogStream will backpressure and block all incoming data.

Page 101 of 680

In distributed deployments of LogStream versions through 2.2.x, licenses
should be configured both on the Master Node and on each of the Worker
Groups. This allows for di�erent Worker Groups to have di�erent licensing
capacities.

To configure the Master: Settings > Licensing.

To configure Worker Groups: Worker Groups > [Select a Group] > System
Settings > Licensing.

LogStream will attempt to balance (or rebalance) Worker Processes/threads as
evenly as possible across all licensed Worker Nodes.

A Free or One license requires sharing of telemetry metadata with Cribl. Cribl
uses this metadata to help us understand how to improve the product and
prioritize new features. Telemetry payloads are sent to an endpoint located on
https:��cdn.cribl.io/telemetry/ . (For versions prior to 2.2, this endpoint

is 34.220.85.61�8000 .)

To manually test connectivity to the telemetry endpoint, especially if you are
needing to configure a proxy, you can use the following command:

Licensing in Distributed Deployments

LogStream 2.2.x or Earlier

LogStream 2.3.x or Later

� As of LogStream 2.3, you no longer need to add licenses directly to
Worker Groups. The Master will push license information down to
Worker Groups as part of the heartbeat.

⚠ LogStream 2.3 changes licensing in other ways that might require
you to update an existing LogStream configuration. Please see
Upgrading to LogStream 2.3.

Telemetry Data

Testing the Telemetry Endpoint's Connectivity

Page 102 of 680

$ curl https:��cdn.cribl.io/telemetry/

Expected response:

cribl ��� living the stream!

If you get a 302 response code, check whether you've omitted the URL's trailing
/ .

With an Enterprise or Standard license, you have the option to disable
telemetry sharing. With a Free or One license, disabling telemetry will cause
LogStream to block inbound tra�ic within 24 hours.

If you would like an exception to disable telemetry in order to deploy in your
environment, please contact Cribl Sales at sales@cribl.io, and we will work with
you to issue licenses on a case-by-case basis.

Once you have received a license that removes the telemetry requirement, you
can disable telemetry in LogStream's UI at Settings > System >
General Settings > Upgrade & Share Settings > Sharing and Live Help.
Toggle the slider to No.

Sharing and Live Help toggle

Your LogStream instance shares the following metadata with Cribl per interval
(roughly, every minute):

Disabling Telemetry and Live Help

ℹ Disabling this setting also removes LogStream's Intercom (live help)
widget at lower right. Therefore, you will need to submit help
requests, screenshots, and diag bundles through other
support channels.

Metadata Shared Through Telemetry

Page 103 of 680

Version

Instance's GUID

License ID

Earliest, Latest Time

Number of Events In, Out

Number of Bytes In, Out

Number of Open, Closed, Active Connections

Number of Routes

Number of Pipelines

How do I check my license type, restrictions, and/or expiration date?

Open LogStream's Settings > Licensing page to see these details.

How can I track my actual data ingestion volume over the last 30 days?

Forward Cribl Internal metrics to your Metrics Destination of choice, and run a
report on cribl.total.in_bytes .

How does LogStream enforce license limits?

If your data throughput exceeds your license quota, Chuck Norris will track you
down and make your life a living hell.

However, that will happen only in your nightmares. In the product itself:

Free, One, and Standard licenses enforce data ingestion quotas through
limits on the number of Worker Groups and Worker Processes.

Enterprise license keys turn o� all enforcement, between annual true-ups.

When an Enterprise or Standard license expires, LogStream will attempt to
fall back to a trial or free license, or – only if that fails – will block incoming
data. For details, see Combining License Types.

I'm using LogStream 2.3.0 or higher, with its "permanent, Free" license. Why
is LogStream claiming an expired license, and blocking inputs?

This can happen if you've upgraded from a LogStream version below 2.3.0, in
which you previously entered this earlier version's Free (time-limited) license
key. To remedy this, go to Settings > Licensing, click to select and expand your

Licensing FAQ

Page 104 of 680

expired Free license, and then click Delete license. LogStream will fall back to
the new, permanent Free license behavior, and will restore throughput.

If I pull data from compressed S3 buckets, is my license quota applied to the
compressed or the uncompressed size of the file objects?

To measure license consumption, LogStream uses the uncompressed size.

Page 105 of 680

Access Management

Cribl LogStream provides a range of access-management features for users
with di�erent security requirements. For details, see the following topics:

Authentication: Authenticating users in LogStream.

Local Users: Creating and managing users and their permissions.

Roles: Managing roles and policies to assign to users.

ℹ Role-based access control can be enabled only on distributed
deployments with an Enterprise license. With other license types
and/or single-instance deployments, all users will have full
administrative privileges.

Page 106 of 680

Authentication
User authentication in LogStream

Cribl LogStream supports local, Splunk, LDAP, and SSO/OpenID Connect
authentication methods, depending on license type.

To set up local authentication, navigate to Settings > General Settings >
Authentication Settings and select Local.

You can then manage users through the Settings > Local Users UI. All changes
made to users are persisted in a file located at
$CRIBL_HOME/local/cribl/auth/users.json .

Line format:

{"username":"user","first":"Elvis","last":"Bath","disabled":"false",

"passwd":"Yrt0MOD1w8OzyMYB8WMcEleOtYESMwZw2qIZyTvueOE"}

The file is monitored for modifications every 60s, and will be reloaded if changes
are detected.

Adding users through direct modification of the file is also supported, but not
recommended.

To manually add, change, or restore a password, replace the a�ected user's
passwd key-value pair with a password key, in this format: "password":"
<newPlaintext>" . LogStream will hash all plaintext password(s), identified by
the password key, during the next file reload, and will rename the plaintext
password key.

Starting with the same users.json line above:

Local Authentication

⚠ If you edit users.json , maintain each JSON element as a single line.
Otherwise, the file will not reload properly.

Manual Password Replacement

Page 107 of 680

{"username":"user","first":"Elvis","last":"Bath","disabled":"false",

"passwd":"Yrt0MOD1w8OzyMYB8WMcEleOtYESMwZw2qIZyTvueOE"}

...you'd modify the final key-value pair to something like:

{"username":"user","first":"Elvis","last":"Bath","disabled":"false",

"password":"V3ry53CuR&pW9"}

Within at most one minute a�er you save the file, LogStream will rename the
password key back to passwd , and will hash its value, re-creating something

resembling the original example.

In a distributed deployment, once a worker has been set to point to the Master
Node, LogStream will set each Worker node's admin password with a randomized
password which is di�erent from the admin user's password on the Master Node.
This is by design, as a security precaution, but may lead to situations where
administrators cannot log into a Worker Node directly and must rely on accessing
them via the Master.

To explicitly push a known/new password to your Worker Node, set and push a
new password to the Worker Group.

In the Master Node's UI:

1. From the top menu, select Worker Groups.

2. Select the desired Worker Group.

3. From the Worker Groups submenu, select System Settings.

4. Select Local Users, then expand the desired user.

5. Update the Password field and select Save.

Every 10 seconds, the Worker Nodes will request an update of configuration from
the Master and new password settings will be reflected.

You can customize authentication behavior at General Settings > API Server
Settings > Advanced. The options here include:

Logout on Roles change: If role-based access control is enabled, determines
whether users are automatically logged out of LogStream when their
assigned Roles change. Defaults to Yes .

Set Worker Passwords

Authentication Controls

Page 108 of 680

Auth-token TTL: Sets authentication tokens' valid lifetime, in seconds.
Defaults to 3600 (60 minutes).

Login rate limit: Sets the number of login attempts allowed over a (selectable)
unit of time. Defaults to 2/second .

HTTP header: Enables you to specify one or more custom HTTP headers to be
sent with every response.

When Cribl LogStream first starts, it creates a
$CRIBL_HOME/local/cribl/auth/cribl.secret file. This file contains a key

that is used to generate auth tokens for users, encrypt their passwords, and
encrypt encryption keys.

Default local credentials are: admin/admin

Splunk authentication is very helpful when deploying in the same environment as
Splunk, and requires the user to have Splunk admin role permissions. To set up
Splunk authentication:

Navigate to Settings > General Settings > Authentication Settings and select
Splunk.

Host: Splunk hostname (typically a search head).

Port: Splunk management port (defaults to 8089).

SSL: Set to Yes if enabled.

Fallback to local: Attempt local authentication if Splunk authentication is
unsuccessful. Defaults to No .

Notes: The Splunk searchhead does not need to be locally installed on the
LogStream instance. See also Role Mapping below.

The cribl.secret File

� Back up and secure access to this file by applying strict permissions –
e.g., 600 .

Splunk Authentication

Page 109 of 680

LDAP authentication is supported, and can be set up as follows:

Navigate to Settings > General Settings > Authentication Settings, and select
LDAP.

Secure: Enable to use a secure LDAP connections (ldaps:��). Disable for an
insecure (ldap:��) connection.

LDAP servers: List of LDAP servers. Each entry should contain host:port
(e.g., localhost:389).

Bind DN: Distinguished name of entity to authenticate with LDAP server. E.g.,
'cn=admin,dc=example,dc=org' .

Password: Distinguished Name password used to authenticate with LDAP
server.

User search base: Starting point to search LDAP for users, e.g.,
'dc=example,dc=org' .

Username field: LDAP user search field, e.g., cn or (cn (or uid) .

User search filter: LDAP search filter to apply when finding user, e.g., (&
(group=admin)(!(department=123*))) . Optional.

Group search base: Starting point to search LDAP for groups, e.g.,
dc=example,dc=org . Optional.

Group member field: LDAP group search field, e.g., member . Optional.

Group search filter: LDAP search filter to apply when finding group, e.g., (&
(cn=cribl*)(objectclass=group)) . Optional.

Fallback to local: Attempt local authentication if LDAP authentication is down
or is mis-configured. Defaults to No .

Connection timeout (ms): Defaults to 5000 .

Reject unauthorized: Valid for secure LDAP connections. Set to Yes to reject
unauthorized server certificates.

Group name field: LDAP group field, e.g., cn .

Note: See also Role Mapping below.

LDAP Authentication

Page 110 of 680

LogStream supports SSO/OpenID user authentication (login/password)
and authorization (user's group membership, which you can map to Cribl Roles).
Set this up as follows:

Navigate to Settings > General Settings > Authentication Settings and select
OpenID Connect.

Provider name: The name of the identity provider service. You can select
Google or Okta, both supported natively. Manual entries are also allowed.

Audience: The Audience from provider configuration. This will be the base
URL, e.g.: https:��yourDomain.com:9000 .

Client ID: The client_id from provider configuration.

Client secret: The client_secret from provider configuration.

Scope: Space-separated list of authentication scopes. The default list is:
openid profile email .

Authentication URL: The full path to the provider's authentication endpoint.
Be sure to configure the callback URL at the provider as
<yourDomainUrl>/api/v1/auth/authorization�code/callback , e.g.:
https:��yourDomain.com:9000/api/v1/auth/authorization�

code/callback .

Token URL: The full path to the provider's access token URL.

Logout URL: The full path to the provider's logout URL. Leave blank if the
provider does not support logout or token revocation.

Validate certs: Whether to validate certificates. Defaults to Yes . Toggle to
No to allow insecure self‑signed certificates.

Filter type: Select either Email whitelist or User info filter. This selection
displays one of the following fields:

Email whitelist: Wildcard list of emails that are allowed access.

User info filter: JavaScript expression to filter against user profile
attributes. E.g.: name.startsWith("someUser") ��
email.endsWith("domain.com")

SSO/OpenID Connect Authentication

Page 111 of 680

Group name field: Field on the id_token that contains the user groups.
Defaults to groups .

Note the following details when filling in the form – for example, when using Okta:

<Issuer URI> is the account at the identity provider.

Audience is the URL of the host that will be connecting to the Issuer (e.g.,
https:��localhost:9000). The issuer (Okta, in this example) will redirect

back to this site upon authentication success or failure.

See also Role Mapping below.

This section is displayed only on distributed deployments with an Enterprise
license. For details on mapping your external identity provider's configured
groups to corresponding LogStream user access Roles, see External Groups and
LogStream Roles.

Default role: Default LogStream Role to assign to all groups not explicitly
mapped to a Role.

Mapping: On each mapping row, enter an external group name on the le�,
and select the corresponding LogStream Role on the right drop-down list.
Click + Add Mapping to add more rows.

Role Mapping

Page 112 of 680

Local Users

This page covers how to create and manage LogStream users, including their
credentials and (where enabled) their access roles. These options apply if
you're using the Local Authentication type, which is detailed here.

On the Master Node – or in a single-instance deployment – you manage users
by selecting Settings > Access Management > Local Users.

The resulting Manage Local Users page will initially show only the default
admin user. You are operating as this user.

Managing users

To create a new LogStream user, click + Add New. To edit an existing user, click
anywhere on its row. With either selection, you will see the modal shown below.

The first few fields are self-explanatory: they establish the user's credentials. If
you want to establish or maintain a user's credentials on LogStream, but
prevent them from currently logging in, you can toggle the Enabled slider to
No .

Creating and Managing Local Users

Page 113 of 680

If you've enabled role-based access control you can use the modal's bottom
Roles section to assign access Roles to this new or existing user.

Click + Add Role to assign each desired role to this user. The options on the
Roles drop-down reflect the Roles you've configured in Settings >
Access Management > Roles.

Note that when you assign multiple Roles to a user, the Roles' permissions are
additive: This user is granted a superset of the highest permissions contained
in all the assigned Roles.

When you've configured (or reconfigured) this user as desired, click Save.

By default, LogStream will log out a user upon a change in their assigned Roles.
You can defeat this behavior at General Settings > API Server Settings >
Advanced > Logout on roles change.

Adding Roles

ℹ For details, see Roles. Role-based access control can be enabled only
on distributed deployments with an Enterprise license. With other
license types and/or single-instance deployments, all users will have
full administrative privileges.

Page 114 of 680

Roles
Define and manage access-control roles and policies

Cribl LogStream o�ers role-based access control (RBAC) to serve these
common enterprise goals:

Security: Limit the blast radius of inadvertent or intentional errors, by
restricting each user's actions to their needed scope within the
application.

Accountability: Ensure compliance, by restricting read and write access to
sensitive data.

Operational e�iciency: Match enterprise workflows, by delegating access
over subsets of objects/resources to appropriate users and teams.

LogStream's RBAC mechanism is designed around the following concepts,
which you manage in the UI:

Roles: Logical entities that are associated with one or multiple Policies
(groups of permissions). You use each Role to consistently apply these
permissions to multiple LogStream users.

Policies: A set of permissions. A Role that is granted a given Policy can
access, or perform an action on, a specified LogStream object or objects.

Permissions: Access rights to navigate to, view, change, or delete specified
objects in LogStream.

Users: You map Roles to LogStream users in the same way that you map
user groups to users in LDAP and other common access-control

ℹ Role-based access control is enabled only on distributed
deployments with an Enterprise license. With other license types
and/or single-instance deployments, all users will have full
administrative privileges.

RBAC Concepts

Page 115 of 680

frameworks.

LogStream RBAC is designed to grant arbitrary permissions over objects,
attributes, and actions at arbitrary levels.

LogStream's UI will be presented di�erently to users who are assigned Roles
that impose access restrictions. Controls will be visible but disabled, and
search and log results will be limited, depending on each user's permissions.

Access to the same objects via LogStream's API and CLI will be similarly filtered,
with appropriate error reporting. E.g., if a user tries to commit and deploy
changes on a Worker Group where they are not authorized, they might receive
a CLI error message like this: git commit�deploy command failed with
err: Forbidden

LogStream Roles can be integrated with external authorization/IAM
mechanisms, such as LDAP and OIDC and mapped to their respective groups,
tags, etc.

LogStream ships with a set of default Roles, which you can supplement.

These Roles ship with LogStream by default:

� Users are independent LogStream objects that you can configure
even without RBAC enabled. For details, see Local Users.

How LogStream RBAC Works

ℹ As of v. 2.4, Roles are customizable only down to the Worker Group
level. E.g., you can grant Edit permission on Worker Group WG1 to
User A and User B, but cannot grant them finer-grained permissions
on child objects such as Pipelines, Routes, etc.

Using Roles

Default Roles

Name Description

Page 116 of 680

Cribl strongly recommends that you do not edit or delete these default roles.
However, you can readily clone them (see Clone Role below), and modify the
duplicates to meet your needs.

In a distributed environment, you manage Roles at the Master level, for the
entire deployment. On the Master Node, select Settings > Access Management
> Roles.

Manage Roles page

admin Superusers – authorized to do anything and everything in the
system.

owner_all Read/write access to (and Deploy permission on) all Worker Groups.

editor_all Read/write access to all Worker Groups.

reader_all Read-only access to all Worker Groups.

user
Default role that gets only a home/landing page to authenticate. This
is a fallback for users who have not yet been assigned a higher role
by an admin.

Initial Installation or Upgrade�

When you first install LogStream with the prerequisites to enable
RBAC (Enterprise license and distributed deployment), you will be
granted the admin role. Using this role, you can then define and
apply additional roles for other users.

You will similarly be granted the admin role upon upgrading an
existing LogStream installation from pre-2.4 versions to v. 2.4 or
higher. This maintains backwards-compatible access to everything
your organization has configured under the previous LogStream
version's single role.

Adding and Modifying Roles

Page 117 of 680

To add a new Role, click + Add New at the upper right. To edit an existing Role,
click anywhere on its row. Here again, either way, the resulting modal o�ers
basically the same options.

Add/edit Role modal

The options at the modal's top and bottom are nearly self-explanatory:

Role name: Unique name for this Role.

Description: Optional free-text description.

Delete Role: And...it's gone. (But first, there's a confirmation prompt. Also, you
cannot delete a Role assigned to an active user.)

Clone Role: Opens a New role version of the modal, duplicating the Description
and Policies of the Role you started with.

The modal's central Policies section (described below) is its real working area.

The Policies section is an expandable table. In each row, you select a Policy
using the le� drop-down, and apply that Policy to objects (i.e., assign
permissions on those objects) using the right drop-down.

Let's highlight an example from the above screen capture of LogStream's built-
in Roles: The editor_all Role has the GroupEdit Policy, with permission to
exercise it on any and all Worker Groups (as indicated by the * wildcard).

Policies on the le�, objects on the right

Adding and Modifying Policies

Page 118 of 680

To add a new Policy to a Role:

1. Click + Add Policy to add a new row to the Policies table.

2. Select a Policy from the le� column drop-down.

3. Accept the default object on the right; or select one from the drop-down.

To modify an already-assigned Policy, just edit its row's drop-downs in the
Policies table.

To remove a Policy from the Role, click its close box at right.

In all cases, click Save to confirm your changes and close the modal.

In the Policies table's le� column, the drop-down o�ers the following default
Policies:

In the Policies table's right column, use the drop-down to select the LogStream
objects on which the le� column's Policy will apply. (Remember that in v. 2.4,
the objects available for selection are specific Worker Groups, or a wildcard
representing all Worker Groups.) For example:

Worker Group <id>

NewGroup2

default (Worker Group)

* (all Worker Groups)

Default Policies

GroupRead
The most basic Worker Group-level permission. Enables users to
view a Worker Group and/or its configuration.

GroupEdit
Building on GroupRead , grants the ability to also change and
commit a Worker Group's configuration.

GroupFull
Building on GroupEdit , grants the ability to also deploy a
Worker Group.

* (wildcard) Grants all permissions on associated objects.

Objects and Permissions

Name Description

Page 119 of 680

Here's a basic example that ties together the above concepts and facilities.
It demonstrates how to add a Role whose permissions are restricted to a
particular Worker Group.

Here, we've cloned the editor_all Role that we unpacked above. We've
named the clone editor_default .

We've kept the GroupEdit Policy from editor_all . But in the right column,
we're restricting its object permissions to the default Worker Group that
ships with LogStream.

Cloning a default Role

You can readily adapt this example to create a Role that has permissions on an
arbitrarily named Worker Group of your own.

Once you've defined a Role, you can associate it with LogStream users. On the
Master Node, select Settings > Access Management > Local Users. For details,
see Local Users.

Note that when you assign multiple Roles to a given user, the Roles'
permissions are additive: This user is granted a superset of all the permissions
contained in all the assigned Roles.

By default, LogStream will log out a user upon a change in their assigned Roles.
You can defeat this behavior at General Settings > API Server Settings >
Advanced > Logout on roles change.

Extending Default Roles

Roles and Users

External Groups and LogStream Roles

Page 120 of 680

You can map user groups from external identity providers (LDAP, Splunk, or
OIDC) to LogStream Roles, as follows:

1. On the Master Node, select Settings > Access Management >
Authentication.

2. From the Type drop-down, select LDAP, Splunk, or OpenID Connect,
according to your needs.

3. On the resulting Authentication Settings page, configure your identity
provider's connection and other basics. (For configuration details, see the
appropriate Authentication section.)

4. Under Role Mapping, first select a LogStream Default role to apply to
external user groups that have no explicit LogStream mapping defined
below.

5. Next, map external groups as you've configured them in your external
identity provider (le� field below) to LogStream Roles (right drop-down list
below).

6. To map more user groups, click + Add Mapping.

7. When your configuration is complete, click Save.

Here's a composite showing the built-in Roles available on both the
Default Role and the Mapping drop-downs:

Mapping external user groups to LogStream Roles

And here, we've set a conservative Default Role and one explicit Mapping:

Page 121 of 680

External user groups mapped to LogStream Roles

Page 122 of 680

Version Control
Tracking, backing up, and restoring configuration changes for single-instance and
distributed deployments

Cribl LogStream integrates with Git clients and remote repositories to provide version control of
LogStream's configuration. This integration o�ers backup and rollback for single-instance and
distributed deployments.

These options are separate from the Git repo responsible for version control of Worker
configurations, located on the Master Node in distributed deployments. We cover all these options
and requirements below.

To verify that git is available, run:

git ��version

The minimum version that LogStream requires is: 1.8.3.1. If you don't have git installed, see the
installation links here.

For distributed deployments, git must be installed and available locally on the host running the
Master Node.

All configuration changes must be committed before they are deployed. The Master notifies Workers
that a new configuration is available, and Workers pull the new configuration from the Master Node.

Once Git is installed, you can commit configuration changes using the git CLI. You can also commit
changes interactively, using LogStream's UI.

Pending commits have a red dot indicator, as shown below. Click Commit to proceed.

Git Installation (Local or Standalone/Single-Instance)

Git Required for Distributed Deployments

Committing Changes

Page 123 of 680

Next, in the resulting Commit Changes modal, you can verify the di�'ed configuration changes. Other
options here include clearing individual files' check boxes to exclude them from the commit (as
shown below), and clicking Undo to reverse the changes instead of committing them.

Reviewing a pending commit

When you're ready to commit to your commit, click Commit. Look for a Commit successful
confirmation banner.

Once Git is installed, you can revert to a previous commit using the git CLI. You can also restore a
Worker Group's previous commit using LogStream's UI:

Select the commit from the Config Version drop-down, as shown below.

Reverting Commits

Page 124 of 680

Then, in the resulting Commit modal, verify the di�'ed configuration changes and click Revert.

Undoing earlier commits

Finally, confirm permission for LogStream to restart.

Git remote repositories are supported – but not required – for version control of all configuration
changes. You can configure a Standalone Master Node with Git remote push capabilities through the
LogStream CLI, or through the LogStream UI (via Settings > Distributed Settings > Git Settings).

To create a repo, see these tutorials:

Support For Remote Repositories

Page 125 of 680

Setting Up a Repository (CLI instructions, host-agnostic, from Atlassian).

Creating a New Repository (specific to GitHub's Web UI).

Create a Repo (longer GitHub-specific tutorial, also covers committing changes).

Remote URI schema patterns should match this regex:
(?:git|ssh|ftps?|file|https?|git@[-\w.]+)�(\/\/)?(.*?)(\.git\/?)?$.

You can find a list of supported formats here.

For example:

GitHub or other providers: <protocol����git@example.com/<username>/<reponame>.git

Local Git servers: git:��<host.xyz��<port>/<user>/path/to/repo.git

Cribl recommends connecting to a remote repo over HTTPS. The example below shows a token-
based HTTPS connection to GitHub.

1. Create a new GitHub repository.

For best results, create a new empty repo, with no readme file and no commit history. This will

ℹ Currently, LogStream supports push and pull only against the master branch on each
remote repo.

Several tutorial links and examples on this page point to GitHub, based on its wide
adoption. The basic principles are the same for other Git repo providers, including private
Git servers. GitHub's own UI and documentation periodically change, and linked tutorials'
screenshots might di�er from GitHub's current UI.

Remote Formats Supported

Securing Remote Repos

� Some files that are used by LogStream (both Master and Worker Groups) contain sensitive
keys; examples are cribl.secret and ���auth/ssh/git.key . These will be pushed to
the remote repo as part of the entire directory structure under version control. Ensure that
this repo is secured appropriately.

Connecting to a Remote with a Personal Access Token over HTTPS
(Recommended)

Example: Connecting to GitHub over HTTPS

Page 126 of 680

prevent git push errors.

Note the user name and email associated with your login to the repo provider.

2. Create a personal access token with repo scope.

3. Copy the token to your clipboard.

4. In Cribl LogStream, go to Settings > Distributed Settings > Git Settings.

5. Fill in the Remote URL field with your repo name. Use the format below:

https:��<accesstoken>@github.com/<reponame>.git

For additional details, see GitHub's Creating a Personal Access Token tutorial.

You can set up SSH keys from the CLI, or upload keys via the UI. If you have a passphrase set, this
functionality is available only through the CLI – see Encryption: Configuring Keys with the CLI. The
example below outlines the UI steps.

1. Create a new GitHub repository.

For best results, create a new empty repo, with no readme file and no commit history. This will
prevent git push errors.

Note the user name and email associated with your login to the repo provider.

2. Add an SSH public key to your GitHub account.

3. In Cribl LogStream, go to Settings > Distributed Settings > Git Settings.

4. Fill in the remote repo URL and the SSH private key. In the example format below, replace
<username> with your user name on the repo provider:

Remote URL: <protocol����git@github.com��username>/<reponame>.git
SSH private key: <ssh�private�key>

For GitHub specifically, the URL/protocol format must be:

⚠ For GitHub repos specifically, use only personal access tokens in the Remote URL field.
GitHub has announced that it will end support for plaintext passwords as of August 13,
2021.

Connecting to a Remote with SSH

Example: Connecting to GitHub with SSH

Page 127 of 680

Remote URL: git@github.com��user>/<reponame>.git

For example:

Remote URL: git@github.com:taylorswift/leadsheets.git

5. As the user running LogStream, run this command to add the GitHub keys to known_hosts :
ssh�keyscan -H github.com �� ~/.ssh/known_hosts

For additional details, see GitHub's Connecting to GitHub with SSH tutorial.

LogStream's Git settings

On the Git Settings > General tab, you can change the Authentication Type from its SSH default to
Basic authentication. This displays two additional fields:

User: Username on the repo.

Password: Authentication password (e.g., a GitHub personal access token).

Git Authentication Type settings

On the Git Settings > Scheduled Actions tab, you can schedule a Commit, Push, or Commit & Push
action to occur on a predefined interval.

Additional Git Settings

Page 128 of 680

Git Scheduled Actions selection

For the selected action type, you can define a cron schedule, and a commit message
distinct from the General tab's Default Commit Message. Then click Save.

Saving a Git Scheduled Action

You can schedule only one type of action. To swap to a di�erent type, select it from the
Scheduled global actions drop-down, and resave. To turn o� scheduled Git commands, select None
from the drop-down, and resave.

Once you've configured a remote, a Git Push button appears in the Version Control overlay.

Git Push button

If you enabled the Git Settings > Collapse Actions option, you will instead see a combined
Commit & Push button (or, for changes made on individual Worker Groups, a combined
Commit & Deploy button) in the overlay.

Pushing to a Remote Repo

Page 129 of 680

Git combined actions button

Git combined actions button for a Worker Group

This section anticipates common errors you might see in LogStream's UI, or in the git CLI, when
pushing a commit.

Your first push to a remote repo might fail with one of several failed to push some refs errors.

As a first step in debugging these errors, edit the $CRIBL_HOME/.git/config file to make sure that
its name and email key values match the credentials you've set on your repo provider or git server.

Also make sure that the remote "origin" key value matches the remote you set when you
connected to the remote repo. This example shows all three keys, with placeholder values:

Next, verify the remote repo from the command line, as follows:

In response, git should echo your configured remote twice – once for fetch and once for push
operations.

If all of the above settings are correct, the push is very likely blocking because the remote repo has
some commit history, or was simply created with a readme.md file. For command-line instructions to

Troubleshooting Push Errors

Failed to Push Some Refs

[user]
 name = <your�login�name>
 email = <email@example.com>
[remote "origin"]
 url = https:��<user�name��<token>@github.com/<username>/<repo�name>

cd $CRIBL_HOME/.git
git remote �v

Page 130 of 680

remedy this – by syncing your local repo to its remote – see GitHub's Dealing with Non-Fast-Forward
Errors topic.

A push command might also trigger "large file" warnings or, more seriously, errors of this form
(CLI/GitHub example):

Cribl recommends adding such large files to .gitignore , to exclude them from subsequent push
commands. As the above examples show, typical culprits are large .csv or .mmdb lookup files. A
simple option is to place these files in a $CRIBL_HOME subdirectory that's already listed in
.gitignore – for details, see Managing Large Lookups.

Other available workarounds include staging such files outside $CRIBL_HOME , or using plugins to
accommodate the large files. For GitHub-specific options, see Working with Large Files.

If a remote repo is configured and has the latest known good Master configuration, this section
outlines the general steps to restore the config from that repo.

Restoring from remote repo

Let's assume that the entire $CRIBL_HOME directory of the Master is corrupted, or you're starting
from scratch. Let's also assume that the remote repo has the form:

Large Files Detected

remote: warning: File data/lookups/geo.mmdb is 60.12 MB; this is larger than GitHub's recommende
remote: error: GH001� Large files detected. You may want to try Git Large File Storage - https:��
remote: error: Trace: [##]
remote: error: See http:��git.io/iEPt8g for more information.
remote: error: File groups/default/data/lookups/largelookup.csv is 313.91 MB; this exceeds GitHu

Restoring Master from a Remote Repo

Page 131 of 680

git@github.com��username>/<reponame>.git .

1. Important: In a directory of choice, untar the same Cribl LogStream version that you're trying to
restore, but do not start it.

2. If you are using SSH key authentication, specify the key using the following command:

3. Ensure that you have proper access to the remote repo:

4. Change directory into $CRIBL_HOME and initialize git :
git init

5. Next, add/configure the remote:
git remote add origin git@github.com��username>/<reponame>.git

6. Now set up your local branch to exactly match the remote branch:
git fetch origin

git reset ��hard origin/master

7. Finally, to confirm that the commits match, run this command while in $CRIBL_HOME . Note the
commit hash:

That last step above pulls in all the latest configs from the remote repo, and you should be able to
start the Master as normal. Once up and running, Workers should start checking in a�er about 60
seconds.

GIT_SSH_COMMAND='ssh �i .key �o IdentitiesOnly=yes' git fetch origin

git ls�remote git@github.com:/.git
56331fabb4822eaec4ca0ffd008d6e9974c1e419f HEAD
5631fabb4822eaec4ca0ffd008d6e9974c1e419f refs/heads/master

git show ��abbrev�commit
commit 5631fab (HEAD �� master, origin/master)
Author: First Last
Date: Fri Jan 31 10�16�07 2020 -0500

......

admin: Last commit before failure/crash

Verify cribl.secret⚠

The cribl.secret file – located at $CRIBL_HOME/local/cribl/auth/cribl.secret –
contains the secret key that is used to encrypt sensitive settings on configuration files (e.g.,
AWS Secret Access Key, etc.). Make sure this file is properly restored on the new Master,
because it is required to make encrypted conf file settings usable again.

Page 132 of 680

A .gitignore file specifies files that git should ignore when tracking changes. Each line specifies
a pattern, which should match a file path to be ignored. Cribl LogStream ships with a .gitgnore file
containing a number of patterns/rules, under a section of the file labeled CRIBL SECTION .

.gitignore

User-defined, custom patterns/rules can be safely defined under the CUSTOM SECTION .
Cribl LogStream will not modify the contents of CUSTOM SECTION .

Good candidates to add here include large lookup files – especially large binary database files.
See Troubleshooting: Large Files Detected, above.

If you have files that are skipped with .gitgnore , you will need to back them up and restore them via
means other than Git. E.g., you can periodically copy/rsync them to a backup destination, and then

.gitignore File

Do NOT REMOVE CRIBL and CUSTOM header lines!
DO NOT REMOVE rules under the CRIBL section as they may be reintroduced on update.
You can ONLY comment out rules in the CRIBL section.
You can add new rules in the CUSTOM section.
��� CRIBL SECTION �� DO NOT REMOVE ���
default/ui/**
default/data/ui/**
bin/**
log/**
pid/**
data/uploads/**
diag/**
/state/
��� CUSTOM SECTION �� DO NOT REMOVE ���

<User defined patterns/rules go here>

CRIBL Section

Do Not Remove CRIBL SECTION or CUSTOM SECTION Headers⚠

The CRIBL SECTION is used by Cribl LogStream to define default patterns/rules that ship
with every version. Do not add or remove any of the lines here, because Chuck Norris will
easily find you!

Maslow's theory of higher needs does not apply to Chuck Norris. He has only two needs:
killing people and finding people to kill. Seriously, do not remove them, as they will be
overwritten on the next update. The only modifications that will survive updates are
commented lines.

CUSTOM Section

Files skipped with .gitignore

Page 133 of 680

restore them to their original locations a�er you complete the steps above.

Page 134 of 680

Persistent Queues

Persistent queuing (PQ) is a feature that helps minimize data loss if a
downstream receiver is unreachable. Durability is provided by writing data to
disk for the duration of the outage, and forwarding it upon recovery.

PQs are implemented on the outbound side, meaning that each Source can
take advantage of a Destination's queue.

Each LogStream output has an in-memory queue that helps it absorb
temporary imbalances between inbound and outbound data rates. E.g., if there
is an inbound burst of data, the output will store events in the queue, and
output them at the rate that the receiver can sync (as opposed to blocking or
dropping them). Only when this queue is full will the output impose
backpressure upstream.

Backpressure behavior can be configured to either block or drop. In block
mode, the output will refuse to accept new data until the receiver is ready. The
system will back propagate block "signals" all the way back to the sender
(assuming it supports backpressure, too). In drop behavior, the output will
discard new events until the receiver is ready.

In some environments, the in-memory queues and their block/drop behavior
are acceptable. Persistent queues serve environments where more durability is
required (e.g., outages last longer than memory queues can sustain), or where
upstream senders do not support backpressure (e.g., ephemeral/network
senders),

Engaging persistent queues in these scenarios can help minimize data loss.
Once the in-memory queue is full, the LogStream output will write its data to
disk. Then, when the receiver is ready, the output will start draining the queues
in FIFO (first in, first out) fashion.

Persistent queues are:

How Does Persistent Queueing Work

Persistent Queue Details and Constraints

Page 135 of 680

Available at the output side (i.e., a�er processing).

Engaged only when all of the receivers of that output exert blocking.

Drained when at least one receiver can accept data.

Not infinite in size. I.e., if data cannot be delivered out, you might run out
of disk space.

Not able to fully protect in cases of application failure. E.g., in-memory data
might get lost if a crash occurs.

Not able to protect in cases of hardware failure. E.g., disk failure,
corruption, or machine/host loss.

The following LogStream Destinations support Persistent Queuing:

Splunk Single Instance

Splunk Load Balanced

Splunk HEC

Kinesis

Cloudwatch Logs

SQS

Azure Monitor Logs

Azure Event Hubs

StatsD

StatsD Extended

Graphite

TCP JSON

Syslog

Elasticsearch

Honeycomb

InfluxDB

Wavefront

SignalFx

Persistent Queueing is configured individually for each output that supports it.
To enable persistent queueing, go to the output's (Destination's) configuration

Persistent Queue Support

Configuring Persistent Queueing

Page 136 of 680

page and set the Backpressure Behavior control to Persistent Queueing. This
exposes the following additional controls:

Max file size: The maximum size to store in each queue file before closing
it. Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed
to consume. Once this limit is reached, queueing is stopped, and data
blocking is applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of
the form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Minimum Free Disk Space⚠

Su�icient disk space is required for queuing to operate properly. You
configure the minimum disk space in Settings > General Settings >
Limits > Min Free Disk Space. If available disk space falls below this
threshold, LogStream will stop maintaining persistent queues, and
data loss will begin. The default is 5GB. Be sure to set this on your
worker nodes rather than on the master node when in distributed
mode.

Page 137 of 680

Securing

You can secure Cribl LogStream's API and UI access by configuring SSL. To do so, you
can use your own certs and private keys, or you can generate a pair with OpenSSL, as
shown here:

openssl req �nodes �new �x509 �newkey rsa:2048 �keyout myKey.pem �out

myCert.pem �days 420

This command will generate both a self-signed cert (certified for 420 days), and an
unencrypted, 2048-bit RSA private key.

In the LogStream UI, you can configure the cert via Settings > Certificates. You can
configure the key via:

Settings > Encryption Keys (single-instance deployments), or

Worker Groups > <group‑name> > System Settings > Encryption Keys
(distributed deployments).

Alternatively, you can edit the local/cribl.yml file's api section to directly set the
privKeyPath and certPath attributes. For example:

cribl.yml

You can encode custom, security-related HTTP headers, as needed. As shown in the
examples below, you specify these at Settings > General > API Server Settings >
Advanced > HTTP Headers. Click + Add Header to display extra rows for new key-value
pairs.

api:
 host: 0.0.0.0
 port: 9000
 disabled : false
 ssl:
 disabled: false
 privKeyPath: /path/to/myKey.pem
 certPath: /path/to/myCert.pem
���

Custom HTTP Headers

Page 138 of 680

Custom HTTP headers

This table shows TLS client/server pairs, and encryption defaults, per tra�ic type.

TLS Settings and Tra�ic Types

UI Browser
Cribl
LogStream

Default
disabled

Default
disabled

Default
disabled

API Worker Master
Default
disabled

Default
disabled

Default
disabled

Worker-to-
Master

Worker Master
Default
disabled

Default
disabled

Default
disabled

Data
Any data
sender

Cribl
LogStream
(Source)

Default
disabled

Default
disabled

Default
disabled

Data
Cribl LogStream
(Destination)

Any data
receiver

Default
disabled

Default
disabled

Default
disabled

Authentication ———— ———— ———— ———— ————

• Local Browser
Cribl
LogStream

Default
Disabled

N/A N/A

• LDAP Cribl LogStream
LDAP
Provider

Custom N/A
Default
Disabled

Tra�ic Type TLS Client TLS Server Encryption
Cert
Auth

CN*
Check

Page 139 of 680

What's Next

Securing Data

* Common name
† OpenID Connect

You can configure advanced, system-wide TLS settings for versions, cipher lists, and
ECDH Curve names via Settings > System > General Settings > Default TLS Settings.

Where LogStream Sources and Destinations support TLS, each Source's or
Destination's configuration provides a CA Certificate Path field where you can point to
corresponding Certificate Authority (CA) .pem file(s). However, you can also use
environment variables to manage CAs globally. Here are some common scenarios:

1. How do I add a set of trusted root CAs to the list of trusted CAs that LogStream
trusts?

Set this environment variable in each Worker's environment (e.g., in its systemd
unit file): NODE_EXTRA_CA_CERTS=/path/to/file_with_certs.pem . For details,
see nodejs docs.

2. How do I make LogStream trust all TLS certificates presented by any server it
connects to?

Set this environment variable: NODE_TLS_REJECT_UNAUTHORIZED=0 – for details,
see nodejs docs.

• Splunk Cribl LogStream Splunk
Search
Head

Default
Enabled

N/A Default
Disabled

• OIDC†/ Okta
Browser and
Cribl LogStream

Okta
Default
Enabled

N/A
Enabled
(Browser)

• OIDC/ Google
Browser and
Cribl LogStream

Google
Default
Enabled

N/A
Enabled
(Browser)

CA Certificates and Environment Variables



Page 140 of 680

Access Management

Page 141 of 680

Monitoring

To get an operational view of a Cribl LogStream deployment, you can consult
the following resources.

Select Monitoring from the top menu. This exposes information about tra�ic in
and out of the system, as well as collection jobs and tasks. It tracks events,
bytes, splits by data fields over time, and broader system metrics. Coverage is
limited to the previous 24 hours. (Byte-related charts show the uncompressed
size of processed data.)

Monitoring page

Dense displays are condensed to sparklines for legibility. Hover over the right
edge to display Maximize buttons that you can click to zoom these up to
detailed graphs.

Monitoring Page

Page 142 of 680

Sparklines and fly-out

You can hover over an expanded graph fly-out to display further details.

Throughput details

Select Logs from the Monitoring submenu. LogStream's internal logs and
internal metrics provide comprehensive information about an instance's
status/health, inputs, outputs, Pipelines, Routes, Functions, and tra�ic.

Internal Logs and Metrics

Health Endpoint

Page 143 of 680

Query this endpoint on any instance to check the instance's health. (Details
below.)

LogStream provides the following log types, by originating process:

API Server Logs – These logs are emitted primarily by the API/main
process. They correspond to the top-level cribl.log that shows up on
the Diag page. Filesystem location: $CRIBL_HOME/log/cribl.log

Worker Process(es) Logs – These logs are emitted by all the worker
processes, and are very common in standalone instances or Worker
Nodes. Filesystem location: $CRIBL_HOME/log/worker/N/cribl.log

Worker Group Logs – These logs are emitted by all processes that help a
Master Node configure Worker Groups. Filesystem location:
$CRIBL_HOME/log/group/GROUPNAME/cribl.log

LogStream rotates logs every 5 MB, keeping the most recent 5 logs. In a
distributed deployment, all Workers forward their metrics to the Master Node,
which then consolidates them to provide a deployment-wide view.

LogStream supports forwarding internal logs and metrics to your preferred
external monitoring solution. To send out internal data, go to Data > Sources
and enable the Cribl Internal Source.

This will send all cribl.log logs and internal metrics down through Routes
and Pipelines, just like another data source. Both logs and metrics will have a
field called source , set to the value cribl , which you can use in Route
filters.

For recommendations about useful Cribl metrics to monitor, see Internal
Metrics.

Types of Logs

Forward Logs and Metrics Externally

ℹ CriblMetrics Override

The Disable field metrics setting (in Settings > System > General
Settings > Limits) applies only to metrics sent to the Master Node.
When the Cribl Internal Source is enabled, LogStream ignores this

Page 144 of 680

LogStream exists because logs are great and wonderful things! Using its
Monitoring > Logs page, you can search all LogStream's internal logs at once –
from a single location, for both Master and Worker Nodes. This enables you to
query across all internal logs for strings of interest.

The labels on this screenshot highlight the key controls you can use (see the
descriptions below):

Logs page (controls highlighted)

1. Log file selector: Choose the Node to view. In a Distributed Deployment,
this list will be hierarchical, with Workers displayed inside their Master.

2. Fields selector: Click the Main | All | None toggles to quickly select or
deselect multiple check boxes below.

3. Fields: Select or deselect these check boxes to determine which columns
are displayed in the Results pane at right. (The upper Main Fields group
will contain data for every event; other fields might not display data for all
events.)

4. Time range selector: Select a standard or custom range of log data to
display.

Disable field metrics setting, and full-fidelity data will flow down the
Routes.

Search Internal Logs

Page 145 of 680

5. Search box: To limit the displayed results, enter a JavaScript expression
here. An expression must evaluate to truthy to return results. You can
press Shi�+Enter to insert a newline.

Typeahead assist is available for expression completion:

Click a field in any event to add it to a query:

Click other fields to append them to a query:

Shi�+click to negate a field:

6. Click the Search box's history arrow (right side) to retrieve recent queries:

7. The Results pane displays most-recent events first. Each event's icon is
color-coded to match the event's severity level.

Click individual log events to unwrap an expanded view of their fields:

ℹ To modify the depth of information that is originally input to the
Logs page, see Logging Settings.

Page 146 of 680

Through LogStream's System Settings, you can adjust the level (verbosity) of
internal logging data processed, per logging channel. You can also redact fields
in customized ways.

Select Settings > System > Logging > Levels to open the Manage Logging
Levels page. Here, you can:

Modify one channel by clicking its Level column. In the resulting drop-
down, you can set a verbosity level ranging from error up to debug. (Top of
composite screenshot below.)

Modify multiple channels by selecting their check boxes, then clicking the
Change log level drop-down at the bottom of the page. (Bottom of
composite screenshot below.) You can select all channels at once by
clicking the top check box. You can search for channels at top right.

Manage Logging Levels page

Logging Settings

Change Logging Levels

Page 147 of 680

Select Settings > System > Logging > Redactions: to open the Redact Internal
Log Fields page. Here, you can customize the redaction of sensitive, verbose, or
just ugly data within LogStream's internal logs.

Redact Internal Log Fields page

It's easiest to understand this page's fields from bottom to top:

Default fields: LogStream always redacts these fields. You can't modify this
list.

Additonal fields: Type or paste in the names of other fields you want to
redact. Use a tab or hard return to confirm each entry.

Custom redact string: Unless this field is empty, it defines a literal string
that will override LogStream's default redaction pattern, explained below.

By default, LogStream transforms this page's selected fields by applying the
following redaction pattern:

Echo the field value's first two characters.

Replace all intermediate characters with a literal ��� ellipsis.

Echo the value's last two characters.

Anything you enter in the Custom redact string field will override this default
������� pattern.

Each LogStream instance exposes a health endpoint – typically used in
conjunction with a Load Balancer – that you can use to make operational
decisions.

Change Logging Redactions

Default Redact String

Health Endpoint

Page 148 of 680

curl http(s)���<host��<port>/api/v1/health {"status":"healthy"}

Health Check Endpoint Healthy Response

Page 149 of 680

Internal Metrics

When sending LogStream metrics to a metric system of analysis, such as InfluxDB, Splunk or
Elasticsearch, some metrics are particularly valuable. You can use these metrics to set up alerts when
a Worker Node is having a problem, a Node is down, a Destination is down, a Source stops providing
incoming data, etc.

LogStream reports its internal metrics within the LogStream UI (in the same way that it reports
internal logs at Monitoring > Logs). To expose metrics for capture or routing, enable the Cribl Internal
Source > CriblMetrics section.

By default, LogStream generates internal metrics every 2 seconds. To consume metrics at longer
intervals, you can use or adapt the cribl‑metrics_rollup Pipeline that ships with LogStream.
Attach it to your Cribl Internal Source as a pre‑processing Pipeline. The Pipeline's Rollup Metrics
Function has a default Time Window of 30 seconds, which you can adjust to a di�erent granularity as
needed.

You can also use our public endpoints to automate monitoring using your own external tools.

Five important metrics below are prefixed with total. These power the top of LogStream's
Monitoring dashboard. The first two report on Sources, the remainder on Destinations.

total.in_bytes

total.in_events

total.out_events

total.out_bytes

total.dropped_events (new in LogStream 2.4) – helpful for discovering situations such as:
you've disabled a Destination without noticing.

These total. metrics' values could reflect LogStream's health, but could also report low activity
simply due to the Source system. E.g., logs from a store site will be low at low buying periods.

Also, despite the total. prefix, these metrics are each specific to the Worker Process that's
generating them.

You can distinguish unique metrics by their #input=<id> dimension. For example,
total.in_events|#input=foo would be one unique metric; total.in_events|#input=bar

would be another.

Total Throughput Metrics

Interpreting Total Metrics

Page 150 of 680

Five specific metrics are most valuable for monitoring system health. The first two are LogStream
composite metrics; the remaining three report on your hardware or VM infrastructure.

health.inputs

health.outputs – see the JSON Examples below for both health. metrics.

system.load_avg

system.free_mem

system.disk_used – valuable if you know your disk size, especially for monitoring Persistent
Queues. Here, a 0 value typically indicates that the disk-usage data provider has not yet
provided the metric with data. (Getting the first value should take about one minute.)

All of the above metrics take these three values:

0 = green = healthy.

1 = yellow = warning.

2 = red = trouble.

The health.inputs metrics are reported per Source, and the health.outputs metrics per
Destination. The health.inputs example below has two configured Sources, and two LogStream-
internal inputs. The health.outputs example includes the built-in devnull Destination, and six
user-configured Destinations.

Given all the 0 values here, everything is in good shape!

Five metrics below are valuable for monitoring Persistent Queues' behavior:

pq.queue_size

System Health Metrics

Health Inputs/Outputs JSON Examples

 "health.inputs": [
 { "model": { "ci": "http:http", "input": "http:http" }}, "val": 0},
 { "model": { "ci": "cribl:CriblLogs", "input": "cribl:CriblLogs" }}, "val": 0},
 { "model": { "ci": "cribl:CriblMetrics", "input": "cribl:CriblMetrics" }}, "val": 0},
 { "model": { "ci": "datagen:DatagenWeblog", "input": "datagen:DatagenWeblog" }}, "val": 0
],
 "health.outputs": [
 { "model": { "output": "devnull:devnull" }}, "val": 0},
 { "model": { "output": "router:MyOut1" }}, "val": 0},
 { "model": { "output": "tcpjson:MyTcpOut1" }}, "val": 0},
 { "model": { "output": "router:MyOut2" }}, "val": 0},
 { "model": { "output": "tcpjson:MyTcpOut2" }}, "val": 0},
 { "model": { "output": "router:MyOut3" }}, "val": 0},
 { "model": { "output": "router:MyOut4" }}, "val": 0 }
],

Persistent Queue Metrics

Page 151 of 680

pq.in_bytes

pq.in_events

pq.out_events

pq.out_bytes

These are aggregate metrics. But you can distinguish unique metrics per queue Destination, using the
#output=<id> dimension. For example, pq.out_events|#output=kafka would be one unique

metric; pq.out_events|#output=camus would be another.

Below are basics on using the /system/metrics endpoint, the /system/info endpoint, and the
cribl_wp dimension.

/system/metrics is LogStream's primary public metrics endpoint, which returns most internal
metrics. Note that many of these retrieved metrics report configuration only, not runtime behavior.
For details, see our API Docs.

/system/info generates the JSON displayed in the LogStream UI at Settings > Diagnostics >
System Info. Its two most useful properties are loadavg and memory .

"loadavg": [1.39599609375, 1.22265625, 1.31494140625],

This property is an array containing the 1-, 5-, and 15-minute load averages at the UNIX OS level.
(On Windows, the return value is always [0, 0, 0] .) For details, see the Node.js os.loadavg()
documentation.

"memory": { "free": 936206336, "total": 16672968704 },

Divide total / free to monitor memory pressure. If the result exceeds 90%, this indicates a risky
situation: you're running out of memory.

The cpus metric returns an array of CPU/memory key-value pairs. This provides an alternative way
of determining loadavg , but it requires you to query all your CPUs individually, and then average. In
the example below, Idle = user + nice + sys .

Other Metrics Endpoints and Dimensions

/system/metrics Endpoint

/system/info Endpoint

loadavg Example

memory Example

cpus Alternative

Page 152 of 680

cribl_wp is a useful dimension that identifies the Worker Process that processed each event.

"cpus": [{ "times": {
 "user": 19881260,
 "nice": 39370,
 "sys": 5250130,
 "idle": 76088790,

cribl_wp Metric Dimension

Page 153 of 680

Upgrading

This page outlines how to upgrade Cribl LogStream's Single-Instance or
Distributed Deployment packages along one of the following supported
upgrade paths:

v2.x ==> v2.x

v1.7.x/v2.0.x ==> v2.x.x

v1.6.x or below ==> v1.7.x ==> v2.x.x

This path requires upgrading only the single/standalone node:

1. Stop Cribl LogStream.

2. Uncompress the new version on top of the old one.

On some Linux systems, tar might complain with: cribl/bin/cribl:
Cannot open: File exists . In this case, please remove the
cribl/bin/cribl directory if it's empty, and untar again. If you have

custom functions in cribl/bin/cribl , please move them under
$CRIBL_HOME/local/cribl/functions/ before untarring again.

3. Restart LogStream.

For a distributed deployment, the order of upgrade is: Upgrade first the Master
Node, then upgrade the Worker Nodes, then commit and deploy the changes
on the Master.

⚠ See notes on Upgrading to LogStream 2.3 below.

LogStream does not support direct upgrades from a Beta to a GA
version. To get the GA version running, you must perform a new
install.

Standalone/Single-Instance

Distributed Deployment

Page 154 of 680

1. Commit and deploy your desired last version. (This will be your most
recent checkpoint.)

Optionally, git push to your configured remote repo.

2. Stop Cribl LogStream.

Optional but recommended: Back up the entire $CRIBL_HOME
directory.

Optional: Check that the Worker Nodes are still functioning as
expected. In absence of the Master Node, they should continue to
work with their last deployed configurations.

3. Uncompress the new LogStream version on top of the old one.

4. Restart LogStream and log back in.

5. Wait for all the Worker Nodes to report to the Master, and ensure that they
are correctly reporting the last committed configuration version.

Worker Node version mismatch

Upgrade the Master Node

ℹ Workers' UI will not be available until the Worker version has been
upgraded to match the version on the Master. Errors like those below
will appear until the Worker nodes are upgraded.

Page 155 of 680

These are the same basic steps as when upgrading a Standalone Instance,
above:

1. Stop Cribl LogStream on each Worker Node.

2. Uncompress the new version on top of the old one.

3. Restart LogStream.

1. Ensure that newly upgraded Worker Nodes report to the Master with their
new so�ware version.

2. Commit and deploy the newly updated configuration only a�er all Workers
have upgraded.

Post-2.1.4 upgrade to 2.2

As of version 2.3, LogStream Free and One licenses are permanent, but they
enforce certain restrictions that especially a�ect distributed deployments:

Upgrade the Worker Nodes

Commit and Deploy Changes on the Master Node

Upgrading to LogStream 2.3

Page 156 of 680

Even if you have more than one Worker Group defined, only one Worker
Group will be visible and usable.

This will be the first Group listed in
$CRIBL_HOME/local/cribl/groups.yml – typically, the default

Group. You can edit groups.yml to move the desired Group to the
top.

Your cluster will be limited to 10 Worker Processes across all Worker
Nodes.

LogStream will balance (or rebalance) these Processes as evenly as
possible across the Worker Nodes.

Authentication will fall back to local authorization. You will not be able to
authenticate via Splunk, LDAP, or SSO/OpenID.

Git Push to remote repos will not be supported through the product.

As of LogStream 2.3, licenses no longer need to be deployed directly to Worker
Groups. The Master will push license information down to Worker Groups as
part of the heartbeat.

Follow these steps to upgrade from v.1.7, or higher, of the Cribl App for Splunk:

1. Stop Splunk.

2. Untar/unzip the new app version on top of the old one.

On some Linux systems, tar might complain with: cribl/bin/cribl:
Cannot open: File exists . In this case, please remove the

⚠ If you are upgrading LogStream Free or LogStream One from version
2.2.x or lower, these changes might require you to adjust your
existing configuration and/or workflows.

See Licensing for details on all current license options.

Splunk App Package Upgrade Steps

⚠ See Deprecation note for v.2.1.

Page 157 of 680

cribl/bin/cribl directory if it's empty, and untar again. If you have
custom functions in cribl/bin/cribl , please move them under
$CRIBL_HOME/local/cribl/functions/ before untarring again.

3. Restart Splunk.

As of v.1.7, contrary to prior versions, Cribl's Splunk App package defaults to
Search Head Mode. If you have v.1.6 or earlier deployed as a Heavy Forwarder
app, upgrading requires an extra step to restore this setting:

1. Stop Splunk.

2. Untar/unzip the new app version on top of the old one.

3. Convert to HF mode by running:
$SPLUNK_HOME/etc/apps/cribl/bin/cribld mode�hwf

4. Restart Splunk.

Upgrading from Splunk App v.1.6 (or Lower)

Page 158 of 680

Uninstalling

Stop Cribl LogStream (stopping the main process).

Back up necessary configurations/data.

Remove the directory where Cribl LogStream is installed.

In a distributed deployment, repeat the above steps for the Master instance
and all Worker instances.

Stop Splunk.

Back up necessary configurations/data.

Remove the Cribl App in $SPLUNK_HOME/etc/apps .

Remove the Cribl module in $SPLUNK_HOME/etc/modules/cribl (some
versions).

Uninstalling the Standalone Version

Uninstalling the Splunk App Version

Page 159 of 680

WORKING WITH DATA
Event Model

All data processing in Cribl LogStream is based on discrete data entities
commonly known as events. An event is defined as a collection of key-value
pairs (fields). Some Sources deliver events directly, while others might deliver
bytestreams that need to be broken up by Event Breakers. Events travel from a
Source through Pipelines' Functions, and on to Destinations.

The internal representation of a Cribl LogStream event is as follows:

Cribl LogStream Event Model

Some notes about these representative fields:

Fields that start with a double-underscore are known as internal fields,
and each Source can add one or many to each event. For example, Syslog
adds both a ��inputId and a ��srcIpPort field. Internal fields are used
only within Cribl LogStream, and are not passed down to Destinations.

Upon arrival from a Source, if an event cannot be JSON-parsed, all of its
content will be assigned to _raw .

If a timestamp is not configured to be extracted, the current time (in UNIX
epoch format) will be assigned to _time .

{
 "_raw": "<body of non-JSON parse�able event>",
 "_time": "<timestamp in UNIX epoch format>",
 "��inputId": "<Id/Name of Source that delivered the event>",
 "��other1": "<Internal field1>",
 "��other2": "<Internal field2>",
 "��otherN": "<Internal fieldN>",
 "key1": "<value1>",
 "key2": "<value2>",
 "keyN": "<valueN>",
 "���": "���"
}

Using Capture

Page 160 of 680

One way to see what an event looks like as it travels through the system is to
use the Capture feature. While in Preview (right pane):

1. Click Start a Capture.

2. In the resulting modal, enter a Filter expression to narrow down the events
of interest.

3. Click Capture... and (optionally) change the default Time and/or Event
limits.

4. Select the desired Where to capture option. There are four options:

1. Before the pre-processing Pipeline – Capture events right a�er they're
delivered by the respective Input.

2. Before the Routes – Capture events right a�er the pre-processing
Pipeline, before they go down the Routes.

3. Before the post-processing Pipeline – Capture events right a�er the
Processing Pipeline that actually handled them, before any post-
processing Pipeline.

4. Before the Destination – Capture events right a�er the post-processing
Pipeline, before they go out to the configured Destination.

Page 161 of 680

Event Processing Order

The expanded schematic below shows how all events in the Cribl LogStream
ecosystem are processed linearly, from le� to right.

LogStream in great detail

Here are the stages of event processing:

1. Sources: Data arrives from your choice of external providers. (LogStream
supports Splunk, HTTP/S, Elastic Beats, Amazon Kinesis/S3/SQS, Kafka,
TCP raw or JSON, and many others.)

2. Custom command: Optionally, you can pass this input's data to an external
command before the data continues downstream. This external command
will consume the data via stdin , will process it and send its output via
stdout .

3. Event Breakers can, optionally, break up incoming bytestreams into
discrete events.

4. Fields/Metadata: Optionally, you can add these enrichments to each
incoming event. You add fields by specifying key/value pairs, per Source, in
a format similar to LogStream's Eval function. Each key defines a field
name, and each value is a JavaScript expression (or constant) used to
compute the field's value.

Page 162 of 680

5. Pre-processing Pipeline: Optionally, you can use a single Pipeline to
condition (normalize) data from this input before the data reaches the
Routes.

6. Routes map incoming events to Processing Pipelines and Destinations. A
Route can accept data from multiple Sources, but each Route can be
associated with only one Pipeline and one Destination.

7. Processing Pipelines perform all event transformations. Within a Pipeline,
you define these transformations as a linear series of Functions.
A Function is an atomic piece of JavaScript code invoked on each event.

8. Post-processing Pipeline: Optionally, you can append a Pipeline a to
condition (normalize) data from each Processing Pipeline before the data
reaches its Destination.

9. Destinations: Each Route/Pipeline combination forwards processed data
to your choice of streaming or storage Destination. (LogStream supports
Splunk, Syslog, Elastic, Kafka/Confluent, Amazon S3, Filesystem/NFS, and
many other options.)

Pipelines Everywhereℹ

All Pipelines have the same basic internal structure – they're a series
of Functions. The three Pipeline types identified above di�er only in
their position in the system.

Page 163 of 680

Routes

Before incoming events are transformed by a processing Pipeline, Cribl
LogStream uses a set of filters to first select a subset of events to deliver to the
correct Pipeline. This selection is made via Routes.

Routes apply filter expressions on incoming events to send matching results to
the appropriate Pipeline. Filters are JavaScript-syntax–compatible expressions
that are configured with each Route. Examples are:

true

source��'foo.log' �� fieldA��'bar'

Routes are evaluated in their display order, top‑>down. The stats shown in the
Bytes/Events (toggle) column are for the most-recent 15 minutes.

Routes and bytes

In the example above, incoming events will be evaluated first against the Route
named speedtest, then against mtr, then against statsd, and so on. At the end,

What Are Routes

How Do Routes Work

ℹ There can be multiple Routes in the system, but each Route can be
associated with only one Pipeline.

Page 164 of 680

the main Route serves as a catch-all for any event that does not match any of
the other Routes.

Above, note the selectors to toggle between displaying Events versus Bytes,
and to display In versus Out.

When you condense the Routes page to a narrower viewport, LogStream
consolidates the In/Out/Dropped selectors onto an expanded Bytes/Events
drop-down menu, as shown below.

Routes and events (combined menu)

To apply a Route before another, simply drag it vertically. Use the sliders to turn
Routes On/O� inline, as necessary, to facilitate development and debugging.

You can press the] (right-bracket) shortcut key to toggle between the
Preview pane and the expanded Routes display shown above. (This works
when no field has focus.)

Click a Route's Options (...) menu to display multiple options for inserting,
grouping, moving, copying, or deleting Routes, as well as for capturing sample
data through the selected Route.

Managing the Routes Page

Page 165 of 680

Route > Options menu

Copying a Route displays the confirmation message and the (highlighted) Paste
button shown below.

Paste button for copied Route

Pasting creates an exact duplicate of the Route, with a warning indicator to
change its duplicate name.

Pasted duplicate Route

Page 166 of 680

You can configure each Route with an output Destination that denotes where
to send events a�er they're processed by the Pipeline.

When an event that enters the system and matches a Route-Pipeline pair, it will
usually be either:

Dropped by a function, or

Transformed (optionally) and exit the system.

This behavior is ensured by the Final toggle in Route settings. It defaults to
Yes , meaning that matched events will be consumed by that Route, and will

not be evaluated against any other Routes that sit below it.

If the Final toggle is set to No , clone(s) of the matching events will be
processed by the configured Pipeline, and the original events will be allowed to
continue their trip to be evaluated and/or processed by other Route-Pipeline
pairs.

Output Destination

The Final Toggle

Page 167 of 680

Depending on your cloning needs, you might want to follow a most-specific
first or a most-general first processing strategy. The general goal is to
minimize the number of filters/Routes an event gets evaluated against. For
example:

If cloning is not needed at all (i.e., all Final toggles stay at default), then it
makes sense to start with the broadest expression at the top, so as to
consume as many events as early as possible.

If cloning is needed on a narrow set of events, then it might make sense to
do that upfront, and follow it with a Route that consumes those clones
immediately a�er.

A Route group is a collection of consecutive Routes that can be moved up and
down the Route stack together. Groups help with managing long lists of
Routes. They are a UI visualization only: While Routes are in a group, those
Routes maintain their global position order.

Routes display an "unreachable" warning indicator (orange triangle) when
data can't reach them.

Unreachable Route warning, on hover

This condition will occur when, with your current configuration, any Route
higher in the stack matches all three of these conditions:

Previous Route is enabled (slider is set to On).

Previous Route is final (Final slider is set to Yes).

Final Flag and Cloning Considerations

Route Groups

ℹ Route groups work much like Function groups, o�ering similar UI
controls and drag-and-drop options.

Unreachable Routes

Page 168 of 680

Previous Route's Filter expression evaluates to true, (e.g., true , 1 ���
1 , etc.).

Note that the third condition above can be triggered intermittently by a
randomizing method like Math.random() . This might be included in a
previous Route's own Filter expression, or in a Pipeline Function (such as one
configured for random data sampling).

Unreachable Route warnings, many

Output Router Destinations o�er another way to route data. These function as
meta-Destinations, in that they allow selection of actual Destinations based on
rules. Rules are evaluated in order, top‑>down, with the first match being the
winner.

Routing with Output Router

Page 169 of 680

Pipelines

A�er your data has been matched by a Route, it gets delivered to a Pipeline. A
Pipeline is a list of Functions that work on the data.

Select Pipelines from LogStream's (or a Worker Group's) top menu. To
configure a new Pipeline, click + Add Pipeline.

Events are always delivered to the beginning of a Pipeline via a Route. The data
in the Stats column shown below are for the last 15 minutes.

Pipelines and Route inputs

Within the Pipeline, events are processed by each Function, in order. A Pipeline
will always move events in the direction that points outside of the system. This

What Are Pipelines

ℹ As with Routes, the order in which the Functions are listed matters. A
Pipeline's Functions are evaluated in order, top‑>down.

Accessing Pipelines

How Do Pipelines Work

ℹ You can press the] (right-bracket) shortcut key to toggle between
the Preview pane and an expanded Pipelines display. This works
when no field has focus.

Page 170 of 680

is on purpose, to keep the design simple and avoid potential loops.

Pipeline Functions

Click the gear icon at top right to open the Pipeline's Settings. Here, you can
attach the Pipeline to a Route. In the Settings' Async function timeout (ms)
field, you can enter a bu�er to adjust for Functions that might take much
longer to execute than normal. (An example would be a Lookup Function
processing a large lookup file.)

Pipeline Settings

Click Advanced Mode to edit the Pipeline's definition as JSON text. In this
mode's editor, you can directly edit multiple values. You can also use the
Import and Export buttons here to copy and modify existing Pipeline
configurations.

ℹ You can streamline the above display by organizing related
Functions into Function groups.

Pipeline Settings

Advanced Mode (JSON Editor)

Page 171 of 680

Advanced Pipeline Editing

Click a Pipeline's Actions (...) menu to display options for copying or deleting
the Pipeline.

Pipeline > Actions menu

Copying a Pipeline displays the confirmation message and the (highlighted)
Paste button shown below.

Paste button for copied Pipeline

Pipeline Actions

Page 172 of 680

Pasting prompts you to confirm, or change, a modified name for the new
Pipeline. The result will be an exact duplicate of the original Pipeline in all but
name.

Saving/renaming a pasted Pipeline

You can apply various Pipeline types at di�erent stages of data flow. All
Pipelines have the same basic internal structure (a series of Functions) – the
types below di�er only in their position in the system.

Pre-processing, processing, and post-processing Pipelines

Types of Pipelines

Pre-Processing Pipelines

Page 173 of 680

These are Pipelines that are attached to a Source to condition (normalize) the
events before they're delivered to a processing Pipeline. They're optional.

Typical use cases are event formatting, or applying Functions to all events of an
input. (E.g., to extract a message field before pushing events to various
processing Pipelines.)

You configure these Pipelines just like any other Pipeline, by selecting Pipelines
from the top menu. You then attach your configured Pipeline to individual
Sources, using the Source's Pre‑Processing > Pipeline drop-down.

Fields extracted using pre-processing Pipelines are made available to Routes.

These are "normal" event processing Pipelines, attached directly to Routes.

These Pipelines are attached to a Destination to normalize the events before
they're sent out. A post-processing Pipeline's Functions apply to all events
exiting to the attached Destination.

Typical use cases are applying Functions that transform or shape events per
receiver requirements. (E.g., to ensure that a _time field exists for all events
bound to a Splunk receiver.)

You configure these Pipelines as normal, by selecting Pipelines from the top
menu. You then attach your configured Pipeline to individual Destinations,
using the Destination's Post‑Processing > Pipeline drop-down.

You can also use a Destination's Post‑Processing options to add System Fields
like cribl_input , identifying the LogStream Source that processed the
events.

Functions in a Pipeline are equipped with their own filters. Even though filters
are not required, we recommend using them as o�en as possible.

As with Routes, the general goal is to minimize extra work that a Function will
do. The fewer events a Function has to operate on, the better the overall
performance.

Processing Pipelines

Post-Processing Pipelines

Best Practices for Pipelines

Page 174 of 680

For example, if a Pipeline has two Functions, f1 and f2, and if f1 operates on
source 'foo' and f2 operates on source 'bar' , it might make sense to

apply source��'foo' versus source��'bar' filters on these two Functions,
respectively.

Page 175 of 680

Data Onboarding

Onboarding data into Cribl LogStream can vary in complexity, depending on
your organization's needs, requirements, and constraints. Proper onboarding
from all Sources is key to system performance, troubleshooting, and ultimately
the quality of data and decisions both in LogStream and in downstream
Destinations.

Typically, a data onboarding process revolves around these steps, both before
and a�er turning on the Source:

Create configuration settings.

Verify that settings do the right thing.

Iterate.

Below, we break down individual steps.

Cribl recommends that you take the following steps to verify and tune
incoming data, before it starts flowing.

Use a sample of your real data in Data Preview. Sample data can come from a
sample Source file that you upload or paste into LogStream.

You can also obtain sample data in a live data capture from a Source. One way
to do this before going to production is to configure your Source with a devnull
Pipeline (which just drops all events) as a pre-processing Pipeline. Then, let
data flow in for just long enough to capture a su�icient sample.

While events can be processed almost arbitrarily by functions in LogStream
Pipelines, make sure you understand the event processing order. This is very

General Onboarding Steps

Before Turning On the Source

Preview Sample Data

Check the Processing Order

Page 176 of 680

important, as it tells you exactly where certain processing steps occur. For
instance, as we'll see just below, quite a few steps can be accomplished at the
Source level, before data even hits LogStream Routes.

Source-level processing options

Where supported, data streams will be handled by custom commands. These
are external system commands that can (optionally) be used to pre-process the
data. You can specify any command, script, etc., that consumes via stdin and
outputs via stdout .

Verify that such commands are doing what's expected, as they are the very first
in a series of processing steps.

Next, data streams are handled by Event Breakers, which:

Convert data streams into discrete events.

Extract and assign timestamps to each event.

If the resulting events do not look correct, feel free to use non-default breaking
rules and timestamp recognition patterns. Downstream, you can use the Auto
Timestamp function to modify _time as needed, if timestamps were not
recognized properly. Examples of such errors are:

Timestamps too far out in the future or past

Custom Command

Event Breakers

Page 177 of 680

Wrong timezone.

Incorrect timestamp is selected from multiple timestamps present in the
event.

Next, events can be enriched with Fields (Metadata). This is where you'd add
static or dynamic fields to all events delivered by a particular Source.

Next, you can optionally configure a pre-processing Pipeline on a particular
Source. This is extremely useful in these cases:

Drop non-useful events as early as possible (so as to save on CPU
processing).

Normalize events from this Source to conform a certain shape or structure.

Fix/touch up events accordingly. E.g., if event breakers assigned the wrong
timestamp, this is the best place to use the Auto Timestamp function to
adjust _time .

Verify, verify, verify your data's integrity before turning on the Source.

Use data Destinations to verify that certain metrics of interest are accurate.
This will depend significantly on the capabilities of each Destination, but here's
a basic checklist list of things to ensure:

Timestamps are correct.

All necessary fields are assigned to events.

All expected events show up correctly. (E.g., if a Drop or Suppress Function
was configured, ensure that it's not dropping unintended events.)

Throughput – both in bytes and in events per second (EPS) – is what's
expected, or is within a certain tolerance.

Fields (Metadata)

Pre-Processing Pipeline

We Can't Say This Enough

A�er Turning On the Source

Iterate

Page 178 of 680

Iterate on the steps above as necessary. E.g., adjust fields values and
timestamps as needed.

� Remember that there is almost always a workaround. Any arbitrary
event transformation that you need is likely just a Function or two
away.

Page 179 of 680

Functions

When events enter a Pipeline, they're processed by a series of Functions. At its
core, a Function is code that executes on an event, and it encapsulates the
smallest amount of processing that can happen to that event.

The term "processing" means a variety of possible options: string replacement,
obfuscation, encryption, event-to-metrics conversions, etc. For example, a
Pipeline can be composed of several Functions – one that replaces the term
foo with bar , another one that hashes bar , and a final one that adds a

field (say, dc=jfk-42) to any event that matches source��'us�nyc�
application.log' .

Functions are atomic pieces of JavaScript code that are invoked on each event
that passes through them. To help improve performance, Functions can be
configured with filters to further scope their invocation to matching events
only.

You can add as many Functions in a Pipeline as necessary, though the more you
have, the longer it will take each event to pass through. Also, you can turn
Functions On/O� within a Pipeline as necessary. This enables you to preserve
structure as you optimize or debug.

What Are Functions

How Do They Work

Page 180 of 680

Functions stack in a Pipeline

You can reposition Functions up or down the Pipeline stack to adjust their
execution order. Use a Function's le� grab handle to drag and drop it into
place.

Similar to the Final toggle in Routes, the Final toggle here controls the
flow of events at the Function level. Its states are:

No (default): means that matching events processed by this Function will
be passed down to the next Function.

Yes : means that this Function is the last one that will be applied to
matching events. All Functions further down the Pipeline will be skipped. A
Function with Final set to Yes will display an F indicator in the Pipeline
stack.

Cribl LogStream ships with several Functions out-of-the-box, and you can
chain them together to meet your requirements. For more details, see
individual Functions, and the Use Cases section, within this documentation.

The Final Toggle

Out-of-the-Box Functions

Page 181 of 680

For an overview of adding custom Functions to Cribl LogStream, see our blog
post, Extending Cribl: Building Custom Functions.

Add, remove, update fields:
Eval, Lookup, Regex Extract

Find & Replace, including basic sed -like, obfuscate, redact, hash, etc.:
Mask, Eval

Add GeoIP information to events:
GeoIP

Extract fields:
Regex Extract, Parser

Extract timestamps:
Auto Timestamp

Drop events:
Drop, Regex Filter, Sampling, Suppress, Dynamic Sampling

Sample events (e.g, high-volume, low-value data):
Sampling, Dynamic Sampling

Suppress events (e.g, duplicates, etc.):
Suppress

Serialize events to CEF format (send to various SIEMs):
CEF Serializer

Serialize / change format (e.g., convert JSON to CSV):
Serialize

Convert JSON arrays into their own events:
JSON Unroll, XML Unroll

Flatten nested structures (e.g., nested JSON):
Flatten

Aggregate events in real-time (i.e. statistical aggregations):
Aggregations

Custom Functions

What Functions to Use When

Page 182 of 680

Convert events to metrics format:
Publish Metrics, Prometheus Publisher (beta)

Resolve hostname from IP address:
Reverse DNS (beta)

Extract numeric values from event fields, converting them to type number :
Numerify

Send events out to a command or a local file, via stdin , from any point in
a Pipeline:
Tee

Convert an XML event's elements into individual events:
XML Unroll

Duplicate events in the same Pipeline, with optional added fields:
Clone

Add a text comment within a Pipeline's UI, to label steps without changing
event data:
Comment

A Function group is a collection of consecutive Functions that can be moved up
and down a Pipeline's Functions stack together. Groups help you manage long
stacks of Functions by streamlining their display. They are a UI visualization
only: While Functions are in a group, those Functions maintain their global
position order in the Pipeline.

To build a group from any Function, click the Function's ••• (Options) menu,
then select Group Actions > Create Group.

Function Groups

ℹ Function groups work much like Route groups.

Page 183 of 680

Creating a group

You'll need to enter a Group Name before you can save or resave the Pipeline.
Optionally, enter a Description.

Naming a group

Once you've saved at least one group to a Pipeline, other Functions'
••• (Options) > Group Actions submenus will add options to Move to Group or
Ungroup/Ungroup All.

Expanded Group Actions submenu

You can also use a Function's le� grab handle to drag and drop it into, or out
of, a group. A saved group that's empty displays a dashed target into which you
can drag and drop Functions.

Page 184 of 680

Drag-and-drop target

Page 185 of 680

Auto Timestamp

The Auto Timestamp Function extracts time to a destination field, given a source field in the event.
By default, Auto Timestamp makes a first best e�ort and populates _time . When you add a sample
(via paste or a local file), you should accomplish time and event breaking at the same time you add the
data.

This Function allows fine-grained and powerful transformations to populate new time fields, or to
edit existing time fields. You can use the Function's Additional timestamps section to create custom
time fields using regex and custom JavaScript strptime functions.

Filter: Filter expression (JS) that selects data to be fed through the Function. The default true
setting passes all events through the Function.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Source field: Field to search for a timestamp. Defaults to _raw .

Destination field: Field to place extracted timestamp in. Defaults to _time . Supports nested
addressing.

Default timezone: Select a timezone to assign to timestamps that lack timezone info. Defaults to
Local . (This drop-down includes support for legacy names: EST5EDT , CST6CDT , MST7MDT , and
PST8PDT .)

Additional timestamps: Add Regex/Strptime pairs to extract additional timestamp formats.

Regex: Regex, with first capturing group matching the timestamp.

Strptime format: Select or enter the strptime format for the captured timestamp.

Click Add timestamp to add more rows.

Description

� The Auto Timestamp Function uses the same basic algorithm as the Event Breaker Function
and the C.Time.timestampFinder() native method.

Usage

Advanced Settings

Page 186 of 680

Time expression: Expression with which to format extracted time. Current time, as a JavaScript Date
object, is in global time . Defaults to time.getTime() / 1000 .

Start scan o�set: How far into the string to look for a time string.

Max timestamp scan depth: Maximum string length at which to look for a timestamp.

Default time: How to set the time field if no timestamp is found. Defaults to Current time.

Two fields enable you to constrain (clamp) the parsed timestamp, to prevent the Function from
mistakenly extracting non-time values as unrealistic timestamps:

Earliest timestamp allowed: Enter a string that specifies the latest allowable timestamp, relative
to now. (Sample value: -42years . Default value: -420weeks .) Parsed values earlier than this
date will be set to the Default time.

Future timestamp allowed: Enter a string that specifies the latest allowable timestamp, relative to
now. (Sample value: +42days . Default value: +1week .) Parsed values a�er this date will be set to
the Default time.

Referencing https://github.com/d3/d3-time-format#locale_format:

ℹ For details about Cribl LogStream's Library (native) time methods, see: C.Time – Time
Functions.

Format Reference

%a - abbreviated weekday name.*
%A - full weekday name.*
%b - abbreviated month name.*
%B - full month name.*
%c - the locale’s date and time, such as %x, %X.*
%d - zero�padded day of the month as a decimal number [01,31].
%e - space�padded day of the month as a decimal number [1,31]; equivalent to %_d.
%f - microseconds as a decimal number [000000, 999999].
%H - hour (24-hour clock) as a decimal number [00,23].
%I - hour (12-hour clock) as a decimal number [01,12].
%j - day of the year as a decimal number [001,366].
%m - month as a decimal number [01,12].
%M - minute as a decimal number [00,59].
%L - milliseconds as a decimal number [000, 999].
%p - either AM or PM.*
%Q - milliseconds since UNIX epoch.
%s - seconds since UNIX epoch.
%S - second as a decimal number [00,61].
%u - Monday�based (ISO 8601) weekday as a decimal number [1,7].
%U - Sunday�based week of the year as a decimal number [00,53].
%V - ISO 8601 week of the year as a decimal number [01, 53].
%w - Sunday�based weekday as a decimal number [0,6].
%W - Monday�based week of the year as a decimal number [00,53].
%x - the locale’s date, such as %�m/%�d/%Y.*
%X - the locale’s time, such as %-I�%M�%S %p.*
%y - year without century as a decimal number [00,99].

Page 187 of 680

Directives marked with an asterisk (*) might be a�ected by the locale definition.

In order to use auto timestamping upon ingestion, the formatting used must match the %Z
parameters above. E.g., this Function will automatically parse all of these formats:

2020/06/10T17�17�35.004-0700

2020/06/10T17�17�35.004-07�00

2020/06/10T17�17�35.004-07

2020/06/10T10�17�35.004Z

2020/06/10T11�17�35.004 EST

To parse other formats, you can use the Additional Timestamps section’s internal Regex or Strptime
Format operators.

Filter: name.startsWith('kumquats') �� value��'specific string here'

This will allow the Auto Timestamp Function to act only on events matching the specified parameters.

To add this sample (a�er creating an Auto Timestamp Function with the above Filter expression): Go
to Preview > Add a Sample > Paste a Sample, and add the data snippet above. Do not make any
changes to timestamping or line breaking, and select Save as Sample File.

By default, LogSteram will inspect the first 150 characters, and extract the first valid timestamp it sees.
You can modify this character limit under Advanced Settings > Max Timestamp Scan Depth.

LogStream grabs the first part of the event, and settles on the first matching value to display for
time :

_time 1569006235

GMT: Friday, 20 September 2019, 7:03:55 PM GMT
Your Local Time: Friday, 20 September 2019 PDT, 12:03:55 AM GMT -07:00

Because no explicit timezone has been set (under Default Timezone), _time inherits the Local
timezone, which in this example is GMT -07�00 .

%Y - year with century as a decimal number.
%Z - time zone offset, such as -0700, -07�00, -07, or Z.
�� - a literal percent sign (%).

Complying with the Format

Basic Example

Sample:

Sep 20 12�03�55 PA-VM 1,2019/09/20 13�03�58,CRIBL,TRAFFIC,end,2049,2019/09/20 14�03�58,314.817.1

Page 188 of 680

The datetime.strptime() method creates a datetime object from the string passed in by the Regex
field.

Here, we'll use datetime.strptime() to match a timestamp in AM/PM format at the end of a line.

Sample:

This is a sample event that will push the datetime values further on inside the

event. This is still a sample event and finally here is the datetime information!:

Server_UTC_Timestamp="04/27/2020 2�30�15 PM"

Max timestamp scan depth: 200

Click to add Additional timestamps:

Regex: (\d{1,2})\/(\d{2})\/(\d{4})\s(\d{1,2})�(\d{2})�(\d{2})\s(\w{2})

Strptime format: '%m/%d/%Y %H�%M�%S %p'

Timezone Dependencies and Detailsℹ

LogStream uses ICU for timezone information. It does not query external files or the
operating system. The bundled ICU is updated periodically.

For additional timezone details, see: https://www.iana.org/time-zones.

Advanced Settings Example

Gnarly Detailsℹ

This Function supports the %f (microseconds) directive, but LogStream will truncate it to
millisecond resolution.

For further examples, see Extracting Timestamps from Messy Logs.

Page 189 of 680

Aggregations

The Aggregations Function performs aggregate statistics on event data.

Upon shutdown, LogStream will attempt to flush the bu�ers that hold
aggregated data, to avoid data loss. If you set a Time window greater than an
hour, Cribl recommends adjusting the Aggregation memory limit and/or
Aggregation event limit to prevent the system from running out of memory.
This is especially necessary for high-cardinality data. (Both settings default to
unlimited, but we recommend setting defined limits, based on testing.)

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults
to No .

Time window: The time span of the tumbling window for aggregating events.
Must be a valid time string (e.g., 10s). Must match pattern \d+[sm]$.

Aggregates: Aggregate function(s) to perform on events.
E.g., sum(bytes).where(action��'REJECT').as(TotalBytes) . Expression
format: aggFunction(<FieldExpression>).where(<FilterExpression>)
.as(<outputField>) . See more examples below.

Note: When used without as() , the aggregate's output will be placed in a
field labeled <aggFunction>_<fieldName> . If there are conflicts, the last
aggregate wins. For example, given two aggregates –
sum(bytes).where(action��'REJECT') and sum(bytes) – the latter

one (sum_bytes) is the winner.

Description

Safeguarding Data

Usage

Page 190 of 680

Group by Fields: Fields to group aggregates by. Supports wildcard expressions.

Evaluate fields: Set of key/value pairs to evaluate and add/set. Fields are
added in the context of an aggregated event, before they’re sent out. Does not
apply to passthrough events.

Cumulative aggregations: Determines if the aggregations should be retained
for cumulative aggregations, or reset to 0, when flushing out an aggregation
table event. Defaults to No .

Lag tolerance: The lag tolerance represents the tumbling window tolerance to
late events. Must be a valid time string (e.g., 10s). Must match pattern \d�
[sm]$.

Idle bucket time limit: The amount of time to wait before flushing a bucket that
has not received events. Must be a valid time string (e.g., 10s). Must match
pattern \d+[sm]$.

Passthrough mode : Determines whether to pass through the original events
along with the aggregation events. Defaults to No .

Metrics mode: Determines whether to output aggregates as metrics. Defaults
to No , causing aggregates to be output as events.

Su�icient stats mode: Determines whether to output only statistics su�icient
for the supplied aggregations. Defaults to No , meaning output richer
statistics.

Output prefix: A prefix that is prepended to all of the fields output by this
Aggregations Function.

Aggregation event limit: The maximum number of events to include in any
given aggregation event. Defaults to unlimited. Must be at least 1 .

Aggregation memory limit: The memory usage limit to impose upon
aggregations. Defaults to unlimited (i.e., the amount of memory available in the
system). Accepts numerals with multiple-byte units, like KB, MB, GB, etc. (such:
as 4GB .)

Time Window Settings

Output Settings

Advanced Settings

Page 191 of 680

avg(expr:FieldExpression) : Returns the average of the values of the
parameter.
count(expr:FieldExpression) : Returns the number of occurrences of the

values of the parameter.
dc(expr: FieldExpression, errorRate: number = 0.01) : Returns the

estimated number of distinct values of the <expr> parameter, within a
relative error rate.
distinct_count(expr: FieldExpression, errorRate: number = 0.01) :

Returns the estimated number of distinct values of the <expr> parameter,
within a relative error rate.
earliest(expr:FieldExpression) : Returns the earliest (based on _time)

observed value of the parameter.
first(expr:FieldExpression) : Returns the first observed value of the

parameter.
last(expr:FieldExpression) : Returns the last observed value of the

parameter.
latest(expr:FieldExpression) : Returns the latest (based on _time)

observed value of the parameter.
list(expr:FieldExpression[,max:number]) : Returns a list of values of the

parameter.

Optional max parameter limits the number of values returned. If omitted,
the default is 100 . If set to 0 , will return all values.

max(expr:FieldExpression) : Returns the maximum value of the parameter.
median(expr:FieldExpression) : Returns the middle value of the sorted

parameter..
min(expr:FieldExpression) : Returns the minimum value of the parameter.
per_second(expr:FieldExpression) : Returns the per second rate (based

on _time) observed value of the parameter.
perc(level: number, expr: FieldExpression) : Returns <level>

percentile value of the numeric values of the <expr> parameter.
rate(expr:FieldExpression, timeString: string = '1s') : Returns the

rate (based on _time) observed value of the parameter.
stddev(expr:FieldExpression) : Returns the sample standard deviation of

the values of the parameter.
stddevp(expr:FieldExpression) : Returns the population standard

deviation of the values of the parameter.
sum(expr:FieldExpression) : Returns the sum of the values of the

List of Aggregate Functions

Page 192 of 680

parameter.
sumsq(expr:FieldExpression) : Returns the sum of squares of the values of

the parameter.
values(expr:FieldExpression[,max:number,errorRate:number]) :

Returns a list of distinct values of the parameter.

Optional max parameter limits the number of values returned; if omitted,
the default is 0 , meaning return all distinct values.

Optional errorRate parameter controls how accurately the function
counts “distinct” values. Range is 0 – 1 ; if omitted, the default value is
0.01 . Higher values allow higher error rates (fewer unique values

recognized), with the o�setting benefit of less memory usage.

variance(expr:FieldExpression) : Returns the sample variance of the
values of the parameter.
variancep(expr:FieldExpression) : Returns the population variance of the

values of the parameter.

As events are aggregated into windows, there is a good chance that most will
arrive later than their event time. For instance, given a 10s window
(10�42�00 - 10�42�10), an event with timestamp 10�42�03 might come in
2 seconds later at 10�42�05 .

In several cases, there will also be late, or lagging, events that will arrive a�er
the latest time window boundary. For example, an event with timestamp
10�42�04 might arrive at 10�42�12 . Lag Tolerance is the setting that governs

how long to wait – a�er the latest window boundary – and still accept late
events.

How Do Time Window Settings Work?

Lag Tolerance

Page 193 of 680

The "bucket" of events is said to be in Stage 1, where it's still accepting new
events, but it's not yet finalized. Notice how in the third case, an event with
event time 10�42�09 arrives 1 second past the window boundary at
10�42�11 , but it's still accepted because it happens before the lag time

expires.

A�er the lag time expires, the bucket moves to Stage 2.

Page 194 of 680

If the bucket is created from a historic stream, then the bucket is initiated in
Stage 2. Lag time is not considered. A "historic" stream is one where the latest
time of a bucket is before now() . E.g., if the window size is 10s, and
now()=10�42�42 , an event with event_time=10 will be placed in a Stage 2

bucket with range 10�42�10 - 10�42�20 .

While Lag Tolerance works with event time, Idle Bucket Time Limit works on
arrival time (i.e., real time). It is defined as the amount of time to wait before
flushing a bucket that has not received events.

A�er the Idle Time limit is reached, the bucket is "flushed" and sent out of the
system.

Assume we're working with VPC Flowlog events that have the following
structure:

version account_id interface_id srcaddr dstaddr srcport dstport

protocol packets bytes start end action log_status

For example:

2 99999XXXXX eni-02f03c2880e4aaa3 10.0.1.70 10.0.1.11 9999 63030

6 6556 262256 1554562460 1554562475 ACCEPT OK

2 496698360409 eni-08e66c4525538d10b 37.23.15.38 10.0.2.232 4373

8108 6 1 52 1554562456 1554562466 REJECT OK

Every 10s, compute sum of bytes and output it in a field called TotalBytes .

Idle Bucket Time Limit

Examples

Scenario A:

Page 195 of 680

Time Window: 10s
Aggregations: sum(bytes).as(TotalBytes)

Every 10s, compute sum of bytes , output it in a field called TotalBytes ,
group by srcaddr .

Time Window: 10s
Aggregations: sum(bytes).as(TotalBytes)
Group by Fields: srcaddr

Every 10s, compute sum of bytes but only where action is REJECT , output it
in a field called TotalBytes , group by srcaddr .

Time Window: 10s
Aggregations: sum(bytes).where(action��'REJECT').as(TotalBytes)
Group by Fields: srcaddr

Every 10s, compute sum of bytes but only where action is REJECT , output it
in a field called TotalBytes . Also, compute distinct count of srcaddr .

Time Window: 10s
Aggregations:
sum(bytes).where(action��'REJECT').as(TotalBytes)

distinct_count(srcaddr).where(action��'REJECT')

Scenario B:

Scenario C:

Scenario D:

ℹ For further examples, see Engineering Deep Dive: Streaming
Aggregations Part 2 – Memory Optimization

Page 196 of 680

CEF Serializer

The CEF Serializer takes a list of fields and/or values, and formats them in the
Common Event Format (CEF) standard. CEF defines a syntax for log records. It
is composed of a standard prefix, and a variable extension formatted as a
series of key-value pairs.

CEF�Version|Device Vendor|Device Product|Device Version|Device

Event Class ID|Name|Severity|[Extension]

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults
to No .

Output field: The field to which the CEF formatted event will be output. Nested
addressing supported. Defaults to _raw .

CEF Header field definitions. The field values below will be written pipe (|)–
delimited in the Output Field. Names cannot be changed. Values can be
computed with JS expression, or can be constants.

cef_version: Defaults to CEF�0 .

device_vendor: Defaults to Cribl .

device_product: Defaults to Cribl .

device_version: Defaults to C.version .

device_event_class_id: Defaults to 420 .

Description

Format

Usage

Header Fields

Page 197 of 680

name: Defaults to Cribl Event .

severity: Defaults to 6 .

CEF Extension field definitions. Field names and values will be written in
key=value format. Select each field's Name from the drop-down list. Values

can be computed with JS expressions, or can be constants.

For each CEF field, allowed values include strings, plus any custom Cribl
function. For example, if using a lookup:

Name: Name
Value expression: C.Lookup('lookup�exact.csv', 'foo').match('abc',
'bar')

This can be used for any of the CEF Header Fields.

The resulting event has the following structure for an Output Field set to
_CEF_out :

_CEF_out:CEF�0|Cribl|Cribl|42.0-61c12259|420|Business Group

6|6|c6a1Label=Colorado_Ext_Bldg7

Extension Fields

Example

Page 198 of 680

Clone

The Clone Function clones events, with optional added fields. Cloned events
will be sent to the same Destination as the original event, because they are in
the same Pipeline.

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults
to No .

Clones: Create clones with the specified fields added and set.

Fields: Set of key-value pairs to add. Nested addressing is supported.

In this example, the Destination will receive a clone with an env field set to
staging .

Field: env
Value: staging

Description

Usage

Examples

Page 199 of 680

Comment

The Comment Function adds a text comment in a Pipeline. It makes no changes
to event data. The added comment is visible only within the Pipeline UI, where
it is useful for labeling Pipeline steps.

Comment: Add your comment as plain text in this field.

This comment labels the Pipeline's next function:

Description

Usage

Examples

Page 200 of 680

Page 201 of 680

DNS Lookup

The DNS Lookup Function o�ers two operations useful in enriching security
and other data:

DNS lookups based on host name as text, resolving to A record (IP address)
or to other record types.

Reverse DNS Lookup. (This duplicates LogStream's existing Reverse DNS
Function, which is now deprecated.)

To reduce DNS lookups and minimize latency, the DNS Lookup Function
incorporates a configurable DNS cache (including resolved and unresolved
lookups). If you need additional caching, consider enabling OS-level DNS
caching on each LogStream Worker that will execute this Function. (OS-level
caching options include DNSMasq, nscd, systemd‑resolved, etc.)

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to
No .

Lookup field name: Name of the field containing the domain to look up.

Resource record type: DNS record type (RR) to return. Defaults to A ' record.

Output field name: Lookup result(s) will be added to this field. Leave blank to
overwrite the original field specified in Lookup field name.

Description

Usage

DNS Lookup Fields Section

Reverse DNS Lookup Field(s) Section

Page 202 of 680

Lookup field name: Name of the field containing the IP address to look up.

Output field name: Name of the field in which to add the resolved hostname.
Leave blank to overwrite the original field specified in Lookup field name.

DNS server(s) overrides: IP address(es), in RFC 5952 format, of the DNS
server(s) to use for resolution. IPv4 examples: 1.1.1.1 , 4.2.2.2�53 . IPv6
examples: [2001�4860�4860��8888] , [2001�4860�4860��8888]�1053 . If
this field is not specified, LogStream will use the system's DNS server.

Reload period (minutes): How o�en to refresh the two-level DNS cache.
Defaults to 30 minutes; use 0 to disable refreshes. At each specified reload
interval, the secondary cache is flushed, the primary cache's entries rotate to
the secondary cache, and active secondary-cache entries are promoted back to
the primary cache for faster lookup.

Maximum cache size: Maximum number of DNS resolutions to cache locally.
Before changing the default 5000 , contact Cribl Support to understand the
implications. Highest allowed value is 10000 .

This example Pipeline chains two Functions. First, we have an Eval Function
that defines key-value pairs for two alphabetical domain names and two
numeric IP addresses.

⚠ If the field value is not in IPv4 or IPv6 format, the lookup is skipped.

Advanced Settings

Example

Page 203 of 680

DNS Lookup: Eval Function

Next, the DNS Lookup Function looks up several record types for the two
domain names, placing each retrieved record type in its own output field.

DNS Lookup: multiple record types

Page 204 of 680

Finally, the same Function's Reverse DNS lookup section retrieves domain
names for the two IP addresses.

DNS Lookup: reverse lookups

Page 205 of 680

Drop

The Drop Function will drop/delete any events that meet the Filter expression.

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults
to No .

Assume that we care only about errors, so we want to filter out any events that
contain the word “success,” regardless of case: “success,” “SUCCESS,” etc.

In our Drop Function, we’ll use the JavaScript search() method to search the
_raw field’s contents for our target pattern. We know that search() returns

a non-negative integer to indicate the starting position of the first match in the
string, or -1 if no match. So we can evaluate the Function as true when the
return value is >= 0 .

Filter: _raw.search(/success/i)��0

Description

Usage

Example

Page 206 of 680

Dynamic Sampling

The Dynamic Sampling Function filters out events based on an expression, a
sample mode, and events' volume. Your sample mode’s configuration
determines what percentage of incoming events will be passed along to the
next step.

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events passed into the Function will be
evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults
to No .

Sample mode: Defines how sample rate will be derived. For formulas and
usage details, see Sample Modes below. Supported methods:

Logarithmic (the default): log(previousPeriodCount) .

Square root: sqrt(previousPeriodCount) .

Sample group key: Expression used to derive sample group key. For example:
${domain}�${httpCode} . Each sample group will have its own derived

sampling rate, based on volume. Defaults to `${host}` .

All events without a host field passing through the Function will be associated
with the same group and sampled the same.

Sample period Sec: How o�en (in seconds) sample rates will be adjusted.
Defaults to 30 .

Minimum events: Minimum number of events that must be received, in
previous sample period, for sampling mode to be applied to current

Description

Usage

Advanced Settings

Page 207 of 680

period. If the number of events received for a sample group is less than
this minimum, a sample rate of 1:1 is used. Defaults to 30 .

Max sampling rate. Maximum sampling rate. If the computed sampling rate
is above this value, the rate will be limited to this value.

Compared to static sampling, where users must select a sample rate a priori,
Dynamic Sampling allows for automatically adjusting sampling rates, based on
incoming data volume per sample group. This Function allows users to set only
the aggressiveness/coarseness of this adjustment. Square Root is more
aggressive than Logarithmic mode.

As an event passes through the Function, it's evaluated against the Sample
Group Key expression to determine the sample group it will be associated with.
For example, given an event with these fields: ���ip=1.2.3.42,
port=1234��� , and a Sample Group Key of `${ip}�${port}` , the event will
be associated with the 1.2.3.42�1234 sample group.

When a sample group is new, it will initially have a sample rate of 1�1 for
Sample Period seconds (this value defaults to 30 seconds). Once Sample
Period seconds have elapsed, a sample rate will be derived based on the
configured Sample Mode , using the sample group's event volume during the
previous sample period.

For example, assuming a Logarithmic Sample Mode:

Period 0 (first 30s): Number of events in sample group: 1000 , Sample Rate:
1�1 , Events allowed: ALL

Sample Rate calculation for next period: Math.ceil(Math.log(1000)) = 7

Period 1 (next 30s) -- Number of events in sample group: 4000 , Sample Rate:
7�1 : Events allowed: 572

Sample Rate calculation for next period: Math.ceil(Math.log(4000)) = 9

Period 2 (next 30s) -- Number of events in sample group: 12000 , Sample Rate:
9�1 : Events allowed: 1334

How Does Dynamic Sampling Work

⚠ If the Sample Group Key is le� at its `${host}` default, all events
without a host will be associated with the same group and sampled
the same.

Page 208 of 680

Sample Rate calculation for next period: Math.ceil(Math.log(12000)) =
10

Period 3 (next 30s) -- Number of events in sample group: 2000 , Sample Rate:
10�1 : Events allowed: 200

Sample Rate calculation for next period: Math.ceil(Math.log(2000)) = 8
...

1. Logarithmic – The sample rate is derived, for each sample group, using a
natural log: Math.ceil(Math.log(lastPeriodVolume)) . This mode is
less aggressive, and drops fewer events.

2. Square Root – The sample rate is derived, for each sample group, using:
Math.ceil(Math.sqrt(lastPeriodVolume)) . This mode is more

aggressive, and drops more events.

Here’s an example that illustrates the e�ectiveness of using the Square Root
sample mode.

Sample Mode: Square Root
Sample Period (sec): 20
Minimum Events: 3
Max. Sampling Rate: 3

Events In: 4.23K
Events Out: 1.41K

Sample Modes

Example

Settings:

Results:

Page 209 of 680

In this generic example, we reduced the incoming event volume from 4.23K to
1.41K. Your own results will vary depending on multiple parameters – the
Sample Group Key, Sample Period, Minimum Events, Max Sampling Rate, and
rate of incoming events.

ℹ For further examples, see Getting Smart and Practical With Dynamic
Sampling.

Page 210 of 680

Eval

The Eval Function adds or removes fields from events. (In Splunk, these are
index-time fields.)

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults
to No .

Evaluate fields: Set of key/value pairs to add. The le�-hand side input (Name)
is the key name. The right-hand side input (Value Expression) is a JS
expression to compute the value – this can be a constant. Nested addressing is
supported. Strings intended to be used as values must be single- or double-
quoted. (For details, see Introduction to Expression Syntax.)

Keep fields: List of fields to keep. Wildcards (*) and nested addressing are
supported. Takes precedence over Remove fields (below). To reference a
parent object and all children requires using the (*) wildcard. For example, if
_raw is converted to an object then use _raw� to refer to itself and all
children.

Remove fields: List of fields to remove. Wildcards (*) and nested addressing are
supported. Cannot remove fields matching Keep fields. Cribl LogStream
internal fields that start with �� (double underscore) cannot be removed via
wildcard. Instead, they need to be specified individually. For example,
��myField cannot be removed by specifying ��myF* .

A field matching an entry in both Keep (wildcard or not) and Remove will not be
removed. This is useful for implementing “remove all but” functionality. For

Description

Usage

Using Keep and Remove

Page 211 of 680

example, to keep only _time, _raw, source, sourcetype, host , we can
specify them all in Keep, while specifying * in Remove.

Negated terms are supported in both Keep fields and Remove fields. The list is
order-sensitive when negated terms are used. Examples:

!foobar, foo� means "All fields that start with 'foo' except foobar ."

!foo�, * means "All fields except for those that start with 'foo'."

Scenario A: Create field myField with static value of value1 :

Name: myField

Value Expression: 'value1'

Scenario B: Set field action to blocked if login��error :

Name: action

Value Expression: login��'fail' ? 'blocked' : action

Scenario C: Create a multivalued field called myTags . (i.e., array):

Name: myTags

Value Expression: ['failed', 'blocked']

Scenario D: Add value error to the multivalued field myTags :

Name: myTags

Value Expression: login��'error' ? [���myTags, 'error'] : myTags

(The above expression is literal, and uses JavaScript spread syntax.)

Scenario E: Rename an identification field to the shorter ID – copying
over the original field’s value, and removing the old field:

Name: ID

Value Expression: identification

Remove Field: identification

Examples

ℹ See Ingest-time Fields for more examples.

Page 212 of 680

The Eval Function can execute expressions without assigning their value to the
field of an event. You can do this by simply leaving the le�-hand side input
empty, and having the right-hand side do the assignment.

Object.assign(foo, JSON.parse(bar), JSON.parse(baz)) on the right-
hand side (and le�-hand side empty) will JSON-parse the strings in bar and
baz , merge them, and assign their value to foo , an already existing field.

To parse JSON, enter Object.assign(��e, JSON.parse(_raw)) on the
right-hand side (and le�-hand side empty). ��e is a special variable that
refers to the (context) event within a JS expression. In this case, content
parsed from _raw is added at the top level of the event.

You can also use the Eval Function to set and unset control fields (e.g.,
_TCP_ROUTING in Splunk), via this syntax: _ctrl.<name> . Control fields can

be referenced only on the le�-hand side of Add. (I.e., they cannot be read or
used on the right-hand side, and cannot be referenced in Remove.)

To unset/delete a control field, set its value to undefined . These fields are
normally not needed for event computations, and Cribl suggests that only
experts should modify them. Please reach out to Cribl if you need help with
this topic.

Advanced Usage Notes

Execution Without Assignment

Example: Parse and Merge to Existing Field

Example: Reference Event with ��e

Set/Unset Control Fields

Page 213 of 680

Flatten

The Flatten Function is used to flatten fields out of a nested structure.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults to true ,
meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Fields: List of top-level fields to include for flattening. Supports * wildcards. Defaults to empty array,
which means all fields.

Prefix: Prefix string for flattened field names. Defaults to empty.

Depth: Number representing the nested levels to consider for flattening. Minimum 1 . Defaults to 5 .

Delimiter: Delimiter to be used for flattening. Defaults to _ (underscore).

Add the following test sample in Preview > Paste a Sample:

input

Under Select Event Breaker, choose ndjson (newline-delimited JSON), and click Save as a Sample
File.

Here's sample output with all settings at default:

output

Description

Usage

Example

{ "accounting" : [{ "firstName" : "John", "lastName" : "Doe", "age" : 23 }, { "firstName" : "Ma

{
 "accounting_0_firstName": "John",
 "accounting_0_lastName": "Doe",
 "accounting_0_age": 23,
 "accounting_1_firstName": "Mary",
 "accounting_1_lastName": "Smith",
 "accounting_1_age": 32,
 "sales_0_firstName": "Sally",
 "sales_0_lastName": "Green",

Page 214 of 680

Using the Flatten Function’s default settings, we successfully create top-level fields from the nested
JSON structure, as expected.

 "sales_0_age": 27,
 "sales_1_firstName": "Jim",
 "sales_1_lastName": "Galley",
 "sales_1_age": 41,
}

Page 215 of 680

GeoIP

The GeoIP Function enriches events with geographic fields, given an IP
address. It is optimized for binary databases such as MaxMind's GeoIP.

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults
to No .

GeoIP file (.mmdb): Path to a Maxmind database, in binary format, with .mmdb
extension.

IP field: Field name in which to find an IP to look up. Can be nested. Defaults to
ip .

Result field : Field name in which to store the GeoIP lookup results. Defaults to
geoip .

Description

� For details on setting up MaxMind (and similar) databases, see
Managing Large Lookups.

Usage

ℹ If the database file is located within the lookup directory
($CRIBL_HOME/data/lookups/), the GeoIP fIle does not need to be
an absolute path.

In distributed deployments, ensure that the Maxmind database file is
in the same location on both the Master and Worker Nodes.

Page 216 of 680

Assume that you are receiving SMTP logs, and need to see geolocation
information associated with IPs using the SMTP service.

Here's a sample of our data, from IPSwitch IMail Server logs:

03�19 03�22 SMTPD(00180250) [192.168.1.131] connect 74.136.132.88

port 2539 03�19 03�22 SMTPD(00180250) [74.136.132.88] EHLO

msnbc.com 03�19 03�22 SMTPD(00180250) [74.136.132.88] MAIL FROM�

<info�jjgcdshx@test.us> 03�19 03�22 SMTPD(00180250)

[74.136.132.88] RCPT To��user@domain.com>

In this example, we’ll chain together three Functions. First, we’ll use a Regex
Extract Function to isolate the host’s IP. Next, we’ll use the GeoIP Function to
look up the extracted IP against our geoIP database, placing the returned info
into a new ��geoip field. Finally we’ll use an Eval Function to parse that field’s
city, state, country, ZIP, latitude, and longitude.

Regex: \[(?<ip>\S+)\]
Source field: _raw
Result: 74.136.132.88

Event’s IP field: ip
Result field: ��geoip

Examples

Function 1 – Regex Extract

Function 2 – GeoIP

Function 3 – Eval

City ��geoip.city.names.en

Country ��geoip.country.names.en

Zip ��geoip.postal.code

Lat ��geoip.location.latitude

Long ��geoip.location.longitude

Name Value Expression

Page 217 of 680

In the Eval Function’s Remove fields setting, you could specify the ��geoip
field for removal, if desired. However, its �� prefix makes it an internal field
anyway.

� For a hosted tutorial on applying the GeoIP Function, see Cribl's
GeoIP and Threat Feed Enrichment Sandbox.

Page 218 of 680

Grok

The Grok Function extracts structured fields from unstructured log data, using modular
regex patterns.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults to
true , meaning that all events will be evaluated.

Description: Optional description of this Function's purpose in this Pipeline. Defaults to
empty.

Final: If toggled to Yes , stops data from being fed to downstream Functions. Defaults to
No .

Pattern: Grok pattern to extract fields. Cick the Expand button at right to open a
preview/valdiation modal. Syntax supported: %{PATTERN_NAME�FIELD_NAME} .

Click + Add pattern to chain more patterns.

Source field: Field on which to perform Grok extractions. Defaults to _raw .

You can add and edit Grok patterns via LogStream's UI by selecting Knowledge > Grok
Patterns. Pattern files are located at: $CRIBL_HOME/(default|local)/cribl/grok�
patterns/

Example event:

Pattern: %{TIMESTAMP_ISO8601:event_time} %{LOGLEVEL:log_level} %
{GREEDYDATA:log_message}

Description

Usage

Management

Example

{"_raw": "2020-09-16T04�20�42.45+01�00 DEBUG This is a sample debug log message"}`

Page 219 of 680

Source Field: _raw

Event a�er extraction:

Note the new fields added to the event: event_time , log_level , and log_message .

Syntax for a Grok pattern is %{PATTERN_NAME�FIELD_NAME} . E.g.: %{IP:client} %
{WORD:method} .

Useful links for creating and testing Grok patterns:
http://grokdebug.herokuapp.com and
http://grokconstructor.appspot.com/.

Additional patterns are available here:
https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns.

{"_raw": "2020-09-16T04�20�42.45+01�00 DEBUG This is a sample debug log message",
 "_time": 1600226442.045,
 "event_time": "2020-09-16T04�20�42.45+01�00",
 "log_level": "DEBUG",
 "log_message": "This is a sample debug log message",
}

References

Page 220 of 680

JSON Unroll

The JSON Unroll Function accepts a JSON object string _raw field, unrolls/explodes an array of
objects therein into individual events, while also inheriting top level fields. See example(s). Cribl
highly recommends not using this JSON Unroll function for certain types of data. Instead, perform the
unrolling using an event breaker for those inputs which support configuring an event breaker.
Specifying the event breaker type JSON Array and toggling the JSON Extract Fields option to Yes will
accomplish the same unrolling but much more e�iciently. This is recommended, for example, for
CloudTrail and O�ice635 events, which are collected as JSON arrays.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults to true ,
meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Path: Path to array to unroll, e.g., foo.0.bar .

New name: The name that the exploded array element will receive in each new event. Leave empty to
expand the array element with its original name.

Assume you have an incoming event that has a _raw field as a JSON object string like this:

Sample _raw field

Description

Usage

Example(s)

{"date":"9/25/18 9�10�13.000 PM",
 "name":"Amrit",
 "age":42,
 "allCars": [
 { "name":"Ford", "models"�["Fiesta", "Focus", "Mustang"] },
 { "name":"GM", "models"�["Trans AM", "Oldsmobile", "Cadillac"] },
 { "name":"Fiat", "models"�["500", "Panda"] },
 { "name":"Blackberry", "models"�["KEY2", "Bold Touch 9900"] }
]
 }

Settings:

Page 221 of 680

Path: allCars
New Name: cars

Resulting Events

Each element under the original allCars array is now placed in a cars field in its own event, inheriting
original top level fields; date, name and age

Output Events:

Event 1:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age"�42,"cars"�{"name":"Ford","models"

Event 2:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age"�42,"cars"�{"name":"GM","models"�[

Event 3:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age"�42,"cars"�{"name":"Fiat","models"

Event 4:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age"�42,"cars"�{"name":"Blackberry","m

Page 222 of 680

Lookup

The Lookup Function enriches events with external fields, using lookup table files in CSV, compressed
.csv.gz , or binary .mmdb format.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults to true ,
meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Lookup file path (.csv, .csv.gz): Path to the lookup file. Select an existing file that you've uploaded via
LogStream's UI at Knowledge > Lookups Libary, or specify the path. You can reference environment
variables via $, e.g.: $CRIBL_HOME/file.csv .

Match mode: Defines the format of the lookup file, and indicates the matching logic that will be
performed. Defaults to Exact .

Match type: For CIDR and Regex Match modes, this attribute refines how to resolve multiple matches.
First match will return the first matching entry. Most specific will scan all entries, finding the

most specific match. All will return all matches in the output, as arrays. (Defaults to First match .
Not displayed for Exact Match mode.)

Lookup fields (.csv): Field(s) that should be used to key into the lookup table.

Lookup field name in event: Exact field name as it appears in events. Nested addressing
supported.

Corresponding field name in lookup: The field name as it appears in the lookup file. Defaults to
the Lookup field name in event value. This input is optional.

Description

Usage

ℹ When you configure this field via a distributed deployment's Master Node, LogStream will
swap $CRIBL_HOME/groups/<groupname>/ for $CRIBL_HOME when validating whether
the file exists. In this case, the default upload path changes from
$CRIBL_HOME/data/lookups (single-instance deployments) to
$CRIBL_HOME/groups/<groupname>/data/lookups/ (distributed deployments).

Case-Sensitive / Multiple Matches⚠

Page 223 of 680

Output field(s): Field(s) to add to events a�er matching the lookup table. Defaults to all if not
specified.

Output field name from lookup: Field name, as it appears in the lookup file.

Lookup field name in event: Field name to add to event. Defaults to the lookup field name. This
input is optional. Nested addressing is supported.

Reload period (sec): Periodically check the underlying file for modtime changes, and reload if
necessary. Use -1 to disable. Defaults to 60 .

Ignore case: Ignore case when performing Match mode: Exact lookups. Defaults to No .

Add to raw event: Whether to append the looked-up values to the _raw field, as key=value pairs.
Defaults to No .

Assign a sourcetype field to events if their _raw field matches a particular regex.

paloalto.csv

Match mode: Regex

Match type: First match

Lookup field name in event: _raw

Corresponding field name in lookup: regex

Events before and a�er

Lookups are case-sensitive by default. (See the Ignore case option below.)

If the lookup file contains duplicate key names with di�erent values, all Match modes of this
Function will use only the value in the key's final instance, ignoring all preceding instances.

Advanced Settings

Examples

Example 1: Regex Lookups

regex,sourcetype
"^[^,]+,[^,]+,[^,]+,THREAT",pan:threat
"^[^,]+,[^,]+,[^,]+,TRAFFIC",pan:traffic
"^[^,]+,[^,]+,[^,]+,SYSTEM",pan:system

��� BEFORE�

{"_raw": "Sep 20 13�03�55 PA-VM 1,2018/09/20 13�03�58,FOOBAR,TRAFFIC,end,2049,2018/09/20 13�03�5
{"_raw": "Sep 20 13�03�55 PA-VM 1,2018/09/20 13�03�58,FOOBAR,THREAT,end,2049,2018/09/20 13�03�58

Page 224 of 680

Assign a location field to events if their destination_ip field matches a particular CIDR range.

paloaltoips.csv

Match mode: CIDR

Match type: See options below

Lookup field name in event: destination_ip

Corresponding field name in lookup: range

Events before and a�er

��� AFTER�

{"_raw": "Sep 20 13�03�55 PA-VM 1,2018/09/20 13�03�58,FOOBAR,TRAFFIC,end,2049,2018/09/20 13�03�5
 "sourcetype": "pan:traffic"
 }
{"_raw": "Sep 20 13�03�55 PA-VM 1,2018/09/20 13�03�58,FOOBAR,THREAT,end,2049,2018/09/20 13�03�58
 "sourcetype": "pan:threat"
 }

Example 2: CIDR Lookups

range,location
10.0.0.0/24,San Francisco
10.0.0.0/16,California
10.0.0.0/8,US

ℹ In Match mode: CIDR with Match type: Most specific, the lookup will implicitly search for
matches from most specific to least specific. There is no need to pre-sort data.

Note that Match mode: CIDR with Match type: First Match is likely the most performant with
large lookups. This can be used as an alternative to Most specific, if the file is sorted with
the most specific/relevant entries first. This mode still performs a table scan, top to bottom.

��� BEFORE�

{"_raw": "Sep 20 13�03�55 PA-VM 1, 2018/09/20 13�03�58,FOOBAR,TRAFFIC,end,2049,2018/09/20 13�03�
 "destination_ip": "10.0.0.102"
 }

��� AFTER with Match Type: First Match

{"_raw": "Sep 20 13�03�55 PA-VM 1, 2018/09/20 13�03�58,FOOBAR,TRAFFIC,end,2049,2018/09/20 13�03�
 "destination_ip": "10.0.0.102",
 "location": "San Francisco"
 }

��� AFTER with Match Type: Most Specific

Page 225 of 680

More examples:

Ingest-time Lookups.

Lookups and Regex Magic.

Lookups as Filters for Masks.

See also:

Managing Large Lookups to optimize file locations for large lookup files.

Redis Function for faster lookups using a Redis integration.

{"_raw": "Sep 20 13�03�55 PA-VM 1, 2018/09/20 13�03�58,FOOBAR,TRAFFIC,end,2049,2018/09/20 13�03�
 "destination_ip": "10.0.0.102",
 "location": "San Francisco"
 }

��� AFTER with Match Type: All

{"_raw": "Sep 20 13�03�55 PA-VM 1, 2018/09/20 13�03�58,FOOBAR,TRAFFIC,end,2049,2018/09/20 13�03�
 "destination_ip": "10.0.0.102",
 "location": [
 "San Francisco",
 "California",
 "US",
]}

More Examples and Scenarios

Page 226 of 680

Mask

The Mask Function masks, or replaces, patterns in events. This is especially
useful for redacting PII (personally identifiable information) and other
sensitive data.

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults
to No .

Masking rules: Match Regex and Replace Expression pairs. Defaults to empty.
Each row has the following fields:

Match regex: Pattern to replace. Supports capture groups. Use /g to
replace all matches, e.g.: /foo(bar)/g

Replace expression: A JavaScript expression or literal to replace all
matching content.

To add more rows, click + Add Rule .

Apply to fields: Fields on which to apply the masking rules. Defaults to _raw .
Add more fields by typing in their names, separated by hard returns. Supports
wildcards (*) and nested addressing.

Description

Usage

ℹ Negated terms are also supported. When you negate field names, the
fields list is order-sensitive. E.g., !foobar before foo� means
"Apply to all fields that start with foo , except foobar ." However,
!foo� before * means "Apply to all fields, except for those that

start with foo ."

Page 227 of 680

Evaluate fields: Optionally, specify fields to add to events in which one or more
of the Masking Rules were matched. These fields can be useful in downstream
processing and reporting. You specify the fields as key–value expression pairs,
like those in the Eval Function.

Name: Field name.

Value Expression: JavaScript expression to compute the value (can be a
constant).

The Replace expression field accepts a full JS expression that evaluates to a
value, so you're not necessarily limited to what's under C.Mask . For example,
you can do conditional replacement: g1%2��1 ? `fieldA="odd"` :
`fieldA="even"`

The Replace expression can reference other event fields as event.
<fieldName> . For example, `${g1}${event.source}` . Note that this is
slightly di�erent from other expression inputs, where event fields are
referenced without event. Here, we require the event. prefix for the
following reasons:

We don't expect this to be a common case.

Expanding the event in the replace context would have a high performance
hit on the common path.

There is a slight chance that there might be a gN field in the event.

Here, we'll simply search for the string dfhgdfgj , and replace that value (if
found) with Trans AM . This will help close America’s muscle-car gap:

Advanced Settings

Evaluating the Replace Expression

Examples

Example 1: Transform a String

Page 228 of 680

Event before masking

Configure the Mask Function > Masking Rules as follows:

Match Regex: dfhgdfgj
Replace Expression: Trans AM

Mask Function configuration

Result: Vroom vroom!

Page 229 of 680

Event a�er masking

Assume that you're ingesting data whose _raw fields contain unredacted
Social Security numbers in the Key=Value pattern social=######### .

Event with unredacted SSNs

Example 2: Mask Sensitive Data

Page 230 of 680

You can use a Mask Function to run an md5 hash of the social keys' numeric
values, replacing the original values with the hashed values. Configure the
Masking Rules as follows:

Match Regex: (social=)(\d+)
Replace Expression: `${g1}${C.Mask.md5(g2)}`

In the first example everything in the Match regex field was replaced by the
Replace Expression. However if that isn't desired then you can use capture
groups in the Match Regex to define individual string components for
manipulation or, alternatively, use string literals in the Replace expression for
retaining any static text. Any content matching the Match Regex that is not
inserted into the Replace expression will not be retained.

In this example, social= is assigned to capture group g1 for later reference.
The value of social= will be hashed by referencing it as g2 in the md5
function. If we didn't make social= its own capture group (or specified
social= as a literal in the Replace Expression) then we cannot reference it

using g1 in the Replace expression, the value of social= would instead be
assigned to g1, and the entire social=######### string would be replaced
with a hash of the social security number, which probably isn't desired because
no one would know the value being hashed without a field name preceding it.

Mask Function configuration

Result: The sensitive values are replaced by their md5 hashes.

Page 231 of 680

Event with hashed SSNs

ℹ In scenarios where you need to send unmodified values to certain
Destinations (such as archival stores), you can narrow the Mask
Function's scope by setting the associated Route's Output field.

For further masking examples, see Masking and Obfuscation.

Page 232 of 680

Numerify

The Numerify Function converts event fields that are numbers to type number .

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults
to No .

Ignore Fields: Specify fields to not numerify. Type in field names, separated by
hard returns. By default, this list is empty, and Numerify applies to all fields.
Supports wildcards (*) and nested addressing.

Format: Optionally, reformat or truncate the extracted numeric value. Select
one of:

None: Applies no reformatting (the default).

Floor: Rounds the number down to the lower adjacent integer (truncates
it).

Ceil: Rounds the number up to the higher adjacent integer, removing
decimal digits.

Description

Usage

Double Negativesℹ

Negated terms are also supported. When you negate field names, the
fields list is order-sensitive. E.g., !foobar before foo� means
"Ignore all fields that start with foo , except foobar ." However,
!foo� before * means "Ignore all fields, except for those that start

with foo ."

Page 233 of 680

Round: Rounds (truncates) the number to a specified number of digits.
This option exposes an extra field:

Digits: Number of digits a�er the decimal point. Enter a value between
0 – 20 ; defaults to 2 .

Assume an event whose text contains a numeric value that must be extracted to
perform some numeric analysis. The text looks like this:

version=11.5.0.0.1.1588476445

We can extract the numeric value by chaining together two Functions:

1. A Regex Extract Function. Set its Regex field to /version=(?<ver>\d+)/ ,
to capture the first set of digits found in the event string.

2. Then use Numerify.

This captures the substring 11 and converts it to a numeric 11 value.

Assume email transaction log events like the sample below. The final field is the
message’s size, in bytes. We want to extract this as a numeric value, for analysis
in LogStream or downstream services:

03�19 03�22 SMTPD (00180250) [209.221.59.70]

C�\IMail\spool\D28de0018025017cd.SMD 3827

Again, we can accomplish this with two Functions:

1. A Regex Extract Function. To capture a substring of digits that follows six
other substrings (all separated by white space), we set the Regex field to:
\S+\s�\S+\s�\S+\s�\S+\s�\S+\s�\S+\s+(?<bytes>\d+)

2. Then use Numerify.

Examples

Scenario A:

Scenario B:

Page 234 of 680

Parser

The Parser Function can be used to extract fields out of events, or to reserialize
(rewrite) events with a subset of fields. Reserialization will maintain the format
of the events.

For example: If an event contains comma-delimited fields, and fieldA and
fieldB are filtered out, those fields' positions will be set to null , but not

deleted completely.

Parser cannot remove fields that it did not create. A subsequent Eval Function
can do so.

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults
to No .

Operation mode: Extract will create new fields. Reserialize will extract, filter
fields, and then reserialize.

Type: Parser/Formatter type to use. Options:

CSV

Extended Log File Format (ELFF)

Common Log Format (CLF)

K=V Pairs

JSON

Delimited Values

Setting Type to Delimited Values displays the following extra options:

Description

Usage

Page 235 of 680

Delimiter: Delimiter character to split value. Defaults to comma (,). You
can also specify pipe (|) or tab characters.

Quote char: Character used to quote literal values. Defaults to " .

Escape char: Character used to escape delimiter or quote characters.
Defaults to: \

Null value: Field value representing the null value. These fields will be
omitted. Defaults to: -

Library: Select an option from the Parsers Library.

Source field: Field that contains text to be parsed. Not usually needed in
Serialize mode.

Destination field: Name of field in which to add extracted and serialized fields.
If multiple new fields are created and this setting is configured then all new
fields are created as elements of an array with the array name set to the name
specified for this setting. If you want all new fields to be independent, rather
than in an array, then specify them using List of fields below. (Extract and
Serialize modes only.)

Clean fields: This option appears for Type: K=V Pairs. Toggle to Yes to clean
field names by replacing non-alphanumeric characters with _ . This will also
strip leading and trailing " symbols.

List of fields: Fields expected to be extracted, in order. If not specified, Parser
will auto-generate fields.

Fields to keep: List of fields to keep. Supports wildcards (*). Takes
precedence over Fields to remove. Nested addressing supported.

Fields to remove: List of fields to remove. Supports wildcards (*). Cannot
remove fields matching Fields to keep. Nested addressing supported.

Fields filter expression: Expression to evaluate against {index, name,
value} context of each field. Return truthy to keep, falsy to remove field. Index
is zero-based.

ℹ Negated terms are supported in both Fields to remove and Fields to
keep. When you use negated terms, the list is order-sensitive.
E.g., !foobar, foo� means "All fields that start with foo , except
foobar ." However, !foo�, * means "All fields, except for those

that start with foo ."

Page 236 of 680

The Fields to keep, Fields to remove, and Fields filter expression settings
interact as follows:

Order of evaluation: Fields to keep > Fields to remove > Fields filter
expression.

If a field is in both Fields to keep and Fields to remove, Fields to keep takes
precedence.

If a field is in both Fields to remove and Fields filter expression, Fields to
remove takes precedence.

Insert the following sample, using Preview > Add a Sample > Paste a Sample:
2019/06/24 05�10�55 PM Z

a=000,b=001,c=002,d=003,e=004,f=005,g1=006,g2=007,g3=008

Create the following test Parser Function (or import this Pipeline:
https://raw.githubusercontent.com/weeb-cribl/cribl-
samples/master/parser/functions/parser/parser_1.json).

Parser Function initial configuration

First, set the Parser type to Key=Value Pairs .

How Fields Settings Interact

Example 1

Page 237 of 680

Keep fields a , b , c . Drop the rest.

Expected result: a , b , c

Fields to Keep: a , b , c

Fields to Remove: *

Fields Filter Expression:

Result: The event will gain four new fields and values, as follows.

a: 000

b: 001

c: 002

cribl_pipe: parser2

Scenario A result

You can check your stats by clicking the Preview pane’s Basic Statistics (chart)
button. In the resulting pop-up, the Number of Fields should have incremented
ty four.

Now that you have the hang of it, try out the other simple scenarios below.

Keep fields a , b , those that start with g . Drop the rest.

Expected result: a , b , g1 , g2 , g3

Fields to keep: a , b

Fields to remove: [empty]

Scenario A:

Scenario B:

Page 238 of 680

Fields filter expression: name.startsWith('g')

Keep fields a , b , those that start with g but only if value is 007 . Drop the
rest.

Expected result: a , b , g2

Fields to keep: a , b

Fields to remove: [empty]

Fields filter expression: name.startsWith('g') �� value��'007'

Keep fields a , b , c , those that start with g , unless it's g1 . Drop the rest.

Expected result: a , b , c , g2 , g3

Fields to keep: a , b , c

Fields to remove: g1

Fields filter expression: name.startsWith('g')

Keep fields a , b , c , those that start with g but only if index is greater than
6 . Drop the rest.

Expected result: a , b , c , g2 , g3

Fields to keep: a , b , c

Fields to remove: [empty]

Fields filter expression: name.startsWith('g') �� index>6

Scenario C:

Scenario D:

Scenario E:

ℹ The index refers to the location of a field in the array of all fields
extracted by this Parser. It is zero-based. In the case above, g2 and
g3 have index values of 7 and 8 , respectively.

Example 2

Page 239 of 680

Assume we have a JSON event that needs to be reserialized, given these
requirements:

1. Remove the level field only if it's set to info .

2. Remove the startTime field, and all fields in the values.total. path
that end in Cxn .

Parser Function configuration:

Parser Function configuration for Example 2

JSON event a�er being processed by the Function:

Page 240 of 680

Example 2 event transformation

Insert the following sample, using Preview > Add a Sample > Paste a Sample:

2019/06/24 15�25�36 PM Z

a=000,b=001,c=002,d=003,e=004,f=005,g1=006,g2=007,g3=008,

For all scenarios below, first create a Parser Function to extract all fields, by
setting the Parser type to Key=Value Pairs . Then add a second Parser
Function with the configuration shown under Parser 2.

Serialize fields a , b , c , d in CSV format.

Expected result: _raw field will have this value 000,001,002,003

Operation mode: Serialize

Source field: [empty]

Destination field: [empty]

Example 3

Scenario A:

Parser 2:

Page 241 of 680

Type: CSV

List of fields: a , b , c , d (needed for positional formats)

Serialize fields a , b , c in JSON format, under a field called bar .

Expected result: bar field will be set to:
{"a":"000","b":"001","c":"002","d":"003"}

Operation mode: Serialize

Source field: [empty]

Destination field: bar

Type: JSON

List of fields: [empty]

Fields to keep: a , b , c , d

Scenario B:

Parser 2:

Page 242 of 680

Publish Metrics

The Publish Metrics Function extracts, formats, and outputs metrics from events.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults to true ,
meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Overwrite: If set to Yes , overwrite previous metric specs. Otherwise, append. Defaults to No .

Add Metrics: List of metrics to extract from the event and format. Destinations can pass the formatted
metrics to a metrics aggregation platform. Click Add Metrics to add new rows containing the following
options:

Event field name: The name of the field (in the event) that contains the metric value.

Metric name expression: JavaScript expression to evaluate the metric field name. Defaults to the
Event field name value.

Metric type: Select Counter , Timer , or Gauge (the default).

Remove Metrics: Optionally, enter a List of field names to look for when removing metrics. Where a
metric's field name matches an element in this list, LogStream will remove that metric from the event.

Add Dimensions: Optional list of dimensions to associate with every extracted metric value. If this
Function is used to process output from the Aggregations Function, leave this field blank, because
dimensions will be automatically discovered. Defaults to !_* * .

Description

Usage

Metrics

ℹ The JavaScript expression will evaluate the metric field name only a�er the metrics are
processed for transport to the Destination. While in the processing Pipeline, the metric
name expression appears as a literal.

Dimensions

Page 243 of 680

Remove Dimensions: Optional list of dimensions to associate with every extracted metric value. Leave
blank if this function is used to process output from the Aggregation function as dimensions will be
automatically discovered. If this Function is used to process output from the Aggregations Function,
leave this field blank, because dimensions will be automatically discovered.

Overwrite: If set to Yes , overwrite previous metric specs. Otherwise, append. Defaults to No .

On the right Preview pane's OUT tab, the Publish Metrics Function adds the following color codes to
field labels:

Dimension: purple | Value: cyan (light blue) | Info: dark blue

These are in addition to the color codes applied to field values, which are listed here.

Assume we're working with AWS VPC Flowlog events that have the following structure:

version account_id interface_id srcaddr dstaddr srcport dstport protocol packets

bytes start end action log_status

For example:

2 99999XXXXX eni-02f03c2880e4aaa3 10.0.1.70 10.0.1.11 9999 63030 6 6556 262256

1554562460 1554562475 ACCEPT OK

... and we want to use values of packets and bytes as metrics across these dimensions: action ,
interface_id , and dstaddr .

ℹ The Add Dimensions and Remove Dimensions fields support wildcards and negated terms.
When you use negated terms, the list is order-sensitive. E.g., !foobar before foo� means
"All fields that start with foo , except foobar ." However, !foo� before * means
"All fields, except for those that start with foo ."

Fields Color Coding

Examples

Scenario A:

Page 244 of 680

To reference the packets and bytes fields by name, as ‘packets’ and ‘bytes’ , our Pipeline
will need a Parser Function before the Publish Metrics Function.

Filter: Set as needed
Operation mode: Extract
Type: Extended Log File Format (automatically set when specifying a library)
Library: AWS VPC Flow Logs
Source: _raw
(No need to specify any other fields.)

Below, the metric_name prefix was arbitrarily chosen. Because there is no JavaScript expression to
evaluate – i.e. this is literal text – the strings specified for the Metric name expression will be identical
to those in the final metrics data sent to the Destination. See Raw Output below.

All specified dimension names must align with those from the original event. When you preview the
Function's output, the metrics and dimensions will all have special highlighting to separate them from
other fields. Additional highlighting is used to di�erentiate the metrics from the dimensions. (If one or
more metrics/dimensions are not highlighted as expected, check the Function's configuration.)

metric_name.bytes:262256|g#action:REJECT,interface_id:eni�

02f03c2880e4aaa3,dstaddr:10.0.1.11

metric_name.packets:6556|g#action:REJECT,interface_id:eni�

02f03c2880e4aaa3,dstaddr:10.0.1.11

Parser Function

Publish Metrics Function

Metrics

bytes `metric_name.bytes` Gauge

packets `metric_name.packets` Gauge

Dimensions

action interface_id dstaddr

Raw Output

Compatible Destinationsℹ

All text a�er the # symbol represents the dimensions as key-value pairs. In order for
dimension data to be included in metrics, the Destination type cannot be standard StatsD.

Event Field Name Metric Name Expression Metric Type

Dimensions

Page 245 of 680

Formatted Output

Assume that we want to extract some metrics from specific fields in PANOS logs, whose events have
the following structure:

future_use_0,receive_time, serial_number, type, threat_content_type, future_use_1,

generated_time, source_ip, destination_ip, nat_source_ip, nat_destination_ip,

rule_name, source_user, destination_user, application, virtual_system, source_zone,

destination_zone, inbound_interface, outbound_interface, log_action, future_use_2,

session_id, repeat_count, source_port, destination_port, nat_source_port,

nat_destination_port, flags, protocol, action, bytes, bytes_sent, bytes_received,

packets, start_time, elapsed_time, category, future_use_3, sequence_number,

action_flags, source_location, destination_location, future_use_4, packets_sent,

packets_received, session_end_reason, device_group_hierarchy_level_1,

device_group_hierarchy_level_2, device_group_hierarchy_level_3,

device_group_hierarchy_level_4, virtual_system_name, device_name, action_source,

source_vm_uuid, destination_vm_uuid, tunnel_id_imsi, monitor_tag_imei,

parent_session_id, parent_start_time, tunnel_type, sctp_association_id, sctp_chunks,

sctp_chunks_sent, sctp_chunks_received

For example:

Jan 10 10�19�15 DMZ-internal.nsa.gov 1,2019/01/10

10�19�15,001234567890002,TRAFFIC,drop,2304,2019/01/10

10�19�15,209.118.103.150,160.177.222.249,0.0.0.0,0.0.0.0,InternalServer,,,not�

applicable,vsys1,inside,z1-FW-Transit,ethernet1/2,,All traffic,2019/01/10

10�19�15,0,1,63712,443,0,0,0�0,udp,deny,60,60,0,1,2019/01/10

10�19�15,0,any,0,0123456789,0�0,Netherlands,10.0.0.0-10.255.255.255,0,1,0,policy�

deny,0,0,0,0,,DMZ-internal,from�policy,,,0,,0,,N/A,0,0,0,0,1202585d�b4d5-5b4c�aaa2-

d80d77ba456e,0

Our goal is to use the four values of bytes_sent , bytes_received, packets_sent ,
and packets_received as metrics across these dimensions: destination_ip ,
inbound_interface , outbound_interface , and destination_port .

Here again, our Pipeline will need a Parser Function before the Publish Metrics Function.

However, StatsD Extended, Splunk, and Graphite do support dimensions.

{
 "action": "REJECT",
 "interface_id": "eni-02f03c2880e4aaa3",
 "dstaddr": "10.0.1.11",
 "metric_name.bytes": 262256,
 "metric_name.packets": 6556,
}

Scenario B:

Page 246 of 680

Filter: Set as needed
Operation mode: Extract
Type: Extended Log File Format (automatically set when specifying a Library)
Library: Palo Alto Tra�ic
Source: _raw
(No need to specify any other fields.)

Set up the Publish Metrics Function as follows.

destination_ip , inbound_interface , outbound_interface , destination_port

metric.10.10.12.192.bytes_sent:60|c|#destination_ip:160.177.222.249,inbound_interfac

e:ethernet1/2,destination_port:443

metric.10.10.12.192.bytes_rcvd:0|c|#destination_ip:160.177.222.249,inbound_interface:

ethernet1/2,destination_port:443

metric.10.10.12.192.pkts_sent:1|c|#destination_ip:160.177.222.249,inbound_interface:e

thernet1/2,destination_port:443

metric.10.10.12.192.pkts_rcvd:0|c|#destination_ip:160.177.222.249,inbound_interface:e

thernet1/2,destination_port:443

Here again, all text a�er the # symbol represents the dimensions as key-value pairs. (See the
Compatible Destinations note above.) Unlike the first example, this example uses JavaScript
expressions, which you can see evaluated in the raw output where the ${host} has been converted
to 10.10.12.192 .

Parser Function

Publish Metrics Function

Metrics

bytes_sent `metric.${host}.bytes_sent` Counter

bytes_received `metric.${host}.bytes_rcvd` Counter

packets_sent `metric.${host}.pkts_sent` Counter

packets_received `metric.${host}.pkts_rcvd` Counter

Added Dimensions

Raw Output

Event Field Name Metric Name Expression Metric Type

Page 247 of 680

Regex Extract

The Regex Extract Function extracts fields using regex named groups. (In Splunk, these will be index-
time fields). Fields that start with �� (double underscore) are special fields in Cribl LogStream. They
are ephemeral: they can be used by any Function downstream, but will not be added to events, and
will not exit the Pipeline.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults to true ,
meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Regex: Regex literal. Must contain named capturing groups, e.g.: (?<foo>bar) . Can contain special
_NAME_N and _VALUE_N capturing groups, which extract both the name and value of a field, e.g.:
(?<_NAME_0>[^\s=]+)=(?<_VALUE_0>[^\s]+) . Defaults to empty. See Examples below.

Additional regex: Click + Add Regex to chain extra regex conditions.

Source field: Field on which to perform regex field extraction. Nested addressing is supported.
Defaults to _raw .

Max exec: The maximum number of times to apply the Regex to the source field when the global flag
is set, or when using _NAME_N and _VALUE_N capturing groups. Named capturing groups will always
use a value of 1 . Defaults to 100 .

Field name format expression: JavaScript expression to format field names when _NAME_n and
_VALUE_n capturing groups are used. E.g., to append XX to all field names, use: `${name}_XX`

(backticks are literal). If not specified, names will be sanitized using regex: /^[_0-9]+|[^a�zA-Z0-
9_]+/g . The original field name is in the global name .

Overwrite existing fields: Whether to overwrite existing event fields with extracted values. If set to No
(the default), existing fields will be converted to an array. If toggled to Yes , Regex Extract will create
array fields if applied multiple times, or if fields exist. (E.g., if src_ip is extracted in an input Pipeline
where it is assigned a value of 10.1.2.2 , and is also in a processing Pipeline with a value of
10.2.3.3 , then the resulting field is ["10.1.2.2", "10.2.3.3"] .)

Description

Usage

Advanced Settings

Page 248 of 680

Assume a simple event that looks like this: metric1=23 metric2=42 dc=23 abc=xyz

Extract only the metric1 field:

Regex: metric1=(?<metric1>\d+)
Result: metric1�"23"

Use the first line of the sample here:
https://github.com/weeb-cribl/cribl-
samples/blob/master/parser/functions/parser/cisco_estreamer.log

Extract all k=v pairs, and add an _XX su�ix to the end of the extracted fields:

Regex: (?<_NAME_0>[^\s]+)=(?<_VALUE_0>[^\s]+)
Field Name Format Expression: `${name}_XX`

Result:

Examples

Example 1

Example 2

Page 249 of 680

This example uses similar syntax as Example 2, but with a more complex event structure.

In the right Sample Data pane, click Paste and insert the following sample:

Sample Data

This event is from a CheckPoint Firewall CMA system. With this type of event structure, properly
extracting each event field into a separate metadata field requires two-stage processing. So we'll use
two Regex Extract Functions.

The first Regex Function splits the event to separate the actual data from the header information.
We'll split a�er the CheckPoint 18160 string, by capturing everything between the [and] :

Regex; \[(?<��fields>.*)\]
Source: _raw

Next, add this second Regex Extract Function to extract all k=v pairs:

Example 3

<134>1 2020-12-22T17�06�08Z CORP_INT_NLB CheckPoint 18160 - [action:"Accept"; conn_direction:"In

Page 250 of 680

Regex: (?<_NAME_0>[^ �]+)�(?<_VALUE_0>[^;]+);
Source: ��fields

Results:

ℹ For further examples, see Using Cribl to Analyze DNS Logs in Real Time – Part 2.

Page 251 of 680

Redis

The Redis Function interacts with Redis stores, setting and getting key-hash
and key-value combinations. Redis' in-memory caching of these key pairs
enables large lookup tables that would be cumbersome with a .CSV or binary
lookup file.

You can use LogStream Collectors (e.g., a REST Collector) to retrieve reference
data from desired endpoints, and then use this Function to store the data on
Redis and retrieve it to enrich your production data. Note that LogStream does
not cache the data returned from this Redis Function.

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to
No .

Result field: Name of the field in which to store the returned value. (Leave
empty to discard the returned value.)

Command: Redis command to perform. Required. (A complete list of Redis
commands is at: https://redis.io/commands.)

Key: A JavaScript expression to compute the value of the key to operate on.
Can also be a constant, e.g.: username . This is a required field. Click the icon
at right to open a validation modal.

Args: A JavaScript expression to compute arguments to the operation. Can
return an array. Click the icon at right to open a validation modal.

Redis URL: Redis URL to connect to. The format is:
[redis[s]�]��[[user][:password@]][host][:port][/db�number][?

db=db�number[&password=bar[&option=value]]]

Description

Usage

Page 252 of 680

For example: redis:��user:secret@localhost:6379/0?foo=bar&qux=baz

With no user specified: redis:��secret@localhost:6379/0?
foo=bar&qux=baz

Max blocking time: Maximum amount of time (in seconds) before assuming
that Redis is down and passing events through. Defaults to 60 seconds. Use
0 to disable timeouts.

This Pipeline demonstrates the use of a pair of Redis Functions. The first
Function sets two key-value pairs in Redis. The second Function their values,
by key, into two corresponding new Result fields.

Redis URL Vs. Redis ACL⚠

Through LogStream 2.4.3, the Redis URL field has limited
compatibility with Redis 6.x's ACL (Access Control List) feature. When
using an ACL, point this field to the Redis default account, either
with a password
(e.g., redis:��default:Password1@192.168.1.20�6379) or with
no password (redis://192.168.1.20:6379).

Do not specify a specific user other than default , or authentication
against Redis will fail.

Advanced Settings

Example

Page 253 of 680

Redis set and get Functions

Description: Set keys to Redis

Command: set
Key: 'myFieldA'
Args: 420

Command: set
Key: 'myFieldB'
Args: 'sample value'

Description: Read keys from Redis

Result field: myField_AA
Command: get
Key: 'myFieldA'

Result field: myField_BB
Command: get
Key: 'myFieldB'

Redis Function #1

Redis Function #2

Page 254 of 680

Regex Filter

The Regex Filter Function filters out events based on regex matches.

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults
to No .

Regex: Regex to test against. Defaults to empty.

Additional regex: Click + Add Regex to chain extra regex conditions.

Field: Name of the field to test against the regex. Defaults to _raw . Supports
nested addressing.

See Regex Filtering for examples.

Description

Usage

Examples

Page 255 of 680

Rename

The Rename Function is designed to change fields' names or reformat their
names (e.g., by normalizing names to camelcase). You can use Rename to
change specified fields (much like the Eval Function), or for bulk renaming
based on a JavaScript expression (much like the Parser Function).

Compared to these alternatives, Rename o�ers a streamlined way to alter only
field names, without other e�ects.

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Optionally, enter a simple description of this step in the Pipeline.
Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults
to No .

Base fields: Enter one or more source field names to rename. If empty, rename
will be performed on top-level fields.

Rename fields: Each row here is a key-value pair that defines how to rename
fields. The current name is the key, and the new name is the value. Click
+ Add Field to add more rows.

Current name: Original name of the field to rename. You must quote literal
identifiers (non-alphanumeric characters such as spaces or hyphens).

New name: New or reformatted name for the field. Here again, you must
quote literals.

Renaming expression: An optional JavaScript expression (or literal) used to
compute multiple fields' new names. This expression is evaluated against a
{name, value} context, and the expression returns a value with which to

rename fields.

Description

Usage

Page 256 of 680

Change the level field, and all fields that start with out , to all-uppercase.

Example event:

Rename Fields:

Current Name: level
New Name: LEVEL
Renaming Expression: name.startsWith('out') ? name.toUpperCase() :
name

Event a�er Rename:

ℹ You can use both Rename fields (to rename specified field names),
and Renaming expression (to globally rename fields), in the same
Function. The Rename fields strategy will execute first.

Example

{"inEvents": 622,
 "level": "info",
 "outEvents": 311,
 "outBytes": 144030,
 "activeCxn": 0,
 "openCxn": 0,
 "closeCxn": 0,
 "activeEP": 105,
 "blockedEP": 0
}

{"inEvents": 622,
 "LEVEL": "info",
 "OUTEVENTS": 311,
 "OUTBYTES": 144030,
 "activeCxn": 0,
 "openCxn": 0,
 "closeCxn": 0,
 "activeEP": 105,
 "blockedEP": 0
}

Page 257 of 680

Rollup Metrics

The Rollup Metrics Function merges/rolls up frequently generated incoming
metrics into more manageable time windows.

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Optional description of this Function's purpose in this Pipeline.
Defaults to empty.

Final: If toggled to Yes , stops data from being fed to downstream Functions.
Defaults to No .

Dimensions: List of data dimensions across which to perform rollups.
Supports wildcards. Defaults to * wildcard, meaning all original dimensions.

Time window: The time span over which to roll up (aggregate) metrics. Must be
a valid time string (e.g., 10s). Must match pattern: \d+[sm]$.

Gauge update: The operation to use when rolling up gauge metrics. Defaults to
Last; other options are Maximum, Minimum, or Average.

Assume that you have metrics coming in at a rate that is too high. For example,
LogStream's internal metrics come in at a 2s interval.

Description

Usage

⚠ With high-cardinality data, beware of setting long time windows.
Doing can cause high memory consumption and/or lost data,
because memory is flushed upon restarts and redeployments.

Examples

Scenario A:

Page 258 of 680

To roll up these metrics to 1-minute granularity, you would set up the
Rollup Metrics Function with a Time Window value of 60s .

Assume that you have metrics coming up with multiple dimensions – e.g.
host , source , data_center , and application . You want to aggregate

these metrics to eliminate some dimensions.

Here, you would configure Rollup Metrics Function with a Time Window value
that matches the metrics' generation – e.g., 10s . In the Dimensions field, you
would remove the default * wildcard, and would specify only the dimensions
you want to keep – e.g.: host , data_center .

Scenario B:

Page 259 of 680

Sampling

The Sampling Function filters out events, based on an expression and a
sampling rate.

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to
No .

Sampling rules: Events matching these rules will be sampled at the rates you
specify:

Filter: Filter expression matching events to be sampled. Use true to
match all.

Sampling rate: Enter an integer N . (Defaults to 1 .) Sampling will pick
1/ N events matching this rule.

Setting this Function’s Sampling rate to 30 would mean that only 1 of every 30
events would be kept.

Description

Usage

How It Works

Page 260 of 680

Let’s assume that we save this setting, and then capture data from a datagen
Source by selecting Preview > Start a Capture > Capture. In the Capture
Sample Data modal, select: 100 seconds, 100 events, and As they come in.
Then start the capture, and Save as Sample File.

Next, in the Preview pane, click Simple beside the new file’s name. If you then
click the Basic Statistics (chart) button, you should see that we’ve kept about 4
of the original 100 events, or close to 1 in 30.

See Sampling for examples.

Examples

Page 261 of 680

Serialize

Use the Serialize Function to serialize an event's content into a predefined format.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults to
true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Type: Data output format. Defaults to CSV .

Library: Browse Parser/Formatter library.

Fields to serialize: Required for CSV , ELFF , and CLF Types. (All other formats support
wildcard field lists.)

Source field: Field containing the object to serialize. Leave blank to serialize top-level
event fields.

Destination field: Field to serialize the data into. Defaults to _raw .

Assume a simple event that looks like this: {"time":"2019-08-
25T14�19�10.240Z","channel":"input","level":"info","message":"initializing

input","type":"kafka"}

We want to serialize these fields: _time , channel , level , and type into a single
string, in CSV format, stored in a new destination field called test .

To properly extract the key-value pairs from this event structure, we’ll use a built-in
Event Breaker:

Description

Usage

Examples

Scenario A: JSON to CSV

Page 262 of 680

1. Copy the above sample event to your clipboard.

2. In the Preview pane, select Paste a Sample, and paste in the sample event.

3. Under Select Event Breaker, choose ndjson (newline-delimited JSON), and click
Save as a Sample File.

Now you’re ready to configure the Serialize Function, using the settings below:

Type: CSV
Fields to Serialize: _time channel level type
Destination Field: test
Source Field: [leave empty]
Result: test: 1566742750.24,input,info,kafka

In the new test field, you now see the time , channel , level , and type keys
extracted as top-level fields.

Let’s assume that a merchant wants to extract a subset of each customer order, to
aggregate anonymized order statistics across their customer base. The transaction data
is originally in CSV format, but the statistical data must be in JSON.

Here’s a CSV header (which we don’t want to process), followed by a row that represents
one order:

orderID,custName,street,city,state,zip

20200622102822,john smith,100 Main St.,Anytown,AK,99911

To convert to JSON, we’ll need to first parse each field from the CSV to a manipulable
field in the Pipeline, which the Serialize Function will be able to reference. In this
example, the new manipulable field is message .

Use the Parser Function:

Filter: true
Operation mode: Extract
Type: CSV
Source field: _raw
Destination field: message
List of fields: orderID custName street city state zip

Now use the Serialize Function:

Scenario B: CSV to JSON

Page 263 of 680

Filter: true
Type: JSON
Fields to serialize: city state
Source field: message
Destination field: orderStats

Page 264 of 680

Suppress

The Suppress Function suppresses events over a time period, based on
evaluating a key expression.

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to
No .

Key expression: Suppression key expression used to uniquely identify events
to suppress. For example, `${ip}�${port}` will use the fields ip and
port from each event to generate the key.

Number to allow: The number of events to allow per time period. Defaults to
1 .

Suppression period (sec): The number of seconds to suppress events a�er
'Number to allow' events are received. Defaults to 300 .

Drop suppressed events: Specifies if suppressed events should be dropped, or
just tagged with suppress=1 . Defaults to Yes , meaning drop.

Maximum cache size : The maximum number of keys that can be cached before
idle entries are removed. Before changing the default 50000 , contact Cribl
Support to understand the implications.

Suppression period timeout: The number of suppression periods of inactivity
before a cache entry is considered idle. This defines a multiple of the
Suppression period (sec) value. Before changing the default 2 , contact Cribl
Support to understand the implications.

Description

Usage

Advanced Settings

Page 265 of 680

Num events to trigger cache clean-up: Check cache for idle sessions every N
events when cache size exceeds the Maximum cache size. Before changing the
default 10000 , contact Cribl Support to understand the implications.

In the examples below, Filter is the Function-level Filter expression:

1. Suppress by the value of the host field:
Filter: true
Key expression: host
Number to allow: 1
Suppression period (sec): 30

Using a datagen sample as a source, generate at least 100 events over 2
minutes.

Result: One event per unique host value will be allowed in every 30s.
Events without a host field will not be suppressed.

2. Suppress by the value of the host and port tuple :
Filter: true
Key expression: `${host}�${port}`
Number to allow: 1
Suppression period (sec): 300

Result: One event per unique host : port tuple value will be allowed in
every 300s.

3. To guarantee that suppression applies only to events with host and
port , check for their presence using a Filter:

Filter: host��undefined �� port��undefined
Key expression: `${host}�${port}`
Number to allow: 1
Suppression period (sec): 300

Examples

⚠ Suppression will also apply to events without a host or a port
field. The reason is that if field is not present, `${field}`
results in the literal undefined .

Page 266 of 680

4. Decorate events that qualify for suppression:
Filter: true
Key expression: `${host}�${port}`
Number to allow: 1
Suppression period (sec): 300
Drop suppressed events: No

Result: No events will be suppressed. But all qualifying events will gain an
added field suppress=1 , which can be used downstream to further
transform these events.

For further use cases, see Cribl's Streaming Data Deduplication with Cribl blog
post.

Page 267 of 680

Tee

The Tee Function tees events out to a command of choice, via stdin . The output is one JSON-
formatted event per line. You can send the events to (for example) a local file on the LogStream
worker. This can be useful in verifying the data being processed in a Pipeline.

The Filesystem/NFS Destination o�ers similar capability, but only a�er the data leaves the Pipeline.
Tee, by comparison, can be inserted at any point in the Pipeline.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults to true ,
meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Command: Command to execute and receive events (via stdin) – one JSON-formatted event per
line.

Args: Click + Add Arg to supply arguments to the command.

Restart on exit: Restart the process if it exits and/or we fail to write to it. Defaults to Yes .

Environment variables: Environment variables to set or overwrite. Click + Add Variable to add
key/value pairs.

Data is passed to the command through its stdin , using the following protocol:

First line: Metadata serialized in JSON, containing the following fields:

format: Serialization format for event. Defaults to JSON .

conf: Full Function configuration.

Remaining: Payload.

Assume that we are parsing PANOS Tra�ic logs, and want to see how they look at a particular step in
the processing Pipeline We’ll assume that the Parser Function is already in place, so we’ll insert the

Description

Usage

Communication Protocol

Examples

Page 268 of 680

Tee Function at any (arbitrary) later point in the Pipeline.

The Tee Function itself requires only that we define the Command field. In this particular example,
that Command will be tee itself.

We’ve also clicked + Add Arg, to specify a local output file in the resulting Args field. (A file path would
normally be the first argument to a tee command executed from the command line. The LogStream
user must have write permission on the specified file path.)

Command: tee

Args: /opt/cribl/foo.log

In this first scenario, assume that we have the Parser configured to parse, but not keep any fields.
A�er changes are deployed and PANOS logs are received, if we tail foo.log , we’d see the following:

Line 1� {"format":"json","conf"�{"restartOnExit":true,"env":

{},"command":"tee","args"�["/opt/cribl/foo.log"]}

Line 2� {"_raw":"Oct 09 10�19�15 DMZ-internal.nsa.gov 1,2019/10/09

10�19�15,001234567890002,TRAFFIC,drop,2304,2019/10/09

10�19�15,209.118.103.150,160.177.222.249,0.0.0.0,0.0.0.0,InternalServer,,,not�

applicable,vsys1,inside,z1-FW-Transit,ethernet1/2,,All traffic,2019/10/09

10�19�15,0,1,63712,443,0,0,0�0,udp,deny,60,60,0,1,2019/10/09

10�19�15,0,any,0,0123456789,0�0,Netherlands,10.0.0.0-10.255.255.255,0,1,0,policy�

deny,0,0,0,0,,DMZ-internal,from�policy,,,0,,0,,N/A,0,0,0,0,1202585d�b4d5-5b4c�aaa2-

d80d77ba456e,0","_time"�1593185574.663,"host":"127.0.0.1"}

In Line 2 above, note that the _raw field makes up most of the contents, with only the _time and
host fields added.

Assume that we use the Tee Function, using the same Command and arguments, but we’ve modified
the Parser Function to retain five fields: receive_time , source_port , destination_port
bytes_received , and packets_received .

This time, if we tail foo.log , we’ll see something like the following. If you compare this output to the
previous output example, you’ll notice the five fields appended to this event:

Line 3� {"_raw":"Oct 09 10�19�15 DMZ-internal.nsa.gov 1,2019/10/09

10�19�15,001234567890002,TRAFFIC,drop,2304,2019/10/09

10�19�15,209.118.103.150,160.177.222.249,0.0.0.0,0.0.0.0,InternalServer,,,not�

applicable,vsys1,inside,z1-FW-Transit,ethernet1/2,,All traffic,2019/10/09

10�19�15,0,1,63712,443,0,0,0�0,udp,deny,60,60,0,1,2019/10/09

10�19�15,0,any,0,0123456789,0�0,Netherlands,10.0.0.0-10.255.255.255,0,1,0,policy�

deny,0,0,0,0,,DMZ-internal,from�policy,,,0,,0,,N/A,0,0,0,0,1202585d�b4d5-5b4c�aaa2-

Scenario A:

Scenario B:

Page 269 of 680

d80d77ba456e,0","_time"�1593185606.965,"host":"127.0.0.1","receive_time":"2019/10/09

10�19�15","source_port":"63712","destination_port":"443","bytes_received":"0","packet

s_received":"0"}

ℹ In this Function’s Command field, you can specify commands other than tee itself. For
example: By using nc as the command, and specifying localhost and a port number (as
two separate arguments), you’ll see event data being received via nc on the specified port.

Page 270 of 680

Trim Timestamp

The Trim Timestamp Function removes timestamp patterns from events, and (optionally) stores them
in a specified field.

This Function looks for a timestamp pattern that exists between the characters indicated by numeric
timestartpos and timeendpos fields. It removes timestartpos and timeendpos along with the

timestamp pattern.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults to true ,
meaning that all events will be evaluated.

Description: Simple description about this step in the Pipeline. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Field name: Name of field in which to save the timestamp. (If empty, timestamp will not be saved to a
field.)

Remove the timestamp pattern (indicated by timestartpos and timeendpos) from _raw , and
stash it in a field called time_field .

Example event before:

{"_raw": "2020-05-22 16:32:11,359 Event [Event=UpdateBillingProvQuote, timestamp=1581426279,
properties={JMSCorrelationID=NA, JMSMessageID=ID:ESP-PD.D2BB2D95F857B:FA323D61,
orderType=RatePlanFeatureChange, quotePriority=NORMAL}",
"time_field":"2020-05-22 16:32:11,359"
}```

Description

Usage

Example

{"_raw": "Event [Event=UpdateBillingProvQuote, timestamp=1581426279, properties={JMSCorrelationI
"timestartpos"�0,
"timestartpos"�23
}```

��Field Name��: `time_field`

��Example Event after:��

Page 271 of 680

Unroll

The Unroll Function accepts an array field – or an expression to evaluate an array field – and
breaks/unrolls the array into individual events.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults to true ,
meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Source field expression: Field in which to find/calculate the array to unroll. E.g.: _raw ,
_raw.split(/\n/) . Defaults to _raw .

Destination field: Field (within the destination event) in which to place the unrolled value. Defaults to
_raw .

Assume we want to break/unroll each line of this event:

Sample Event

Source field expression: _raw.split(/\n/)

Destination field: _raw

Description

Usage

Example

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.5 38000 5356 ? Ss 2018 2�02 /lib/systemd/systemd ��system ��
root 2 0.0 0.0 0 0 ? S 2018 0�00 [kthreadd]
root 3 0.0 0.0 0 0 ? S 2018 1�51 [ksoftirqd/0]
root 5 0.0 0.0 0 0 ? S< 2018 0�00 [kworker/0�0H]
root 7 0.0 0.0 0 0 ? S 2018 3�55 [rcu_sched]
root 8 0.0 0.0 0 0 ? S 2018 0�00 [rcu_bh]

Settings

ℹ The split() JavaScript method breaks _raw into an ordered set of substrings/values,
puts these values into an array, and returns the array.

Page 272 of 680

Resulting Events

Event 1�
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

Event 2�
root 1 0.0 0.5 38000 5356 ? Ss 2018 2�02 /lib/systemd/systemd ��system ��

Event 3�
root 2 0.0 0.0 0 0 ? S 2018 0�00 [kthreadd]

Event 4�
root 3 0.0 0.0 0 0 ? S 2018 1�51 [ksoftirqd/0]

Event 5�
root 5 0.0 0.0 0 0 ? S< 2018 0�00 [kworker/0�0H]

Event 6�
root 7 0.0 0.0 0 0 ? S 2018 3�55 [rcu_sched]

Event 7�
root 8 0.0 0.0 0 0 ? S 2018 0�00 [rcu_bh]

Page 273 of 680

XML Unroll

The XML Unroll Function accepts a proper XML event with a set of elements,
and converts the elements into individual events.

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to
No .

Unroll elements regex: Path to the array to unroll. E.g.:
^root\.child\.ElementToUnroll$

Copy elements regex: Regex matching elements to copy into each unrolled
event.
E.g.: ^root\.(childA|childB|childC)$

Unroll index field: LogStream will add a field with this name, containing the 0-
based index at which the element was located within the event. In Splunk, this
will be an index-time field. Supports nested addressing. Name defaults to
unroll_idx .

Pretty print: Whether to pretty print the output XML.

Assume that the following sample is ingested as a single event:

sample.xml

Description

Usage

Examples

<?xml version="1.0" encoding="UTF-8"?>
<Parent>
 <myID>123456��myID>
 <branchLocation>US��branchLocation>
 <Child>

Page 274 of 680

Set up the XML Unroll Function using these settings:

Unroll elements regex: ^Parent\.Child$
Copy elements regex: ^Parent\.(myID|branchLocation)$

Output 4 Events:

Resulting Events

 <state>NY��state>
 <city>New York��city>
 ��Child>
 <Child>
 <state>NJ��state>
 <city>Edgewater��city>
 ��Child>
 <Child>
 <state>CA��state>
 <city>Oakland��city>
 ��Child>
 <Child>
 <state>CA��state>
 <city>San Francisco��city>
 ��Child>
��Parent>

ℹ If you insert this sample using Preview > Add a Sample > Paste a
Sample, adjust Event Breaker settings to add the sample as a single
event. One way to do this is to add a regex Event Breaker that (by
design) will not match anything present in the sample. For example:
/[\n\r]+donotbreak(?!\s)/ . As of LogStream 2.3, you can also

use the built-in Do Not Break Ruleset.

Event 1
<?xml version="1.0"?>
<Child>
 <myID>123456��myID>
 <branchLocation>US��branchLocation>
 <state>NY��state>
 <city>New York��city>
��Child>

Event 2
<?xml version="1.0"?>
<Child>
 <myID>123456��myID>
 <branchLocation>US��branchLocation>
 <state>NJ��state>
 <city>Edgewater��city>
��Child>

Page 275 of 680

Event 3
<?xml version="1.0"?>
<Child>
 <myID>123456��myID>
 <branchLocation>US��branchLocation>
 <state>CA��state>
 <city>Oakland��city>
��Child>

Event 4
<?xml version="1.0"?>
<Child>
 <myID>123456��myID>
 <branchLocation>US��branchLocation>
 <state>CA��state>
 <city>San Francisco��city>
��Child>

Page 276 of 680

Prometheus Publisher (beta)

The Prometheus Publisher Function allows for metrics to be published to a Prometheus-compatible
metrics endpoint. These can be upstream metrics received by LogStream, or metrics derived from the
output of LogStream’s Publish Metrics or Aggregation Functions. A Prometheus instance is
responsible for collecting the metrics at that endpoint, and for performing its own processing of the
metric data.

In the current LogStream version, the endpoint is: http:��<worker_node_IP��<api�
port>/metrics . Within LogStream, that endpoint redirects from
http:��<worker_node_IP��9000/metrics to http:��<worker_node_IP��9000/api/v1/metrics .

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults to true ,
meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Fields to publish: Wildcard list of fields to publish to the Prometheus endpoint.

Batch write interval: How o�en, in milliseconds, the contents should be published. Defaults to
5000 .

Passthrough mode: If set to No (the default), overrides the Final setting, and suppresses output to
downstream Functions' Destinations. Toggle to Yes to allow events to flow to consumers beyond the
Prometheus endpoint. In e�ect, when previewing the pipeline output what you'll see is your event
fields will have strikethrough font applied to them. This does not mean the Prometheus function is
not matching your events but rather indicative of the Passthrough being disabled.

Update mode: On the default No setting, suppresses output to downstream Functions' Destinations.
(This overrides the Final setting.) Toggle to Yes to allow events to flow to consumers beyond the

Description

⚠ If used, this Function must follow any Publish Metrics or Aggregations Functions within the
same Pipeline. This is to ensure that any data not originating from a metrics input is
transformed into metrics format.

Usage

Advanced Settings

Page 277 of 680

Prometheus endpoint.

This example uses the same PANOS sample data as the Publish Metrics Function, and is similarly
preceded in a Pipeline by a Parser Function that extracts fields from the PANOS log.

Filter: Set as appropriate.
Fields to publish: Set as appropriate. We’ll use the default of * for this example.
Advanced settings: Accept defaults.

A�er committing and deploying changes, you should be able to use a curl command (-L needed to
follow the redirect mentioned above) to verify that metrics are being published, just a few seconds
a�er data is ingested on an idle system.

curl output

Now, we need to have Prometheus scrape the metrics. In this very basic example, you can add the
target endpoint to the prometheus.yml file, under the scrape_configs ‑> static_configs
section. Specify the endpoint in IP:port syntax, because Prometheus assumes (and requires)
/metrics for all endpoints.

Restart Prometheus. Within just a few seconds, you should be able to use its query interface to
retrieve metrics published by LogStream.

Example

$ curl -L http:��<worker_node_IP��9000/metrics
TYPE perf_192_168_1_248_bytes_sent counter
metric_192_168_1_248_bytes_sent {destination_ip="160.177.222.249",inbound_interface="ethernet1/2

TYPE perf_192_168_1_248_bytes_rcvd counter
metric_192_168_1_248_bytes_rcvd {destination_ip="160.177.222.249",inbound_interface="ethernet1/2

TYPE perf_192_168_1_248_pkts_sent counter
metric_192_168_1_248_pkts_sent {destination_ip="160.177.222.249",inbound_interface="ethernet1/2"

TYPE perf_192_168_1_248_pkts_rcvd counter
metric_192_168_1_248_pkts_rcvd {destination_ip="160.177.222.249",inbound_interface="ethernet1/2"

Page 278 of 680

Reverse DNS (deprecated)

The Reverse DNS Function resolves hostnames from a numeric IP address,
using a reverse DNS lookup.

Filter: Filter expression (JS) that selects data to be fed through the Function.
Defaults to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to
No .

Lookup field name: Name of the field containing the IP address to look up.

Output field name: Name of the field in which to add the resolved hostname.
Leave blank to overwrite the lookup field.

Reload period (minutes): How o�en to refresh the DNS cache. Use 0 to
disable refreshes. Defaults to 60 minutes.

Lookup field name: dest_ip
Output field name: dest_host

Description

⚠ This Function is deprecated. Use the DNS Lookup Function's reverse
lookup feature instead.

Usage

Lookup Fields

⚠ If the field value is not in IPv4 or IPv6 format, the lookup is skipped.

Example

Page 279 of 680

Result: See the dest_ip field, and the newly created dest_host field, in the
events.

Page 280 of 680

Sources

Cribl LogStream can receive data from various Sources, including Splunk,
HTTP, Elastic Beats, Kinesis, Kafka, TCP JSON, and many others.

Push and Pull Sources

Supported data Sources that send to Cribl LogStream:

Splunk TCP

Splunk HEC

Syslog

Elasticsearch API

TCP JSON

TCP Raw

HTTP/S

Raw HTTP/S

Kinesis Firehose

SNMP Trap

Metrics

AppScope

Data from these Sources is normally sent to a set of LogStream Workers
through a loadbalancer. Some Sources, such as Splunk forwarders, have

PUSH Sources

Page 281 of 680

native loadbalancing capabilities, so you should point these directly at
LogStream.

Supported Sources that Cribl LogStream fetches data from:

Kafka

Kinesis Streams

SQS

S3

Azure Blob Storage

Azure Event Hubs

O�ice 365 Services

O�ice 365 Activity

Prometheus

Sources that are internal to Cribl LogStream:

Datagens

Cribl Internal

For each Source type, you can create multiple definitions, depending on your
requirements.

To configure Sources, select Data > Sources, select the desired type from the
tiles or the le� menu, and then click + Add New.

To capture data from a single enabled Source, you can do so directly from the
Sources UI instead of using the Preview pane. To initiate an immediate capture,
click the Live button on the Source's configuration row.

PULL Sources

Internal Sources

Configuring and Managing Sources

Capturing Source Data

Page 282 of 680

Source > Live button

You can also start an immediate capture from within an enabled Source's
configuration modal, by clicking the modal's Live Data tab.

Source modal > Live Data tab

To accelerate your setup, LogStream ships with several common Sources
configured for typical listening ports, but not switched on. Open, clone (if
desired), modify, and enable any of these preconfigured Sources to get started
quickly:

Syslog – TCP Port 9514, UDP Port 9514

Splunk TCP – Port 9997

Splunk HEC – Port 8088

TCP JSON – Port 10070

TCP – Port 10060

HTTP – Port 10080

Elasticsearch API – Port 9200

SNMP Trap – Port 9162

Cribl Internal > CriblLogs – Internal

Cribl Internal > CriblMetrics – Internal

On the Destination side, you can configure how each LogStream output will
respond to a backpressure situation – a situation where its in-memory queue is

Preconfigured Sources

Backpressure Behavior

Page 283 of 680

overwhelmed with data.

All Destinations default to Block mode, in which they will refuse to accept new
data until the downstream receiver is ready. Here, LogStream will back-
propagate block signals through the Source, all the way back to the sender (if it
supports backpressure, too).

All Destinations also support Drop mode, which will simply discard new events
until the receiver is ready.

Several Destinations also support a Persistent Queue option to minimize data
loss. Here, the Destination will write data to disk until the receiver is ready.
Then it will drain the disk-bu�ered data in FIFO (first in, first out) order. See
Persistent Queues for details about all three modes, and about Persistent
Queue support.

The S3 Source provides a configurable Advanced Settings > Socket timeout
option, to prevent data loss (partial downloading of logs) during backpressure
delays.

When backpressure a�ects HTTP Sources (Splunk HEC, HTTP/S, Raw HTTP/S,
and Kinesis Firehose), LogStream internal logs will show a 503 error code.

Other BackPressure Options

Diagnosing Backpressure Errors

Page 284 of 680

Splunk TCP

Cribl LogStream supports receiving Splunk data from Universal or Heavy Forwarders.

Select Data > Sources, then select Splunk > Splunk TCP from the Data Sources page's tiles or le�
menu. Click Add New to open the Splunk TCP > New Source modal, which provides the fields
outlined below.

Input ID: Enter a unique name to identify this Splunk Source definition.

Address: Enter hostname/IP to listen for Splunk data. E.g., localhost or 0.0.0.0 .

Port: Enter port number.

IP whitelist regex: Regex matching IP addresses that are allowed to establish a connection. Defaults
to .* (i.e., all IPs).

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Path on server where to find the private key to use in PEM format. Path can reference
$ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path at which to find certificates (in PEM format) to use. Path can reference
$ENV_VARS .

ℹ Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl LogStream to Receive Splunk TCP Data

� LogStream ships with a Splunk TCP Source preconfigured to listen on Port 9997. You can
clone or directly modify this Source to further configure it, and then enable it.

General Settings

TLS Settings (Server Side)

Page 285 of 680

*CA certificate path : Server path at which to find CA certificates (in PEM format) to use. Path can
reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform
mutual authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path,
or by another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match
literal characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the input data stream
before the data is sent through the Routes. Defaults to System Default Rule .

Event Breaker bu�er timeout: The amount of time (in milliseconds) that the event breaker will wait
for new data to be sent to a specific channel, before flushing out the data stream, as-is, to the Routes.
Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from
this input before the data is sent through the Routes.

+ Add Token : Click to add authorization tokens. Each token's section provides the fields listed below.
If no tokens are specified, unauthenticated access will be permitted.

Processing Settings

Event Breakers

Fields (Metadata)

Pre-Processing

Auth Tokens

Page 286 of 680

Token: Shared secrets to be provided by any Splunk forwarder (Authorization: <token>).
Click Generate to create a new secret.

Description: Optional description of this token.

Enable proxy protocol: Defaults to No . Toggle to Yes if the connection is proxied by a device that
supports Proxy Protocol V1 or V2.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta" fields are not
part of an event, but they are accessible, and Functions can use them to make processing decisions.

Field for this Source:

��inputId

To configure a Splunk forwarder (UF, HF) use the following outputs.conf stanzas:

.../outputs.conf

Advanced Settings

Internal Fields

Configuring a Splunk Forwarder

[tcpout]
disabled = false
defaultGroup = cribl, <optional_clone_target_group>,

[tcpout:cribl]
server = [<cribl_ip>|<cribl_host>]��port>, [<cribl_ip>|<cribl_host>]��port>, ���
sendCookedData=true
As of Splunk 6.5, using forceTimebasedAutoLB is no longer recommended. Ensure this is left at
forceTimebasedAutoLB = false

Page 287 of 680

Splunk HEC

Cribl LogStream supports receiving data over HTTP/S using the Splunk HEC (HTTP Event Collector).

Select Data > Sources, then select Splunk > HEC from the Data Sources page's tiles or le� menu. Click
Add New to open the HEC > New Source modal, which provides the fields outlined below.

Input ID: Enter a unique name to identify this Splunk HEC Source definition.

Address: Enter the hostname/IP on which to listen for HTTP(S) data. (E.g., localhost or 0.0.0.0 .)

Port: Enter the port number.

Splunk HEC endpoint: Absolute path on which to listen for the Splunk HTTP Event Collector API
requests. This input supports the /event and /raw endpoints. Defaults to
/services/collector .

Allowed Indexes: List the values allowed in the HEC event index field. Allows wildcards. Leave blank to
skip validation.

Splunk HEC acks: Whether to enable Splunk HEC acknowledgments. Defaults to No . Some sources
may require HEC acks to be enabled and, as a result, may keep TCP connections open while waiting
for an ack. This behavior can exhaust available file descriptors. Cribl does not maintain a
comprehensive list of such sources. Refer to your source's documentation for more information.

Token: Shared secret to be provided by any client (Authorization: <token>). Click Generate to create a
new secret. If empty, unauthenticated access will be permitted.

Description: Optional description for this token.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl LogStream to Receive Data over Splunk HEC

� LogStream ships with a Splunk HEC Source preconfigured to listen on Port 8088. You can
clone or directly modify this Source to further configure it, and then enable it.

General Settings

Auth Tokens

Page 288 of 680

Fields: Fields (metadata) to add to events referencing this token. Each field is a Name/Value pair.

+ Add Token : Click to add more tokens. Each new section provides the same fields listed above.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Path on server where to find the private key to use in PEM format. Path can reference
$ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path at which to find certificates (in PEM format) to use. Path can reference
$ENV_VARS .

CA certificate path: Server path at which to find CA certificates (in PEM format) to use. Path can
reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform
mutual authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path,
or by another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match
literal characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

This section defines event breaking rulesets that will be applied, in order, on the /raw endpoint.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the input data stream
before the data is sent through the Routes. Defaults to System Default Rule .

ℹ These fields may be overridden by fields added at the request level.

TLS Settings (Server Side)

Processing Settings

Event Breakers

Page 289 of 680

Event Breaker bu�er timeout: The amount of time (in milliseconds) that the event breaker will wait
for new data to be sent to a specific channel, before flushing out the data stream, as-is, to the Routes.
Defaults to 10000 .

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

These fields may be overridden by fields added at the token or request level.

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from
this input before the data is sent through the Routes.

Max active requests: Maximum number of active requests allowed for this Source, per
Worker Process. Defaults to 256 . Enter 0 for unlimited.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta" fields are not
part of an event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

��inputId

��hecToken

Configure Cribl LogStream to listen on port 10080 with an authToken of myToken42 .

Send a payload to your Cribl LogStream receiver.

Note: Token specification can be either Splunk <token> or <token> .

Splunk HEC Event Endpoint

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Format and Endpoint Example

curl �k http:��<myCriblHost��10080/services/collector/event -H 'Authorization: myToken42' �d '{"

curl �k http:��<myCriblHost��10080/services/collector -H 'Authorization: myToken42' �d '{"event"

Multiple Events
curl �k http:��<myCriblHost��10080/services/collector -H 'Authorization: myToken42' �d '{"event"

Page 290 of 680

Page 291 of 680

Syslog

Cribl LogStream supports receiving of data over syslog.

Select Data > Sources, then select Syslog from the Data Sources page's tiles or
le� menu. Click Add New to open the Syslog > New Source modal, which
provides the fields outlined below.

Input ID: Enter a unique name to identify this Syslog Source definition.

Address: Enter the hostname/IP on which to listen for data., E.g. localhost or
0.0.0.0 .

UDP port: Enter the UDP port number to listen on. Not required if listening on
TCP.

TCP port: Enter the TCP port number to listen on. Not required if listening on
UDP.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: No

This Syslog Source supports RFC 3164 and RFC 5424.

Configuring Cribl LogStream to Receive Data over
Syslog

� LogStream ships with a Syslog Source preconfigured to listen for
both UDP and TCP tra�ic on Port 9514. You can clone or directly
modify this Source to further configure it, and then enable it.

General Settings

⚠ The maximum supported inbound UDP message size is 16,384 bytes.

Page 292 of 680

Fields to keep: List of fields from source data to retain and pass through.
Supports wildcards. Defaults to * wildcard, meaning keep all fields. Fields not
specified here (by wildcard or specific name) will be removed from the event.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Path on server where to find the private key to use in PEM
format. Path can reference $ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path at which to find certificates (in PEM format) to use.
Path can reference $ENV_VARS .

CA certificate path: Server path at which to find CA certificates (in PEM format)
to use. Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates.
Used to perform mutual authentication using SSL certs. Defaults to No . When
toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in
the CA certificate path, or by another trusted CA (e.g., the system's CA).
Defaults to No .

Common name: Regex matching subject common names in peer
certificates allowed to connect. Defaults to .* . Matches on the substring
a�er CN= . As needed, escape regex tokens to match literal characters.
E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept
from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept
from connections.

TLS Settings (TCP Only)

Processing Settings

Fields (Metadata)

Page 293 of 680

In this section, you can add fields/metadata to each event, using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

Enable proxy protocol: Defaults to No . Toggle to Yes if the connection is
proxied by a device that supports Proxy Protocol v1 or v2.

IP whitelist regex: Regex matching IP addresses that are allowed to send data.
Defaults to .* (i.e., all IPs).

Max bu�er size (events) : Maximum number of events to bu�er when
downstream is blocking. The bu�er is only in memory. (This setting is
applicable only to UDP syslog.)

Default timezone: Timezone to assign to timestamps that omit timezone info.
Accept the default Local value, or use the drop-down list to select a specific
timezone by city name or GMT/UTC o�set.

Single msg per UDP: Whether to treat UDP packet data received as a full syslog
message. Defaults to No . (I.e., newlines in the packet will be treated as event
delimiters.)

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but are accessible and Functions can use
them to make processing decisions.

Fields for this Source:

��inputId

��srcIpPort

Pre-Processing

Advanced Settings

Internal Fields

Page 294 of 680

��syslogFail : true for data that fails RFC 3164/5424 validation as
syslog format.

Page 295 of 680

Elasticsearch API

Cribl LogStream supports receiving data over HTTP/S using the Elasticsearch
Bulk API. (See the Configuring Filebeat example below.)

Select Data > Sources, then select Elasticsearch API from the Data Sources
page's tiles or le� menu. Click Add New to open the Elasticsearch API > New
Source modal, which provides the fields outlined below.

Input ID: Enter a unique name to identify this Elasticsearch Source definition.

Address: Enter the hostname/IP on which to listen for Elasticsearch data.
(E.g., localhost or 0.0.0.0 .)

Port: Enter the port number.

Auth tokens: Shared secrets to be provided by any client (Authorization:
<token>). Click Generate to create a new secret. If empty, unauthenticated
access will be permitted.

Elasticsearch API endpoint (for Bulk API): Absolute path on which to listen for
Elasticsearch API requests. Defaults to / . LogStream automatically appends
_bulk , so (e.g.) /myPath becomes /myPath/_bulk . Requests could then be

ℹ Type: Push | TLS Support: YES | Event Breaker Support: No

Configuring LogStream to Receive Data over
HTTP(S), Using the Elasticsearch Bulk API Protocol

� LogStream ships with an Elasticsearch API Source preconfigured to
listen on Port 9200. You can clone or directly modify this Source to
further configure it, and then enable it.

General Settings

Page 296 of 680

made to either /myPath/_bulk or /myPath/<myIndexName>/_bulk . Other
entries are faked as success.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Path on server where to find the private key to use in PEM
format. Path can reference $ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path at which to find certificates (in PEM format) to use.
Path can reference $ENV_VARS .

CA certificate path: Server path at which to find CA certificates (in PEM format)
to use. Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates.
Used to perform mutual authentication using SSL certs. Defaults to No . When
toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in
the CA certificate path, or by another trusted CA (e.g., the system's CA).
Defaults to No .

Common name: Regex matching subject common names in peer
certificates allowed to connect. Defaults to .* . Matches on the substring
a�er CN= . As needed, escape regex tokens to match literal characters.
E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept
from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept
from connections.

TLS Settings (Server Side)

Processing Settings

Fields (Metadata)

Page 297 of 680

In this section, you can add fields/metadata to each event using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

Max active requests: Maximum number of active requests allowed for this
Source, per Worker Process. Defaults to 256 . Enter 0 for unlimited.

The Elasticsearch API input normalizes the following fields:

@timestamp becomes _time at millisecond resolution.

host is set to host.name .

Original object host is stored in ��host .

The Elasticsearch Destination does the reverse, and it also recognizes the
presence of ��host .

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and Functions
can use them to make processing decisions.

Fields for this Source:

��inputId

��id

��type

��index

��host

Pre-Processing

Advanced Settings

Field Normalization

Internal Settings

Page 298 of 680

To set up Filebeat to send data to LogStream, use its Elasticsearch output. If an
Auth Token is configured here, add it in Filebeat configuration under
output.elasticsearch.headers , as in this example:

...filebeat.yml

Configuring Filebeat

output.elasticsearch:
 # Array of hosts to connect to.
 hosts: ["http:��<LOGSTREAM_HOST��9200/elastic"]

output.elasticsearch.headers:
 Authorization: "myToken42"

Page 299 of 680

TCP JSON

Cribl LogStream supports receiving of data over TCP in JSON format (see protocol below).

Select Data > Sources, then select TCP JSON from the Data Sources page's tiles or le� menu.
Click Add New to open the TCP JSON > New Source modal, which provides the fields outlined below.

Input ID: Enter a unique name to identify this TCP JSON Source definition.

Address: Enter hostname/IP to listen for TCP JSON data. E.g., localhost or 0.0.0.0 .

Port: Enter the port number to listen on.

IP whitelist regex: Regex matching IP addresses that are allowed to establish a connection. Defaults
to .* (i.e., all IPs).

Shared secret (authToken): Shared secret to be provided by any client (in authToken header field).
Click Generate to create a new secret. If empty, unauthenticated access will be permitted.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Path on server where to find the private key to use in PEM format. Path can reference
$ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path at which to find certificates (in PEM format) to use. Path can reference
$ENV_VARS .

ℹ Type: Push | TLS Support: YES | Event Breaker Support: No

Configuring Cribl LogStream to Receive TCP JSON Data

� LogStream ships with a TCP JSON Source preconfigured to listen on Port 10070. You can
clone or directly modify this Source to further configure it, and then enable it.

General Settings

TLS Settings (Server Side)

Page 300 of 680

CA certificate path: Server path at which to find CA certificates (in PEM format) to use. Path can
reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform
mutual authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path,
or by another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match
literal characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from
this input before the data is sent through the Routes.

Enable proxy protocol: Toggle to Yes if the connection is proxied by a device that supports
Proxy Protocol v1 or v2.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta" fields are not
part of an event, but they are accessible, and Functions can use them to make processing decisions.

Field for this Source:

��inputId

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 301 of 680

LogStream expects TCP JSON events in newline-delimited JSON format:

1. A header line. Can be empty – e.g., {} . If authToken is enabled (see above) it should be included
here as a field called authToken . When authToken is not set, the header line is optional. In this
case, the first line will be treated as an event if does not look like a header record.

In addition, if events need to contain common fields, they can be included here under fields . In the
example below, region and AZ will be automatically added to all events.

2. A JSON event/record per line.

Sample TCP JSON Events

If a TCP JSON Source is routed to a Splunk destination, fields within the JSON payload are mapped to
Splunk fields. Fields that do not have corresponding (native) Splunk fields become index-time fields.
For example, let's assume we have a TCP JSON event as below:

{"_time"�1541280341, "host":"myHost", "source":"mySource", "_raw":"this is a sample

event ", "fieldA":"valueA"}

Here, _time , host , and source become their corresponding fields in Splunk. The value of _raw
becomes the actual body of the event, and fieldA becomes an index-time field
(fieldA ::`valueA``).

1. Configure Cribl LogStream to listen on port 10001 for TCP JSON. Set authToken to
myToken42 .

2. Create a file called test.json with the payload above.

3. Send it over to your Cribl LogStream host: cat test.json | nc <myCriblHost> 10001

Format

{"authToken":"myToken42", "fields": {"region": "us�east-1", "AZ":"az1"}}

{"_raw":"this is a sample event ", "host":"myHost", "source":"mySource", "fieldA":"valueA", "fie
{"host":"myOtherHost", "source":"myOtherSource", "_raw": "{\"message\":\"Something informative h

TCP JSON Field Mapping to Splunk

Example

Page 302 of 680

TCP (RAW)

Cribl LogStream supports receiving of data over TCP. (See examples and
header options below.)

Select Data > Sources, then select TCP from the Data Sources page's tiles or
le� menu. Click Add New to open the TCP > New Source modal, which provides
the fields outlined below.

Input ID: Enter a unique name to identify this TCP Source definition.

Address: Enter hostname/IP to listen for raw TCP data. E.g., localhost or
0.0.0.0 .

Port: Enter port number.

IP whitelist regex: Regex matching IP addresses that are allowed to establish a
connection. Defaults to .* (i.e,. all IPs).

Enable Header: Toggle to Yes to indicate that client will pass a header record
with every new connection. The header can contain an authToken , and an
object with a list of fields and values to add to every event. These fields can be
used to simplify Event Breaker selection, routing, etc. Header format:
{ "authToken" : "myToken", "fields": { "field1": "value1",

"field2": "value2" }} .

ℹ Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl LogStream to Receive TCP Data

� LogStream ships with a TCP Source preconfigured to listen on
Port 10060. You can clone or directly modify this Source to further
configure it, and then enable it.

General Settings

Page 303 of 680

Shared secret (authToken): Shared secret to be provided by any client (in
authToken header field). Click Generate to create a new secret. If empty,

unauthenticated access will be permitted.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Path on server where to find the private key to use in PEM
format. Path can reference $ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path at which to find certificates (in PEM format) to use.
Path can reference $ENV_VARS .

CA certificate path: Server path at which to find CA certificates (in PEM format)
to use. Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates.
Used to perform mutual authentication using SSL certs. Defaults to No . When
toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in
the CA certificate path, or by another trusted CA (e.g., the system's CA).
Defaults to No .

Common name: Regex matching subject common names in peer
certificates allowed to connect. Defaults to .* . Matches on the substring
a�er CN= . As needed, escape regex tokens to match literal characters.
E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept
from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept
from connections.

TLS Settings (Server Side)

Processing Settings

Custom Command

Page 304 of 680

In this section, you can pass the data from this input to an external command
for processing before the data continues downstream.

Enabled: Defaults to No . When toggled to Yes :

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument for the command. You
can drag arguments vertically to resequence them.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to
the input data stream before the data is sent through the Routes. Defaults to
System Default Rule .

Event Breaker bu�er timeout: The amount of time (in milliseconds) that the
event breaker will wait for new data to be sent to a specific channel, before
flushing out the data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

Enable proxy protocol: Defaults to No . Toggle to Yes if the connection is
proxied by a device that supports Proxy Protocol V1 or V2.

Event Breakers

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 305 of 680

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and functions
can use them to make processing decisions.

Fields accessible for this Source:

��inputId

��srcIpPort

��channel

Every new TCP connection may contain an optional header line, with an
authToken and a list of fields and values to add to every event.

Sample raw TCP test

1. Configure LogStream to listen on port 7777 for raw TCP. Set authToken
to myToken42 .

2. Create a file called test.raw , with the payload above.

3. Send it over to your Cribl LogStream host, using this command: cat
test.raw | nc <myCriblHost> 7777

TCP Source Example

{"authToken":"myToken42", "fields": {"region": "us�east-1", "AZ":"az1"}}

this is event number 1
this is event number 2

Enabling the Example

Page 306 of 680

HTTP/S (Bulk API)

Cribl LogStream supports receiving data over HTTP/S using the Cribl Bulk API, Splunk HEC, or Elastic
Bulk API.

Select Data > Sources, then select HTTP from the Data Sources page's tiles or le� menu. Click Add
New to open the HTTP > New Source modal, which provides the fields outlined below.

Input ID: Enter a unique name to identify this HTTP(S) Source definition.

Address: Enter the hostname/IP on which to listen for HTTP(S) data. (E.g., localhost or 0.0.0.0 .)

Port: Enter the port number.

Auth tokens: Shared secrets to be provided by any client (Authorization: <token>). Click Generate to
create a new secret. If empty, unauthenticated access will be permitted.

Cribl HTTP event API: Absolute path on which to listen for Cribl HTTP API requests. Currently, the only
supported option is the default /cribl , which LogStream expands as /cribl/_bulk . Use an empty
string to disable. Maximum payload size is 2MB.

Elastic API endpoint (for Bulk API): Absolute path on which to listen for Elasticsearch API requests.
Currently, the only supported option is the default /elastic , which LogStream expands as
/elastic/_bulk . Other entries are faked as success. Use an empty string to disable.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: No

Configuring Cribl LogStream to Receive Data over HTTP(S)

� LogStream ships with an HTTP Source preconfigured to listen on Port 10080, and on
several default endpoints. You can clone or directly modify this Source to further configure
it, and then enable it.

General Settings

ℹ Cribl generally recommends that you use the dedicated Elasticsearch API Source instead of
this endpoint. The Elastic API implementation here is provided for backward compatibility,
and for users who want to ingest multiple inputs on one HTTP/S port.

Page 307 of 680

Splunk HEC endpoint: Absolute path on which to listen for Splunk HTTP Event Collector (HEC) API
requests. Use an empty string to disable. Default entry is /services/collector .

Splunk HEC acks: Whether to enable Splunk HEC acknowledgements. Defaults to No .

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Path on server where to find the private key to use in PEM format. Path can reference
$ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path at which to find certificates (in PEM format) to use. Path can reference
$ENV_VARS .

CA certificate path: Server path at which to find CA certificates (in PEM format) to use. Path can
reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used to perform
mutual authentication using SSL certs. Defaults to No . When toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in the CA certificate path,
or by another trusted CA (e.g., the system's CA). Defaults to No .

Common name: Regex matching subject common names in peer certificates allowed to connect.
Defaults to .* . Matches on the substring a�er CN= . As needed, escape regex tokens to match
literal characters. E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept from connections.

ℹ This Splunk HEC implementation is an event (i.e., not raw) endpoint. For details, see
Splunk's documentation. To send data to it from a HEC client, use either
/services/collector or /services/collector/event . (See the examples below.)

Cribl generally recommends that you use the dedicated Splunk HEC Source instead of this
endpoint. The Splunk HEC implementation here is provided for backward compatibility,
and for users who want to ingest multiple inputs on one HTTP/S port.

TLS Settings (Server Side)

Processing Settings

Page 308 of 680

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from
this input before the data is sent through the Routes.

Max active requests: Maximum number of active requests allowed for this Source, per
Worker Process. Defaults to 256 . Enter 0 for unlimited.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta" fields are not
part of an event, but they are accessible, and Functions can use them to make processing decisions.

Fields for this Source:

��inputId

��id (Elastic In)

��type (Elastic In)

��index (Elastic In)

��host (Elastic In)

LogStream expects HTTP(S) events to be formatted as one JSON record per event. Here are two event
records:

Sample Event Format

Note 1: Events can be sent as separate POSTs, but Cribl highly recommends combining multiple
events in newline-delimited groups, and POSTing them together.

Note 2: If an HTTP(S) source is routed to a Splunk destination, fields within the JSON payload are
mapped to Splunk fields. Fields that do not have corresponding (native) Splunk fields become index-
time fields. For example, let's assume we have a HTTP(S) event like this:

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Format and Endpoint

{"_time":1541280341, "_raw":"this is a sample event ", "host":"myHost", "source":"mySource", "fi
{"_time":1541280341, "host":"myOtherHost", "source":"myOtherSource", "_raw": "{\"message\":\"Som

Page 309 of 680

{"_time"�1541280341, "host":"myHost", "source":"mySource", "_raw":"this is a sample

event ", "fieldA":"valueA"}

Here, _time , host and source become their corresponding fields in Splunk. The value of _raw
becomes the actual body of the event, and fieldA becomes an index-time field.
(fieldA :: valueA).

For the following examples:

1. Configure Cribl to listen on port 10080 for HTTP (default). Set authToken to myToken42 .

2. Send a payload to your Cribl LogStream receiver.

Cribl Single Event Example:

Cribl Endpoint - Multiple Events

Splunk HEC Event Endpoint

Examples

Cribl Endpoint – Single Event

curl �k http:��<myCriblHost��10080/cribl/_bulk -H 'Authorization: myToken42' �d '{"_raw":"this i

Cribl Endpoint – Multiple Events

curl �k http:��<myCriblHost��10080/cribl/_bulk -H 'Authorization: myToken42' �d $'{"_raw":"this

Splunk HEC Event Endpoint

curl �k http:��<myCriblHost��10080/services/collector/event -H 'Authorization: myToken42' �d '{"

curl �k http:��<myCriblHost��10080/services/collector -H 'Authorization: myToken42' �d '{"event"

ℹ For Splunk HEC, the token specification can be either Splunk <token> or <token> .

Page 310 of 680

Raw HTTP/S

Cribl LogStream supports receiving raw HTTP data. The Raw HTTP Source
listens on a specific port, captures every HTTP request to that port, and creates
a corresponding event that it pushes to its configured Event Breakers.

Select Data > Sources, then select Raw HTTP from the Data Sources page's
tiles or le� menu. Click Add New to open the Raw HTTP > New Source modal,
which provides the following fields.

Input ID: Enter a unique name to identify this Raw HTTP Source definition.

Address: Enter the address to bind on. Defaults to 0.0.0.0 (all addresses).

Port: Enter the port number to listen on.

Auth tokens: Shared secrets to be provided by any client. Click Generate to
create a new secret. If empty, permits open access.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Path on server where to find the private key to use in PEM
format. Path can reference $ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl LogStream to Receive Raw HTTP
Data

General Settings

TLS Settings (Server Side)

Page 311 of 680

Certificate path: Server path at which to find certificates (in PEM format) to use.
Path can reference $ENV_VARS .

CA certificate path: Server path at which to find CA certificates (in PEM format)
to use. Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates.
Used to perform mutual authentication using SSL certs. Defaults to No . When
toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in
the CA certificate path, or by another trusted CA (e.g., the system's CA).
Defaults to No .

Common name: Regex matching subject common names in peer
certificates allowed to connect. Defaults to .* . Matches on the substring
a�er CN= . As needed, escape regex tokens to match literal characters.
E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept
from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept
from connections.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to
the input data stream before the data is sent through the Routes. Defaults to
System Default Rule .

Event Breaker bu�er timeout: The amount of time (in milliseconds) that the
event breaker will wait for new data to be sent to a specific channel, before
flushing out the data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event using Eval-like
functionality.

Name: Field name.

Processing Settings

Event Breakers

Fields (Metadata)

Page 312 of 680

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

Allowed URI paths: List of URI paths accepted by this input. Supports
wildcards, e.g., /api/v��hook . Defaults to * , which allows all paths.

Allowed HTTP methods: List of HTTP methods accepted by this input.
Supports wildcards, e.g., P*, GET . Defaults to * , which allows all methods.

Max active requests: Maximum number of active requests allowed for this
Source, per Worker Process. Defaults to 256 . Enter 0 for unlimited.

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and functions
can use them to make processing decisions.

Fields accessible for this Source:

��inputId

��srcIpPort

��channel

Pre-Processing

Advanced Settings

Internal Fields

Page 313 of 680

Kafka

Cribl LogStream supports receiving data records from a Kafka cluster.

Select Data > Sources, then select Kafka from the Data Sources page's tiles or
le� menu. Click Add New to open the Kafka > New Source modal, which
provides the following fields.

Input ID: Enter a unique name to identify this Source definition.

Brokers: List of Kafka brokers to use, e.g., localhost:9092 .

Topics: List of topics to subscribe to.

Group ID: The name of the consumer group to which this Cribl LogStream
instance belongs.

From beginning: Whether to start reading from the earliest available data.
Relevant only during initial subscription. Defaults to Yes .

Enabled: defaults to No . When toggled to Yes :

Autofill?: This setting is experimental.

Validate client certs: Reject certificates that are not authorized by a CA in the
CA certificate path, or by another trusted CA (e.g., the system's CA). Defaults to
No .

ℹ Type: Pull | TLS Support: YES | Event Breaker Support: No

Configuring Cribl LogStream to Receive Data from
Kafka Topics

General Settings

TLS Settings (Client Side)

Page 314 of 680

Server name (SNI): Server name for the SNI (Server Name Indication) TLS
extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to
use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in
PEM format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Certificate path (mutual auth): Path on client containing certificates in (PEM
format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Passphrase: Passphrase to use to decrypt private key.

Minimum TLS version: Optionally, select the minimum TLS version to accept
from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept
from connections.

This section governs SASL (Simple Authentication and Security Layer)
authentication.

Enabled: Defaults to No . When toggled to Yes :

SASL mechanism: Use this drop-down to select the SASL authentication
mechanism to use.

Username: Enter the username for your account.

Password: Enter the account's password.

This section governs Kafka Schema Registry Authentication for AVRO-encoded
data with a schema stored in the Confluent Schema Registry.

Enabled: defaults to No . When toggled to Yes :

Authentication

Schema Registry

Page 315 of 680

Schema registry URL: URL for access to the Confluent Schema Registry. (E.g.,
http:��<hostname��8081 .)

TLS enabled: defaults to No . When toggled to Yes, displays the following
TLS settings for the Schema Registry:

Validate server certs: Reject certificates that are not authorized by a CA
specified in the CA Certificate Path field. Defaults to No .

Server name (SNI): Server name for the SNI (Server Name Indication) TLS
extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to
use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in
PEM format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Certificate path (mutual auth): Path on client containing certificates in (PEM
format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Passphrase: Passphrase to use to decrypt private key.

Minimum TLS version: Optionally, select the minimum TLS version to use when
connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use
when connecting.

In this section, you can add fields/metadata to each event using Eval-like
functionality.

ℹ These have the same format as the TLS Settings (Client Side) above.

TLS Settings (Schema Registry)

Processing Settings

Fields (Metadata)

Page 316 of 680

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and Functions
can use them to make processing decisions.

Fields for this Source:

��inputId

��topicIn (indicates the Kafka topic that the event came from; see
��topicOut in our Kafka Destination documentation)

��schemaId (when using Schema Registry)

Pre-Processing

Internal Fields

Page 317 of 680

Kinesis

Cribl LogStream supports receiving data records from Amazon Kinesis
Streams.

Select Data > Sources, then select Kinesis from the Data Sources page's tiles or
le� menu. Click Add New to open the Kinesis > New Source modal, which
provides the following fields.

Input ID: Enter a unique name to identify this Kinesis Stream Source definition.

Stream name: Kinesis stream name (not ARN) to read data from.

Shard iterator start: Location at which to start reading a shard for the first
time. Defaults to Earliest Record .

Record data format: Format of data inside the Kinesis Stream records. Gzip
compression is automatically detected. Options include:

Cribl (the default): Use this option if LogStream wrote data to Kinesis in
this format. This is a type of NDJSON.

Newline JSON: Use if the records contain newline-delimited JSON
(NDJSON) events – e.g., Kubernetes logs ingested through Kinesis. This is a
good choice if you don't know the records' format.

CloudWatch Logs: Use if you've configured CloudWatch to send logs to
Kinesis.

Event per line: NDJSON can use this format when it fails to parse lines as
valid JSON.

ℹ Type: Pull | TLS Support: YES (secure API) | Event Breaker Support:
No

Configuring Cribl LogStream to Receive Data from
Kinesis Streams

General Settings

Page 318 of 680

Region: Region where the Kinesis stream is located. Required.

Use the Authentication Method buttons to select an AWS authentication
method:

Auto: This default option uses the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY , or the attached IAM

role. Works only when running on AWS.

Manual: You must select this option when not running on AWS.

When using an IAM role to authenticate with Kinesis Streams, the IAM policy
statements must include the following Actions:

kinesis:GetRecords

kinesis:GetShardIterator

kinesis:ListShards

For details, see AWS' Actions, Resources, and Condition Keys for Amazon
Kinesis documentation.

The Manual option exposes these additional fields:

API key: Enter your AWS API key. If not present, will fall back to
env.AWS_ACCESS_KEY_ID , or to the metadata endpoint for IAM credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to
env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM

credentials.

Enable for Kinesis Streams: Whether to use Assume Role credentials to access
Kinesis Streams. Defaults to No .

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to
assume.

Authentication

Auto Authentication

Manual Authentication

Assume Role

Page 319 of 680

External ID: Enter the External ID to use when assuming role.

In this section, you can add fields/metadata to each event, using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

Shard selection expression: A JavaScript expression to be called with each
shardId for the stream. The shard will be processed if the expression

evaluates to a truthy value. Defaults to true .

Service Period: Time interval (in minutes) between consecutive service calls.
Defaults to 1 minute.

Endpoint: Kinesis stream service endpoint. If empty, the endpoint will be
automatically constructed from the region.

Signature version: Signature version to use for signing Kinesis Stream
requests. Defaults to v4 .

Verify KPL checksums: Enable this setting to verify Kinesis Producer Library
(KPL) event checksums.

Reuse connections: Whether to reuse connections between requests. The
default setting (Yes) can improve performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be
verified against a valid Certificate Authority (e.g., self-signed certificates).
Defaults to Yes .

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Page 320 of 680

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and Functions
can use them to make processing decisions.

Field for this Source:

��inputId

Internal Fields

Page 321 of 680

Kinesis Firehose

Cribl LogStream supports receiving data from Amazon Kinesis Data Firehose
delivery streams via Kinesis' HTTP endpoint destination option.

Select Data > Sources, then select Amazon > Firehose from the Data Sources
page's tiles or le� menu. Click Add New to open the Firehose > New Source
modal, which provides the following fields.

Input ID: Enter a unique name to identify this Source definition.

Address: Address to bind on. Defaults to 0.0.0.0 (all addresses).

Port: Enter the port number to listen on.

Auth tokens: Shared secrets to be provided by any client (Authorization:
<token>). Click Generate to create a new secret. If empty, unauthenticated
access will be permitted.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

Private key path: Path on server where to find the private key to use in PEM
format. Path can reference $ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: No

Configuring LogStream to Receive Data over HTTP(S) from
Amazon Kinesis Firehose

General Settings

TLS Settings (Server Side)

Page 322 of 680

Certificate path: Server path at which to find certificates (in PEM format) to use.
Path can reference $ENV_VARS .

CA certificate path: Server path at which to find CA certificates (in PEM format)
to use. Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates.
Used to perform mutual authentication using SSL certs. Defaults to No . When
toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in
the CA certificate path, or by another trusted CA (e.g., the system's CA).
Defaults to No .

Common name: Regex matching subject common names in peer
certificates allowed to connect. Defaults to .* . Matches on the substring
a�er CN= . As needed, escape regex tokens to match literal characters.
E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept
from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept
from connections.

In this section, you can add fields/metadata to each event using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

Processing Settings

Fields (Metadata)

Pre-Processing

Page 323 of 680

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and functions
can use them to make processing decisions.

Fields accessible for this Source:

��inputId

��firehoseArn

��firehoseReqId

��firehoseEndpoint

��firehoseToken

If you set the optional IntervalInSeconds and/or SizeInMBs parameters in
the Kinesis Firehose BufferingHints API, beware of selecting extreme values
(toward the ends of the API's supported ranges). These can send more bytes
than LogStream can bu�er, causing LogStream to send HTTP 500 error
responses to Kinesis Firehose.

Internal Fields

Limitations/Troubleshooting

Page 324 of 680

Azure Blob Storage

Cribl LogStream supports receiving data from Azure Blob Storage buckets,
using Azure Event Grid to receive notifications, via a storage queue, when new
blobs are added to a storage account.

Select Data > Sources, then select Azure Blob Storage from the Data Sources
page's tiles or le� menu. Click Add New to open the Azure Blob Storage >
New Source modal, which provides the following fields.

Input ID: Enter a unique name to identify this Azure Blob Storage Source
definition.

Queue: The storage queue name to read Blob notifications from. Value must be
a JavaScript expression (which can evaluate to a constant value), enclosed in
quotes or backticks. Can be evaluated only at init time. E.g., referencing a
Global Variable: myQueue�${C.vars.myVar} .

Connection string: Enter your Azure storage account Connection String. If le�
blank, LogStream will fall back on env.AZURE_STORAGE_CONNECTION_STRING .

Filename filter: Regex matching file names to download and process. Defaults
to .* , to match all characters.

ℹ Type: Pull | TLS Support: YES (secure API) | Event Breaker Support:
YES

Configuring Cribl LogStream to Receive Data from
Azure Blob Storage

General Settings

Processing Settings

Custom Command

Page 325 of 680

In this section, you can pass the data from this input to an external command
for processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You
can drag arguments vertically to resequence them.

This section defines event breaking rulesets that will be applied, in order.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to
the input data stream before the data is sent through the Routes. Defaults to
System Default Rule .

Event Breaker bu�er timeout: The amount of time (in milliseconds) that the
Event Breaker will wait for new data to be sent to a specific channel, before
flushing out the data stream, as-is, to the Pipelines. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

Visibility timeout (secs): The duration (in seconds) that the received messages
are hidden from subsequent retrieve requests, a�er being retrieved by a
ReceiveMessage request. Defaults to 600 seconds. Maximum allowed value is
604800 seconds (7 days).

Event Breakers

Fields (Metadata)

Pre-Processing

Advanced Settings

Page 326 of 680

Num receivers: The number of receiver processes to run,. The higher the
number, the better the throughput, at the expense of CPU overhead. Defaults
to 1 .

Max messages: The maximum number of messages to return in a poll request.
Azure storage queues never return more messages than this value (although
they might return fewer messages). Acceptable values: 1 to 10.

Endpoint: S3 service endpoint. If empty, defaults to AWS's region-specific
endpoint. Otherwise, used to point to an S3-compatible endpoint.

Service period (secs): The duration (in seconds) which pollers should be
validated and restarted if exited. Defaults to 5 seconds.

Skip file on error: Toggle to Yes to skip files that trigger a processing error (e.g.,
corrupted files). Defaults to No, which enables retries a�er a processing error.

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and Functions
can use them to make processing decisions.

Fields for this Source:

��inputId

��source

This Source needs to receive Azure Event Grid notifications, via a
storage queue, when new blobs are added to a storage account. This queue

ℹ LogStream will automatically extend this timeout until the initial
request's files have been processed – notably, in the case of large
files that require additional processing time.

Internal Fields

� The remainder of this topic covers required Azure-side
configuration.

Configuring Azure Blob Notifications

Page 327 of 680

approach enables LogStream to manage backpressure conditions and retries
upon errors.

You will therefore need to enable notifications in the Azure portal. The basic
flow is:

File upload → Blob container → Blob Created notification → Storage queue

To configure notifications from the Blob storage account in the Azure backend,
there are three major steps, outlined below:

1. Create an Event Grid system topic.

2. Create a storage queue.

3. Configure the generation of storage account notifications when new blobs
are uploaded to the queue.

First, you must create a system topic, to which Azure will publish notifications.
In the Azure portal, tart at Event Grid System Topics:

Azure portal > System topics

Select +Create to create a new system topic, then set the Topic Type to
Storage Account (Blob):

⚠ Azure's UI will change over time. Please fall back to Microso�'s
Azure Event Grid documentation for up-to-date instructions and
screenshots.

1. Create System Topic

Page 328 of 680

Creating a system topic

In Subscription > Resource Group > Resource, reference the storage account
where you want to generate notifications.

Give the topic an arbitrary name that is meaningful to you. (In this example, the
name is the same as the storage account.)

Next, navigate to your storage account to create a queue.

Accessing your storage account

Select the storage account for which you would like to set up notifications.
Then, in the submenu, select Queue service > Queues:

2. Create Storage Queue

Page 329 of 680

Accessing queues

Select Create queue, and give the queue a name that is meaningful to you.

Adding a queue

Next, set up the storage account that will publish Blob Create notifications to
the queue, using the system topic. From the Storage Accounts menu, select
Events:

3. Configure Storage Account Notifications

Page 330 of 680

Accessing your storage account

Then click + Event Subscription to proceed:

Page 331 of 680

Creating a subscription.

There are a few things to configure here:

Enter a Name for the subscription.

In System Topic Name, enter the name of the system topic you created in
1. Create System Topic above.

In Event Types, select Blob Created, and deselect Blob Deleted.

As the Endpoint Type, select Storage Queues.

Click Select an endpoint, and click the subscription to use (Pay‑As-You-
Go).

Next, select the storage account on which to add the subscription:

Page 332 of 680

Choosing the storage account

Select the queue you created in Create Storage Queue above, and click
Confirm Selection to save the settings.

Selecting the storage account

To complete the process, click Create.

Page 333 of 680

Creating the subscription

Page 334 of 680

Azure Event Hubs

Cribl LogStream supports receiving data records from Azure Event Hubs.

Select Data > Sources, then select Azure Event Hubs from the Data Sources page's tiles or le� menu.
Click Add New to open the Azure Event Hubs > New Source modal, which provides the following
fields.

Input ID: Enter a unique name to identify this source definition.

Brokers: List of Event Hubs Kafka brokers to connect to, e.g.,
yourdomain.servicebus.windows.net:9093 . Get the hostname from the host portion of the

primary or secondary connection string in Shared Access Policies.

Event Hub name: The name of the Event Hub (a.k.a. Kafka Topic) to subscribe to.

Group ID: Specifies the name of the consumer group to which this Cribl LogStream instance belongs.
Should always be $Default for Event Hubs.

From beginning: Whether to start reading from the earliest available data. Relevant only during initial
subscription. Defaults to Yes .

Enabled: Defaults to Yes .

Validate server certs: Whether to reject connections to servers without signed certificates. Defaults to
No – and for Event Hubs, must always be disabled.

Enabled: Defaults to No . When toggled to Yes :

ℹ Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: No

Configuring Cribl LogStream to Receive Data from Azure Event
Hubs

General Settings

TLS Settings (Client Side)

Authentication

Page 335 of 680

SASL mechanism: SASL (Simple Authentication and Security Layer) authentication mechanism to
use. Currently, PLAIN is the only mechanism supported for Event Hubs Kafka brokers.

Username: The username for authentication. For Event Hubs, this should always be
$ConnectionString .

Password: Event Hubs primary or secondary connection string. From Microso�'s documentation,
the format is:

Endpoint=sb:��<FQDN>/;SharedAccessKeyName=<KeyName>;SharedAccessKey=<KeyValue>

Example entry:

Endpoint=sb:��dummynamespace.servicebus.windows.net/;SharedAccessKeyName=dummyac

cesskeyname;SharedAccessKey=5dOntTRytoC24opYThisAsit3is2B+OGY1US/fuL3ly=

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data from
this input before the data is sent through the Routes.

Processing Settings

Fields (Metadata)

Pre-Processing

Page 336 of 680

Metrics

Cribl LogStream supports receiving metrics in these wire formats/protocols:
StatsD, StatsD Extended, and Graphite. Automatic protocol detection will
happen on the first line received over a TCP connection or a UDP packet. Lines
not matching the detected protocol will be dropped.

Select Data > Sources, then select Metrics from the Data Sources page's tiles or
le� menu. Click Add New to open the Metrics > New Source modal, which
provides the following fields.

Input ID: Enter a unique name to identify this Source definition.

Address: Enter the hostname/IP to listen to. Defaults to 0.0.0.0 .

UDP port: Enter the UDP port number to listen on. Not required if listening on
TCP.

TCP port: Enter the TCP port number to listen on. Not required if listening on
UDP.

In this section, you can add fields/metadata to each event using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

ℹ Type: Push | TLS Support: No | Event Breaker Support: No

Configuring Cribl LogStream to Receive Metrics

General Settings

Processing Settings

Fields (Metadata)

Page 337 of 680

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

Enable proxy protocol: Defaults to No . Toggle to Yes if the connection is
proxied by a device that supports Proxy Protocol v1 or v2.

IP whitelist regex: Regex matching IP addresses that are allowed to send data.
Defaults to .* (i.e., all IPs.)

Max bu�er size (events) : Maximum number of events to bu�er when
downstream is blocking. Defaults to 1000 .

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and Functions
can use them to make processing decisions.

Fields for this Source:

��srcIpPort

��metricsInType

Metric data is read into the following event schema:

Text

LogStream places su�icient information into a field called ��criblMetric to
enable these events to be properly serialized out to any metric outputs

Pre-Processing

Advanced Settings

Internal Fields

Metric Event Schema and Destination Support

_metric - the metric name
_metric_type - the type of the metric (gauge, counter, timer)
_value - the value of the metric
_time - metric_time or Date.now()/1000
dim1 - value of dimension1
dim3 - value of dimension2
....

Page 338 of 680

(independent of the input type).

The following Destinations natively support the ��criblMetric field:

Splunk

Splunk HEC

InfluxDB

Statsd

Statsd Extended

Graphite

Page 339 of 680

Prometheus

Cribl LogStream supports receiving data from Prometheus.

Select Data > Sources, then select Prometheus from the Data Sources page's
tiles or le� menu. Click Add New to open the Prometheus > New Source modal,
which provides the following fields.

Input ID: Enter a unique name to identify this Source definition.

Extra dimensions: Dimensions to include in events. By default, host and
source are included.

Discovery type: Target discovery mechanism. Use Static (the default) to
manually enter a list of targets. Select DNS or AWS EC2 options enable
dynamic discovery of endpoints to scrape. Your selection determines which
fields are displayed lower in this section:

Targets: Displayed for Discovery type: Static . List of Prometheus targets
to pull metrics from, values can be in URL or host[:port] format. For
example: http://localhost:9090/metrics, localhost:9090, or localhost. In the
cases where just host[:port] are specified, the endpoint will resolve to
'http://host[:port]/metrics'.

DNS names: Displayed for Discovery type: DNS . Enter a list of DNS names
to resolve.

Record type: Displayed for Discovery type: DNS . Select the DNS record
type to resolve. Defaults to SRV (Service record). Other options are A or
AAA record.

ℹ Type: Pull | TLS Support: No | Event Breaker Support: No

Configuring Cribl LogStream to Receive Data from
Prometheus

General Settings

Page 340 of 680

Region: Displayed for Discovery type: AWS EC2 . Select the AWS region in
which to discover the EC2 instances with metrics endpoints to scrape.

Poll interval: How o�en (in minutes) to scrape targets for metrics. Defaults to
15 . This value must be an integer that divides evenly into 60 minutes.

Log level: Set the verbosity level to one of debug , info (the default), warn ,
or error .

In this section, you can add fields/metadata to each event using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

Keep alive time (seconds): How o�en workers should check in with the
scheduler to keep job subscription alive. Defaults to 60 seconds.

Worker timeout (periods) : How many Keep alive time periods before an
inactive worker's job subscription will be revoked. Defaults to 3 periods.

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and Functions
can use them to make processing decisions.

Fields for this Source:

��source

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 341 of 680

��isBroken

��inputId

��final

��criblMetrics

��channel

��cloneCount

Page 342 of 680

SQS

Cribl LogStream supports receiving events from Amazon Simple Queuing
Service.

Select Data > Sources, then select SQS from the Data Sources page's tiles or
le� menu. Click Add New to open the SQS > New Source modal, which
provides the following fields.

Input ID: Enter a unique name to identify this SQS Source definition.

Queue: The name, URL, or ARN of the SQS queue to read events from.
This value must be a JavaScript expression (which can evaluate to a constant),
enclosed in single quotes, double quotes, or backticks. To specify a non-AWS
URL, use the format: '{url}/<queueName>' . (E.g.,
':port/<myQueueName>' .)

Queue type: The queue type used (or created). Defaults to Standard . FIFO
(First In, First Out) is the other option.

Create queue: If toggled to Yes , LogStream will create the queue if it does not
exist.

Region: AWS Region where the SQS queue is located. Required, unless the
Queue entry is a URL or ARN that includes a Region.

Authentication Method: Select an AWS authentication method.

ℹ Type: Pull | TLS Support: YES (secure API) | Event Breaker Support:
No

Configuring Cribl LogStream to Receive Data from
Amazon SQS

General Settings

Authentication

Page 343 of 680

Auto: This default option uses the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY , or the attached IAM

role. Works only when running on AWS.

Manual: You must select this option when not running on AWS.

The Manual option exposes these corresponding additional fields:

API key: Enter your AWS API key. If not present, will fall back to
env.AWS_ACCESS_KEY_ID , or to the metadata endpoint for IAM

credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to
env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM

credentials.

Enable for SQS: Whether to use Assume Role credentials to access SQS.
Defaults to No .

AWS account ID: SQS queue owner's AWS account ID. Leave empty if SQS
queue is in same AWS account.

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to
assume.

External ID: Enter the external ID to use when assuming role.

In this section, you can add fields/metadata to each event, using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the

Assume Role

Processing Settings

Fields (Metadata)

Pre-Processing

Page 344 of 680

Routes.

Endpoint: SQS service endpoint. If empty, the endpoint will be automatically
constructed from the AWS Region.

Signature version: Signature version to use for signing SQS requests. Defaults
to v4 .

Max messages: The maximum number of messages that SQS should return in a
poll request. Amazon SQS never returns more messages than this value.
(However, fewer messages might be returned.) Acceptable values: 1 to 10.
Defaults to 10 .

Visibility timeout seconds: The duration (in seconds) that the received
messages are hidden from subsequent retrieve requests, a�er they're
retrieved by a ReceiveMessage request. Defaults to 600 .

Num receivers: The number of receiver processes to run. The higher the
number, the better the throughput, at the expense of CPU overhead. Defaults
to 3 .

Reuse connections: Whether to reuse connections between requests. The
default setting (Yes) can improve performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be
verified against a valid Certificate Authority (e.g., self-signed certificates).
Defaults to Yes .

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and Functions
can use them to make processing decisions.

Fields for this Source:

��inputId

��sqsSysAttrs

The _sqsSysAttrs field can take on the following properties, which are
reported to LogStream from SQS:

Advanced Settings

Internal Fields

Page 345 of 680

��sqsSysAttrs.ApproximateFirstReceiveTimestamp : Returns the time
(epoch time in milliseconds) the message was first received from the
queue.

��sqsSysAttrs.ApproximateReceiveCount : Returns the number of
times a message has been received from the queue without being deleted.

��sqsSysAttrs.SenderId : For an IAM user, returns the IAM user ID (e.g.:
ABCDEFGHI1JKLMNOPQ23R). For an IAM role, returns the IAM role ID (e.g.:
ABCDE1F2GH3I4JK5LMNOP:i�a123b456).

��sqsSysAttrs.SentTimestamp : Returns the time (epoch time in
milliseconds) the message was sent to the queue.

��sqsSysAttrs.MessageDeduplicationId : Returns the value provided
by the producer that calls the SendMessage action.

��sqsSysAttrs.MessageGroupId : Returns the value provided by the
producer that calls the SendMessage action – messages with the same
MessageGroupId are returned in sequence.

��sqsSysAttrs.SequenceNumber : Returns the sequence-number value
provided by Amazon SQS.

��sqsSysAttrs.AWSTraceHeader : Returns the AWS X‑Ray trace header
string.

For background on these message properties, see AWS' ReceiveMessage >
Request Parameters documentation.

The following permissions are needed on the SQS queue:

sqs:ReceiveMessage

sqs:DeleteMessage

sqs:GetQueueAttributes

sqs:GetQueueUrl

sqs:CreateQueue (optional, if and only if you want LogStream to create
the queue)

SQS Permissions

Troubleshooting Notes

⚠ VPC endpoints for SQS might need to be set up in your account.
Check with your administrator for details.

Page 346 of 680

Page 347 of 680

S3

Cribl LogStream supports receiving data from Amazon S3 buckets, using event
notifications through SQS.

ℹ Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: YES

S3 Setup Strategy

ℹ The source S3 bucket must be configured to send
s3�ObjectCreated:* events to an SQS queue, either directly

(easiest) or via SNS (Amazon Simple Notification Service). See the
event notification configuration guidelines below.

SQS messages will be deleted a�er they're read, unless an error
occurs, in which case LogStream will retry. This means that although
LogStream will ignore files not matching the Filename Filter, their SQS
events/notifications will still be read, and then deleted from the queue
(along with those from files that match).

These ignored files will no longer be available to other S3 Sources
targeting the same SQS queue. If you still need to process these files,
we suggest one of these alternatives:

Using a di�erent, dedicated SQS queue. (Preferred and
recommended.)

Applying a broad filter on a single Source, and then using pre-
processing Pipelines an/or Route filters for further processing.

Configuring Cribl LogStream to Receive Data from
Amazon S3

Page 348 of 680

Select Data > Sources, then select S3 from the Data Sources page's tiles or le�
menu. Click Add New to open the S3 > New Source modal, which provides the
following fields.

Input ID: Enter a unique name to identify this S3 Source definition.

Queue: The name, URL, or ARN of the SQS queue to read events from. When
specifying a non-AWS URL, you must use the format: {url}/<queueName> . (E.g.,
https:��host:port/<queueName> .) This value must be a JavaScript

expression (which can evaluate to a constant), enclosed in single quotes, double
quotes, or backticks.

Filename filter: Regex matching file names to download and process. Defaults to
.* , to match all characters.

Region: AWS Region where the S3 bucket and SQS queue are located. Required,
unless the Queue entry is a URL or ARN that includes a Region.

Authentication method: Select an AWS authentication method.

Auto: This default option uses the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY , or the attached IAM

role. Works only when running on AWS.

Manual: You must select this option when not running on AWS.

The Manual option exposes these corresponding additional fields:

API key: Enter your AWS API key. If not present, will fall back to
env.AWS_ACCESS_KEY_ID , or to the metadata endpoint for IAM credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to
env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM

credentials.

Enable for S3: Whether to use Assume Role credentials to access S3. Defaults to
Yes .

General Settings

Authentication

Assume Role

Page 349 of 680

Enable for SQS: Whether to use Assume Role credentials when accessing SQS
(Amazon Simple Queue Service). Defaults to No .

AWS account ID: SQS queue owner's AWS account ID. Leave empty if the SQS
queue is in the same AWS account.

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to assume.

External ID: Enter the External ID to use when assuming role.

In this section, you can pass the data from this input to an external command for
processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You
can drag arguments vertically to resequence them.

This section defines event breaking rulesets that will be applied, in order.

Event Breaker Rulesets: A list of event breaking rulesets that will be applied to
the input data stream before the data is sent through the Routes. Defaults to
System Default Rule .

Event Breaker Bu�er Timeout: The amount of time (in milliseconds) that the
Event Breaker will wait for new data to be sent to a specific channel, before
flushing out the data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

Processing Settings

Custom Command

Event Breakers

Fields (Metadata)

Page 350 of 680

In this section's Pipeline drop-down list, you can select a single existing Pipeline
to process data from this input before the data is sent through the Routes.

Endpoint: S3 service endpoint. If empty, defaults to AWS's region-specific
endpoint. Otherwise, used to point to an S3-compatible endpoint.

Signature version: Signature version to use for signing SQS requests. Defaults to
v4 .

Num receivers: The number of receiver processes to run,. The higher the
number, the better the throughput, at the expense of CPU overhead. Defaults to
1 .

Max messages: The maximum number of messages that SQS should return in a
poll request. Amazon SQS never returns more messages than this value.
(However, fewer messages might be returned.) Acceptable values: 1 to 10.
Defaults to 1 .

Visibility timeout seconds: The duration (in seconds) that the received messages
are hidden from subsequent retrieve requests, a�er being retrieved by a
ReceiveMessage request. Defaults to 600 .

Socket timeout: Socket inactivity timeout (in seconds). Increase this value if
retrievals time out during backpressure. Defaults to 300 seconds.

Skip file on error: Toggle to Yes to skip files that trigger a processing error. (E.g.,
corrupted files.) Defaults to No, which enables retries a�er a processing error.

Reuse connections: Whether to reuse connections between requests. The
default setting (Yes) can improve performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be
verified against a valid Certificate Authority (e.g., self-signed certificates).
Defaults to Yes .

Pre-Processing

Advanced Settings

ℹ LogStream will automatically extend this timeout until the initial
request's files have been processed – notably, in the case of large files
that require additional processing time.

Page 351 of 680

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and Functions can
use them to make processing decisions.

Fields for this Source:

��inputId

��source

1. Create a Standard SQS Queue. Note its ARN.

2. Replace its access policy with one similar to the examples below. To do so,
select the queue; and then, in the Permissions tab, click: Edit Policy
Document (Advanced). (These examples di�er only at line 9, showing public
access to the SQS queue versus S3-only access to the queue.)

3. In the Amazon S3 console, add a notification configuration to publish events
of the s3�ObjectCreated:* type to the SQS queue.

Permissive SQS access policy Restrictive SQS access policy

Internal Fields

How to Configure S3 to Send Event Notifications to
SQS

ℹ For step-by-step instructions, see AWS' Walkthrough: Configure a
Bucket for Notifications (SNS Topic and SQS Queue).

{
 "Version": "example-2020-04-20",
 "Id": "example-ID",
 "Statement": [
 {
 "Sid": "<SID name>",
 "Effect": "Allow",
 "Principal": {
 "AWS":"*"
 },
 "Action": [
 "SQS�SendMessage"
],
 "Resource": "example-SQS-queue-ARN",
 "Condition": {
 "ArnLike": { "aws:SourceArn": "arn:aws:s3�*:*:example�bucket�name" }

Page 352 of 680

The following permissions are required on the S3 bucket:

s3�GetObject

s3�ListBucket

The following permissions are required on the SQS queue:

sqs:ReceiveMessage

sqs:DeleteMessage

sqs:ChangeMessageVisibility

sqs:GetQueueAttributes

sqs:GetQueueUrl

When LogStream instances are deployed on AWS, use IAM Roles whenever
possible.

Not only is this safer, but it also makes the configuration simpler to
maintain.

Although optional, we highly recommend that you use a Filename Filter.

This will ensure that LogStream ingests only files of interest.

Ingesting only what's strictly needed improves latency, processing
power, and data quality.

If higher throughput is needed, increase Advanced Settings > Number of
Receivers and/or Max messages. However, do note:

These are set at 1 by default. Which means, each Worker Process, in
each LogStream Worker Node, will run 1 receiver consuming 1 message
(i.e. S3 file) at a time.

Total S3 objects processed at a time per Worker Node = Worker
Processes x Number of Receivers x Max Messages

 }
 }
]
}

S3 and SQS Permissions

Best Practices

Page 353 of 680

Increased throughput implies additional CPU utilization.

When ingesting large files, tune up the Visibility Timeout, or consider using
smaller objects.

The default value of 600s works well in most cases, and while you
certainly can increase it, we suggest that you also consider using
smaller S3 objects.

VPC endpoints for SQS and for S3 might need to be set up in your account.
Check with your administrator for details.

If you're having connectivity issues, but no problems with the CLI, see if the
AWS CLI proxy is in use. Check with your administrator for details.

Troubleshooting Notes

Page 354 of 680

O�ice 365 Services

Cribl LogStream supports receiving data from the O�ice 365 Service
Communications API. This facilitates analyzing the status and history of service
incidents on multiple Microso� cloud services, along with associated incident
and Message Center communications.

TLS is enabled via the HTTPS protocol on this Source's underlying REST API.

Select Data > Sources, then select O�ice 365 > Services from the Data Sources
page's tiles or le� menu. Click Add New to open the Services > New Source
modal, which provides the following fields.

Input ID: Enter a unique name to identify this O�ice 365 Services definition.

Tenant ID: Enter the O�ice 365 Azure tenant ID.

App ID: Enter the O�ice 365 Azure application ID.

Client secret: Enter the O�ice 365 Azure client secret.

Here, you can configure polling separately for the following types of data from
the O�ice 365 Service Communications API:

Current Status: Get a real-time view of current and ongoing service
incidents.

Messages: Find incident and Message Center communications.

Historical Status: Get a historical view of service incidents.

ℹ Type: Pull | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl LogStream to Receive Data from
O�ice 365 Services

General Settings

Content Types

Page 355 of 680

As of this revision, this Microso� API provides data for O�ice 365, Yammer,
Dynamics CRM, and Microso� Intune cloud services. For each of these content
types, this section provides the following controls:

Enabled: Toggle this to Yes for each service that you want to poll.

Interval: Optionally, override the default polling interval. See About Polling
Intervals below.

Log level: Set the verbosity level to one of debug , info (the default), warn ,
or error .

To poll the O�ice 365 Service Communications API, LogStream uses the
Interval field's value to establish the search date range and the cron schedule
(e.g.: ��${interval} * * * *).

Therefore, intervals set in minutes – those for Current Status and Historical
Status – must divide evenly into 60 minutes to create a predictable schedule.
Dividing 60 by intervals like 1 , 2 , 3 , 4 , 5 , 6 , 10 , 12 , 15 , 20 , or 60
itself yields an integer, so you can enter any of these values.

LogStream will reject intervals like 23 , 42 , or 45 , or 75 – which would
yield non-integer results, meaning unpredictable schedules.

The Historical Status service polls only once per day. So here, the Interval
field's value simply establishes the hour of the day at which to poll.
(In distributed deployments, this time is set based on the Master Node's system
time. In single-instance deployments, it is set based on the API server's time
zone.)

In this section, you can add fields/metadata to each event, using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

About Polling Intervals

Processing Settings

Fields (Metadata)

Pre-Processing

Page 356 of 680

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

Keep Alive Time (seconds): How o�en Workers should check in with the
scheduler to keep their job subscription alive. Defaults to 60 .

Worker timeout (periods): The number of Keep Alive Time periods before an
inactive Worker will have its job subscription revoked. Defaults to 3 .

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and Functions
can use them to make processing decisions.

Fields for this Source:

��final

��inputId

��isBroken

��source

Advanced Settings

Internal Fields

Page 357 of 680

O�ice 365 Activity

Cribl LogStream supports receiving data from the O�ice 365 Management
Activity API. This facilitates analyzing actions and events on Azure Active
Directory, Exchange, and SharePoint, along with global auditing and Data Loss
Prevention data.

TLS is enabled via the HTTPS protocol on this Source's underlying REST API.

Select Data > Sources, then select O�ice 365 > Activity from the Data Sources
page's tiles or le� menu. Click Add New to open the Activity > New Source
modal, which provides the following fields.

Input ID: Enter a unique name to identify this O�ice 365 Activity definition.

Tenant ID: Enter the O�ice 365 Azure tenant ID.

App ID: Enter the O�ice 365 Azure application ID.

Client secret: Enter the O�ice 365 Azure client secret.

Subscription Plan: Select the O�ice 365 subscription plan for your
organization. This is typically Enterprise and GCC Government Plan .

Here, you can configure polling independently for the following types of audit
data from the O�ice 365 Management Activity API:

Active Directory

Exchange

ℹ Type: Pull | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl LogStream to Receive Data from
O�ice 365 Activity

General Settings

Content Types

Page 358 of 680

SharePoint

General: All workloads not included in the above content types

DLP.All: Data Loss Prevention events only, for all workloads

For each of these content types, this section provides the following controls:

Enabled: Toggle this to Yes for each service that you want to poll.

Interval: Optionally, override the default polling interval. See About Polling
Intervals below.

Log level: Set the verbosity level to one of debug , info (the default), warn ,
or error .

To poll the O�ice 365 Management Activity API, LogStream uses the Interval
field's value to establish the search date range and the cron schedule
(e.g.: ��${interval} * * * *).

Therefore, intervals set in minutes must divide evenly into 60 minutes to create
a predictable schedule. Dividing 60 by intervals like 1 , 2 , 3 , 4 , 5 , 6 , 10 ,
12 , 15 , 20 , or 60 itself yields an integer, so you can enter any of these

values.

LogStream will reject intervals like 23 , 42 , or 45 , or 75 – which would
yield non-integer results, meaning unpredictable schedules.

In this section, you can add fields/metadata to each event, using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

About Polling Intervals

Processing Settings

Fields (Metadata)

Pre-Processing

Page 359 of 680

Keep Alive Time (seconds): How o�en Workers should check in with the
scheduler to keep their job subscription alive. Defaults to 60 .

Worker timeout (periods): The number of Keep Alive Time periods before an
inactive Worker will have its job subscription revoked. Defaults to 3 .

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and Functions
can use them to make processing decisions.

Fields for this Source:

��final

��inputId

��isBroken

��source

Advanced Settings

Internal Fields

Page 360 of 680

O�ice 365 Message Trace

Cribl LogStream supports receiving O�ice 365 Message Trace data. This mail-flow metadata can
be used to detect and report on malicious activity including bulk emails, spoofed-domain emails,
and data exfiltration.

TLS is enabled via the HTTPS protocol on this Source's underlying REST API.

Select Data > Sources, then select O�ice 365 > Message Trace from the Data Sources page's tiles
or le� menu. Click Add New to open the Message Trace > New Source modal, which provides the
following fields.

Input ID: Enter a unique name to identify this O�ice 365 Message Trace definition.

Report URL: Enter the URL to use when retrieving report data. Defaults to:
https:��reports.office365.com/ecp/reportingwebservice/reporting.svc/MessageTrace .

Poll interval: How o�en (in minutes) to run the report. Must divide evenly into 60 minutes to
create a predictable schedule, or Save will fail. See About Polling Intervals below.

Username: Username with which to run the Message Trace API call.

Password: Password with which to run the Message Trace API call.

Date range start: The relative time in the past that begins the search date range. (E.g., -3h@h .)
Message Trace data is delayed; this parameter (with Date range end) compensates for delay and
gaps.

Date range end: The relative time in the past that ends the search date range. (E.g., -2h@h .)
Message Trace data is delayed; this parameter (with Date range start) compensates for delay and
gaps.

Log level: For data collection's runtime log, set the verbosity level to one of debug , info ,
warn , or error . (If not selected, defaults to info .)

ℹ Type: Pull | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl LogStream to Receive O�ice 365 Message
Trace Data

General Settings

Page 361 of 680

To poll the O�ice 365 Message Trace API, LogStream uses the Poll interval field's value to
establish the cron schedule. (e.g.: ��${interval} * * * *).

Because the interval is set in minutes, it must divide evenly into 60 minutes to create a predictable
schedule. Dividing 60 by intervals like 1 , 2 , 3 , 4 , 5 , 6 , 10 , 12 , 15 , 20 , or 60 itself
yields an integer, so you can enter any of these values.

LogStream will reject intervals like 23 , 42 , or 45 , or 75 – which would yield non-integer
results, meaning unpredictable schedules.

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to process data
from this input before the data is sent through the Routes.

Keep Alive Time (seconds): How o�en Workers should check in with the scheduler to keep their
job subscription alive. Defaults to 60 .

Worker timeout (periods): The number of Keep Alive Time periods before an inactive Worker will
have its job subscription revoked. Defaults to 3 .

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta" fields are
not part of an event, but they are accessible, and Functions can use them to make processing
decisions.

Fields for this Source:

��final

��inputId

About Polling Intervals

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 362 of 680

��isBroken

��source

Page 363 of 680

SNMP Trap

Cribl LogStream supports receiving data from SNMP Traps.

Select Data > Sources, then select SNMP Trap from the Data Sources page's
tiles or le� menu. Click Add New to open the SNMP Trap > New Source pane,
which provides the fields outlined below.

Input ID: Enter a unique name to identify this Source definition.

Address: Address to bind on. Defaults to 0.0.0.0 (all addresses).

UDP Port: Port on which to receive SNMP traps. Defaults to 162 .

In this section, you can add fields/metadata to each event using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

ℹ Type: Push | TLS Support: NO | Event Breaker Support: No

Configuring Cribl LogStream to Receive SNMP
Traps

� LogStream ships with an SNMP Trap Source preconfigured to listen
on Port 9162. You can clone or directly modify this Source to further
configure it, and then enable it.

General Settings

Processing Settings

Fields (Metadata)

Page 364 of 680

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

IP whitelist regex: Regex matching IP addresses that are allowed to send data.
Defaults to .* i.e. all IPs.

Max bu�er size (events) : Maximum number of events to bu�er when
downstream is blocking. Defaults to 1000 .

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and Functions
can use them to make processing decisions.

Fields for this Source:

��inputId

��snmpVersion : Acceptable values are 0 , 2 , 3 . Versions: 0 =v1,
2 =v2c, 3 =v3.

��srcIpPort : <hostname>|port

��snmpRaw : Bu�er containing Raw SNMP packet

It's possible to work with SNMP metadata (i.e., we'll decode the packet).
Options include dropping, routing, etc.

SNMP packets can be forwarded to other SNMP destinations. However, the
contents of the incoming packet cannot be modified – i.e., we'll forward
the packets verbatim as they came in.

SNMP packets can be forwarded to non-SNMP destinations (e.g., Splunk,
Syslog, S3, etc.).

Non-SNMP input data cannot be sent to SNMP destinations.

Pre-Processing

Advanced Settings

Internal Fields

Considerations for Working with SNMP Trap Data

Page 365 of 680

Datagens

Cribl LogStream supports generating of data from datagen files. See Using
Datagens for more details.

Select Data > Sources, then select Datagens from the Data Sources page's tiles
or le� menu. Click Add New to open the Datagens > New Source pane, which
provides the following fields.

Input ID: Enter a unique name to identify this Source definition.

Datagens: List of datagens.

Data generator file: Name of the datagen file.

Events per second per Worker Node: Maximum number of events to
generate per second, per worker node. Defaults to 10 .

In this section, you can add fields/metadata to each event using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

ℹ Type: Internal | TLS Support: N/A | Event Breaker Support: No

Configuring Cribl LogStream to Generate Sample
Data

General Settings

Processing Settings

Fields (Metadata)

Pre-Processing

Page 366 of 680

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and Functions
can use them to make processing decisions.

Fields for this Source:

��inputId

Internal Fields

Page 367 of 680

Cribl Internal

The Cribl Internal Source enables you to capture and send LogStream's own
internal logs and metrics through Routes and Pipelines. In distributed mode,
only Worker Node internal logs can be processed through this Source. (Logs
on the Master remain on the Master, since the Master Node is not part of any
processing path.)

Select Data > Sources, then select Cribl Internal from the Data Sources page's
tiles or le� menu.

Next, on the CriblLogs and/or the CriblMetrics row, slide the Enabled slider to
Yes . Confirm your choice in the resulting message box.

To proceed to the configuration options listed below, click anywhere on the
CriblLogs or the CriblMetrics row.

Cribl Internal Sources – click to configure

Enabled: This duplicates the parent page's Enabled slider. Keep it at Yes to
enable Cribl logs as a Source.

ℹ Type: Internal | TLS Support: N/A | Event Breaker Support: No

Configuring Cribl Internal Logs/Metrics to Behave
as a Data Source

CriblLogs Settings

General Settings

Page 368 of 680

Input ID: Enter a unique name to identify this CriblLogs Source definition.

In this section, you can add fields/metadata to each event, using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

Enabled: This duplicates the parent page's Enabled slider. Keep it at Yes to
enable Cribl metrics as a Source.

Input ID: Enter a unique name to identify this CriblMetrics Source definition.

Metric name prefix: Enter an optional prefix that will be applied to metrics
provided by LogStream. The prefix defaults to cribl.logstream. .

Processing Settings

Fields (Metadata)

Pre-Processing

CriblMetrics Settings

General Settings

ℹ If LogStream detects source , sourcetype , host , or index
fields in metrics from external sources, it copies their values into new
dimensions with added event_ prefixes (e.g.,
event_sourcetype). This leaves the original dimensions (and their

values) intact.

Note that you can disable metric collection for any or all of these four
fields at System Settings > General Settings > Limits > Disable field
metrics.

Page 369 of 680

In this section, you can add fields/metadata to each event, using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

By default, LogStream generates internal metrics every 2 seconds. To consume
metrics at longer intervals, you can use or adapt the cribl‑metrics_rollup
Pipeline that ships with LogStream. Attach it to your Cribl Internal Source as a
pre‑processing Pipeline. The Pipeline's Rollup Metrics Function has a default
Time Window of 30 seconds, which you can adjust to a di�erent granularity as
needed.

The following fields will be added to all events/metrics:

source : set to cribl .

host : set to the hostname of the Cribl instance.

Use these fields to guide these events/metrics through Cribl Routes.

Processing Settings

Fields (Metadata)

Pre-Processing

Reporting Metrics Less Frequently

Internal Fields

⚠ All Cribl internal fields are subject to change and modification. Cribl
provides them to assist with analytics and diagnostics, but does not
guarantee that they will remain available.

Page 370 of 680

AppScope

AppScope is an open-source instrumentation utility from Cribl. It o�ers
visibility into any Linux command or application, regardless of runtime, with no
code modification. For details about configuring the AppScope CLI, loader, and
library, see: https://appscope.dev/docs.

Select Data > Sources, then select AppScope from the Data Sources page's tiles
or le� menu. Click Add New to open the AppScope > New Source modal, which
provides the following fields.

Input ID: Enter a unique name to identify this AppScope Source definition.

Address: Enter the hostname/IP on which to listen for AppScope data. (E.g.,
localhost .) Defaults to 0.0.0.0 , meaning all addresses.

Port: Enter the port number to listen on.

IP whitelist regex: Regex matching IP addresses that are allowed to establish a
connection.

Auth tokens: Shared secrets to be provided by any client (in authToken
header field). Click Generate to create a new secret. If empty, unauthenticated
access will be permitted.

Enabled defaults to No . When toggled to Yes :

Certificate name: Name of the predefined certificate.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring LogStream to Receive AppScope Data

General Settings

TLS Settings (Server Side)

Page 371 of 680

Private key path: Path on server where to find the private key to use in PEM
format. Path can reference $ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path at which to find certificates (in PEM format) to use.
Path can reference $ENV_VARS .

CA certificate path: Server path at which to find CA certificates (in PEM format)
to use. Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates.
Used to perform mutual authentication using SSL certs. Defaults to No . When
toggled to Yes :

Validate client certs: Reject certificates that are not authorized by a CA in
the CA certificate path, or by another trusted CA (e.g., the system's CA).
Defaults to No .

Common name: Regex matching subject common names in peer
certificates allowed to connect. Defaults to .* . Matches on the substring
a�er CN= . As needed, escape regex tokens to match literal characters.
E.g., to match the subject CN=worker.cribl.local , you would enter:
worker\.cribl\.local .

Minimum TLS version: Optionally, select the minimum TLS version to accept
from connections.

Maximum TLS version: Optionally, select the maximum TLS version to accept
from connections.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to
the input data stream before the data is sent through the Routes. Defaults to
System Default Rule .

Event Breaker bu�er timeout: The amount of time (in milliseconds) that the
event breaker will wait for new data to be sent to a specific channel, before
flushing out the data stream, as-is, to the Routes. Defaults to 10000 .

Processing Settings

Event Breakers

Fields (Metadata)

Page 372 of 680

In this section, you can add fields/metadata to each event using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing
Pipeline to process data from this input before the data is sent through the
Routes.

Enable proxy protocol: Enable if the connection is proxied by a device that
supports Proxy Protocol v1 or v2.

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and Functions
can use them to make processing decisions.

Field for this Source:

��inputId

Pre-Processing

Advanced Settings

Internal Settings

Page 373 of 680

Collectors

Collectors enable you to dispatch on-demand collection tasks that fetch data
from local or remote locations. As of v.2.3, LogStream supports scheduled
collection jobs. These recurring jobs can make batch collection of stored data
more like continual processing of streaming data.

You can configure a LogStream Node to retrieve data from a remote system via
Data > Collectors. Data collection is a multi-step process:

First, define a Collector instance. In this step, you configure collector-specific
settings by selecting a Collector type and pointing it at a specific target. (E.g.,
the target will be a directory if the type is Filesystem, or an S3 bucket/path if the
type is Amazon S3.)

Next, schedule or manually run the Collector. In this step, you configure
scheduled-job–specific or run‑specific settings – such as the run Mode (such as
Discovery or Full Run), the Filter expression to match the data against, the time
range, etc.

When a Node receives this configuration, it prepares the infrastructure to
execute a collection job. A collection job is typically made up of one or more
tasks that: discover the data to be fetched; fetch data that match the run filter;
and finally, pass the results either through the Routes or (optionally) into a
specific Pipeline and Destination.

How Do Collectors Work

ℹ On the Manage Collectors page, click Job Inspector to see the results
of recent collection runs. Select the Show system jobs check box to
also display discovery jobs and collection jobs for the O�ice 365
System/Activity Sources.

Scheduled Collection Jobs

Page 374 of 680

You might process data from inherently non-streaming sources, such as REST
endpoints, blob stores, etc. Scheduled jobs enable you to emulate a data
stream by scraping data from these sources in batches, on a set interval.

You can schedule a specific job to pick up new data from the source – data that
hadn’t been picked up in previous invocations of this scheduled job. This
essentially transforms a non-streaming data source into a streaming data
source.

In a distributed deployment, Collectors are set up at the Worker Group level,
and the tasks are executed by Worker Nodes. The Master Node oversees the
task distribution, and tries to maintain a fair balance across jobs.

When Workers ask for tasks, the Master will normally try to assign the next task
from a job with the least tasks in progress. This is known as "Least-In-Flight
Scheduling," and provides the fairest task distribution for most cases. Default
behavior can be changed via Settings > General Settings > Job Limits > Job
Dispatching.

Cribl LogStream currently provides the following Collector options:

Filesystem/NFS – enables data collection from local or remote filesystem
locations.

S3 – enables data collection from Amazon S3 buckets or S3-compatible
stores.

Script – enables data collection via custom scripts.

REST – enables data collection via REST API calls. Provides four Discover
options, to support progressively more complex (and dynamic) item
enumerations.

Select Monitoring > Jobs from the top menu to see a graphical display of in-
flight collection jobs and their tasks.

Collectors in Distributed Deployments

Collector Types

Monitoring Collection Jobs

Page 375 of 680

Select Data > Collectors > Job Inspector to view and manage pending, in-flight,
and completed collection jobs.

Job Inspector: all the things

Here are the options available on the Job Inspector page:

All vs. Currently Scheduled tabs: Click Currently Scheduled to see jobs
foward-scheduled for future execution – including their cron schedule
details, last execution, and next scheduled execution. Click All to see all
jobs initiated in the past, regardless of completion status.

Job categories (buttons): Select among Ad hoc, Scheduled, System, and
Running. (At this level, Scheduled means scheduled jobs already running
or finished.)

Filters: Click the gear icon to open a drop-down with multiple options to
filter the jobs shown within your selected category.

Group selectors: Select one or more check boxes to display the Pause,
Resume, etc., buttons shown along the bottom.

Sortable headers: Click any column to reverse its sort direction.

Search bar: Click to filter displayed jobs by arbitrary strings.

Action buttons: For finished jobs, the icons (from le� to right) indicate: Re-
run; Keep job artifacts; Copy job artifacts; Delete job artifacts; and Display
job logs in a modal. For running jobs, the options (again from le� to right)
are: Pause; Stop; Copy job artifacts; Delete job artifacts; and Live (show
collection status in a modal).

Inspecting Jobs

Page 376 of 680

What's Next
See the configuration instructions for the collector type you want to configure,

Then proceed to instructions for scheduling and running collection jobs.

Filesystem/NFS

S3

Script

REST

Scheduling and Running











Page 377 of 680

Filesystem/NFS

Cribl LogStream supports collecting data from a local or a remote filesystem
location.

From the top menu, select Data > Collectors. On the resulting Manage Collectors
page, click Add New. The resulting New Collector modal displays the following
options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., DysonV11Roomba960 .

Collector type: Defines the type of Collector to configure.

Auto-populate from: Select a Destination with which to auto-populate Collector
settings. Useful when replaying data.

Directory: The directory from which to collect data. Templating is supported (e.g.,
/myDir/${host}/${year}/${month}/). You can also use templating to specify

(e.g.) a Splunk bucket from which to collect. Symlinks will not be followed. More
on templates and Filters.

Path extractors: Extractors allow using template tokens as context for expressions
that enrich discovery results. Click + Add Extractor to add each extractor as a key-
value pair, mapping a Token name on the le� (of the form /<path>/${<token>})
to a custom JavaScript Extractor expression on the right (for example,
{host: value.toLowerCase()}). Each expression accesses its corresponding

Configuring a Filesystem Collector

Collector Settings

ℹ Set this to Filesystem to configure the Collector as shown below.

The sections described below are spread across several tabs. Click the
tab links at le�, or the Next and Prev buttons, to navigate among tabs.
Click Save when you've configured your Collector.

Page 378 of 680

<token> through the value variable, and evaluates it to populate event fields.
Here is a complete example:

Recursive: If set to Yes (the default), data collection will recurse through
subdirectories.

Destructive: If set to Yes , the Collector will delete files a�er collection. Defaults
to No .

Max batch size (files): Maximum number of lines written to the discovery results
files each time. To override this limit in the Collector's Schedule/Run modal,
use Advanced Settings > Upper task bundle size.

The Result Settings determine how LogStream transforms and routes the
collected data.

In this section, you can pass the data from this input to an external command for
processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You can
drag arguments vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to
discrete events.

/var/log/${foobar}

foobar:

{program:

value.split('.')

[0]}

/ var/log/syslog.1

{program:

syslog,

foobar:

syslog.1}

Result Settings

Custom Command

Event Breakers

Token Expression Matched Value
Extracted
Result

Page 379 of 680

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in
order, to the input data stream. Defaults to System Default Rule .

Event Breaker bu�er timeout: The amount of time (in milliseconds) that the event
breaker will wait for new data to be sent to a specific channel, before flushing out
the data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), events will be sent to normal routing
and event processing. Toggle to No to select a specific Pipeline/Destination
combination. The No setting exposes these two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

Preprocess Pipeline: Pipeline to process results before sending to Routes.
Optional.

Throttling: Rate (in bytes per second) to throttle while writing to an output. Also
takes values with multiple-byte units, such as KB , MB , GB , etc. (Example: 42
MB .) Default value of 0 indicates no throttling.

Fields (Metadata)

Result Routing

ℹ You might disable Send to Routes when configuring a Collector that will
connect data from a specific Source to a specific Pipeline and
Destination. This keeps the Collector's configuration self‑contained and
separate from LogStream's routing table for live data – potentially
simplifying the Routes structure.

Advanced Settings

Page 380 of 680

What's Next

Scheduling and Running

Advanced Settings enable you to customize post-processing and administrative
options.

Time to live: How long to keep the job's artifacts on disk a�er job completion. This
also a�ects how long a job is listed in Job Inspector. Defaults to 4h .

Remove Discover fields : List of fields to remove from the Discover results. This is
useful when discovery returns sensitive fields that should not be exposed in the
Jobs user interface. You can specify wildcards (such as aws�).

Resume job on boot: Toggle to Yes to resume ad hoc collection jobs if
LogStream restarts during the jobs' execution.



Page 381 of 680

S3

Cribl LogStream supports collecting data from Amazon S3 stores. This page
covers how to configure the Collector.

From the top menu, select Data > Collectors. On the resulting Manage Collectors
page, click Add New. The resulting New Collector modal displays the following
options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., Attic42TreasureChest .

Collector type: Defines the type of Collector to configure.

Auto-populate from: Select a Destination with which to auto-populate Collector
settings. Useful when replaying data.

S3 bucket: Simple Storage Service bucket from which to collect data.

Region: S3 Region from which to retrieve data.

� For a step-by-step tutorial on using LogStream to replay data from an
S3-compatible store, see our Data Collection & Replay sandbox.
The sandbox takes about 30 minutes. It provides a hosted environment,
with all inputs and outputs preconfigured for you.

Configuring an S3 Collector

Collector Settings

ℹ Set this to S3 to configure the Collector as shown below.

The sections described below are spread across several tabs. Click the
tab links at le�, or the Next and Prev buttons, to navigate among tabs.
Click Save when you've configured your Collector.

Page 382 of 680

Path: Path, within the bucket, from which to collect data. Templating is supported
(e.g., /myDir/${host}/${year}/${month}/). More on templates and Filters.

Path extractors: Extractors allow using template tokens as context for expressions
that enrich discovery results. Click + Add Extractor to add each extractor as a key-
value pair, mapping a Token name on the le� (of the form /<path>/${<token>})
to a custom JavaScript Extractor expression on the right (for example,
{host: value.toLowerCase()}). Each expression accesses its corresponding
<token> through the value variable, and evaluates it to populate event fields.

Here is a complete example:

Recursive: If set to Yes (the default), data collection will recurse through
subdirectories.

Max batch size (files): Maximum number of lines written to the discovery results
files each time. To override this limit in the Collector's Schedule/Run modal,
use Advanced Settings > Upper task bundle size.

API key: Enter API key. If empty, will fall back to env.AWS_ACCESS_KEY_ID , or to
the metadata endpoint for IAM credentials. Optional when running on AWS.

Secret key: Enter secret key. if empty, will fall back to
env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM credentials.

Optional when running on AWS.

Enable Assume Role: Slide to Yes to enable Assume Role behavior.

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

/var/log/${foobar}

foobar:

{program:

value.split('.')

[0]}

/ var/log/syslog.1

{program:

syslog,

foobar:

syslog.1}

Authentication

Assume Role

Additional Collector Settings

Token Expression Matched Value
Extracted
Result

Page 383 of 680

Endpoint: S3 service endpoint. If empty, LogStream will automatically construct
the endpoint from the region.

Signature version: Signature version to use for signing S3 requests. Defaults to
v4 .

The Result Settings determine how LogStream transforms and routes the
collected data.

In this section, you can pass the data from this input to an external command for
processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You can
drag arguments vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to
discrete events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in
order, to the input data stream. Defaults to System Default Rule .

Event Breaker bu�er timeout: The amount of time (in milliseconds) that the event
breaker will wait for new data to be sent to a specific channel, before flushing out
the data stream, as-is, to the routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Result Settings

Custom Command

Event Breakers

Fields (Metadata)

Page 384 of 680

What's Next

Send to Routes: If set to Yes (the default), events will be sent to normal routing
and event processing. Toggle to No to select a specific Pipeline/Destination
combination. The No setting exposes these two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

Preprocess Pipeline: Pipeline to process results before sending to Routes.
Optional.

Throttling: Rate (in bytes per second) to throttle while writing to an output. Also
takes values with multiple-byte units, such as KB , MB , GB , etc. (Example: 42
MB .) Default value of 0 indicates no throttling.

Advanced Settings enable you to customize post-processing and administrative
options.

Time to live: How long to keep the job's artifacts on disk a�er job completion. This
also a�ects how long a job is listed in Job Inspector. Defaults to 4h .

Remove Discover fields : List of fields to remove from the Discover results. This is
useful when discovery returns sensitive fields that should not be exposed in the
Jobs user interface. You can specify wildcards (such as aws�).

Resume job on boot: Toggle to Yes to resume ad hoc collection jobs if
LogStream restarts during the jobs' execution.

Result Routing

ℹ You might disable Send to Routes when configuring a Collector that will
connect data from a specific Source to a specific Pipeline and
Destination. This keeps the Collector's configuration self‑contained and
separate from LogStream's routing table for live data – potentially
simplifying the Routes structure.

Advanced Settings

Page 385 of 680

Scheduling and Running

Page 386 of 680

Script

Cribl LogStream supports flexible data collection configured by your custom
scripts.

From the top menu, select Data > Collectors. On the resulting Manage
Collectors page, click Add New. The resulting New Collector modal displays
the following options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., sh2GetStuff .

Collector type: Defines the type of Collector to configure.

Discover script: Script to discover which objects/files to collect. This script
should output one task per line in stdout .

Collect script: Script to perform data collections. Pass in tasks from the
Discover script as $CRIBL_COLLECT_ARG . Should output results to stdout .

Shell: Shell in which to execute scripts. Defaults to /bin/bash .

Configuring a Script Collector

Collector Settings

ℹ Set this to Script to configure the Collector as shown below.

The sections described below are spread across several tabs. Click
the tab links at le�, or the Next and Prev buttons, to navigate among
tabs. Click Save when you've configured your Collector.

With Great Power Comes Great Responsibility!⚠

Scripts will allow you to execute almost anything on the system
where Cribl LogStream is running. Make sure you understand the
impact of what you're executing before you do so! These scripts run

Page 387 of 680

The Result Settings determine how LogStream transforms and routes the
collected data.

In this section, you can pass the data from this input to an external command
for processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You
can drag arguments vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to
discrete events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in
order, to the input data stream. Defaults to System Default Rule .

Event Breaker bu�er timeout: The amount of time (in milliseconds) that the
event breaker will wait for new data to be sent to a specific channel, before
flushing out the data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

as the user running LogStream, so if you are running it as root, these
commands will run with root user permissions. ☠ ☠

Result Settings

Custom Command

Event Breakers

Fields (Metadata)

Result Routing

Page 388 of 680

What's Next

Send to Routes: If set to Yes (the default), events will be sent to normal
routing and event processing. Toggle to No to select a specific
Pipeline/Destination combination. The No setting exposes these two
additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

Preprocess Pipeline: Pipeline to process results before sending to Routes.
Optional.

Throttling: Rate (in bytes per second) to throttle while writing to an output.
Also takes values with multiple-byte units, such as KB , MB , GB , etc.
(Example: 42 MB .) Default value of 0 indicates no throttling.

Advanced Settings enable you to customize post-processing and
administrative options.

Time to live: How long to keep the job's artifacts on disk a�er job completion.
This also a�ects how long a job is listed in Job Inspector. Defaults to 4h .

Remove Discover fields : List of fields to remove from the Discover results. This
is useful when discovery returns sensitive fields that should not be exposed in
the Jobs user interface. You can specify wildcards (such as aws�).

Resume job on boot: Toggle to Yes to resume ad hoc collection jobs if
LogStream restarts during the jobs' execution.

ℹ You might disable Send to Routes when configuring a Collector that
will connect data from a specific Source to a specific Pipeline and
Destination. This keeps the Collector's configuration self‑contained
and separate from LogStream's routing table for live data –
potentially simplifying the Routes structure.

Advanced Settings

Page 389 of 680

Scheduling and Running

Page 390 of 680

REST / API Endpoint

Cribl LogStream supports collecting data from REST endpoints.

From the top menu, select Data > Collectors. On the resulting Manage
Collectors page, click Add New. The resulting New Collector modal displays
the following options and fields.

The Collector Settings determine how data is collected before processing.

Unique ID for this Collector. E.g., rest42json .

Defines the type of Collector to configure.

Once you've selected the REST Collector type above, this exposes a Discover
type drop-down. Here you have four options, corresponding to di�erent use
cases. Each Discover type selection will expose a di�erent set of
Collector Settings fields. Below, we cover the Discover types from simplest to
most-complex.

Configuring a REST Collector

Collector Settings

Collector ID

Collector Type

ℹ Set this to REST to configure the Collector as shown below.

The sections described below are spread across several tabs. Click
the tab links at le�, or the Next and Prev buttons, to navigate among
tabs. Click Save when you've configured your Collector.

Discover Type

Page 391 of 680

Discover type: None matches cases where one simple API call will retrieve
all the data you need. This suppresses the Discover stage. (Example:
Collect a list of configured LogStream Pipelines.)

Discover type: Item List matches cases where you want to enumerate a
known list of items to retrieve. (Example: Collect network tra�ic data that's
tagged with specific subnets.)

Discover type: JSON Response provides a Discover result field where you
can (optionally) define Discover tasks as a JSON array of objects. Each
entry returned by Discover will generate a Collect task. (Example: Collect
data for specific geo locations the National Weather Service API's stream of
worldwide weather data. This API requires multiple parameters in the
request URL – latitude, longitude, etc. – so an Item List would not work.)

Discover type: HTTP Request matches cases where you need to
dynamically discover what you can collect from a REST endpoint. This
Discover type most fully exploits LogStream's Discover-Before-Collect
architecture. (Example: Make a REST call to get a list of available log files,
then run Collect against each of those files.)

These remaining Collector Settings options appear for Discover type: None ,
as well as for all other Discover type selections:

Common Collector Settings / Discover Type: None

Time Range Variablesℹ

The following fields fields accept ${earliest} and ${latest}
variables, which reference any Time Range values that have been set
in manual or scheduled collection jobs:

Collect URL, Collect parameters, Collect headers

Discover URL, Discover parameters, Discover headers.

As an example, here is a Collect URL entry using these variables:
http:��localhost/path?from=${earliest}&to=${latest}

Both variables are formatted as UNIX epoch time, in seconds units.
When using them in contexts that require milliseconds resolution,
multiply them by 1,000 to convert to ms.

Page 392 of 680

Collect URL: URL (constant or JavaScript expression) to use for the Collect
operation.

Collect method: Select the HTTP verb to use for the Collect operation – GET ,
POST , or POST with body .

Collect POST body: Template for POST body to send with the Collect request.
(This field is displayed only when you set the Collect method to POST with
body .) You can reference parameters from the Discover response using
template params of the form: ${variable} .

Collect parameters: Optional HTTP request parameters to append to the
request URL. These refine or narrow the request. Click + Add Parameter to add
parameters as key-value pairs:

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a
constant).

Collect headers:: Click + Add Header to (optionally) add collection request
haaders as key-value pairs:

Name: Header name.

Value: JavaScript expression to compute the header's value (can be a
constant).

Pagination: The pagination scheme for collection results. Defaults to. None .
Select Response Body Attribute to extract a value from the response body
that identifies the next page of data to retrieve. Select Response Header
Attribute to extract this next-page value from the response header. Selecting
either of these selections exposes two additional fields:

ℹ Any variables used in a URL (path or parameters) must be encoded
using: C.Encode.uri(paramName) .

As of v.2.3.2, URLs/expressions specified in this field follow redirects.

ℹ By adding the appropriate Collect headers, you can specify API Key–
based authentication as an alternative to the Authentication: Basic
or Login options below.

Page 393 of 680

Response Attribute: Name of the attribute in the response that contains
next-page information.

Max Pages: The maximum number of pages to retrieve. Set to 0 to
retrieve all pages.

In the Authentication drop-down, select an authentication method to use for
discover and collect REST requests:

None : Compatible with REST servers like AWS, where you embed a secret
directly in the request URL.

Basic : Compatible with Basic Authentication servers. Selecting Basic
exposes additional fields in which you specify a Basic Auth Username and
Password.

Login : Enables you to specify several credentials, then perform a POST to
an endpoint during the Discover operation. The POST response returns a
token, which LogStream uses for later Collect operations.

Selecting Login exposes the following additional fields:

Login URL: URL for the login API call, which is expected to be a POST call.

Username: Login username.

Password: Login password.

POST Body: Template for POST body to send with the login request. The
${username} and ${password} variables specify the corresponding

credentials' locations in the message.

Token Attribute: Path to the token attribute in the login response body.
Supports nested attributes.

Authorize Expression: JavaScript expression used to compute the
Authorization header to pass in Discover and Collect calls. Uses ${token}
to reference the token obtained from the login POST request.

Setting the Discover type to Item List exposes this additional field above
the Common Collector Settings:

Authentication

Discover Type: Item List

Page 394 of 680

Discover Items: List of items to return from the Discover task. Each returned
item will generate a Collect task, and can be referenced using ${id} in the
Collect URL, the Collect parameters, or the Collect headers.

Setting the Discover type to JSON Response exposes these additional fields
above the Common Collector Settings:

Discover result: Allows hard-coding the Discover result. Must be a JSON object.
Works with the Discover data field.

Discover data field: Within the response JSON, name of the field or array
element to pull results from. Leave blank if the result is an array of values.
Sample entry: items, json: { items: [{id: 'first'},{id: 'second'}]
}

Setting the Discover type to HTTP Request exposes these additional fields
above the Common Collector Settings:

Discover URL: Enter the URL to use for the Discover operation. This can be a
constant URL, or a JavaScript expression to derive the URL.

Discover method: Select the HTTP verb to use for the Discover operation –
GET , POST , or POST with body .

Discover POST body: Template for POST body to send with the Discover
request. (This field is displayed only when you set the Discover method to
POST with body .)

Discover parameters: Optional HTTP request parameters to append to the
Discover request URL. These refine or narrow the request. Click
+ Add Parameter to add parameters as key-value pairs:

Name: Parameter name.

Discover Type: JSON Response

Discover Type: HTTP Request

ℹ Any variables used in a URL (path or parameters) must be encoded
using: C.Encode.uri(paramName) .

As of v.2.3.2, URLs/expressions specified in this field follow redirects.

Page 395 of 680

Value: JavaScript expression to compute the parameter's value (can also
be a constant).

Discover headers: Optional Discover request headers.: Click + Add Header to
add headers as key-value pairs:

Name: Header name.

Value: JavaScript expression to compute the header's value (can also be a
constant).

Discover data field: Within the response JSON, name of the field that contains
Discover results. Leave blank if the result is an array.

The Result Settings determine how LogStream transforms and routes the
collected data.

In this section, you can pass the data from this input to an external command
for processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You
can drag arguments vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to
discrete events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in
order, to the input data stream. Defaults to System Default Rule .

ℹ The following sections describe the Collector Settings' remaining
tabs, whose settings and content apply equally to all Discover type
selections.

Result Settings

Custom Command

Event Breakers

Page 396 of 680

Event Breaker bu�er timeout: The amount of time (in milliseconds) that the
event breaker will wait for new data to be sent to a specific channel, before
flushing out the data stream, as-is, to the routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like
functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), events will be sent to normal
routing and event processing. Toggle to No to select a specific
Pipeline/Destination combination. The No setting exposes these two
additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

Preprocess Pipeline: Pipeline to process results before sending to Routes.
Optional.

Throttling: Rate (in bytes per second) to throttle while writing to an output.
Also takes values with multiple-byte units, such as KB , MB , GB , etc.
(Example: 42 MB .) Default value of 0 indicates no throttling.

Fields (Metadata)

Result Routing

ℹ You might disable Send to Routes when configuring a Collector that
will connect data from a specific Source to a specific Pipeline and
Destination. One use case might be a REST Collector that gathers a
known, simple type of data from a single endpoint. This approach
keeps the Collector's configuration self‑contained and separate
from LogStream's routing table for live data – potentially simplifying
the Routes structure.

Advanced Settings

Page 397 of 680

What's Next

Scheduling and Running

Advanced Settings enable you to customize post-processing and
administrative options.

Time to live: How long to keep the job's artifacts on disk a�er job completion.
This also a�ects how long a job is listed in Job Inspector. Defaults to 4h .

Remove Discover fields : List of fields to remove from the Discover results. This
is useful when discovery returns sensitive fields that should not be exposed in
the Jobs user interface. You can specify wildcards (such as aws�).

Resume job on boot: Toggle to Yes to resume ad hoc collection jobs if
LogStream restarts during the jobs' execution.



Page 398 of 680

Scheduling and Running

Once you've configured a Collector, you can either run it immediately ("ad hoc") to collect data, or
schedule it to run on a recurring interval. Scheduling requires some extra configuration upfront, so
we cover this option first.

Click Schedule beside a configured Collector to display the Schedule configuration modal.
This provides the following controls.

Enabled: Slide to Yes to enable this collection schedule.

Cron schedule: A cron schedule on which to run this job.

The Estimated schedule below this field shows the next few collection runs, as examples of the
cron interval you've scheduled.

Skippable: Skippable jobs can be delayed up to their next run time if the system is hitting concurrency
limits. Defaults to Yes .

If toggled to Yes , the Skippable option obliges these concurrency limits in Settings >
General Settings > Job Limits:

Concurrent Job Limit

Concurrent Scheduled Job Limit

When the above limits delay a Skippable job:

The Skippable job will be granted slightly higher priority than non-Skippable jobs.

ℹ For ad hoc collection, you can configure whether a job interrupted by a LogStream
shutdown will automatically resume upon LogStream restart.

But regardless of this configuration, explicitly restarting or stopping LogStream (via
./cribl restart , ./cribl stop , or Settings > Controls > Restart) will cancel any

currently running jobs.

A scheduled job will not resume upon restart.

Schedule Configuration

⚠ The scheduled job will keep running on this schedule forever, unless you toggle Enabled
back to Off . The Off setting preserves the schedule's configuration, but prevents its
execution.

Skippable Jobs and Concurrency Limits

Page 399 of 680

If the job receives resources to run before its next scheduled run, LogStream will run the delayed
job, then snap back to the original cron schedule.

If resources do not free up before the next scheduled run: LogStream will skip the delayed run,
and snap back to the original cron schedule.

Set Skippable to No if you absolutely must have all your data, for compliance or other reasons.
In this case, LogStream will build up a backlog of jobs to run.

You can think of Skippable: No as behaving more like the TCP protocol, with Skippable: Yes
behaving more like UDP.

Max Concurrent Runs: Sets the maximum number of instances of this scheduled job that may
simultaneously run.

Most of the remaining fields and options below are shared with the Run configuration modal, which
you can open by clicking Run beside a configured Collector.

Depending on your requirements, you can schedule or run a collector in these modes:

Preview – default for Run, but not o�ered for Scheduled Jobs

Discovery – default for Scheduled Jobs

Full Run

In the Preview mode, a collection job will return only a sample subset of matching results (e.g., 100
events). This is very useful in cases when users need a data sample to:

Ensure that the correct data comes in.

Iterate on filter expressions.

Capture a sample to iterate on pipelines.

⚠ All collection jobs are constrained by the following Settings > General Settings > Job Limits:

Concurrent Task Limit

Max Task Usage Percentage

Run Configuration and Shared Settings

Mode

Preview

ℹ Schedule configuration omits the Preview option, because Preview is designed for
immediate analysis and decision making. To configure a Scheduled Job with high
confidence, you can first manually run Preview jobs with the same Collector, to verify that
you're collecting the data you expect.

Preview Settings

Page 400 of 680

In Preview mode, you can optionally set these limits:

Capture time (sec): Maximum time interval (in seconds) to collect data.

Capture up to N events: Maximum number of events to capture.

In Discovery mode, a collection job will return only the list of objects/files to be collected, but none of
the data. This mode is typically used to ensure that the Filter expression and time range are correct
before a Full Run job collects unintended data.

In Discovery mode, this slider enables you to send discovery results to LogStream Routes. Defaults
to No .

In Full Run mode, the collection job is fully executed by Worker Nodes, and will return all data
matching the Run configuration.

Set an Absolute or Relative time range for data collection.

Select the Absolute button to set fixed collection boundaries in your local time. Next, use the Earliest
and Latest controls to set the start date/time and end date/time.

Select the Relative button to set collection boundaries relative to the current time. Next, use the
Earliest and Latest to set start and end times like these:

Earliest example values: -1hr , -42m , - 42m@h

Latest example values: now , -20m , +42m@h

For Relative times, the Earliest and Latest controls accept the following syntax:

[+��]<time_integer><time_unit>@<snap�to_time_unit>

Discovery

Send to Routes

ℹ This setting overrides the Collector configuration's Result Routing > Send to Routes
setting.

Full Run

Time Range

� The Relative option is the default, and is particularly useful for configuring scheduled jobs.

Absolute

Relative

Relative Time Syntax

Page 401 of 680

To break down this syntax:

LogStream validates relative time values using these rules:

Earliest must not be later than Latest.

Values without units get interpreted as seconds. (E.g., -1 = -1s .)

The @ snap modifier always rounds down (backwards) from any specified time. This is true even in
relative time expressions with + (future) o�sets. For example:

@d snaps back to the beginning of today, 12:00 AM (midnight).

+128m@h looks forward 128 minutes, then snaps back to the nearest round hour. (If you
specified this in the Latest field, and ran the Collector at 4:20 PM, collection would end at 6:00
PM. The expression would look forward to 6:28 PM, but snap back to 6:00 PM.)

Other options:

@w or @w7 to snap back to the beginning of the week – defined here as the preceding Sunday.

To snap back to other days of a week, use w1 (Monday) through w6 (Saturday).

@m to snap back to the 1st of a month.

@q to snap back to the beginning of the most recent quarter – Jan. 1, Apr. 1, Jul. 1, or Oct. 1.

@y to snap back to Jan. 1.

This is a JavaScript filter expression that is evaluated against token values in the provided collector
path (see below), and against the events being collected. The Filter value defaults to true , which
matches all data, but this value can be customized almost arbitrarily.

For example, if a Filesystem or S3 collector is run with this Filter:

host��'myHost' �� source.endsWith('.log') �� source.endsWith('.txt')

...then only files/objects with .log or .txt extensions will be fetched. And, from those, only those
events with host field myHost will be collected.

At the Filter field's right edge are a Copy button, an Expand button to open a validation modal, and a
History button. For more extensive options, see Tokens for Filtering below.

O�set Specify: - for times in the past, + for times in the future, or omit with now .

<time_integer> Specify any integer, or omit with now .

<time_unit>
Specify the now constant, or one of the following abbreviations: s[econds] ,
m[inutes] , h[ours] , d[ays] , w[eeks] , mon[ths] , q[uarters] , y[ears] .

@<snap-
to_time_unit>

Optionally, you can append the @ modifier, followed by any of the above
<time_unit> s, to round down to the nearest instance of that unit. (See the next section

for details.)

Snap-to-Time Syntax

Filter

Syntax
Element

Values Supported

Page 402 of 680

Log Level: Level at which to set task logging. More-verbose levels are useful for troubleshooting jobs
and tasks, but use them sparingly.

Lower task bundle size: Limits the bundle size for small tasks. E.g., bundle five 200KB files into one
1MB task bundle. Defaults to 1MB .

Upper task bundle size: Limits the bundle size for files above the Lower task bundle size. E.g., bundle
five 2MB files into one 10MB task bundle. Files greater than this size will be assigned to individual
tasks. Defaults to 10MB .

Reschedule tasks: Whether to automatically reschedule tasks that failed with non-fatal errors.
Defaults to Yes ; does not apply to fatal errors.

Max task reschedule: Maximum number of times a task can be rescheduled. Defaults to 1 .

Job timeout: Maximum time this job will be allowed to run. Units are seconds, if not specified. Sample
values: 30 , 45s , or 15m . Minimum granularity is 10 seconds, so a 45s value would round up to a
50-second timeout. Defaults to 0 , meaning unlimited time (no timeout).

Let's look at the options for path-based (basic) and time-based token filtering.

In collectors with paths, such as Filesystem or S3, LogStream supports path filtering via token
notation. Basic tokens' syntax follows that of JS template literals: ${<token_name>} – where
token_name is the field (name) of interest.

For example, if the path was set to /var/log/${hostname}/${sourcetype}/ , you could use a Filter
such as hostname��'myHost' �� sourcetype��'mySourcetype' to collect data only from the
/var/log/myHost/mySourcetype/ subdirectory.

In paths with time partitions, LogStream supports further filtering via time-based tokens. This has a
direct e�ect with earliest and latest boundaries. When a job runs against a path with time partitions,
the job traverses a minimal superset of the required directories to satisfy the time range, before
subsequent event _time filtering.

LogStream processes time-based tokens as follows:

For each path, time partitions must be notated in descending order. So Year/Month/Day order is
supported, but Day/Month/Year is not.

Paths may contain more than one partition. E.g., /my/path/2020-04/20/ .

In a given path, each time component can be used only once.
So /my/path/${_time:%Y}/${_time:%m}/${_time:%d}/��� is a valid expression format, but

Advanced Settings

Tokens for Filtering

Basic Tokens

Time-based Tokens

About Partitions and Tokens

Page 403 of 680

/my/path/${_time:%Y}/${_time:%m}/${host}/${_time:%Y}/��� (with a repeated Y) is not
supported.

For each path, all extracted dates/times are considered in UTC.

The following strptime format components are allowed:

'Yy' , for years

'mBbj' , for months

'dj' , for days

'HI' , for hours

'M' , for minutes

'S' , for seconds

Time-based token syntax follows that of a slightly modified JS template literal:
${_time: <some_strptime_format_component>} . Examples:

Token Syntax

/my/path/${_time:%Y}/${_time:%m}/${_time:%d}/��� /my/path/2020/04/20/���

/my/path/${_time:year=%Y}/${_time:month=%m}/${_time:date=%d}/��� /my/path/year=2020/month=05/date=20/���

/my/path/${_time:%Y-%m�%d}/��� /my/path/2020-05-20/���

Filter Matches

Page 404 of 680

Destinations

Cribl LogStream can send data to various Destinations, including Splunk,
Kafka, Kinesis, InfluxDB, Snowflake, Databricks, TCP JSON, and many others.

Destinations that accept events in real time are referred to as streaming
Destinations:

Splunk Single Instance

Splunk Load Balanced

Splunk HEC

AWS Kinesis Streams

AWS CloudWatch Logs

AWS SQS

Elasticsearch

Honeycomb

TCP JSON

Syslog

Kafka

Azure Event Hubs

Azure Monitor Logs

StatsD

StatsD Extended

Graphite

Streaming Destinations

Page 405 of 680

SNMP Trap

InfluxDB

New Relic

Prometheus

Wavefront

Sumo Logic

Datadog

SignalFx

Webhook

Destinations that accept events in groups or batches are referred to as non-
streaming Destinations:

S3 Compatible Stores

Filesystem/NFS

MinIO

Azure Blob Storage

Google Cloud Storage

LogStream also provides these special-purpose Destinations:

Output Router: Flexible "meta-destination." Here, you can configure rules
that route data to multiple outputs.

DevNull: An output that simply drops events. Preconfigured and active
when you install LogStream, so it requires no configuration. Useful for
testing.

Default: Here, you can specify a default output from among your
configured Destinations.

Non-Streaming Destinations

ℹ The S3 Compatible Stores Destination can be adapted to send data
to downstream services like Databricks and Snowflake, for which
LogStream currently has no preconfigured Destination. For details,
please contact Cribl Support.

Other Destinations

Page 406 of 680

Cribl LogStream uses a staging directory in the local filesystem to format and
write outputted events before sending them to configured Destinations. A�er a
set of conditions is met – typically file size and number of files, further details
below – data is compressed and then moved to the final Destination.

An inventory of open, or in-progress, files is kept in the staging directory's root,
to avoid having to walk that directory at startup. This can get expensive if
staging is also the final directory. At startup, Cribl LogStream will check for any
le�over files in progress from prior sessions, and will ensure that they're
moved to their final Destination. The process of moving to the final Destination
is delayed a�er startup (default delay: 30 seconds). Processing of these files is
paced at one file per service period (which defaults to 1 second).

Several conditions govern when files are closed and rolled out:

1. File reaches its configured maximum size.

2. File reaches its configured maximum open time.

3. File reaches its configured maximum idle time.

If a new file needs to be open, Cribl LogStream will enforce the maximum
number of open files, by closing files in the order in which they were opened.

Data is delivered to all Destinations on an at-least-once basis. When a
Destination is unreachable, there are three possible behaviors:

Block - Cribl LogStream will block incoming events.

Drop - Cribl LogStream will drop events addressed to that Destination.

Queue - Cribl LogStream will Persistent-Queue events to that Destination.

You can configure the desired behavior through a Destination's Backpressure
Behavior option. If this option is not present, Cribl LogStream's default
behavior is to Block.

How Does Non-Streaming Delivery Work

Batching Conditions

Data Delivery

Configuring Destinations

Page 407 of 680

For each Destination type, you can create multiple definitions, depending on
your requirements.

To configure Destinations, select Data > Destinations, select the desired type
from the tiles or the le� menu, then click + Add New.

To capture data from a single enabled Destination, you can do so directly from
the Destinations UI instead of using the Preview pane. To initiate an immediate
capture, click the Live button on the Destination's's configuration row.

Destination > Live button

You can also start an immediate capture from within an enabled Destination's
configuration modal, by clicking the modal's Live Data tab.

Destination modal > Live Data tab

Capturing Outgoing Data

Page 408 of 680

Output Router

Output Routers are meta-destinations that allow for output selection based on
rules. Rules are evaluated in order, top‑>down, with the first match being the
winner.

Select Data > Destinations, then select Output Router from the
Data Destinations page's tiles or le� menu. Click Add New to open the
Output Router > New Destination modal, which provides the following fields.

Router name: Enter a unique name to identify this Router definition.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Rules: A list of event routing rules. Each provides the following settings:

Filter expression: JavaScript expression to select events to send to output.

Output: Output to send matching events to.

Description: Optionally, enter a description of this rule's purpose.

Final: Flag that controls whether to stop the event from being checked
against other rules lower in the stack. Defaults to Yes .

An Output Router cannot reference another. This is by design, so as to
avoid circular references.

Also to avoid circular references, an Output Router cannot reference a
Default Destination that points back to Output Router.

Configuring Cribl LogStream to Send to an Output Router

Notes

Page 409 of 680

Events that do not match any of the rules are dropped. Use a catchall rule
to change this behavior.

No post-processing (conditioning) can be done here. Instead, use pre-
processing Pipelines on the Source tier.

Data can be cloned by toggling the Final flag to No . (The default is
Yes , i.e., no cloning.)

Scenario:

Send all events where host starts with 66 to Destination San
Francisco .

From the rest of the events:
Send all events with method field POST or GET to both Seattle
and Los Angeles (i.e., clone).

Send the remaining events to New York City .

Router Name: router66

Example

host.startsWith('66') San Francisco Yes

method��'POST' �� method��'GET Seattle No

method��'POST' �� method��'GET' Los Angeles Yes

true New York Yes

Filter Expression Output Final

Page 410 of 680

Splunk Single Instance

Splunk Enterprise is a streaming Destination type.

Select Data > Destinations, then select Splunk > Single Instance from the
Data Destinations page's tiles or le� menu. Click Add New to open the
Single Instance > New Destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this Splunk Single Instance
definition.

Address: Hostname of the Splunk receiver.

Port: The port number on the host.

Backpressure behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to

Configuring Cribl LogStream to Output to Splunk
Destinations

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Page 411 of 680

$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Enabled defaults to No . When toggled to Yes :

Validate server certs: Reject certificates that are not authorized by a CA in the
CA certificate path, or by another trusted CA (e.g., the system's CA). Defaults to
No .

Server name (SNI): Server name for the SNI (Server Name Indication) TLS
extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to
use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in
PEM format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Certificate path (mutual auth): Path on client containing certificates in (PEM
format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Passphrase: Passphrase to use to decrypt private key.

Minimum TLS version: Optionally, select the minimum TLS version to use when
connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use
when connecting.

TLS Settings (Client Side)

Single .pem Fileℹ

If you have a single .pem file containing cacert , key , and cert
sections, enter it in all of these fields above: CA certificate path,
Private key path (mutual auth), and Certificate path (mutual auth).

Page 412 of 680

Connection timeout: Amount of time (in milliseconds) to wait for the
connection to establish, before retrying. Defaults to 10000 .

Write timeout: Amount of time (in milliseconds) to wait for a write to complete,
before assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Output multi metrics: Toggle to Yes to output multiple-measurement metric
data points. (Supported in Splunk 8.0 and above, this format enables sending
multiple metrics in a single event, improving the e�iciency of your Splunk
capacity.)

Minimize in-flight data loss: Directs LogStream to check whether the indexer is
shutting down, and if so, to stop sending data. This helps minimize data loss
during shutdown. Toggle to No to disable this feature.

Throttling: Throttle rate in bytes per second. Multiple byte units such as KB,
MB, GB etc. are also allowed. E.g., 42 MB. Default value of 0 indicates no
throttling. When throttle engaged, excesses data will be dropped only if
Backpressure Behavior is set to drop, and blocked for all other settings.

Nested field serialization: Specifies how to serialize nested fields into index-
time fields. Defaults to None .

Timeout Settings

Processing Settings

Post‑Processing

Advanced Settings

Page 413 of 680

Auth token: Optionally, enter a shared secret to use when establishing a
connection to a Splunk indexer configured with the same secret.

Data sent to Splunk is not compressed.

If events have a Cribl LogStream internal field called ��criblMetrics ,
they'll be forwarded to Splunk as metric events.

If events do not have a _raw field, they'll be serialized to JSON prior to
sending to Splunk.

Notes about Forwarding to Splunk

Page 414 of 680

Splunk Load Balanced

Splunk is a streaming Destination type, and with the Splunk Load Balanced
output, you can load-balance data out to multiple Splunk receivers.

Cribl LogStream will attempt to load-balance outbound data as fairly as
possibly across all receivers (listed as Destinations in the GUI). If
FQDNs/hostnames are used as the Destination address and each resolves to,
for example, 5 (unique) IPs, then each worker process will have its # of
outbound connections = # of IPs x # of FQDNs for purposes of the SplunkLB
output. Data is sent by all worker processes to all receivers simultaneously, and
the amount sent to each receiver depends on these parameters:

1. Respective destination weight.

2. Respective destination historical data.

By default, historical data is tracked for 300s. LogStream uses this data to
influence the tra�ic sent to each destination, to ensure that di�erences decay
over time, and that total ratios converge towards configured weights.

Suppose we have two receivers, A and B, each with weight of 1 (i.e., they are
configured to receive equal amounts of data). Suppose further that the load-
balance stats period is set at the default 300s and – to make things easy – for
each period, there are 200 events of equal size (Bytes) that need to be
balanced.

Both A and B start this interval with 0 historical stats each.

Let's assume that, due to various circumstances, 200 events are "balanced" as
follows:

How Does Load Balancing Work

Example

1 time=0s ---> time=300s 200

Interval Time Range Events to be dispensed

Page 415 of 680

A = 120 events and B = 80 events – a di�erence of 40 events and a ratio
of 1.5:1.

At the beginning of interval 2, the load-balancing algorithm will look back to
the previous interval stats and carry half of the receiving stats forward. I.e.,
receiver A will start the interval with 60 and receiver B with 40. To determine
how many events A and B will receive during this next interval, LogStream will
use their weights and their stats as follows:

Total number of events: events to be dispensed + stats carried
forward = 200 + 60 + 40 = 300 .
Number of events per each destination (weighed): 300/2 = 150 (they're
equal, due to equal weight).
Number of events to send to each destination A� 150 - 60 = 90 and B�
150 - 40 = 110 .

Totals at end of interval 2: A=120+90=210 , B=80+110=190 , a di�erence of 20
events and a ratio of 1.1:1.

Over the subsequent intervals, the di�erence becomes exponentially less
pronounced, and eventually insignificant. Thus, the load gets balanced fairly.

To configure load balancing, first select Data > Destinations, then select
Splunk > Load Balanced from the Data Destinations page's tiles or le� menu.
Then click Add New to open the Load Balanced > New Destination modal,
which provides the following fields.

Output ID: Enter a unique name to identify this Splunk LB Destination
definition.

Indexer Discovery: When toggled to Yes , enables automatic discovery of
indexers in an indexer clustering environment. See Indexer Discovery for the

2 time=300s ---> time=600s 200

Configuring Cribl LogStream to Load-Balance to
Multiple Splunk Destinations

General Settings

Interval Time Range Events to be dispensed

Page 416 of 680

resulting UI options displayed below. When set to No (the default), displays
the Destinations section below.

Exclude current host IPs: Exclude all IPs of the current host from the list of any
resolved hostnames. Defaults to Yes .

Backpressure behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block . When
toggled to Persistent Queue , adds the Persistent Queue Settings section
(le� tab) to the modal.

The Destinations section appears only when Indexer discovery has its default
No setting. Here, you specify a known set of Splunk receivers on which to

load-balance data.

Click + Add Destination to specify more receivers on new rows. Each row
provides the following fields:

Address: Hostname of the Splunk receiver. Optionally, you can paste in a
comma-separated list, in <host��<port> format.

Port: Port number to send data to.

TLS: Whether to inherit TLS configs from group setting, or disable TLS.
Defaults to inherit .

TLS servername: Servername to use if establishing a TLS connection. If not
specified, defaults to connection host (if not an IP). Otherwise, uses the
global TLS settings.

Load weight: The weight to apply to this Destination for load-balancing
purposes.

Toggling the Indexer Discovery toggle to Yes displays the following fields
instead of the Destinations section:

Site: Clustering site from which indexers need to be discovered. In the case of a
single site cluster, default is the default entry.

Cluster Master URI: Full URI of Splunk Cluster Master, in the format:
scheme:��host:port . (Worker Nodes normally access the Cluster Master on

Destinations

Indexer Discovery

Page 417 of 680

port 8089 to get the list of currently online indexers.)

Auth token: Authentication token required to authenticate to Cluster Master
for indexer discovery.

Refresh period: Time interval (in seconds) between two consecutive fetches of
indexer list from Cluster Master. Defaults to 60 .

To enable token authentication on the Splunk Cluster Master, you can find
complete instructions in Splunk's Enable or Disable Token Authentication
documentation. The following capabilites are required:
list_indexer_cluster and list_indexerdiscovery .

For details on creating the token, see Splunk's Create Authentication Tokens
topic – especially its section on how to Configure Token Expiry and "Not
Before" Settings.

If you have a failover site configured on Splunk's Cluster Master, Cribl respects
this configuration, and forwards the data to the failover site in case of site
failure.

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Enabling Cluster Master Authentication

⚠ Be sure to give the token an Expiration setting well in the future,
whether you use Relative Time or Absolute Time. Otherwise, the
token will inherit Splunk's default expiration time of +30d (30 days
in the future), which will cause indexer discovery to fail.

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Page 418 of 680

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Enabled defaults to No . When toggled to Yes :

Validate server certs: Reject certificates that are not authorized by a CA in the
CA certificate path, or by another trusted CA (e.g., the system's CA). Defaults to
No .

Server name (SNI): Server name for the SNI (Server Name Indication) TLS
extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to
use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in
PEM format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Certificate path (mutual auth): Path on client containing certificates in (PEM
format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Passphrase: Passphrase to use to decrypt private key.

Minimum TLS version: Optionally, select the minimum TLS version to use when
connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use
when connecting.

TLS Settings (Client Side)

Single PEM Fileℹ

If you have a single .pem file containing cacert , key , and cert
sections, enter this file's path in all of these fields above:
CA certificate path, Private key path (mutual auth), and Certificate
path (mutual auth).

Page 419 of 680

Connection timeout: Amount of time (in milliseconds) to wait for the
connection to establish, before retrying. Defaults to 10000 ms.

Write timeout: Amount of time (in milliseconds) to wait for a write to
complete, before assuming connection is dead. Defaults to 60000 ms.

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Output Multi Metrics: Toggle this slider to Yes to output multiple-
measurement metric data points. (Supported in Splunk 8.0 and above, this
format enables sending multiple metrics in a single event, improving the
e�iciency of your Splunk capacity.)

Minimize in-flight data loss: If set to Yes (the default), LogStream will check
whether the indexer is shutting down and, if so, stop sending data. This helps
minimize data loss during shutdown.

DNS resolution period (seconds): Re-resolve any hostnames a�er each interval
of this many seconds, and pick up destinations from A records. Defaults to
600 seconds.

Timeout Settings

Processing Settings

Post-Processing

Advanced Settings

Page 420 of 680

Load balance stats period (seconds): Lookback tra�ic history period. Defaults
to 300 seconds. (Note that If multiple receivers are behind a hostname – i.e.,
multiple A records – all resolved IPs will inherit the weight of the host, unless
each IP is specified separately. In Cribl LogStream load balancing, IP settings
take priority over those from hostnames.)

Max connections: Constrains the number of concurrent indexer connections,
per Worker Process, to limit memory utilization. If set to a number > 0 , then
on every DNS resolution period (or indexer discovery), LogStream will
randomly select this subset of discovered IPs to connect to. LogStream will
rotate IPs in future resolution periods – monitoring weight and historical data,
to ensure fair load balancing of events among IPs.

Nested field serialization: Specifies whether and how to serialize nested fields
into index-time fields. Select None (the default) or JSON .

Auth token: Optionally, enter a shared secret to use when establishing a
connection to a Splunk indexer configured with the same secret.

Throttling: Throttle rate, in bytes per second. Multiple byte units such as KB,
MB, GB, etc., are also allowed. E.g., 42 MB . Default value of 0 indicates no
throttling. When throttling is engaged, excess data will be dropped only if
Backpressure behavior is set to Drop events. (Data will be blocked for all other
Backpressure behavior settings.)

To connect to Splunk Cloud, you might need to extract the private and public
key from the Splunk-provided Splunk Cloud Certificate, which is typically
bundled in an app. Use the following steps:

Step 1. Test connectivity to Splunk Cloud, using the Root CA certificate:

openssl s_client -CApath path_to_ca.pem �connect

hostnameToSplunkCloud:9997

Step 2. Extract the Private key from the Splunk Cloud Certificate. At the prompt,
you will need the sslPassword value from the outputs.conf file bundled
with the Splunk Cloud app. Using Elliptic Curve keys:

openssl ec �in path_to_server_cert.pem �out private.pem

If you are using RSA keys, instead use:

SSL Configuration for Splunk Cloud – Special Note

Page 421 of 680

openssl rsa �in path_to_server_cert.pem �out private.pem

Step 3. Extract the Public Key for the Server Certificate:

openssl x509 �in path_to_server_cert.pem �out server.pem

Step 4. In the LogStream Destination's TLS Settings (Client Side) section, enter
the following:

CA Certificate Path: Path to CA Certificate.

Private Key Path (mutual auth): Path to private.pem (Step 2 above).

Certificate Path (mutual auth): Path to server.pem (Step 3 above).

Data sent to Splunk is not compressed.

If events have a LogStream internal field called ��criblMetrics , they'll
be forwarded to Splunk as metric events.

If events do not have a _raw field, they'll be serialized to JSON prior to
sending to Splunk.

Notes About Forwarding to Splunk

Page 422 of 680

Splunk HEC

Splunk HEC is a streaming Destination type. In a typical deployment, Cribl
LogStream will be installed/ co‑located in a Splunk heavy forwarder. If this
output is enabled, it can send data out to a Splunk HEC (HTTP Event Collector)
destination through the event endpoint.

Select Data > Destinations, then select Splunk > HEC from the
Data Destinations page's tiles or le� menu. Click Add New to open the HEC >
New Destination modeal, which provides the following fields.

Output ID: Enter a unique name to identify this Splunk HEC definition.

Splunk HEC endpoint: URL of a Splunk HEC endpoint to send events to (e.g.,
http:��myhost.example.com:8088/services/collector/event).

HEC auth token: Splunk HEC authentication token.

Backpressure behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Configuring Cribl LogStream to Output to Splunk
HEC Destinations

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Page 423 of 680

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Output multi metrics: Toggle to Yes to output multiple-measurement metric
data points. (Supported in Splunk 8.0 and above, this format enables sending
multiple metrics in a single event, improving the e�iciency of your Splunk
capacity.)

Compress: Toggle this slider to Yes to compress the payload body before
sending.

Request timeout: Amount of time (in seconds) to wait for a request to
complete before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before
blocking. This is set per Worker Process. Defaults to 5 . Each request can
potentially hit a di�erent HEC receiver.

Max body size (KB): Maximum size, in KB, of the request body. Defaults to
4096 . Lowering the size can potentially result in more parallel requests and

Processing Settings

Post‑Processing

Advanced Settings

Page 424 of 680

also cause outbound requests to be made sooner.

Flush period (sec): Maximum time between requests. Low values can cause the
payload size to be smaller than the configured Max body size. Defaults to 1 .

Extra HTTP headers: Click + Add Header to add Name/Value pairs to pass as
additional HTTP headers.

Next processing queue: Specify the next Splunk processing queue to send the
events to, a�er HEC processing. Defaults to indexQueue .

Default _TCP_ROUTING: Specify the value of the _TCP_ROUTING field for
events that do not have _ctrl._TCP_ROUTING set. Defaults to nowhere .

Output multi metrics: Toggle to Yes to output multiple-measurement metric
data points. (Supported in Splunk 8.0 and above, this format enables sending
multiple metrics in a single event, improving the e�iciency of your Splunk
capacity.)

Cribl LogStream will attempt to use keepalives to reuse a connection for
multiple requests. A�er 2 minutes of the first use, the connection will be
thrown away, and a new connection will be reattempted. This is to prevent
sticking to a particular Destination when there is a constant flow of events.

If the server does not support keepalives – or if the server closes a pooled
connection while idle – a new connection will be established for next

ℹ Retries happen on this flush interval.

Any HTTP response code in the 2xx range is considered
success.

Any response code in the 5xx range is considered a retryable
error, which will not trigger Persistent Queue (PQ) usage.

Any other response code will trigger PQ (if PQ is configured as
the Backpressure behavior).

ℹ This is useful only when you expect the HEC receiver to route this
data on to another destination.

Notes on HTTP-based Outputs

Page 425 of 680

request.

When resolving the Destination's hostname, LogStream will pick the first IP
in the list for use in the next connection. Round-robin DNS would help with
event balancing.

Page 426 of 680

S3 Compatible Stores

S3 is a non-streaming Destination type. Cribl LogStream does not have to run
on AWS in order to deliver data to S3.

Stores that are S3-compatible will also work with this Destination type. For
example, the S3 Destination can be adapted to send data to services like
Databricks and Snowflake, for which LogStream currently has no
preconfigured Destination. For these integrations, please contact Cribl
Support.

Select Data > Destinations, then select Amazon > S3 from the
Data Destinations page's tiles or le� menu. Click Add New to open the S3 >
New Destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this S3 definition.

S3 bucket name: Name of the destination S3 Bucket. This value can be a
constant, or a JavaScript expression that will be evaluated only at init time. E.g.,
referencing a Global Variable: myBucket�${C.vars.myVar} .

Region: Region where the S3 bucket is located.

Staging location: Filesystem location in which to locally bu�er files before
compressing and moving to final destination. Cribl recommends that this
location be stable and high-performance.

Configuring Cribl LogStream to Output to S3
Destinations

General Settings

ℹ Event-level variables are not available for JavaScript expressions.
This is because the bucket name is evaluated only at Destination
initialization. If you want to use event-level variables in file paths,
Cribl recommends specifying them in the Partitioning Expression
field (described below), because this is evaluated for each file.

Page 427 of 680

Add Output ID: When set to Yes (the default), adds the Output ID field's value
to the staging location's file path. This ensures that each Destination's logs will
write to its own bucket.

Key prefix: Root directory to prepend to path before uploading. Enter either a
constant, or a JS expression (enclosed in single quotes, double quotes, or
backticks) that will be evaluated only at init time.

Partitioning expression: JavaScript expression to define how files are
partitioned and organized. If le� blank, Cribl LogStream will fall back to
event.��partition . Defaults to `${host}/${sourcetype}` . Partitioning

by time is also possible, e.g., `${host}/${C.Time.strftime(_time, '%Y-%m�
%d')}/${sourcetype}`

Data format: Format of the output data. Defaults to JSON .

File name prefix expression: The output filename prefix. Must be a JavaScript
expression (which can evaluate to a constant), enclosed in quotes or backticks.
Defaults to CriblOut .

Compress: Select the data compression format to use before moving data to
final destination. Defaults to none . Cribl recommends setting this to gzip .

Backpressure behavior: Select whether to block or drop events when all
receivers in this group are exerting backpressure. Defaults to Block .

⚠ For a Destination originally configured in a LogStream version below
2.4.0, the Add Output ID behavior will be switched o� on the
backend, regardless of this slider's state. This is to avoid losing any
files pending in the original staging directory, upon LogStream
upgrade and restart. To enable this option for such Destinations,
Cribl's recommended migration path is:

Clone the Destination.

Redirect the Routes referencing the original Destination to
instead reference the new, cloned Destination.

This way, the original Destination will process pending files (a�er an
idle timeout), and the new, cloned Destination will process newly
arriving events with Add output ID enabled.

Authentication

Page 428 of 680

Authentication method: Select an AWS authentication method.

Auto: This default option uses the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY , or the attached IAM

role. Works only when running on AWS.

Manual: You must select this option when not running on AWS.

The Manual option exposes these corresponding additional fields:

API key: Enter your AWS API key. If not present, will fall back to
env.AWS_ACCESS_KEY_ID , or to the metadata endpoint for IAM

credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to
env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM

credentials.

Enable for S3: Whether to use Assume Role credentials to access S3.
Defaults to No .

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to
assume.

External ID: Enter the External ID to use when assuming role. This is required
only when assuming a role that requires this ID in order to delegate third-party
access. For details, see AWS' documentation.

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports c� wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

Assume Role

Processing Settings

Post‑Processing

Page 429 of 680

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Endpoint: S3 service endpoint. If empty, the endpoint will be automatically
constructed from the region.

Object ACL: Object ACL (Access Control List) to assign to uploaded objects.

Storage class: Select a storage class for uploaded objects. Defaults to
Standard .

Server side encryption: Server side encryption type for uploaded objects.
Defaults to none . This is used for enabling encryption for data at rest.

Signature version: Signature version to use for signing S3 requests. Defaults to
v4 .

Max file size (MB): Maximum uncompressed output file size. Files of this size
will be closed and moved to final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open
for longer than this limit will be closed and moved to final output location.
Defaults to 300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open.
Files open for longer than this limit will be closed and moved to final output
location. Defaults to 30 .

Max open files: Maximum number of files to keep open concurrently. When
exceeded, the oldest open files will be closed and moved to final output
location. Defaults to 100 .

Reuse connections: Whether to reuse connections between requests. The
default setting (Yes) can improve performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be
verified against a valid Certificate Authority (e.g., self-signed certificates).
Defaults to Yes .

Advanced Settings

ℹ Cribl LogStream will close files when either of the Max file size
(MB) or the Max file open time (sec) conditions are met.

Page 430 of 680

The following permissions are needed to write to an Amazon S3 bucket:

s3�GetObject

s3�ListBucket

s3�GetBucketLocation

s3�PutObject

Cribl LogStream uses a set of internal fields to assist in forwarding data to a
Destination.

Field for this Destination:

��partition

Amazon S3 Permissions

Internal Fields

Page 431 of 680

Kinesis Streams

Cribl LogStream can output events to Amazon Kinesis Data Streams records of up to 1MB
uncompressed. Cribl LogStream does not have to run on AWS in order to deliver data to a Kinesis
Data Stream.

Select Data > Destinations, then select Amazon > Kinesis from the Data Destinations page's tiles or
le� menu. Click Add New to open the Kinesis > New Destination modal, which provides the following
fields.

Output ID: Enter a unique name to identify this Kinesis definition.

Stream name: Enter the name of the Kinesis Data Stream to which to send events.

Region: Select the AWS Region where the Kinesis Data Stream is located.

Endpoint: Kinesis Stream service endpoint. If empty, the endpoint will be automatically constructed
from the region.

Signature version: Signature version to use for signing Kinesis stream requests. Defaults to v4 .

Put request concurrency: Maximum number of ongoing put requests before blocking. Defaults to 5 .

Max record size (KB, uncompressed): Maximum size of each individual record before compression.
For non-compressible data, 1MB (the default) is the maximum recommended size.

Flush period (sec): Maximum time between requests. Low settings could cause the payload size to be
smaller than its configured maximum.

Backpressure behavior: Select whether to block, drop, or queue events when all receivers in this
group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output to Amazon Kinesis Data
Streams

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to Persistent Queue.

Page 432 of 680

Max file size: The maximum size to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit
is reached, queueing is stopped, and data blocking is applied. Enter a numeral with units of KB, MB,
etc.

Queue file path: The location for the persistent queue files. This will be of the form:
your/path/here/<worker�id>/<output�id> . Defaults to $CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ;
Gzip is also available.

Use the Authentication Method buttons to select an AWS authentication method:

Auto: This default option uses the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY , or the attached IAM role. Works only when running on AWS.

Manual: You must select this option when not running on AWS.

When using an IAM role to authenticate with Kinesis Streams, the IAM policy statements must include
the following Actions:

kinesis:DescribeStream

kinesis:PutRecord

For details, see AWS' Actions, Resources, and Condition Keys for Amazon Kinesis documentation.

The Manual option exposes these additional fields:

API key: Enter your AWS API key. If not present, will fall back to env.AWS_ACCESS_KEY_ID , or to the
metadata endpoint for IAM credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to env.AWS_SECRET_ACCESS_KEY ,
or to the metadata endpoint for IAM credentials.

Enable for Kinesis Streams: Whether to use Assume Role credentials to access Kinesis Streams.
Defaults to No .

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to assume.

Authentication

Auto Authentication

Manual Authentication

Assume Role

Page 433 of 680

External ID: Enter the External ID to use when assuming role.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the LogStream Pipeline that processed the event). Supports wildcards.

Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Reuse connections: Whether to reuse connections between requests. The default setting (Yes) can
improve performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be verified against a valid
Certificate Authority (e.g., self-signed certificates). Defaults to Yes .

Currently, outputted events use the following record format:

Header line containing information about the payload (currently supports one type, as shown
below).

Newline-Delimited JSON (that is, each Kinesis record will contain multiple events, in ndjson
format).

Record payloads (including header and body) will be gzip-compressed, and then Kinesis will base64-
encode them.

Sample Kinesis Record

Processing Settings

Post‑Processing

Advanced Settings

Format

{"format":"ndjson","count":8,"size":3960}
{"_raw":"07-03-2018 18�33�51.136 -0700 ERROR TcpOutputFd - Read error. Connection reset by peer"
{"_raw":"07-03-2018 18�33�51.136 -0700 INFO TcpOutputProc - Connection to 127.0.0.1�10000 close
���

Page 434 of 680

CloudWatch Logs

Cribl LogStream supports sending data to Amazon CloudWatch Logs. This is a
streaming Destination type. Cribl LogStream does not have to run on AWS in
order to deliver data to CloudWatch Logs.

Select Data > Destinations, then select Amazon > CloudWatch Logs from the
Data Destinations page's tiles or le� menu. Click Add New to open the
CloudWatch Logs > New Destination modal, which provides the following
fields.

Output ID: Enter a unique name to identify this CloudWatch definition.

Log group name: CloudWatch log group to associate events with.

Log stream prefix: Prefix for CloudWatch log stream name. This prefix will be
used to generate a unique log stream name per Cribl LogStream instance. (E.g.,
myStream_myHost_myOutputId .)

Region: AWS region where the CloudWatch Logs group is located.

Backpressure behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Configuring Cribl LogStream to Output to Amazon
CloudWatch Logs

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Page 435 of 680

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Authentication Method: Select an AWS authentication method.

Auto: This default option uses the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY , or the attached IAM

role. Works only when running on AWS.

Manual: You must select this option when not running on AWS.

The Manual option exposes these corresponding additional fields:

API key: Enter your AWS API key. If not present, will fall back to
env.AWS_ACCESS_KEY_ID , or to the metadata endpoint for IAM

credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to
env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM

credentials.

Enable for CloudWatch Logs: Whether to use Assume Role credentials to
access CloudWatch Logs. Defaults to No .

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to
assume.

External ID: Enter the External ID to use when assuming role.

Authentication

Assume Role

Processing Settings

Page 436 of 680

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Endpoint: CloudWatch Logs service endpoint. If empty, defaults to AWS'
Region-specific endpoint. Otherwise, use this field to point to a
CloudWatchLogs-compatible endpoint.

Signature version: Signature version to use for signing CloudWatch Logs
requests. Defaults to v4 .

Max queue size: Maximum number of queued batches before blocking.
Defaults to 5 .

Max record size (KB, uncompressed): Maximum size of each individual record
before compression. For non-compressible data, 1MB (the default) is the
maximum recommended size.

Flush period (sec): Maximum time between requests. Low settings could cause
the payload size to be smaller than its configured maximum.

Reuse connections: Whether to reuse connections between requests. The
default setting (Yes) can improve performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be
verified against a valid Certificate Authority (e.g., self-signed certificates).
Defaults to Yes .

Post‑Processing

Advanced Settings

Page 437 of 680

SQS

Cribl LogStream supports sending events to Amazon Simple Queuing Service.

Select Data > Destinations, then select Amazon > SQS from the
Data Destinations page's tiles or le� menu. Click Add New to open the SQS >
New Destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this SQS Destination.

Queue name: The name, URL, or ARN of the SQS queue to send events to.
This value must be a JavaScript expression (which can evaluate to a constant),
enclosed in single quotes, double quotes, or backticks. To specify a non-AWS
URL, use the format: '{url}/<queueName>' . (E.g.,
':port/<myQueueName>' .)

*Queue type**: The queue type used (or created). Defaults to Standard .
FIFO (First In, First Out) is the other option.

Message group ID: This parameter applies only to queues of type FIFO. Enter
the tag that specifies that a message belongs to a specific message group.
(Messages belonging to the same message group are processed in FIFO order.)
Defaults to cribl . Use event field ��messageGroupId to override this value.

Create queue: Specifies whether to create the queue if it does not exist.
Defaults to Yes .

Region: Region where SQS queue is located.

Backpressure behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Send Data to
Amazon SQS

General Settings

Persistent Queue Settings

Page 438 of 680

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Authentication Method: Select an AWS authentication method.

Auto: This default option uses the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY , or the attached IAM

role. Works only when running on AWS.

Manual: You must select this option when not running on AWS.

The Manual option exposes these corresponding additional fields:

API key: Enter your AWS API key. If not present, will fall back to
env.AWS_ACCESS_KEY_ID , or to the metadata endpoint for IAM

credentials.

Secret key: Enter your AWS secret key. If not present, will fall back to
env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM

credentials.

Enable for SQS: Whether to use Assume Role credentials to access SQS.
Defaults to No .

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Authentication

Assume Role

Page 439 of 680

AWS account ID: Enter the SQS queue owner's AWS account ID. Leave empty if
the SQS queue is in the same AWS account where this LogStream instance is
located.

AssumeRole ARN: Enter the Amazon Resource Name (ARN) of the role to
assume.

External ID: Enter the External ID to use when assuming role.

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Endpoint: SQS service endpoint. If empty, the endpoint will be automatically
constructed from the region.

Signature version: Signature version to use for signing SQS requests. Defaults
to v4 .

Max queue size: Maximum number of queued batches before blocking.
Defaults to 100 .

Max record size (KB): Maximum size of each individual record. Per the SQS
spec, the maximum allowed value is 256 KB. (the default).

Flush period (sec): Maximum time between requests. Low settings could cause
the payload size to be smaller than its configured maximum. Defaults to 1 .

Processing Settings

Post‑Processing

Advanced Settings

Page 440 of 680

Max concurrent requests: The maximum number of in-progress API requests
before backpressure is applied. Defaults to 10 .

Reuse connections: Whether to reuse connections between requests. The
default setting (Yes) can improve performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be
verified against a valid Certificate Authority (e.g., self-signed certificates).
Defaults to Yes .

The following permissions are needed to write to an SQS queue:

sqs:ListQueues

sqs:SendMessage

sqs:SendMessageBatch

sqs:CreateQueue

sqs:GetQueueAttributes

sqs:SetQueueAttributes

sqs:GetQueueUrl

Cribl LogStream uses a set of internal fields to assist in handling of data. These
"meta" fields are not part of an event, but they are accessible, and functions
can use them to make processing decisions.

Fields for this Destination:

��messageGroupId

��sqsMsgAttrs

��sqsSysAttrs

SQS Permissions

Internal Fields

Page 441 of 680

Filesystem/NFS

Filesystem is a non-streaming Destination type that Cribl LogStream can use to
output files to a local file system or a network-attached file system (NFS).

Select Data > Destinations, then select Filesystem from the Data Destinations
page's tiles or le� menu. Click Add New to open the Filesystem >
New Destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this Filesystem definition.

Output location: Final destination for the output files.

Staging location: Local filesystem location in which to bu�er files before
compressing and moving them to the final destination. Cribl recommends that
this location be stable and high-performance.

Add Output ID: When set to Yes (the default), adds the Output ID field's value
to the staging location's file path. This ensures that each Destination's logs will
write to its own bucket.

Configuring Cribl LogStream to Output to
Filesystem Destinations

General Settings

⚠ For a Destination originally configured in a LogStream version below
2.4.0, the Add Output ID behavior will be switched o� on the
backend, regardless of this slider's state. This is so that upon
LogStream upgrade and restart, any files pending in the original
staging directory will not be lost. To enable this option for such
Destinations, Cribl's recommended migration path is:

Clone the Destination.

Where Routes reference the original Destination, redirect them
to instead reference the new, cloned Destination.

Page 442 of 680

Partitioning expression: JavaScript expression to define how files are
partitioned and organized. Defaults to `${host}/${sourcetype}` . If le�
blank, Cribl LogStream will fall back to event.��partition . Partitioning by
time is also possible, e.g.: `${host}/${C.Time.strftime(_time, '%Y-%m�
%d')}/${sourcetype}`

Data format: Format of the output data. Defaults to json .

File name prefix expression: The output filename prefix. Must be a JavaScript
expression (which can evaluate to a constant), enclosed in quotes or backticks.
Defaults to CriblOut .

Compress: Data compression format used before moving to final destination.
Default none . It is recommended that gzip is used.

Max file size (MB): Maximum uncompressed output file size. Files of this size
will be closed and moved to final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open
for longer than this will be closed and moved to final output location. Defaults
to 300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open.
Files open for longer than this will be closed and moved to final output
location. Defaults to 30 .

Max open files: Maximum number of files to keep open concurrently. When
exceeded, the oldest open files will be closed and moved to final output
location. Defaults to 100 .

Backpressure Behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

This way, the original Destination will process pending files (a�er an
idle timeout), and the new, cloned Destination will process newly
arriving events with Add output ID enabled.

ℹ Cribl LogStream will close files when either of the Max file size
(MB) or the Max file open time (sec) conditions are met.

Processing Settings

Page 443 of 680

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Cribl LogStream uses a set of internal fields to assist in forwarding data to a
Destination.

Field for this Destination:

��partition

Post‑Processing

Internal Fields

ℹ To export events from an intermediate stage within a Pipeline to a
file, see the Tee Function.

Page 444 of 680

Elasticsearch

Cribl LogStream can send events to an Elasticsearch cluster using the Bulk API.

Select Data > Destinations, then select Elasticsearch from the
Data Destinations page's tiles or le� menu. Click Add New to open the
Elasticsearch > New Destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this Elasticsearch Destination
definition.

Bulk API URL: URL of an Elasticsearch cluster to send events to.
(E.g., http:��<myElasticCluster��9200/_bulk .)

Index: Elasticsearch Index where to send events to. Note that this value can be
overwritten by an event's ��index field.

Type: Specify document type to use for events. Note that this value can be
overwritten by an event's ��type field.

Authentication enabled: Set to No by default. Toggle to Yes to enter a
Username and Password.

Backpressure behavior: Specify whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output to
Elasticsearch

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Page 445 of 680

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before
sending.

Request timeout: Amount of time (in seconds) to wait for a request to
complete before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before
blocking. This is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Processing Settings

Post‑Processing

Advanced Settings

Page 446 of 680

Flush period (s): Maximum time between requests. Low values could cause the
payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Elastic version: Determines how to format events. The Auto default will
discover the downstream Elasticsearch version automatically. Optionally, you
can explicitly set version 6.x or 7.x .

This Destination normalizes the following fields:

_time becomes @timestamp at millisecond resolultion.

host.name is set to host .

See also our Elasticsearch Source documentation's Field Normalization
section.

Cribl LogStream uses a set of internal fields to assist in forwarding data to a
Destination.

Fields for this Destination:

��id

��type

��index

Cribl LogStream will attempt to use keepalives to reuse a connection for
multiple requests. A�er 2 minutes of the first use, the connection will be
thrown away, and a new one will be reattempted. This is to prevent sticking
to a particular destination when there is a constant flow of events.

If the server does not support keepalives (or if the server closes a pooled
connection while idle), a new connection will be established for the next
request.

Field Normalization

Internal Fields

Notes on HTTP-based Outputs

Page 447 of 680

When resolving the Destination's hostname, LogStream will pick the first IP
in the list for use in the next connection. Round-robin DNS would help with
event balancing.

Page 448 of 680

Honeycomb

Cribl LogStream supports sending events to a Honeycomb dataset.

Select Data > Destinations, then select Honeycomb from the Data Destinations
page's tiles or le� menu. Click Add New to open the Honeycomb >
New Destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this Honeycomb definition.

Dataset name: Name of the dataset to send events to. (E.g.,
iLoveObservabilityDataset .)

API Key: Team API Key to which the dataset belongs. (E.g., teamWilde .)

Backpressure behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to

Configuring Cribl LogStream to Output to
Honeycomb

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Page 449 of 680

$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before
sending.

Request timeout: Amount of time (in seconds) to wait for a request to
complete before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before
blocking. This is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (sec): Maximum time between requests. Low values could cause
the payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Processing Settings

Post‑Processing

Advanced Settings

Notes on HTTP-based Outputs

Page 450 of 680

Cribl LogStream will attempt to use keepalives to reuse a connection for
multiple requests. A�er 2 minutes of the first use, the connection will be
thrown away, and a new one will be reattempted. This is to prevent sticking
to a particular Destination when there is a constant flow of events.

If the server does not support keepalives (or if the server closes a pooled
connection while idle), a new connection will be established for the next
request.

When resolving the Destination's hostname, LogStream will pick the first IP
in the list for use in the next connection. Round-robin DNS would help with
event balancing.

Page 451 of 680

TCP JSON

Cribl LogStream supports sending data over TCP in JSON format. TCP JSON is
a streaming Destination type.

Select Data > Destinations, then select TCP JSON from the Data Destinations
page's tiles or le� menu. Click Add New to open the TCP JSON >
New Destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this Destination definition.

Address: Hostname of the receiver.

Port: Port number to connect to on the host.

Auth token: Optional authentication token to include as part of the connection
header. Defaults to empty.

Compression: Codec to use to compress the data before sending. Defaults to
None .

Throttling: Throttle rate in bytes per second. Multiple byte units such as KB,
MB, GB etc. are also allowed. E.g., 42 MB. Default value of 0 indicates no
throttling. When throttle engaged, excesses data will be dropped only if
Backpressure Behavior is set to drop, and blocked for all other settings.

Backpressure behavior: Specifies whether to block, drop, or queue events
when all receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output in TCP
JSON Format

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Page 452 of 680

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Enabled defaults to No . When toggled to Yes :

Autofill?: This setting is experimental.

Validate server certs: Reject certificates that are not authorized by a CA in the
CA certificate path, or by another trusted CA (e.g., the system's CA). Defaults to
No .

Server name (SNI): Server name for the SNI (Server Name Indication) TLS
extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to
use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in
PEM format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Certificate path (mutual auth): Path on client containing certificates in (PEM
format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Passphrase: Passphrase to use to decrypt private key.

Minimum TLS version: Optionally, select the minimum TLS version to use when
connecting.

TLS Settings (Client Side)

Page 453 of 680

Maximum TLS version: Optionally, select the maximum TLS version to use
when connecting.

Connection timeout: Amount of time (in milliseconds) to wait for the
connection to establish before retrying. Defaults to 10000 .

Write timeout: Amount of time (in milliseconds) to wait for a write to complete
before assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

TCP JSON events are sent in newline-delimited JSON format, consisting of:

1. A header line. Can be empty, e.g.: {} . If Auth Token is enabled, the token
will be included here as a field called authToken . In addition, if events
contain common fields, they will be included here under fields .

2. A JSON event/record per line.

See an example in our TCP JSON Source topic.

Timeout Settings

Processing Settings

Post‑Processing

Format

Example

Page 454 of 680

Syslog

Cribl LogStream supports sending of data over syslog via TCP. Syslog is a
streaming Destination type.

Select Data > Destinations, then select Syslog from the Data Destinations
page's tiles or le� menu. Click Add New to open the Syslog > New Destination
modal, which provides the following fields.

Output ID: Enter a unique name to identify this Syslog definition.

Protocol: The network protocol to use for sending out syslog messages.
Defaults to TCP ; UDP is also available.

Address: Address/hostname of the receiver.

Port: Port number to connect to on the host.

Facility: Default value for message facility. If set, will be overwritten by the value
of ��facility . Defaults to user .

Severity: Default value for message severity. If set, will be overwritten by the
value of ��severity . Defaults to notice .

App name: Default value for application name. If set, will be overwritten by the
value of ��appname . Defaults to Cribl .

Message format: The syslog message format supported by the receiver.
Defaults to RFC3164 .

ℹ This Syslog Destination supports RFC 3164 and RFC 5424.

Configuring Cribl LogStream to output in Syslog
format

General Settings

Page 455 of 680

Timestamp format: The timestamp format to use when serializing an event's
time field. Defaults to Syslog .

Throttling: Throttle rate in bytes per second. Multiple byte units such as KB,
MB, GB etc. are also allowed. E.g., 42 MB. Default value of 0 indicates no
throttling. When throttle engaged, excesses data will be dropped only if
Backpressure Behavior is set to drop, and blocked for all other settings.

Backpressure behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Enabled defaults to No . When toggled to Yes :

Validate server certs: Reject certificates that are not authorized by a CA in the
CA certificate path, or by another trusted CA (e.g., the system's CA). Defaults to
No .

Server name (SNI): Server name for the SNI (Server Name Indication) TLS
extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

TLS Settings (Client Side)

Page 456 of 680

CA certificate path: Path on client containing CA certificates (in PEM format) to
use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in
PEM format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Certificate path (mutual auth): Path on client containing certificates in (PEM
format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Passphrase: Passphrase to use to decrypt private key.

Minimum TLS version: Optionally, select the minimum TLS version to use when
connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use
when connecting.

Connection timeout: Amount of time (in milliseconds) to wait for the
connection to establish, before retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete,
before assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

Timeout Settings

ℹ These timeout settings apply only to the TCP protocol.

Processing Settings

Post‑Processing

Page 457 of 680

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Cribl LogStream uses a set of internal fields to assist in forwarding data to a
Destination.

Fields for this destination:

��priority

��facility

��severity

��procid

��appname

��msgid

��syslogout

Internal Fields

Page 458 of 680

Kafka

Cribl LogStream supports sending data to a Kafka topic. Kafka is a streaming
Destination type.

Select Data > Destinations, then select Kafka from the Data Destinations
page's tiles or le� menu. Click Add New to open the Kafka > New Destination
modal, which provides the following fields.

Output ID: Enter a unique name to identify this Kafka definition.

Brokers: List of Kafka brokers to connect to. (E.g., localhost:9092 .)

Topic: The topic on which to publish events. Can be overwritten using event's
��topic field.

Acknowledgments: Select the number of required acknowledgments. Defaults
to Leader .

Record data format: Format to use to serialize events before writing to Kafka.
Defaults to JSON .

Compression: Codec to compress the data before sending to Kafka. Select
None , Gzip , or Snappy .

Backpressure behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

Enabled defaults to No . When toggled to Yes :

Validate server certs: Reject certificates that are not authorized by a CA in the
CA certificate path, or by another trusted CA (e.g., the system's CA). Defaults to
No .

Configuring Cribl LogStream to Output to Kafka

General Settings

TLS Settings (Client Side)

Page 459 of 680

Server name (SNI): Server name for the SNI (Server Name Indication) TLS
extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to
use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in
PEM format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Certificate path (mutual auth): Path on client containing certificates in (PEM
format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Passphrase: Passphrase to use to decrypt private key.

Minimum TLS version: Optionally, select the minimum TLS version to use when
connecting.

Maximum TLS version: Optionally, select the maximum TLS version to use
when connecting.

Authentication parameters to use when connecting to brokers. Using TLS is
highly recommended.

Enabled: Defaults to No . When toggled to Yes :

SASL mechanism: Select the SASL (Simple Authentication and Security
Layer) authentication mechanism to use,

Username: The username for authentication.

Password: The password for authentication.

This section governs Kafka Schema Registry Authentication for AVRO-encoded
data with a schema stored in the Confluent Schema Registry.

Enabled: defaults to No . When toggled to Yes :

Authentication

Schema Registry

Page 460 of 680

Schema registry URL: URL for access to the Confluent Schema Registry.
(E.g., http:��<hostname��8081 .)

Default key schema ID: Used when ��keySchemaIdOut is not present to
transform key values. Leave blank if key transformation is not required by
default.

Default value schema ID: Used when ��valueSchemaIdOut not present to
transform _raw . Leave blank if value transformation is not required by
default.

TLS enabled: defaults to No . When toggled to Yes, displays the
following TLS settings for the Schema Registry:

TLS Settings (Schema Registry)

Validate server certs: Require client to reject any connection that is not
authorized by a CA in the CA certificate path, or by another trusted CA (e.g.,
the system's CA). Defaults to No.

Server name (SNI): Server name for the SNI (Server Name Indication) TLS
extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM
format) to use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key
(in PEM format) to use. Path can reference $ENV_VARS . Use only if mutual
auth is required.

Certificate path (mutual auth): Path on client containing certificates in
(PEM format) to use. Path can reference $ENV_VARS . Use only if mutual
auth is required.

Passphrase: Passphrase to use to decrypt private key.

Minimum TLS version: Optionally, select the minimum TLS version to use when
connecting.

ℹ These have the same format as the TLS Settings (Client Side)
above.

Page 461 of 680

Maximum TLS version: Optionally, select the maximum TLS version to use
when connecting.

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Max record size (KB, uncompressed): Maximum size (KB) of each record batch
before compression. Setting should be < message.max.bytes settings in
Kafka brokers. Defaults to 768 .

Max events per batch: Maximum number of events in a batch before forcing a
flush. Defaults to 1000 .

Flush period (sec): Maximum time between requests. Low values could cause
the payload size to be smaller than its configured maximum. Defaults to 1 .

Cribl LogStream uses a set of internal fields to assist in forwarding data to a
Destination.

Fields for this Destination:

��topicOut

��key

��headers

Processing Settings

Post‑Processing

Advanced Settings

Internal Fields

Page 462 of 680

��keySchemaIdOut

��valueSchemaIdOut

Page 463 of 680

Azure Blob Storage

Azure Blob Storage is a non-streaming Destination type. Cribl LogStream does not have to run on
Azure in order to deliver data to it. Azure Data Lake Storage Gen2 (hierarchical namespace) is also
supported.

Select Data > Destinations, then select Azure > Azure Blob Storage from the Data Destinations
page's tiles or le� menu. Click Add New to open the Blob Storage > New Destination modal, which
provides the following fields.

Output ID: Enter a unique name to identify this Destination definition.

Connection string: Enter your Azure Connection String. The format is:
DefaultEndpointsProtocol=[http|https];AccountName=<your‑account‑name>;AccountKey=

<your‑account‑key>

A fictitious example, using Microso�'s recommended HTTPS option:
DefaultEndpointsProtocol=https;AccountName=storagesample;AccountKey=12345678���32

If le� blank, LogStream will fall back to: env.AZURE_STORAGE_CONNECTION_STRING .

Container name: Enter the container name. (A container organizes a set of blobs, similar to a
directory in a file system.)

Configuring Cribl LogStream to Output to Azure Blob Storage

General Settings

� The Connection string field replaces the Account name and Account key fields provided
in this Destination's UI prior to LogStream 2.4. If you configured an Azure Blob Storage
Destination before upgrading to LogStream 2.4, those fields' values are now
concatenated into the Connection string value.

In case values were concatenated incorrectly, the original field keys and values are
retained in LogStream's configuration files (e.g.,
$CRIBL_HOME/groups/<group‑name>/cribl/outputs.yml). However, Cribl

recommends simply re-entering the correct Azure Connection string here.

For further details, see Microso�'s Configure Azure Storage Connection Strings
documentation.

Page 464 of 680

Create container: Defaults to No . Toggle to Yes to create the configured container in Azure Blob
Storage if it does not already exist.

Blob prefix: Root directory to prepend to path before uploading.

Staging location: Local filesystem location in which to bu�er files before compressing and moving
them to the final destination. Cribl recommends that this location be stable and high-
performance.

Add Output ID: When set to Yes (the default), adds the Output ID field's value to the staging
location's file path. This ensures that each Destination's logs will write to its own bucket.

Partitioning expression: JavaScript expression to define how files are partitioned and organized.
Defaults to `${host}/${sourcetype}` If le� blank, Cribl LogStream will fall back to
event.��partition .

Data format: Format of the output data. Defaults to json .

File name prefix expression: The output filename prefix. Must be a JavaScript expression (which
can evaluate to a constant), enclosed in quotes or backticks. Defaults to CriblOut .

Compress: Data compression format used before moving to final destination. Defaults to none .
Cribl recommends setting to gzip .

Backpressure behavior: Whether to block or drop events when all receivers in this group are
exerting backpressure. Defaults to Block .

Pipeline: Pipeline to process data before sending the data out using this output.

⚠ For a Destination originally configured in a LogStream version below 2.4.0, the
Add Output ID behavior will be switched o� on the backend, regardless of this slider's
state. This is to avoid losing any files pending in the original staging directory, upon
LogStream upgrade and restart. To enable this option for such Destinations, Cribl's
recommended migration path is:

Clone the Destination.

Redirect the Routes referencing the original Destination to instead reference the
new, cloned Destination.

This way, the original Destination will process pending files (a�er an idle timeout), and
the new, cloned Destination will process newly arriving events with Add output ID
enabled.

Processing Settings

Post‑Processing

Page 465 of 680

System fields: A list of fields to automatically add to events that use this output. By default,
includes cribl_pipe (identifying the LogStream Pipeline that processed the event). Supports
wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Max file size (MB): Maximum uncompressed output file size. Files reaching this size will be closed
and moved to the final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open for longer than this
limit will be closed and moved to final output location. Defaults to 300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open. Files open for longer
than this limit will be closed and moved to final output location. Default: 30 .

Max open files: Maximum number of files to keep open concurrently. When exceeded, the oldest
open files will be closed and moved to final output location. Default: 100 .

Cribl LogStream uses a set of internal fields to assist in forwarding data to a Destination.

Field for this Destination:

��partition

Advanced Settings

ℹ LogStream will close files when either of the Max file size (MB) or the
Max file open time (sec) conditions are met.

Internal Fields

Page 466 of 680

Azure Monitor Logs

Cribl LogStream supports sending of data over to Azure Monitor Logs. This is a
streaming Destination type.

Select Data > Destinations, then select Azure > Monitor Logs from the
Data Destinations page's tiles or le� menu. Click Add New to open the
Monitor Logs > New Destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this Azure Monitor Logs definition.

Workspace ID: Enter the Azure Log Analytics Workspace ID. (See
Workspace‑>Advanced settings in the Azure Dashboard.)

Workspace key: Enter the Azure Log Analytics Workspace Primary or
Secondary Shared Key. (In the Azure Dashboard, see Workspace‑>Advanced
settings.)

Log type: The Record Type of events sent to this LogAnalytics workspace.
Defaults to Cribl .

Resource ID: Resource ID of the Azure resource to associate the data with. This
populates the _ResourceId property, and allows the data to be included in
resource-centric queries. (Optional, but if this field is not specified, the data
will not be included in resource-centric queries.)

Backpressure behavior: Whether to block, drop, or queue events when all
receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output to Azure
Monitor Logs

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Page 467 of 680

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before
sending.

Request timeout: Amount of time (in seconds) to wait for a request to
complete before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before
blocking. This is set per Worker Process. Defaults to 5 .

Processing Settings

Post‑Processing

Advanced Settings

Page 468 of 680

Max body size (KB): Maximum size of the request body. Defaults to 4096 .

Flush period (sec): Maximum time between requests. Low settings could cause
the payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Cribl LogStream will attempt to use keepalives to reuse a connection for
multiple requests. A�er 2 minutes of the first use, the connection will be
thrown away, and a new one will be reattempted. This is to prevent sticking
to a particular Destination when there is a constant flow of events.

If keepalives are not supported by the server (or if the server closes a
pooled connection while idle), a new connection will be established for the
next request.

When resolving the Destination's hostname, LogStream will pick the first IP
in the list for use in the next connection. Round-robin DNS would help with
event balancing.

Notes on HTTP-based Outputs

Page 469 of 680

Azure Event Hubs

Cribl LogStream supports sending data to Azure Event Hubs. This is a streaming Destination type.

Select Data > Destinations, then select Azure > Event Hubs from the Data Destinations page's tiles or
le� menu. Click Add New to open the Event Hubs > New Destination modal, which provides the
following fields.

Output ID: Enter a unique name to identify this Azure Event Hubs definition.

Brokers: List of Event Hub Kafka brokers to connect to. (E.g.,
yourdomain.servicebus.windows.net:9093 .) Find the hostname in Shared Access Policies, in the

host portion of the primary or secondary connection string.

Event Hub name: The name of the Event Hub (a.k.a., Kafka Topic) on which to publish events. Can be
overwritten using the ��topicOut field.

Acknowledgments: Control the number of required acknowledgments. Defaults to Leader .

Record data format: Format to use to serialize events before writing to the Event Hub Kafka brokers.
Defaults to JSON .

Compression: If present, change from the default Gzip to None .

Backpressure behavior: Whether to block, drop, or queue events when all receivers in this group are
exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output to Azure Event Hubs

General Settings

⚠ This option is removed as of LogStream 2.4.4, due to incompatibility on the Event Hubs
side. In LogStream versions through 2.4.3, you must manually change the setting to None
in order to enable a stable connection with Event Hubs.

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to Persistent Queue.

Page 470 of 680

Max file size: The maximum size to store in each queue file before closing it. Enter a numeral with
units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to consume. Once this limit
is reached, queueing is stopped, and data blocking is applied. Enter a numeral with units of KB, MB,
etc.

Queue file path: The location for the persistent queue files. This will be of the form:
your/path/here/<worker�id>/<output�id> . Defaults to $CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed. Defaults to None ;
Gzip is also available.

Enabled Defaults to Yes .

Validate server certs: Defaults to No – and for Event Hubs, this must always be disabled.

Authentication parameters to use when connecting to brokers. Using TLS is highly recommended.

Enabled: Defaults to Yes . (Toggling to No hides the remaining settings in this group.)

SASL mechanism: SASL (Simple Authentication and Security Layer) authentication mechanism to use,
PLAIN is the only mechanism currently supported for Event Hub Kafka brokers.

Username: The username for authentication. For Event Hub, this should always be
$ConnectionString .

Password: Event Hubs primary or secondary connection string. From Microso�'s documentation,
the format is:

Endpoint=sb:��<FQDN>/;SharedAccessKeyName=<KeyName>;SharedAccessKey=<KeyValue>

Example entry:

Endpoint=sb:��dummynamespace.servicebus.windows.net/;SharedAccessKeyName=dummyac

cesskeyname;SharedAccessKey=5dOntTRytoC24opYThisAsit3is2B+OGY1US/fuL3ly=

Pipeline: Pipeline to process data before sending the data out using this output.

TLS Settings (Client Side)

Authentication

Processing Settings

Post‑Processing

Page 471 of 680

System fields: A list of fields to automatically add to events that use this output. By default, includes
cribl_pipe (identifying the LogStream Pipeline that processed the event). Supports wildcards.

Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Max record size (KB, uncompressed): Maximum size (KB) of each record batch before compression.
Setting should be < message.max.bytes settings in Kafka brokers. Defaults to 768 .

Max events per batch: Maximum number of events in a batch before forcing a flush. Defaults to
1000 .

Flush period (sec): Maximum time between requests. Low settings could cause the payload size to be
smaller than its configured maximum. Defaults to 1 .

Cribl LogStream uses a set of internal fields to assist in forwarding data to a Destination.

Fields for this Destination:

��topicOut

��key

��headers

��keySchemaIdOut

��valueSchemaIdOut

Advanced Settings

Internal Fields

Page 472 of 680

Google Cloud Storage

Google Cloud Storage is a non-streaming Destination type.

Select Data > Destinations, then select Google Cloud > Cloud Storage from the
Data Destinations page's tiles or le� menu.

Next, click Add New to open the Cloud Storage > New Destination modal,
which provides the following fields.

Output ID: Enter a unique name to identify this Cloud Storage definition.

Bucket name: Name of the destination bucket. This value can be a constant. or
a JavaScript expression that can be evaluated only at init time. E.g., referencing
a Global Variable: myBucket�${C.vars.myVar} .

Region: Region where the bucket is located.

Staging location: Filesystem location in which to locally bu�er files before
compressing and moving to final destination. Cribl recommends that this
location be stable and high-performance.

Add Output ID: Whether to append output's ID to staging location. Defaults to
Yes .

Key prefix: Root directory to prepend to path before uploading. Enter a
constant, or a JS expression enclosed in single quotes, double quotes, or
backticks.

Partitioning expression: JavaScript expression to define how files are
partitioned and organized. If le� blank, Cribl LogStream will fall back to
event.��partition . Defaults to `${host}/${sourcetype}` . Partitioning

by time is also possible, e.g., `${host}/${C.Time.strftime(_time, '%Y-%m�
%d')}/${sourcetype}`

Configuring Cribl LogStream to Output to
Google Cloud Storage Destinations

General Settings

Page 473 of 680

Data format: Format of the output data. Defaults to JSON .

File name prefix expression: The output filename prefix. Must be a JavaScript
expression (which can evaluate to a constant), enclosed in quotes or backticks.
Defaults to CriblOut .

Compress: Select the data compression format to use before moving data to
final destination. Defaults to none . Cribl recommends setting this to gzip .

Backpressure behavior: Select whether to block or drop events when all
receivers in this group are exerting backpressure. Defaults to Block .

Authentication is via HMAC (Hash-based Message Authentication Code). To
create a key and secret, see Google Cloud's Managing HMAC Keys for Service
Accounts documentation.

Access key: Enter the HMAC access key.

Secret key: Enter the HMAC secret.

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports c� wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Endpoint: The Google Cloud Storage service endpoint. Typically, there is no
reason to change the default https://storage.googleapis.com endpoint.

Authentication

Processing Settings

Post‑Processing

Advanced Settings

Page 474 of 680

Object ACL: Select an Access Control List to assign to uploaded objects.
Defaults to private .

Storage class: Select a storage class for uploaded objects.

Signature version: Signature version to use for signing requests. Defaults to
v4 .

Max file size (MB): Maximum uncompressed output file size. Files of this size
will be closed and moved to final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open
for longer than this limit will be closed and moved to final output location.
Defaults to 300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open.
Files open for longer than this limit will be closed and moved to final output
location. Defaults to 30 .

Max open files: Maximum number of files to keep open concurrently. When
exceeded, the oldest open files will be closed and moved to final output
location. Defaults to 100 .

Reuse connections: Whether to reuse connections between requests. The
default setting (Yes) can improve performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be
verified against a valid Certificate Authority (e.g., self-signed certificates).
Defaults to Yes .

Cribl LogStream uses a set of internal fields to assist in forwarding data to a
Destination.

Field for this Destination:

��partition

ℹ Cribl LogStream will close files when either of the Max file size
(MB) or the Max file open time (sec) conditions are met.

Internal Fields

Page 475 of 680

StatsD

Cribl LogStream supports sending data to a StatsD Destination. This is a
streaming Destination type.

Select Data > Destinations, then select Metrics > StatsD from the
Data Destinations page's tiles or le� menu. Click Add New to open the StatsD >
New Destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this StatsD definition.

Destination protocol: Protocol to use when communicating with the
Destination. Defaults to UDP .

Host: The hostname of the Destination.

Port: Destination port. Defaults to 8125 .

Throttling: Rate (in bytes per second) at which at which to throttle while writing
to an output. Also takes numerical values in multiples of bytes (KB, MB, GB,
etc.). Default value of 0 indicates no throttling.

Backpressure behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output via StatsD

General Settings

ℹ The next two settings apply only to the TCP protocol, and are not
displayed for UDP.

Persistent Queue Settings

ℹ This section is displayed only for TCP, and only when the
Backpressure behavior is set to Persistent Queue.

Page 476 of 680

Max file size: The maximum size to store in each queue file before closing
it. Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed
to consume. Once this limit is reached, queueing is stopped, and data
blocking is applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of
the form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Connection timeout: Amount of time (in milliseconds) to wait for the
connection to establish, before retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete,
before assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Timeout Settings

ℹ These timeout settings apply only to the TCP protocol, and are not
displayed for UDP.

Processing Settings

Post‑Processing

Page 477 of 680

Max record size (bytes): Used when Protocol is UDP. Specifies the maximum
size of packets sent to the Destination. (Also known as the MTU – maximum
transmission unit – for the network path to the Destination system.) Defaults to
512 .

Flush period (sec): Used when Protocol is TCP. Specifies how o�en bu�ers
should be flushed, sending records to the Destination. Defaults to 1 .

Advanced Settings

Page 478 of 680

StatsD Extended

Cribl LogStream's StatsD Extended Destination supports sending out data in
expanded StatsD format. This is a streaming Destination type.

The output is an expanded StatsD metric protocol that supports dimensions,
along with a sample rate for counter metrics. As with StatsD, downstream
components listen for application metrics over UDP or TCP, can aggregate and
summarize those metrics, and can relay them to virtually any graphing or
monitoring backend.

For details about the syntax expected by one common downstream service, see
Splunk's Expanded StatsD Metric Protocol documentation.

Output ID: Enter a unique name to identify this StatsD Extended definition.

Destination protocol: Protocol to use when communicating with the
Destination. Defaults to UDP .

Host: The hostname of the Destination.

Port: Destination port. Defaults to 8125 .

Throttling: Rate (in bytes per second) at which at which to throttle while writing
to an output. Also takes numerical values in multiples of bytes (KB, MB, GB,
etc.). Default value of 0 indicates no throttling.

Backpressure behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

General Settings

ℹ The next two settings apply only to the TCP protocol, and are not
displayed for UDP.

Persistent Queue Settings

Page 479 of 680

Max file size: The maximum size to store in each queue file before closing
it. Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed
to consume. Once this limit is reached, queueing is stopped, and data
blocking is applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of
the form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Connection timeout: Amount of time (in milliseconds) to wait for the
connection to establish, before retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete,
before assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

ℹ This section is displayed only for TCP, and only when the
Backpressure behavior is set to Persistent Queue.

Timeout Settings

ℹ These timeout settings apply only to the TCP protocol, and are not
displayed for UDP.

Processing Settings

Post‑Processing

Page 480 of 680

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Max record size (bytes): Used when Protocol is UDP. Specifies the maximum
size of packets sent to the Destination. (Also known as the MTU – maximum
transmission unit – for the network path to the Destination system.) Defaults to
512 .

Flush period (sec): Used when Protocol is TCP. Specifies how o�en bu�ers
should be flushed, sending records to the Destination. Defaults to 1 .

Advanced Settings

Page 481 of 680

Graphite

Cribl LogStream supports sending data to a Graphite backend Destination.
This is a streaming Destination type.

Select Data > Destinations, then select Metrics > Graphite from the
Data Destinations page's tiles or le� menu. Click Add New to open the
Graphite > New Destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this Graphite definition.

Destination protocol: Protocol to use when communicating with the
Destination. Defaults to UDP .

Host: The hostname of the Destination.

Port: Destination port. Defaults to 8125 .

Throttling: Rate (in bytes per second) at which at which to throttle while writing
to an output. Also takes numerical values in multiples of bytes (KB, MB, GB,
etc.). Default value of 0 indicates no throttling.

Backpressure behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output to a
Graphite Backend

General Settings

ℹ The next two settings apply only to the TCP protocol, and are not
displayed for UDP.

Persistent Queue Settings

Page 482 of 680

Max file size: The maximum size to store in each queue file before closing
it. Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed
to consume. Once this limit is reached, queueing is stopped, and data
blocking is applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of
the form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Connection timeout: Amount of time (in milliseconds) to wait for the
connection to establish, before retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete,
before assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

ℹ This section is displayed only for TCP, and only when the
Backpressure behavior is set to Persistent Queue.

Timeout Settings

ℹ These timeout settings apply only to the TCP protocol, and are not
displayed for UDP.

Processing Settings

Post‑Processing

Page 483 of 680

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Max record size (bytes): Used when Protocol is UDP. Specifies the maximum
size of packets sent to the Destination. (Also known as the MTU – maximum
transmission unit – for the network path to the destination system.) Defaults to
512 .

Flush period (sec): Used when Protocol is TCP. Specifies how o�en bu�ers
should be flushed, sending records to the Destination. Defaults to 1 .

Advanced Settings

Page 484 of 680

SNMP Trap

Cribl LogStream supports forwarding of SNMP Traps out.

While on the Data Destinations page, select SNMP Trap from the tiles or the le�
menu, then click Add New. The resulting SNMP Trap > New Destination modal,
which provides the following fields.

Select Data > Destinations, then select SNMP Trap from the Data Destinations
page's tiles or le� menu. Click Add New to open the New SNMP destination
pane, which provides the following fields.

Output ID: Enter a unique name to identify this SNMP Trap definition.

SNMP Trap destinations: One or more SNMP destinations to forward traps to.

Address: Destination host.

Port: Destination port. Defaults to 162 .

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

Configuring Cribl LogStream to Forward to SNMP
Traps

General Settings

Processing Settings

Post‑Processing

Page 485 of 680

cribl_output – LogStream Destination that processed the event.

It's possible to work with SNMP metadata (i.e., we'll decode the packet).
Options include dropping, routing, etc. However, packets cannot be
modified and sent to another SNMP Destination.

SNMP packets can be forwarded to non-SNMP Destinations (e.g., Splunk,
Syslog, S3, etc.).

SNMP packets can be forwarded to other SNMP Destinations. However, the
contents of the incoming packet cannot be modified – i.e., we'll forward
the packets verbatim as they came in.

Non-SNMP input data cannot be sent to SNMP Destinations.

Considerations for Working with SNMP Traps Data

Page 486 of 680

InfluxDB

Cribl LogStream supports sending data to InfluxDB.

Select Data > Destinations, then select InfluxDB from the Data Destinations
page's tiles or le� menu. Click Add New to open the InfluxDB >
New Destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this InfluxDB definition.

Write API URL: URL of an InfluxDB cluster to send events to. (E.g.,
http:��localhost:8086/write .)

Database name: The database on which to write data points.

Timestamp precision: Sets the precision for the supplied UNIX time values.
Defaults to Milliseconds .

Dynamic value fields: When enabled, LogStream will pull the value field from
the metric name. (E.g., db.query.user will use db.query as the
measurement and user as the value field). Defaults to Yes .

Value field name: Name of the field in which to store the metric when sending
to InfluxDB. This will be used as a fallback if dynamic name generation is
enabled but fails. Defaults to value .

Authentication enabled: Set to No by default. Toggle to Yes to enter a
Username and Password.

Backpressure behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output to InfluxDB

General Settings

Persistent Queue Settings

Page 487 of 680

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before
sending.

Request timeout: Amount of time (in seconds) to wait for a request to
complete before aborting it. Defaults to 30 .

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Processing Settings

Post‑Processing

Advanced Settings

Page 488 of 680

Request concurrency: Maximum number of concurrent requests before
blocking. This is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (sec): Maximum time between requests. Low values could cause
the payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Page 489 of 680

MinIO

MinIO is a non-streaming Destination type, to which Cribl LogStream can
output objects.

Select Data > Destinations, then select MinIO from the Data Destinations
page's tiles or le� menu. Click Add New to open the MinIO > New Destination
modal, which provides the following fields.

Output ID: Enter a unique name to identify this MinIO definition.

MinIO endpoint: MinIO service URL (e.g., http://minioHost:9000).

MinIO bucket name:Name of the destination MinIO bucket. This value can be a
constant, or a JavaScript expression that will be evaluated only at init time.
E.g., referencing a Global Variable: myBucket�${C.vars.myVar} . Ensure that
the bucket already exists, otherwise MinIO will generate "bucket does not
exist" errors.

API key: If le� blank, LogStream will fall back to env.AWS_ACCESS_KEY_ID , or
to the metadata endpoint for IAM credentials.

Secret key: If le� blank, Cribl LogStream will fall back to
env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM

credentials.

Configuring Cribl LogStream to Output to MinIO
Destinations.

General Settings

ℹ Event-level variables are not available for JavaScript expressions.
This is because the bucket name is evaluated only at Destination
initialization. If you want to use event-level variables in file paths,
Cribl recommends specifying them in the Partitioning Expression
field (described below), because this is evaluated for each file.

Page 490 of 680

Staging location: Filesystem location in which to locally bu�er files before
compressing and moving to final destination. Cribl recommends that this
location be stable and high-performance.

Add Output ID: When set to Yes (the default), adds the Output ID field's value
to the staging location's file path. This ensures that each Destination's logs will
write to its own bucket.

Key prefix: Root directory to prepend to path before uploading. Enter a
constant, or a JS expression enclosed in single quotes, double quotes, or
backticks.

Prefix to apply to files/objects before uploading to the specified bucket. MinIO
will display key prefixes as folders.

Partitioning expression: JavaScript expression to define how files are
partitioned and organized. If le� blank, Cribl LogStream will fall back to
event.��partition . Defaults to `${host}/${sourcetype}` .

⚠ For a Destination originally configured in a LogStream version below
2.4.0, the Add Output ID behavior will be switched o� on the
backend, regardless of this slider's state. This is to avoid losing any
files pending in the original staging directory, upon LogStream
upgrade and restart. To enable this option for such Destinations,
Cribl's recommended migration path is:

Clone the Destination.

Redirect the Routes referencing the original Destination to
instead reference the new, cloned Destination.

This way, the original Destination will process pending files (a�er an
idle timeout), and the new, cloned Destination will process newly
arriving events with Add output ID enabled.

ℹ LogStream's internal ��partition field can be populated in
multiple ways. The precedence order is: explicit
Partitioning expression value ‑> ${host}/${sourcetype} (default)
Partitioning expression value ‑> user-defined event.��partition ,
set with an Eval Function (takes e�ect only where this
Partitioning expression field is blank).

Page 491 of 680

Data format: Format of the output data. Defaults to json .

File name prefix expression: The output filename prefix. Must be a JavaScript
expression (which can evaluate to a constant), enclosed in quotes or backticks.
Defaults to CriblOut .

Compress: Select the data compression format to use before moving data to
final destination. Defaults to none . Cribl recommends setting this to gzip .

Backpressure behavior: Select whether to block or drop events when all
receivers in this group are exerting backpressure. Defaults to Block .

The full path to a file consists of:

<bucket_name>/<keyprefix><partition_expression | ��partition>

<file_name_prefix><filename>.<extension>

As an example, assume that the MinIO bucket name is bucket1 , the Key
prefix is aws , the Partitioning expression is `${host}/${sourcetype}` , the
source is undefined, the File name prefix is the default CriblOut , and the
Data format is json . Here, the full path as displayed in MinIO would have this
form: /bucket1/aws/192.168.1.241/undefined/CriblOut�
<randomstring>0.json

Determines the AWS authentication method. The options here are:

Auto: This default method uses the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY , or the attached IAM role.

It will work only when running on AWS.

Manual: Switch to this option if not running on AWS. Then directly enter your
auth keys in the resulting API key and Secret key fields.

How MinIO Composes File Names

ℹ Although MinIO will display the Key prefix and
Partitioning expression values as folders, both are actually just part
of the overall key name, along with the file name.

Authentication

Processing Settings

Page 492 of 680

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Region: Region where the MinIO service/cluster is located. Leave blank when
using a containerized MinIO.

Object ACL: ACL (Access Control List) to assign to uploaded objects. Defaults to
Private .

Storage class: Select a storage class for uploaded objects. Defaults to
Standard .

Server side encryption: Server side encryption type for uploaded objects.
Defaults to none .

Signature version: Signature version to use for signing MinIO requests.
Defaults to v4 .

Max file size (MB): Maximum uncompressed output file size. Files of this size
will be closed and moved to final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open
for longer than this limit will be closed and moved to final output location.
Defaults to 300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open.
Files open for longer than this limit will be closed and moved to final output
location. Defaults to 30 .

Max open files: Maximum number of files to keep open concurrently. When
exceeded, the oldest open files will be closed and moved to final output

Post‑Processing

Advanced Settings

Page 493 of 680

location. Defaults to 100 .

Reuse connections: Whether to reuse connections between requests. The
default setting (Yes) can improve performance.

Reject unauthorized certificates: Whether to accept certificates that cannot be
verified against a valid Certificate Authority (e.g., self-signed certificates).
Defaults to Yes .

Cribl LogStream uses a set of internal fields to assist in forwarding data to a
Destination.

Field for this Destination:

��partition

ℹ Cribl LogStream will close files when either of the Max file size
(MB) or the
Max file open time (sec) conditions is met.

Internal Fields

Page 494 of 680

New Relic

Cribl LogStream supports sending events to the New Relic Log API and the
New Relic Metric API.

Select Data > Destinations, then select New Relic from the Data Destinations
page's tiles or le� menu. Click Add New to open the New Relic > New
destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this New Relic definition.

API key: Enter your New Relic Insert API key, as created on New Relic's Insights
> API keys page. (For details, see New Relic's Query API documentation.)

Region: Select which New Relic region endpoint to use.

Log type: Name of the logType to send with events. E.g., observability or
access_log .

Log message field: Name of the field to send as the log message value. If not
specified, the event will be serialized and sent as JSON.

Fields: Additional metadata fields to (optionally) add, as Name-Value pairs.

Name: Enter the metadata field name.

Value:JavaScript expression to compute field’s value, enclosed in single
quotes, double quotes, or backticks. (Can evaluate to a constant.)

Add Field: Click to add more metadata Name-Value pairs.

Configuring Cribl LogStream to Output to New
Relic

General Settings

ℹ This sets a default. Where a sourcetype is specified in an event, it
will override this value.

Page 495 of 680

Backpressure behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Processing Settings

Post‑Processing

Advanced Settings

Page 496 of 680

Compress: Whether to compress the payload body before sending. Defaults to
No .

Request timeout: Amount of time (in seconds) to wait for a request to
complete before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before
blocking. This is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 1000 KB.

Flush period (sec): Maximum time between requests. Low values can cause the
payload size to be smaller than the configured Max body size. Defaults to 1
second.

Extra HTTP headers: Click + Add Header to insert extra headers as Name/Value
pairs.

Page 497 of 680

Prometheus

Cribl LogStream can send metric events to targets and third-party platforms
that support Prometheus' remote_write spec.

Select Data > Destinations, then select Prometheus from the
Data Destinations page's tiles or le� menu. Click Add New to open the
Prometheus > New Destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this Prometheus output definition.

Remote Write URL: The endpoint to send events to, e.g.:
http:��localhost:9200/write

Backpressure behavior: Whether to block, drop, or queue events when all
receivers are exerting backpressure.

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to:
$CRIBL_HOME/state/queues .

Configuring Cribl LogStream to Output to
Prometheus

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Page 498 of 680

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

This section's Authentication type drop-down determines the Remote Write
authentication method to use. The options are:

None: The default.

Auth token: Exposes an Auth token field, where you can enter a bearer token
to include in the authorization header.

Basic: Exposes Username and Password fields for Basic authentication.

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Request timeout: Amount of time (in seconds) to wait for a request to
complete before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before
blocking. This is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Max events per request: Maximum number of events to include in the request
body. The 0 default allows unlimited events.

Authentication

Processing Settings

Post‑Processing

Advanced Settings

Page 499 of 680

Flush period (sec): Maximum time between requests. Low values could cause
the payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Metric renaming expression: A JavaScript expression that can be used to
rename metrics. The default expression – name.replace(/\./g, '_') –
replaces all instances of . (a character unsupported by Prometheus) with the
supported _ . This expression is evaluated only against the metric's name.

Send metadata: Whether to generate and send metrics' metadata (type and
metricFamilyName) along with the metrics. The default Yes value displays

this additional field:

Metadata flush period (sec): How frequently metrics metadata is sent out.
Value must at least equal the base Flush period (sec). (In other words,
metadata cannot be flushed on a shorter interval.) Defaults to
60 seconds.

Cribl LogStream uses a set of internal fields to assist in forwarding data to a
Destination.

If an event contains the internal field ��criblMetrics , LogStream will send it
to the HTTP endpoint as a metric event. Otherwise, LogStream will send it as a
log event.

Cribl LogStream will attempt to use keepalives to reuse a connection for
multiple requests. A�er 2 minutes of the first use, the connection will be
thrown away, and a new one will be reattempted. This is to prevent sticking
to a particular destination when there is a constant flow of events.

If the server does not support keepalives (or if the server closes a pooled
connection while idle), a new connection will be established for the next
request.

When resolving the Destination's hostname, LogStream will pick the first IP
in the list for use in the next connection. Round-robin DNS would help with
event balancing.

Internal Fields

Notes on HTTP-based Outputs

Page 500 of 680

Page 501 of 680

Wavefront

Cribl LogStream supports sending events to Wavefront analytics.

Select Data > Destinations, then select Wavefront from the Data Destinations
page's tiles or le� menu. Click Add New to open the Wavefront >
New Destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this Wavefront definition.

Auth token: Wavefront API authentication token. For details, see Wavefront's
Generating an API Token topic. Required.

Domain name: WaveFront domain name, e.g., longboard . Required.

Backpressure behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to

Configuring Cribl LogStream to Output to
Wavefront

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Page 502 of 680

$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Whether to compress the payload body before sending. Defaults to
No .

Request timeout: Amount of time (in seconds) to wait for a request to
complete before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before
blocking. This is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (sec): Maximum time between requests. Low values can cause the
payload size to be smaller than the configured Max body size. Defaults to 1
second.

Extra HTTP headers: Click + Add Header to insert extra headers as Name/Value
pairs.

Processing Settings

Post‑Processing

Advanced Settings

Notes About Wavefront

Page 503 of 680

For details on integrating with Wavefront, see these Wavefront resources:

Direct Data Ingestion, and adjacent topics on Wavefront Proxies.

Wavefront Data Format.

Page 504 of 680

SignalFx

Cribl LogStream supports sending events to SignalFx.

Select Data > Destinations, then select SignalFx from the Data Destinations
page's tiles or le� menu. Click Add New to open the SignalFx >
New Destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this SignalFx definition.

Auth token: SignalFx API access token. For details, see SignalFx's Manage
Tokens topic. Required.

Realm: SignalFx realm name (e.g., us0). Required.

Backpressure behavior: Select whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Configuring Cribl LogStream to Output to SignalFx

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Page 505 of 680

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Whether to compress the payload body before sending. Defaults to
No .

Request timeout: Amount of time (in seconds) to wait for a request to
complete before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before
blocking. This is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (sec): Maximum time between requests. Low values can cause the
payload size to be smaller than the configured Max body size. Defaults to 1
second.

Extra HTTP headers: Click + Add Header to insert extra headers as Name/Value
pairs.

Processing Settings

Post‑Processing

Advanced Settings

Notes About SignalFx

Page 506 of 680

For details on integrating with SignalFx, see the SignalFx Developers Guide,
with particular reference to the SignalFx HTTP Send Metrics Reference.

Page 507 of 680

Sumo Logic

Cribl LogStream can send log and metric events to Sumo Logic over HTTP.

Select Data > Destinations, then select Sumo Logic from the Data Destinations
page's tiles or le� menu. Click Add New to open the Sumo Logic > New Destination
modal, which provides the following fields.

Output ID: Enter a unique name to identify this Sumo Logic Destination definition.

API URL: Enter the URL of the Sumo Logic HTTP collector to which events should be
sent. (E.g.,
https:��endpoint6.collection.us2.sumologic.com/receiver/v1/http/<long�

hash> .)

Custom source name: Optionally, override the source name configured on the
Sumo Logic HTTP collector. This value will be sent with events via the X‑Sumo‑Name
HTTP header.

Custom source category: Optionally, override the source category configured on
the Sumo Logic HTTP collector. This value will be sent with events via the
X‑Sumo‑Category HTTP header.

Backpressure behavior: Whether to block, drop, or queue events when all receivers
in this group are exerting backpressure.

Max file size: The maximum size to store in each queue file before closing it. Enter a
numeral with units of KB, MB, etc. Defaults to 1 MB .

Configuring Cribl LogStream to Output to Sumo Logic

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Page 508 of 680

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:
your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.
Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete
before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking.
This is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (sec): Maximum time between requests. Low values could cause the
payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Processing Settings

Post‑Processing

Advanced Settings

Page 509 of 680

Cribl LogStream uses a set of internal fields to assist in forwarding data to a
Destination.

If an event contains the internal field ��criblMetrics , LogStream will send it to
Sumo Logic as a metric event. Otherwise, LogStream will send it as a log event.

Cribl LogStream will attempt to use keepalives to reuse a connection for
multiple requests. A�er 2 minutes of the first use, the connection will be thrown
away, and a new one will be reattempted. This is to prevent sticking to a
particular destination when there is a constant flow of events.

If the server does not support keepalives (or if the server closes a pooled
connection while idle), a new connection will be established for the next
request.

When resolving the Destination's hostname, LogStream will pick the first IP in
the list for use in the next connection. Round-robin DNS would help with event
balancing.

Internal Fields

Notes on HTTP-based Outputs

Page 510 of 680

Datadog

Cribl LogStream can send log and metric events to Datadog. (Datadog supports
metrics only of type gauge , counter , and rate via its REST API.)

LogStream sends events to the following Datadog endpoints in the US region.
Use a DNS lookup to discover and include the corresponding IP addresses in
your firewall rules' allowlist.

Logs: https://http-intake.logs.datadoghq.com/v1/input

Metrics: https://api.datadoghq.com/api/v1/series

Select Data > Destinations, then select Datadog from the Data Destinations
page's tiles or le� menu. Click Add New to open the Datadog >
New Destination modal, which provides the following fields.

Output ID: Enter a unique name to identify this Destination definition.

API Key: Enter an API key available in your Datadog profile.

Send logs as: Specify the content type to use when sending logs. Defaults to
application/json , where each log message is represented by a JSON object.

The alternative text/plain option sends one message per line, with newline
\n delimiters.

Message field: Name of the event field that contains the message to send. If not
specified, LogStream sends a JSON representation of the whole event
(regardless of whether Send logs as is set to JSON or plain text).

Source: Name of the source to send with logs. If you're sending logs as JSON
objects (i.e., you've selected Send logs as: application/json), the event's
source field (if set) will override this value.

Host: Name of the host to send with logs. If you're sending logs as JSON
objects, the event's host field (if set) will override this value.

Configuring Cribl LogStream to Output to Datadog

General Settings

Page 511 of 680

Service: Name of the service to send with logs. If you're sending logs as JSON
objects, the event's ��service field (if set) will override this value.

Tags: List of tags to send with logs (e.g., env:prod , env_staging:east).

Severity: Default value for message severity. If you're sending logs as JSON
objects, the event's ��severity field (if set) will override this value. Defaults
to info ; the drop-down o�ers many other severity options.

Backpressure behavior: Specify whether to block, drop, or queue events when
all receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None . Select Gzip to enable compression.

Pipeline: Pipeline to process data before sending the data out using this
output.

ℹ Datadog uses the above five fields (source , host , ��service ,
��severity , and tags) to enhance searches and UX.

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Processing Settings

Post‑Processing

Page 512 of 680

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress log events' payload body
before sending.

Request timeout: Amount of time (in seconds) to wait for a request to
complete before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before
blocking. This is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (s): Maximum time between requests. Low values could cause the
payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Cribl LogStream uses a set of internal fields to assist in forwarding data to a
Destination.

If an event contains the internal field ��criblMetrics , LogStream will send it
to Datadog as a metric event. Otherwise, LogStream will send it as a log event.

You can use these fields to override outbound event values for log events:

��service

��severity

No internal fields are supported for metric events.

Advanced Settings

Internal Fields

Page 513 of 680

You might find these Datadog references helpful:

Submit Metrics

Send Logs

Metrics Types

For More Information

Page 514 of 680

Webhook

Cribl LogStream can send log and metric events to webhooks and other
generic HTTP endpoints.

Select Data > Destinations, then select HTTP from the Data Destinations
page's tiles or le� menu. Click Add New to open the HTTP > New Destination
modal, which provides the following fields.

Output ID: Enter a unique name to identify this HTTP output definition.

URL: Endpoint URL to send events to.

Method: The HTTP verb to use when sending events. Defaults to POST .
Change this to PUT or PATCH where required by the endpoint.

Send events as: The format in which to send out events. One of:

NDJSON (newline-delimited JSON): The default.

JSON Array : Arrays in JSON-parseable format.

Custom : Exposes the following additional fields to define the output
format:

Source expression: JavaScript expression to evaluate on every event;
LogStream will send the result of that evaluation instead of the
original event. Sample expression: `${fieldA}, ${fieldB}` (with
literal backticks). Defaults to ��httpOut – i.e., the value of the
��httpOut field. Use the button at right to open a validation modal.

Drop when null: If toggled to Yes , LogStream will drop events when
the Source expression evaluates to null .

Event delimiter: Delimiter string to insert between events. Defaults to
the newline character (\n). Cannot be a space (this will be converted

Configuring Cribl LogStream to Output via HTTP

General Settings

Page 515 of 680

to \n).

Content type: Content type to use for requests. Defaults to
application/x‑ndjson . Any content types set in Advanced Settings

> Extra HTTP headers will override this entry.

Backpressure behavior: Whether to block, drop, or queue events when all
receivers are exerting backpressure.

Max file size: The maximum size to store in each queue file before closing it.
Enter a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to
consume. Once this limit is reached, queueing is stopped, and data blocking is
applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the
form: your/path/here/<worker�id>/<output�id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is
closed. Defaults to None ; Gzip is also available.

This section's Authentication type drop-down determines the authentication
method to use for HTTP requests. The options are:

None: The default.

Basic: Exposes Username and Password fields for Basic authentication.

Token: Exposes a Token field to enter a bearer token to include in the
authorization header.

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to
Persistent Queue.

Authentication

Processing Settings

Page 516 of 680

Pipeline: Pipeline to process data before sending the data out using this
output.

System fields: A list of fields to automatically add to events that use this output.
By default, includes cribl_pipe (identifying the LogStream Pipeline that
processed the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before
sending.

Request timeout: Amount of time (in seconds) to wait for a request to
complete before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before
blocking. This is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Max events per request: Maximum number of events to include in the request
body. The 0 default allows unlimited events.

Flush period (sec): Maximum time between requests. Low values could cause
the payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Cribl LogStream uses a set of internal fields to assist in forwarding data to a
Destination.

If an event contains the internal field ��criblMetrics , LogStream will send it
to the HTTP endpoint as a metric event. Otherwise, LogStream will send it as a
log event.

Post‑Processing

Advanced Settings

Internal Fields

Page 517 of 680

Cribl LogStream will attempt to use keepalives to reuse a connection for
multiple requests. A�er 2 minutes of the first use, the connection will be
thrown away, and a new one will be reattempted. This is to prevent sticking
to a particular destination when there is a constant flow of events.

If the server does not support keepalives (or if the server closes a pooled
connection while idle), a new connection will be established for the next
request.

When resolving the Destination's hostname, LogStream will pick the first IP
in the list for use in the next connection. Round-robin DNS would help with
event balancing.

Notes on HTTP-based Outputs

Page 518 of 680

DevNull

The DevNull Destination simply drops events. Cribl provides this as a basic
output to test Pipelines and Routes.

DevNull requires no configuration: A DevNull Destination is preconfigured and
active as soon as you install Cribl LogStream.

To verify this, select Data > Destinations from the top menu. On the resulting
Data Destinations page, select DevNull from the tiles or the le� menu. Look for
the Live indicator at the top right.

Configuring Cribl LogStream to Forward to DevNull

Page 519 of 680

Default

The Default Destination simply enables you to specify a default output from
among your configured Destinations.

Select Data > Destinations, then select Default from the Data Destinations
page's tiles or le� menu. From the resulting Manage Default Destination page,
click anywhere on the default row to proceed.

Default Destination – click to configure

In the resulting Destinations > Default modal, use the Default Output ID drop-
down to select one of your configured Destinations. A�er you click Save, this
will become LogStream's default Destination.

The only other field here is the Output ID, whose value is locked to default .

If you've configured an Output Router Destination with a branch that points to
this Default Destination (default:default), you cannot select that
Output Router here. This restriction prevents a circular dependency.

Configuring Cribl LogStream's Default Destination

Preventing Circular References

Page 520 of 680

Data Preview

Sample Data Preview is a LogStream feature that enables you to visually
inspect events as they make their trip into a Pipeline. It helps you shape and
control events before they're delivered to a Destination, as well as assisting
with troubleshooting LogStream Functions.

Preview works by taking a set of Sample events, passing them through the
Pipeline, and displaying the results in a separate pane. Any time a Function is
modified, added, or removed, the Pipeline changes, and so does its displayed
output.

Preview options

While you're in a Pipeline, you can add samples through one of the supported
options: Paste, Attach, or Capture New. The Paste and Attach options work
with content that needs to be broken into events, while the Capture New
option works with events only.

When you click on the corresponding option, you'll be presented with a modal
like the one shown below.

Adding Sample Data (Using Paste as an Example)

Page 521 of 680

Add Sample Data modal

This is where the content of the paste (or uploaded file) is displayed.

An Event Breaker is a regular expression that tells Cribl LogStream how to
break the file or pasted content into events. Breaking will occur at the start of
the match. Cribl LogStream ships with several common breaker patterns out of
the box, but you can also configure custom breakers. The UI here is interactive,
and you can iterate until you find the exact pattern.

The Capture New button opens a slightly di�erent modal – it does not require
event breaking. In the composite screenshot below, we've already captured
some events using the overlaid Capture... drop-down.

Paste Area

Event Breaker Settings

Capturing Sample Data

Page 522 of 680

Capture New > Capture Sample Data modal

To capture data from a single enabled Source or Destination, it's fastest to use
the Sources or Destinations UI instead of the Preview pane. You can initiate an
immediate capture by clicking the Live button on the Source's or Destination's
configuration row.

Source > Live button

You can similarly start an immediate capture from within an enabled Source's
or Destination's configuration modal, by clicking the modal's Live Data tab.

Destination modal > Live Data tab

The Preview pane's Add Sample Data or Capture Sample Data modal, once
successfully populated with data, provides options to save the data as a sample

Capturing from a Single Source or Destination

Saving Sample Data

Page 523 of 680

and/or datagen file. Click the appropriate button, accept or modify the
default/generated file name and other options, and confirm the save.

Saving sample data

The Fields section enables users to add, or overwrite, key/value pairs on the
sample.

The Preview pane o�ers two display options for the event: Event and Table.
(You can also download data as JSON or NDJSON, using the Advanced Settings
menu at the top right.) Each format can be useful, depending on the type of
data you are previewing.

Event, Table, and Advanced options

In the Advanced Settings menu's Timeout (sec) and Memory (MB) fields, you
can increase the defaults to adjust for cases where very large data samples fail
to load. For example, you might increase the Timeout (sec) to 30 and the
Memory (MB) to 3048 .

Fields

IN Tab: Displaying Samples on the Way IN to the Pipeline

Page 524 of 680

As you add more samples to your system, you can easily access them via the
Sample data file drop-down.

Selecting an existing sample

You can manage and modify sample files via the Samples tab below.

Managing sample files

Click Simple or Full beside a file name to display its events in the Preview pane.
Click directly on a file name to open the modal shown here, with options to
clone the sample, save it as a datagen Source, delete it, associate it with a
Pipeline, and set a description, expiration time, and tags.

Page 525 of 680

Options for modifying a sample

As data traverses Functions in a Pipeline, events can be modified, and some
might be dropped altogether. The OUT tab indicates changes using this color
coding:

Dropped events: When events are dropped, the OUT tab displays them as
grayed-out text, with strikethrough. You can control their display using the
Advanced Settings menu's Show Dropped Events slider.

Added fields: When LogStream's processing adds new fields, these fields
are highlighted green. You can control these fields' display using the Select
Fields drop-down.

Redacted fields: These fields are highlighted amber.

Deleted fields: These fields are highlighted red.

OUT Tab: Displaying Samples on the Way OUT of the
Pipeline

Page 526 of 680

Dropped and added fields in a Pipeline's output

With the Routes or Pipelines page displayed in the le� pane, hover over the
pane divider (in the headers row) to display the Collapse/Expand toggle shown
in the composite screenshot below.

Collapse / Expand toggle (composite)

Click Collapse to hide the Preview pane. This allows the Route or Pipeline
configuration to expand to your browser's full width. (The Preview pane
collapses automatically on narrow viewports.)

Click Expand at your browser's right edge to restore the split view. The pane
divider will snap back to wherever you last dragged it.

Managing the Preview Pane

Page 527 of 680

Securing Data

What's Next

Encryption

Decryption

Cribl LogStream can be used to encrypt sensitive data in real time and route it
to an end system. Decrypted retrieval can be implemented on a per-system
basis. Currently, decryption is supported only when Splunk is the end system.

Data Encryption

Data Decryption





Page 528 of 680

Encryption

With Cribl LogStream, you can encrypt fields or patterns within events in real
time, by using C.Crypto.encrypt() in a Mask function. The Mask function
accepts multiple replacement rules and multiple fields to apply them to.

A Match regex defines the pattern of content to be replaced. The Replace
expression is a JS expression or literal to replace matched content. The
C.Crypto.encrypt() method can be used here to generate an encrypted

string from a value passed to it.

Symmetric keys can be configured through the CLI or UI. Users are free to
define as many keys as required. Each key is characterized by the following:

keyId : ID of the key.

algorithm : Algorithm used with the key

Encryption of Data in Motion

C.Crypto.encrypt() Syntaxℹ

(method) Crypto.encrypt(value: any, keyclass: number,
keyId�� string, defaultVal�� string)� string

Encrypt the given value with the keyId , or with a keyId picked up
automatically based on keyclass .

@param {string | Bu�er} value – what to encrypt.
@param – keyclass – if keyId isn't specified, pick one at the
given keyclass .
@param – keyId - encryption keyId, takes precedence over
keyclass .

@param – defaultVal – what to return if encryption fails for any
reason; if unspecified, the original value is returned.
@returns – if encryption succeeds, the encrypted value; otherwise,
defaultVal if specified; otherwise, value .

Encryption Keys

Page 529 of 680

keyclass : Cribl Key Class (below) that the key belongs to.

kms : Key management system for the key. Defaults to local .

created : Time (epoch) when key was generated.

expires : Time (epoch) a�er which the key is invalid. Useful for key
rotation.

useIV : Flag that indicates whether or not an initialization vector was
used.

Key Classes in Cribl LogStream are collections of keys that can be used to
implement multiple levels of access control. Users (or groups of users) with
access to data with encrypted patterns can be associated with key classes, for
even more granular, pattern-level compartmentalized access.

Users U0, U1 have been given access to keyclass 0 which contains key IDs
0 and 1 . These keys are used to encrypt certain patterns in datasetA . Even

though users U0, U1, U2 have access to read this dataset, only U0 and U1
can decrypt its encrypted patterns.

User U1 has been given access to an additional keyclass, 1 , which contains
key IDs 11 and 22 . These keys are used to encrypt certain other patterns in
datasetA . Even though users U0, U1, U2 have access to read this dataset –

same as above – only U1 can decrypt the additional encrypted patterns.

Key Classes

Example

keyclass: 0

Keys: keyId: 0, keyId: 1
Users: U0, U1

datasetA

Users: U0, U1, U2

keyclass: 1

Keys: keyId: 11, keyId: 22
Users: U1

datasetA

Users: U0, U1, U2

Configuring Keys with the CLI

Key Class Dataset

Key Class Dataset

Page 530 of 680

When using the local key management system, encryption keys in Cribl
LogStream are encrypted with
$CRIBL_HOME/local/cribl/auth/cribl.secret and stored in
$CRIBL_HOME/local/cribl/auth/keys.json . Cribl monitors the
keys.json file for changes every 60 seconds.

Keys are added and listed using the keys command:

$CRIBL_HOME/bin/cribl keys list �g <workerGroupID>

Sample Command Output

Displaying ��help :

$CRIBL_HOME/bin/cribl keys add ��help

Sample Command Output

Adding a key to keyclass 1 , with no expiration date, on the default Worker
Group:

ℹ When installed as a Splunk app, $CRIBL_HOME is
$SPLUNK_HOME/etc/apps/cribl .

Listing Keys

keyId algorithm keyclass kms created expires useIV

1 aes-256-cbc 0 local 1544906269.316 0 false
2 aes-256-cbc 1 local 1544906272.452 0 false
3 aes-256-cbc 2 local 1544906275.948 1545906275 true
4 aes-256-cbc 3 local 1544906278.026 0 false

Adding Keys

Add encryption keys
Usage: [options] [args]

Options:
[-c <keyclass>] - key class to set for the key
[-k <kms>] - KMS to use, must be configured, see cribl.yml
[-e <expires>] - expiration time, epoch time
[-i] - use an initialization vector
 �g <group> - Group ID

Page 531 of 680

$CRIBL_HOME/bin/cribl keys add �c 1 �i �g default

Sample Command Output

(You would use the same syntax to reference a non- default Worker Group by
its name.)
?
Listing keys to verify key generation:

$CRIBL_HOME/bin/cribl keys list �g default

Sample Command Output

In a single-instance deployment, you can access the key management interface
through Settings > Encryption Keys. In a distributed deployment, select
Worker Groups > <group‑name> > System Settings > Encryption Keys.

Here, you can list and add new keys. To protect against accidental changes, a
key's parameters, once saved, can be edited only through configuration files.

List or create keys through LogStream's UI

Adding key: success. Key count=1

keyId algorithm keyclass kms created expires useIV

1 aes-256-cbc 1 local 1545243364.342 0 true

Configuring Keys with the UI

Page 532 of 680

To successfully decrypt data, the decrypt command will need access to the
same keys that were used to encrypt, in the Cribl instance where encryption
happened.

In a single-instance deployment, the cribl.secret and keys.json files
reside in: $CRIBL_HOME/local/cribl/auth/ .

In a distributed deployment, the cribl.secret and keys.json files
reside on the Master Node in:
$CRIBL_HOME/groups/<group‑name>/local/cribl/auth/ .

When using the UI, you can download these files by clicking the Get Key
Bundle button.

Sync/copy these files over to their counterparts on the Search Head/decrypting
side.

When you update keys by editing the keys.json file, you must add them back
to to the directories above (respectively, on a single instance or on a
distributed deployment's Master Node).

Sync auth/(cribl.secret|keys.json)

Modifying Keys

Page 533 of 680

Decryption

Currently, Cribl LogStream supports decryption only when Splunk is the end
system. In Splunk, decryption is available to users of any role with permissions
to run the decrypt command that ships with Cribl App for Splunk. Further
restrictions can be applied with Splunk capabilities. This page provides details.

Decryption in Splunk is implemented via a custom command called decrypt .
To use the command, users must belong to a Splunk role that has permissions
to execute it. Capabilities, which are aligned to Cribl Key Classes, can be
associated with a particular role to further control the scope of decrypt .

In Splunk, capability names should follow the format cribl_keyclass_N ,
where N is the Cribl Key Class. For example, a role with capability
cribl_keyclass_1 has access to all key IDs associated with key class 1 .

Decryption of Data

Decrypting in Splunk

Decrypt Command Is Search Head ONLYℹ

To ensure that keys don't get distributed to all search peers –
including peers that your search head can search, but you don't have
full control over – decrypt is scoped to run locally on the installed
search head.

Restricting Access with Splunk Capabilities

cribl_keyclass_1

cribl_keyclass_2

...
cribl_keyclass_N

1

2

...
N

Configuring Splunk Search Head to Decrypt Data

Capability Name Corresponding Cribl Key Class

Page 534 of 680

You set up decryption in Splunk according to this schematic:

1. Download the Cribl/LogStream App for Splunk from Cribl's
Download LogStream page: In the On Prem section, select the Splunk app
from the drop-down list, as shown. Clicking the orange button downloads
a file named:
cribl�splunk�app��version‑#��<hash‑#��linux�x64.tgz .

Downloading Cribl's Splunk app

2. To install the Cribl/LogStream App for Splunk on your search head, untar
the package into your $SPLUNK_HOME/etc/apps directory.

As of LogStream v1.7, the app will run in search head mode by default. If
the app has previously been installed and later modified, you can convert it
to search head mode with the command: $CRIBL_HOME/bin/cribld

Page 535 of 680

mode�searchhead . (When installed as a Splunk app, $CRIBL_HOME is
$SPLUNK_HOME/etc/apps/cribl .)

3. Assign permissions to the decrypt command, per your requirements.

4. Assign capabilities to your roles, per your requirements. If you'd like to
create more capabilities, ensure that they follow the naming convention
defined above.

5. Sync auth/(cribl.secret|keys.json) . To successfully decrypt data,
the decrypt command will need access to the same keys that were used
to encrypt, in the Cribl instance where encryption happened.

In a single-instance deployment, the cribl.secret and keys.json files
reside in: $CRIBL_HOME/local/cribl/auth/ .

In a distributed deployment, these files reside on the Master Node in:
$CRIBL_HOME/groups/<group‑name>/local/cribl/auth/ .

When using LogStream's UI, you can download these files by clicking the
Get Key Bundle button.

Sync/copy these files over to their counterparts on the search head (decryption
side). In a non-Splunk integration, you would copy these assets to wherever
decryption will take place.

Modifying Keysℹ

When you update keys by editing the keys.json file, you must add
them back to to the directories above (respectively, on a single
instance or on a distributed deployment's Master Node).

Page 536 of 680

Scripts

Admins can run scripts (e.g., shell scripts) from within Cribl LogStream by
configuring and executing them thru Settings > Scripts. Scripts are typically
used to call custom automation jobs or, more generally, to trigger tasks on
demand. For example, you can use Scripts to run an Ansible job, or to place a
call to another automation system, when Cribl LogStream configs are updated.

Settings > Manage Scripts page

The Manage Scripts page provides the following tields:

ID: Unique ID for this script.

Command: Command to execute for this script.

Description: Brief description about this script. Optional.

Arguments: Arguments to pass when executing this script.

Env variables: Extra environment variables to set when executing script.

With Great Power Comes Great Responsibility!⚠

Scripts will allow you to execute almost anything on the system
where Cribl LogStream is running. Make sure you understand the
impact of what you're executing before you do so!

Scripts in Distributed Deploymentsℹ

Scripts can be deployed from Master Node, but can be run only
locally from each Worker Node.

Page 537 of 680

If the Script command is referencing a file (e.g., 420.sh), that
file must exist on the Cribl LogStream instance. In other words,
the Script management interface cannot be used to upload or
manage script files.

Page 538 of 680

Using Datagens
Data generators for testing and troubleshooting

Cribl LogStream's Datagens feature enables you to generate sample data for the purposes of
troubleshooting Routes, Pipelines, Functions, and general connectivity.

Several Datagen template files ship with the product, out of the box. You can create others from
sample files or live captures.

Preview pane – add samples via paste, attach/upload file, or live capture

As outlined in the following tutorial: Once you've created a template, you can configure a Datagen
Source to use the template to generate real-time data at a given EPS (events per second) rate.

To see how Datagens work, start by enabling a pair of LogStream's out-of-the-box generators:

Navigate to Sources > Datagens and click Add New.

Select a Data Generator File (e.g., apache_common.log) and set it at 4 EPS/worker process. Select
another Data Generator File (e.g., syslog.log) and set it at 8 EPS/worker process. Hit Save.

Enabling a Datagen

Page 539 of 680

Selecting Datagens files and event rates

On the Monitoring page, under Sources, search for datagen and confirm that the Source is
generating data.

To convert a sample into a template:

Go to Preview > Paste a Sample, and add a sample like the AWS VPC Flow logs below:

Sample VPC Flow Logs

From the Event Breaker drop-down, select AWS VPC Flow to ensure that:

The pasted text gets broken properly into individual events (notice the Event Breaker on
newlines).

Timestamps are extracted correctly (text highlighted purple below).

Once you've verified these results, click Create a Datagen File.

Creating a Datagen Template from a Sample File

2 123456789010 eni�abc123de 172.31.16.139 172.31.16.21 20641 22 6 20 4249 1418530010 1418530070
2 123456789010 eni�abc123de 172.31.9.69 172.31.9.12 49761 3389 6 20 4249 1418530010 1418530070 R
2 123456789010 eni-1a2b3c4d - - - - - - - 1431280876 1431280934 - NODATA
2 123456789010 eni-4b118871 - - - - - - - 1431280876 1431280934 - SKIPDATA
2 123456789010 eni-1235b8ca 203.0.113.12 172.31.16.139 0 0 1 4 336 1432917027 1432917142 ACCEPT
2 123456789010 eni-1235b8ca 172.31.16.139 203.0.113.12 0 0 1 4 336 1432917094 1432917142 REJECT
2 123456789010 eni�f41c42bf 2001:db8�1234:a100�8d6e:3477:df66:f105 2001:db8�1234:a102�3304�8879�

Page 540 of 680

Creating a Datagen template

On the resulting Create Datagen File screen:

Enter a file name, e.g.: vpc�flow�datagen.log

Ensure that the timestamp template format is correct: ${timestamp: %s}

${timestamp: <format>} is a template that the datagen engine uses to insert the current time –
in each newly generated event – using the given format. In this case, %s is the desired strftime
format for the timestamp (i.e., the epoch).

Once you've verified these results, click Save as Datagen File.

Page 541 of 680

Saving a named Datagen template

To confirm that the Datagen file has been created, check Preview > Datagens.

Verifying Datagen file creation

Now, to start using your newly created Datagen file, go back to Sources > Datagens. Add it using the
drop-down shown below.

Page 542 of 680

Adding new template file to Datagens Source

Page 543 of 680

CLI Reference
Command line interface basics

In addition to starting and stopping the Cribl LogStream server, LogStream's command line interface
enables you to initiate many configuration and administrative tasks directly from your terminal.

To execute CLI commands, the basic syntax is:

As indicated in the sample output below, some commands take e�ect immediately.

Commands that require further input will echo the sub-commands, options, and arguments they
expect.

If you start LogStream with the CRIBL_VOLUME_DIR variable, all subsequent CLI commands should
have this variable defined. Otherwise, those commands will apply LogStream's default directories,
yielding misleading results.

You can set CRIBL_VOLUME_DIR as an environment variable, or you can explicitly include it in each
command, as in this example:
CRIBL_VOLUME_DIR=<writable�path�name> /opt/cribl/bin/cribl status

To see a list of available commands, enter ./cribl alone (or the equivalent ./cribl help). To
execute a command, or to see its required parameters, enter ./cribl <command> .

Displays help (commands list).

Command Syntax

cd $CRIBL_HOME/bin
./cribl <command> <sub�command> <options> <arguments>

Avoiding Surprises

Immediate Execution

Persistent Volumes

Commands Available

help

Page 544 of 680

Configures Cribl LogStream as a Master instance.

Configures Cribl LogStream as a single-instance deployment.

Cribl LogStream – N.n.n��build no.>
Usage: [sub�command] [options] [args]

Commands:
help – Display help
mode�master – Configure to a master instance
mode�single – Configure to a single instance
mode�worker – Configure to a worker instance
reload – Reload Cribl LogStream
restart – Restart Cribl LogStream
start – Start Cribl LogStream
status – Status of Cribl LogStream
stop – Stop Cribl LogStream
version – Print Cribl LogStream version and installation type

auth – Cribl LogStream Auth
boot�start – Enable/Disable Cribl LogStream boot�start
diag – Manage diagnostics bundles
groups – Manage Worker Groups
keys – Manage encryption keys
mode�searchhead – Configure Cribl LogStream to run on a Splunk Search Head
nc – Listen on a port for traffic and output stats and data
node – Execute a JavaScript file
pipe – Feed stdin to a pipeline
splunk�decrypt – Splunk decrypt search command
task – Run Cribl LogStream task
vars – Manage global variables

mode�master

Options

[-H <host>] - Host (defaults to 0.0.0.0).
[-p <port>] - Port (defaults to 4200).
[-n <certName>] – Name of saved certificate.
[-k <privKeyPath>] – Server path containing the private key (in PEM format) to use. Can ref
[-c <certPath>] – Server path containing certificates (in PEM format) to use. Can refere
[-u <authToken>] - Optional authentication token to include as part of the connection hea
[-i <ipWhitelistRegex>] – Regex matching IP addresses that are allowed to establish a connection

Sample Response

Settings updated.
You will need to restart LogStream before your changes take full effect.

mode�single

Sample Response

Page 545 of 680

Configures Cribl LogStream as a Worker instance.

./cribl mode�worker -H <host> �p <port>

The -H <host> �p <port> parameters are required.

Reloads Cribl LogStream. Executes immediately.

Restarts Cribl LogStream. Executes immediately.

Settings updated.
You will need to restart LogStream before your changes take full effect.

mode�worker

Usage

Options

-H <host> – Master Node's Hostname or IP address.
�p <port> – Master Node's cluster communications port (defaults to 4200).
[-n <certName>] – Name of saved certificate.
[-k <privKeyPath>] – Server path containing the private key (in PEM format) to use. Can referenc
[-c <certPath>] – Server path containing certificates (in PEM format) to use. Can reference $
[-u <authToken>] – Authentication token to include as part of the connection header. By defaul
[-e <envRegex>] – Regex that selects environment variables to report to Master.
[-t <tags>] – Tag values to report to master.
[-g <group>] – Worker Group to report to master.

Sample Response

Settings updated.
You will need to restart LogStream before your changes take full effect.

reload

Reload request submitted to Cribl LogStream

restart

⚠ Executing this command cancels any running collection jobs.

Stopping Cribl LogStream, process 56572
............
Cribl LogStream is not running
Starting Cribl LogStream���

Page 546 of 680

Starts Cribl LogStream. Executes immediately. Upon first run, echoes LogStream's default login
credentials.

Displays status of Cribl LogStream, including the API Server address, instance's mode (Master or
Worker), process ID, and GUID (fictitious example below). Executes immediately.

Stops Cribl LogStream. Executes immediately.

Displays Cribl LogStream version and installation type. Executes immediately.

��
Cribl LogStream started with pid 57233
API Server is available at http:��192.168.0.100�9000

start

Starting Cribl LogStream���
��
Cribl LogStream started with pid 57279
API Server is available at http:��192.168.0.100�9000

status

Cribl LogStream Status

Address: http:��192.168.0.100�9000
Mode: worker
Status: Up
Software Version: 42.0-7f4c190a
Master: localhost:4200
PID� 3859
GUID� 76-ea411263a64b9-e419daee4-ef�dd2e2f

stop

⚠ Executing this command cancels any running collection jobs.

Stopping Cribl LogStream, process 57233
...........
Cribl LogStream is not running

version

Version: 2.2-0����x��
Installation type: standalone

Page 547 of 680

Log into or out of Cribl LogStream.

Launch interactive login:

$CRIBL_HOME/bin/cribl auth login

Append credentials as command arguments:

$CRIBL_HOME/bin/cribl auth login �h <url> �u <username> �p <password>

Provide credentials in environment variables:

CRIBL_HOST=<url> CRIBL_USERNAME=<username> CRIBL_PASSWORD=<password>

$CRIBL_HOME/bin/cribl auth login

Provide credentials in a file:

$CRIBL_HOME/bin/cribl auth login �f <path/to/file>

--

Corresponding file contents:

� The version command echoes standalone for both single-instance and distributed
deployments. This simply confirms that you're running a freestanding Cribl LogStream
server, not the Cribl App for Splunk.

auth

Commands:
login - Log in to Cribl LogStream, args:
 [-h <host>] - Host URL (e.g. http:��localhost:9000)
 [-u <username>] - Username
 [-p <password>] - Password
 [-f <file>] - File with credentials
logout - Log out from Cribl LogStream

Login Examples

ℹ All �h and host arguments are optional, provided that the API host and port are listed in
the cribl.yml file's api: section

host=<url>
username=<username>
password=<password>

Page 548 of 680

Enables or disables Cribl LogStream boot-start.

Manages diagnostic bundles.

Manages Worker Groups.

Manages encryption keys. You must append the �g <group> argument to specify a Worker Group.
As a fallback, append the argument �g default , e.g.:
./cribl keys list �g default

boot�start

Usage: [sub�command] [options] [args]

Commands:
disable - Disable Cribl LogStream boot�start, args:
 [-m <manager>] - Init manager (systemd|initd)
 [-c <configDir>] - Config directory for the init manager
enable - Enable Cribl LogStream boot�start, args:
 [-m <manager>] - Init manager (systemd|initd)
 [-u <user>] - User to run Cribl LogStream as
 [-c <configDir>] - Config directory for the init manager

diag

create - Creates diagnostic bundle for Cribl LogStream

list - List existing Cribl LogStream diagnostic bundles

send - Send LogStream diagnostics bundle to Cribl Support, args:
 �c <caseNumber> - Cribl Support Case Number
 [-p <path>] - Diagnostic bundle path (if empty then new bundle will be created)

groups

Usage: [sub�command] [options] [args]

Commands:
commit - Commit, args:
 [-g <group>] - Group ID
 [-m <message>] - Commit message
commit�deploy - Commit & Deploy, args:
 �g <group> - Group ID
 [-m <message>] - Commit message
deploy - Deploy, args:
 �g <group> - Group ID
 [-v <version>] - Deploy version
list - List Worker Groups

keys

Page 549 of 680

Configures Cribl LogStream to run on a Splunk Search Head.

Listens on a port for tra�ic, and outputs stats and data. (Netcat-like utility.)

Executes a JavaScript file. Displays a command prompt for path/filename input, as shown here:

Feeds stdin to a pipeline. Examples:

Greps your apps by the syscalls. Executes immediately.

Usage: [sub�command] [options] [args]

Commands:
add - Add encryption keys, args:
 �g <group> - Group ID
 [-c <keyclass>] - key class to set for the key
 [-k <kms>] - KMS to use, must be configured, see cribl.yml
 [-e <expires>] - expiration time, epoch time
 [-i] - use an initialization vector
list - List encryption keys
 �g <group> - Group ID

mode�searchhead

nc

Usage: [options] [args]

Options:
 �p <port> - Port to listen on
[-s <statsInterval>] - Stats output interval (ms), use 0 to disable
[-u] - Listen on UDP port instead
[-o] - Output received data to stdout
[-t <rate> <units>] - Throttle rate, in <units>/second, where <units> can be KB, MB, GB, or TB

node

>

pipe

cat sample.log | ./cribl pipe �p <pipelineName>
cat sample.log | ./cribl pipe �p <pipelineName> 2>/dev/null

scope

splunk�decrypt

Page 550 of 680

Splunk decrypt search command. Executes immediately.

Runs a Cribl LogStream task. Requires definitions for the dir , executor , and path properties.

Manages LogStream Global Variables.

task

vars

Usage: [sub�command] [options] [args]

Commands:
add - Add global variable, args:
 �i <id> - Global variable ID
 �t <type> - Type
 �v <value> - Value
 [-a <args>] - Arguments
 [-d <description>] - Description
 [-c <tags>] - Custom Tags (comma separated list)
 [-g <group>] - Group ID
get - List encryption keys, args:
 [-i <id>] - Global variable ID
 [-g <group>] - Group ID
remove - Remove global variable, args:
 �i <id> - Global variable ID
 [-g <group>] - Group ID
update - Update global variable, args:
 �i <id> - Global variable ID
 �t <type> - Type
 �v <value> - Value
 [-a <args>] - Arguments
 [-d <description>] - Description
 [-c <tags>] - Custom Tags (comma separated list)
 [-g <group>] - Group ID

Page 551 of 680

EXPRESSIONREFERENCE
Introduction to Expression Syntax

As data travels through a Cribl LogStream Pipeline, it is operated on by a series
of Functions. Functions are fundamentally JavaScript code.

Functions that ship with Cribl LogStream are configurable via a set of inputs.
Some of these configuration options are literals, such as field names, and
others can be JavaScript expressions.

Expressions are valid units of code that resolve to a value. Every syntactically
valid expression resolves to some value, but conceptually, there are two types
of expressions: those that assign value to a variable (a.k.a., with side e�ects),
and those that evaluate to a value.

Filters are used in Routes to select a stream of the data flow, and in Functions
to scope or narrow down the applicability of a Function. Filters are expressions
that must evaluate to either true (or truthy) or false (or falsy). Keep this in
mind when creating Routes or Functions. For example:

sourcetype��'access_combined' �� host.startsWith('web')

source.endsWith('.log') ��

sourcetype��'aws:cloudwatchlogs:vpcflow'

x = 42

newFoo = foo.slice(30)

(Math.random() * 42)

3 + 4

'foobar'

'42'

Filters and Value Expressions

Filters

true false

Assigning a value Evaluating to a value

Truthy Falsy

Page 552 of 680

Value expressions are typically used in Functions to assign a value – for
example, to a new field. For example:

Math.floor(_time/3600)

source.replace(/.{3}/, 'XXX')

In a value expression, ensure that the source variable is not null ,
undefined , or empty . For example, assume you want to have a field

called len , to be assigned the length of a second field called
employeeID . But you're not sure if employeeID exists. Instead of
employeeID.length , you can use a safer shorthand, such as:
(employeeID �� '').length .

If a field does not exist (undefined), and you're doing a comparison with its
properties, then the boolean expression will always evaluate to false. For
example, if employeeID is undefined, then both of these expressions will
evaluate to false: employeeID.length > 10 , and employeeID.length
< 10 .

�� means "equal to," while ��� means "equal value and equal type." For
example, 5 �� 5 evaluates to true, while 5 ��� "5" evaluates to false.

A ternary operator is a very powerful way to create conditional values. For
example, if you wanted to assign either minor or adult to a field
groupAge , based on the value of age , you could do: (age �� 18) ?
'adult' : 'minor' .

If there are fields whose names include non-alphanumeric characters – e.g.,
@timestamp or user‑agent or kubernetes.namespace_name – you can

42

-42

3.14

"foo"

Infinity

-Infinity

null

undefined

0

NaN

''

""

Value Expressions

Best Practices for Creating Predictable Expressions

Fields with Non-Alphanumeric Characters

Page 553 of 680

access them using ��e['<field�name�here>'] . (Note the single quotes.)
More details here.

In any other place where the field is referenced – e.g., in the Eval function's
field names – you should use a single-quoted literal, of the form: '<field�
name�here>' .

Wildcard Lists are used throughout the product, especially in various
Functions, such as Eval, Mask, Publish Metrics, Parser, etc.

Wildcard Lists, as their name implies, accept strings with asterisks (*) to
represent one or more terms. They also accept strings that start with an
exclamation mark (!) to negate one or more terms.

Wildcard Lists are order-sensitive only when negated terms are used. This
allows for implementing any combination of allowlists and blocklists.

For example:

Wildcard Lists

List 1 !foobar, foo� All terms that start with foo, except foobar.

List 2 !foo�, * All terms, except for those that start with foo.

⚠ You cannot use wildcards to target LogStream internal fields that
start with �� (double underscore). You must specify these fields
individually. For example, ��foobartab cannot be removed by
specifying ��foo� .

Wildcard
List

Value Meaning

Page 554 of 680

Cribl Expressions

Native Cribl LogStream function methods can be found under C.* , and can
be invoked from any Function that allows for expression evaluations. For
example, to create a field that is the SHA1 of a another field's value, you can use
the Eval Function with this Evaluate Fields pair:

C.Crypto.decrypt

(method) Crypto.decrypt(value: string)� string
Decrypt all occurrences of ciphers in the given value. Instances that cannot be
decrypted (for any reason) are le� intact.
@param – value – string in which to look for ciphers
@returns – value with ciphers decrypted

C.Crypto.encrypt

(method) Crypto.encrypt(value: any, keyclass: number, keyId��
string, defaultVal�� string)� string

Encrypt the given value with the keyId , or with a keyId picked up
automatically based on keyclass .

@param {string | Bu�er} value – what to encrypt.
@param – keyclass – if keyId isn't specified, pick one at the given
keyclass .

@param – keyId - encryption keyId, takes precedence over keyclass .
@param – defaultVal – what to return if encryption fails for any reason; if
unspecified, the original value is returned.

myNewField C.Mask.sha1(myOtherField)

� Where fields' names contain special characters, you can reference
them using the ��e['<field‑name‑here>'] convention. For
details, see Fields with Non-Alphanumeric Characters.

C.Crypto – Data Encryption and Decryption Functions

Name Value Expression

Page 555 of 680

@returns – if encryption succeeds, the encrypted value; otherwise,
defaultVal if specified; otherwise, value .

C.Decode.base64

(method) Decode.base64(val: string, resultEnc�� string)� any
Performs base64 decoding of the given string. Returns a string or Bu�er,
depending on the resultEnc value, which defaults to 'utf8' .
@param – val – value to base64-decode
@param – resultEnc – encoding to use to convert the binary data to a string.
Defaults to 'utf8' . Use 'utf8‑valid' to validate that result is valid UTF8;
use 'buffer' if you need the binary data in a Bu�er.

C.Decode.gzip

(method) Decode.gzip(value: any, encoding�� string)� string
Gunzip the supplied value.
@param – value – the value to gunzip.
@param – encoding – encoding of value , for example: 'base64' , 'hex' ,
'utf-8' , 'binary' . Default is 'base64' . If data is received as Bu�er (from

gzip with encoding: 'none'), decoding is skipped.

C.Decode.hex

(method) Decode.hex(val: string)� number
Performs hex to number conversion. (Returns NaN if value cannot be
converted to a number.)
@param – val – hex string to parse to a number (e.g., "0xcafe").

C.Decode.uri

(method) Decode.uri(val: string)� string
Performs URI-decoding of the given string.
@param – val – value to URI-decode.

C.Encode.base64

(method) Encode.base64(val: any, trimTrailEq�� boolean)� string
Returns a base64 representation of the given string or Bu�er.
@param – val – value to base64-encode.
@param – trimTrailEq – whether to trim any trailing = .

C.Decode – Data Decoding Functions

C.Encode – Data Encoding Functions

Page 556 of 680

C.Encode.gzip

(method) Encode.gzip(value: string, encoding�� string)� any
Gzip, and optionally base64-encode, the supplied value.
@param – value – the value to gzip.
@param – encoding – encoding of value , for example: 'base64' , 'hex' ,
'utf-8' , 'binary' , 'none' . Default is 'base64' . If 'none' is specified,

data will be returned as a Bu�er.

C.Encode.hex

(method) Encode.hex(val: string | number)� string
Rounds the number to an integer and returns its hex representation
(lowercase). If a string is provided, it will be parsed into a number or NaN .
@param – val – value to convert to hex.

C.Encode.uri

(method) Encode.uri(val: string)� string
Returns the URI-encoded representation of the given string.
@param – val – value to uri encode.

C.env

(property) env: {[key: string]� string;}
Returns an object containing Cribl LogStream's environment variables.

C.Lookup – Exact Lookup
(property) Lookup: (file: string, primaryKey�� string,
otherFields�� string[], ignoreCase�� boolean) �� InlineLookup

Returns an instance of a lookup to use inline.
Example invocation:
C.Lookup('lookup_name.csv',

'IP_field_name_in_lookup_file').match(host)

C.LookupCIDR – CIDR Lookup
(property) LookupCIDR� (file: string, primaryKey�� string,
otherFields�� string[]) �� InlineLookup

Returns an instance of a CIDR lookup to use inline.

C.LookupIgnoreCase – Case-insensitive Lookup
(property) LookupIgnoreCase: (file: string, primaryKey�� string,

C.env – Environment

C.Lookup – Inline Lookup Functions

Page 557 of 680

otherFields�� string[]) �� InlineLookup

Returns an instance of a lookup (ignoring case) to use inline. Works identically
to C.Lookup , except ignores the case of lookup values. (Equivalent to calling
C.Lookup with its fourth ignoreCase? parameter set to true).

C.[LookupRegex](http:��google.com) - Regex Lookup
(property) LookupRegex: (file: string, primaryKey�� string,
otherFields�� string[]) �� InlineLookup

Returns an instance of a Regex lookup to use inline.

(method) InlineLookup.match(value: string, fieldToReturn��
string)� any

@param – value – the value to look up.
@param – fieldToReturn – name of the lookup file > field to return.

E.g., C.Lookup('lookup�exact.csv', 'foo').match('abc', 'bar')
Return the value of field bar in the lookup table if field foo matches abc .

Example 1: C.LookupCIDR('lookup�cidr.csv',
'foo').match('192.168.1.1', 'bar')

Return the value of field bar in the lookup table if the CIDR range in foo
includes 192.168.1.1 .

Example 2: C.LookupCIDR('lookup�cidr.csv', 'cidr').match(hostIP,
'location')

Example 3: C.LookupRegex('lookup�regex.csv',
'foo').match('manchester', 'bar')

Return the value of field bar in the lookup table if the regex in foo matches the
string manchester .

C.Mask.CC

(method) Mask.CC(value: string, unmasked�� number, maskChar��
string)� string

Check whether a value could be a valid credit card number, and mask a subset
of the value. By default, all digits except the last 4 will be replaced with X .
@param – value – a string whose digits to mask IFF it could be a valid credit
card number.
@param – unmasked – number of digits to leave unmasked: positive for le�,
negative for right, 0 for none.
@param – maskChar – a string/char to replace a digit with.

C.Mask – Data Masking Functions

Page 558 of 680

C.Mask.IMEI

(method) Mask.IMEI(value: string, unmasked�� number, maskChar��
string)� string

Check whether a value could be a vlaid IMEI number, and mask a subset of the
value. By default, all digits except the last 4 will be replaced with X .
@param – value – a string whose digits to mask IFF it could be a valid IMEI
number.
@param – unmasked – number of digits to leave unmasked: positive for le�,
negative for right, 0 for none.
@param – maskChar – a string/char to replace a digit with.

C.Mask.isCC

(method) Mask.isCC(value: string)� boolean
Checks whether the given value could be a valid credit card number, by
computing the string's Lunh's checksum modulo 10 == 0 .
@param – value – a string to check for being a valid credit card number.

C.Mask.isIMEI

(method) Mask.isIMEI(value: string)� boolean
Checks whether the given value could be a valid IMEI number, by computing the
string's Lunh's checksum modulo 10 == 0 .
@param – value – a string to check for being a valid IMEI number

C.Mask.luhn

(method) Mask.luhn(value: string, unmasked�� number, maskChar��
string)� string

Check that value Lunh's checksum mod 10 is 0 , and mask a subset of the
value. By default, all digits except the last 4 will be replaced with X . If the
value's Lunh's checksum mod 10 is not 0 , then the value is returned
unmodified.
@param – value – a string whose digits to mask IFF the value's Lunh's
checksum mod 10 is 0 .
@param – unmasked – number of digits to leave unmasked: positive for le�,
negative for right, 0 for none.
@param – maskChar – a string/char to replace a digit with.

C.Mask.LUHN_SUB

(property) Mask.LUHN_SUB� any

C.Mask.luhnChecksum

(method) Mask.luhnChecksum(value: string, mod�� number)� number
Generates the Luhn checksum (used to validate certain credit card numbers,
IMEIs, etc.). By default, the mod 10 of the checksum is returned. Pass mod = 0

Page 559 of 680

to get the actual checksum.
@param – value – a string whose digits you want to perform the Lunh
checksum on.
@param – mod – return checksum modulo this number. If 0 , skip modulo.
Default is 10 .

C.Mask.md5

(method) Mask.md5(value: string, len�� string | number)� string
Generate MD5 hash of a given value.
@param – value – compute the hash of this.
@param – len – length of hash to return: 0 for full hash, a +number for le� or
a -number for right substring. If a string is passed it's length will be used.

C.Mask.random

(method) Mask.random(len�� string | number)� string
Generates a random alphanumeric string.
@param – len – a number indicating the length of the result; or, if a string,
use its length.

C.Mask.REDACTED

(property) Mask.REDACTED� string
The literal 'REDACTED' .

C.Mask.repeat

(method) Mask.repeat(len�� string | number, char�� string)�
string

Generates a repeating char/string pattern, e.g., XXXX .
@param – len – a number indicating the length of the result; or, if a string,
use its length.
@param – char – pattern to repeat len times.

C.Mask.sha1

(method) Mask.sha1(value: string, len�� string | number)� string
Generate SHA1 hash of given value.
@param – value - compute the hash of this.
@param – len - length of hash to return: 0 for full hash, a +number for le�,
or a -number for right.
substring. If a string is passed, its length will be used

C.Misc.zip()

(method) Misc.zip(keys: string[], values: any[], dest�� any)� any

C.Misc – Miscellaneous Utility Functions

Page 560 of 680

Set the given keys to the corresponding values on the given dest object. If
dest is not provided, a new object will be constructed.

@param – keys – field names corresponding to keys.
@param – values – values corresponding to values.
@param – dest – object on which to set field values.
@returns – object on which the fields were set.

E.g., people = C.Misc.zip(titles, names)
Sample data: titles=['ceo', 'svp', 'vp'] , names=['foo', 'bar',
'baz']

Create an object called people , with key names from elements in titles ,
and with corresponding values from elements in names .
Result: "people": {"ceo": "foo", "svp": "bar", "vp": "baz"}

C.Net.cidrMatch()

(method) Net.cidrMatch(cidrIpRange: string, ipAddress: string)�
boolean

Determines whether the supplied IPv4 ipAddress is inside the range of
addresses identified by cidrIpRange . For example: C.Net.cidrMatch
('10.0.0.0/24', '10.0.0.100') returns true .
@param – cidrIpRange – IPv4 address range in CIDR format. E.g.,
10.0.0.0/24 .

@param – ipAddress – The IPv4 IP address to test for inclusion in
cidrIpRange .

C.Net.ipv6Normalize()

(method) Net.ipv6Normalize(address: string)� string
Normalize an IPV6 address based on RFC dra�-ietf-6man-text-addr-
representation-04.
@param – address – the IPV6 address to normalize.

C.Net.isPrivate()

(method) Net.isPrivate(address: string)� string
Determine whether the supplied IPv4 address is in the range of private
addresses per RFC1819.
@param – address – address to test.

C.Net – Network Functions

C.os – System Functions

Page 561 of 680

C.confVersion

Returns Cribl LogStream config version.

C.os.hostname()

Returns hostname of the system running this Cribl LogStream instance.

C.Schema()

(property) Schema: (id: string) �� SchemaValidator
(method) SchemaValidator.validate(data: any)� boolean
Validates the given object against the schema.
@param – data – object to be validated.
@returns – true when schema is valid; otherwise, false .

Example: C.Schema('schema1').validate(myField) will validate if
myField object conforms to schema1 .

See Schema Library for more details.

C.Text.entropy()

(method) Text.entropy(bytes: any)� number
Computes the Shannon entropy of the given bu�er or string.
@param – bytes – value to undergo Shannon entropy computation.
@returns – the entropy value; or -1 in case of an error.

C.Text.hashCode()

(method) Text.hashCode(val: string | Buffer | number)� number
Computes hashcode (djb2) of the given value.
@param – val - value to be hashed.
@returns – hashcode value.

C.Text.isASCII()

(method) Text.isASCII(bytes: any)� boolean
Checks whether all bytes or chars are in the ASCII printable range.
@param – bytes – value to check for character range.
@returns – true if all chars/bytes are within ASCII printable range; otherwise,
false .

C.Text.isUTF8()

(method) Text.isUTF8(bytes: any)� boolean

C.Schema – Schema Functions

C.Text – Text Functions

Page 562 of 680

Checks whether the given Bu�er contains valid UTF8.
@param – bytes – bytes to check.
@returns – true if bytes are UTF8; otherwise, false .

C.Text.parseWinEvent
(method) C.Text.parseWinEvent(xml: string, nonValues�� string[])�
any

Parses an XML string representing a Windows event into a compact, prettified
JSON object. Works like C.Text.parseXml , but with Windows events,
produces more-compact output. For a usage example, see Reducing Windows
XML Events.
@param – xml – an XML string; or an event field containing the XML.
@param – nonValues – array of string values. Elements whose value equals
any of the values in this array will be omitted from the returned object.
Defaults to ['-'] , meaning that elements whose value equals - will be
discarded.
@returns – an object representing the parsed Windows Event; or undefined
if the input could not be parsed.

C.Text.parseXml
(method) C.Text.parseXml(xml:string, keepAttr��boolean,
keepMetadata��boolean, nonValues��string[])� any

Parses an XML string and returns a JSON object. Can be used with Eval
Function to parse XML fields contained in an event, or with ad hoc XML.
@param – xml – XML string, or an event field containing the XML.
@param – keepAttr – whether or not to include attributes in the returned
object. Defaults to true .
@param – keepMetadata – whether or not to include metadata found in the
XML. The keepAttr parameter must be set to true for this to work. Defaults
to false . (Eligible metadata includes namespace definitions and prefixes,
and XML declaration attributes such as encoding, version, etc.)
@param – nonValues – array of string values. Elements whose value equals
any of the values in this array will be omitted from the returned object.
Defaults to [] (empty array), meaning discard no elements.
@returns – an object representing the parsed XML; or undefined if the input
could not be parsed. An input collection of elements will be parsed into an
array of objects.

C.Text.relativeEntropy()

(method) Text.relativeEntropy(bytes: any, modelName�� string)�
number

Computes the relative entropy of the given bu�er or string.

Page 563 of 680

@param – bytes – value whose relative entropy to compute.
@param – modelName – Name of the model to test the string with.
@returns – the relative entropy value, or -1 in case of an error.

C.Time.adjustTZ()

(method) Time.adjustTZ(epochTime: number, tzTo: string, tzFrom��
string)� number

Adjust a timestamp from one timezone to another.
@param – epochTime – UNIX epoch time.
@param – tzTo – timezone to adjust to.
@param – tzFrom – optional timezone of the timestamp.
@returns – the adjusted timestamp, in UNIX epoch time (ms).

C.Time.clamp()
(method) Time.clamp(date, earliest, latest, defaultDate?)� number
Constrains an event's parsed timestamp to realistic earliest and latest
boundaries.
@param – date – Timestamp originally parsed from event, in UNIX epoch
time (ms) or JavaScript Date format.
@param – earliest – earliest allowable timestamp, in UNIX epoch time (ms)
or JS Date format.
@param – latest – latest allowable timestamp, in UNIX epoch time (ms) or JS
Date format.
@param – defaultDate – optional default date, in UNIX epoch time (ms) or
JS Date format, to substitute for values outside the earliest or latest
boundaries.

C.Time.strftime()

(method) Time.strftime(date: number | Date, format: string, utc��
boolean)� string

Format a Date object or number as a time string, using str�ime specifier.
@param – date – Date object or number (seconds since epoch) to format.
@param – format – specifier to use to format the date.
@param – utc – whether to output the time in UTC, rather than in local
timezone.
@returns – representation of the given date.

C.Time.strptime()

(method) Time.strptime(str: string, format: string, utc�� boolean,
strict�� boolean)� Date

C.Time – Time Functions

Page 564 of 680

Extract time from a string using strptime specifier.
@param – str – string to parse to a timestamp (see strict flag).
@param - format – strptime specifier.
@param – utc – whether to interpret times as UTC, rather than as local time.
@param – strict – whether to return null if there are any extra characters
a�er timestamp.
@returns – a parsed Date object, if successful; otherwise, null if the specifier
did not match.

C.Time.timestampFinder()
(method) Time.timestampFinder(utc�� boolean).find(<source‑field>)�
AutoTimeParser

Extract time from the specified <source‑field> , using the same algorithm as
the Auto Timestamp Function and the Event Breaker Function.
@param – utc – whether to output the time in UTC, rather than in local
timezone.
@param – <source‑field> – the field in which to search for the time.
@returns – representation of the extracted time.

See Global Variables Library for more details.

(property) version: string
Cribl LogStream Version.

C.vars – Global Variables

C.version – Cribl LogStream Version

Page 565 of 680

KNOWLEDGE
Regex Library

Cribl LogStream ships with a Regex Library that contains a set of pre-built
common regex patterns. This library serves as an easily accessible repository
of regular expressions. The Library is searchable, and you can assign tags to
each pattern for further organization or categorization. The Library is located
under Knowledge > Regex Library .

Regular Expression Library

As of this version, the Library contains 25 patterns shipped by Cribl LogStream.
To insert a pattern into a Function's regex field, first click the pop-out or Edit
icon beside that field.

What Is the Regex Library

Using Library Patterns

Page 566 of 680

Opening a Regex modal

In the resulting Regex or Rules modal, Regex Library patterns will appear as
typeahead options. Click a pattern to paste it in. You can then use the pattern
as-is, or modify it as necessary.

Inserting a pattern from the Regex Library

You can also add new, custom patterns to the Library. In the same modal, once
you've built your pattern, click the Save to Library button.

Adding a custom pattern to the Regex Library from a Function's Regex modal

In the resulting modal, give your custom pattern a unique ID. Optionally, you
can also provide a Description (name) and groom the Sample data. Then click

Adding Patterns to the Library

Page 567 of 680

Save.

Identifying the custom pattern

Your custom pattern will now reside in the Regex Library. It will be available to
Functions using the same typeahead assist as Cribl's pre-built patterns.

Within the Library, patterns shipped by Cribl will be listed under the Cribl tab,
while those built by users will be found under Custom. Over time, Cribl
LogStream will ship more patterns, and this distinction allows for both sets to
grow independently.

In the case of an ID/Name conflict, the Custom pattern takes priority in listings
and search. For example, if a Cribl-provided pattern and a Custom one are both
named ipv4 , the one from Cribl will not be displayed or delivered as a search
result.

Cribl vs. Custom and Priority

Page 568 of 680

Grok Patterns Library

Cribl LogStream ships with a Grok Patterns Library that contains a set of pre-
built common patterns, organized as files.

Grok Patterns Library

You can access the Grok Patterns Library in the UI by selecting Knowledge >
Grok Patterns. The library contains several pattern files that Cribl provides for
basic Grok scenarios, and is searchable.

To edit a pattern file, click Edit in its Actions column.

To create a new pattern file, click + Add New. In the resulting Create Grok
Patterns modal, assign a unique Filename/ID, populate the file with patterns,
then click Save.

Adding Grok patterns

What Is the Grok Patterns Library

Managing Library Patterns

Page 569 of 680

In the current LogStream version, you apply Grok patterns by inserting a Grok
Function into a Pipeline, then manually typing or pasting patterns into the
Pattern field(s).

ℹ Pattern files reside in:
$CRIBL_HOME/(default|local)/cribl/grok�patterns/

Using Grok Patterns

Page 570 of 680

Event Breakers

Event Breakers help break incoming streams of data into discrete events. You access the
Event Breakers management interface under Knowledge > Event Breakers. On the resulting Event
Breaker Rulesets page, you can edit, add, delete, search, and tag Event Breaker rules and rulesets, as
necessary.

Event Breaker Rulesets page

Rulesets are collections of Event Breaker rules that are associated with Sources. Rules define
configurations needed to break down a stream of data into events.

What Are Event Breakers

Event Breaker Rulesets

ℹ Event Breakers are accessible only on Sources that require incoming events to be broken
into a better-defined format. Check individual LogStream Sources' documentation for
Event Breaker support.

Page 571 of 680

Rules within a ruleset are ordered and evaluated top‑>down. One or more rulesets can be associated
with a Source, and these rulesets are also evaluated top‑>down. For a stream from a given Source,
the first matching rule goes into e�ect.

Rulesets and Rules - Ordered

An example of multiple rulesets associated with a Source:

Three Event Breaker rulesets on a Source

This rule breaks on newlines and uses Manual timestamping a�er the sixth comma, as indicated by
this pattern: ^(?�[^,]*,){6} .

Ruleset A
 Rule 1
 Rule 2
 ���
 Rule n

���

Ruleset B
 Rule Foo
 Rule Bar
 ���
 Rule FooBar

Rule Example

Page 572 of 680

An Event Breaker rule

The system default rule functionally sits at the bottom of the ruleset/rule hierarchy (but is built-in and
not displayed on the Event Breakers page), and goes into e�ect if there are no matching rules:

Filter Condition defaults to true

Event Breaker to [\n\r]+(?!\s)

Timestamp anchor to ^

Timestamp format to Auto and a scan depth of 150 bytes

Max Event Bytes to 51200

Default Timezone to Local

On the Event Breaker Rulesets page (see screenshot above), click + Add New to create a new Event
Breaker ruleset. Click + Add Rule within a ruleset to add a new Event Breaker.

System Default Rule

How Do Event Breakers Work

Page 573 of 680

Adding a new Event Breaker rule

Each Event Breaker includes the following components, which you configure from top to bottom in
the above Event Breaker Rule modal:

As a stream of data moves into the engine, a rule's filter expression is applied. If the expression
evaluates to true , the rule configurations are engaged for the entire duration of that stream. Else,
the next rule down the line is evaluated.

A�er a breaker pattern has been selected, it will apply on the stream continuously. See below for
specific information on di�erent Event Breaker Types.

A�er events are synthesized out of streams, LogStream will attempt timestamping. First, a timestamp
anchor will be located inside the event. Next, starting there, the engine will try to do one of the
following:

Scan up to a configurable depth into the event and autotimestamp, or

Timestamp using a manually supplied strptime format, or

Timestamp the event with the current time.

The closer an anchor is to the timestamp pattern, the better the performance and accuracy –
especially if multiple timestamps exist within an event. For the manually supplied option, the anchor

Filter Condition

Event Breaker Type

Timestamp Settings

Page 574 of 680

must lead the engine right before the timestamp pattern begins.

Anchors preceding timestamps

A�er events have been timestamped, one or more fields can be added here as key-value pairs. In each
field's Value Expression, you can fully evaluate the field value using JavaScript expressions.

Several types of Event Breaker can applied to incoming data streams:

Regex

File Header

JSON Array

JSON New Line Delimited

Timestamp

CSV

The Regex breaker uses regular expressions to find breaking points in data streams.

A�er a breaker regex pattern has been selected, it will apply on the stream continuously. Breaking will
occur at the beginning of the match, and the matched content will be consumed/thrown away.
If necessary, you can use a positive lookahead regex to keep the content – e.g.: (?=pattern)

Capturing groups are not allowed to be used anywhere in the Event Breaker pattern, as they will
further break the stream – which is o�en undesirable. Breaking will also occur if Max Event Bytes has
been reached.

Break a�er a newline or carriage return, but only if followed by a timestamp pattern:

� This timestamping executes the same basic algorithm as the Auto Timestamp Function and
the C.Time.timestampFinder() native method.

Add Fields to Events

Event Breaker Types

Regex

Example

Page 575 of 680

Event Breaker: [\n\r]+(?=\d�-\d�-\d�\s\d�:\d�:\d+)

Sample Event - Multiline

You can use the File Header breaker to break files with headers, such as IIS or Bro logs. This type of
breaker relies on a header section that lists field names. The header section is typically present at the
top of the file, and can be single-line or greater.

A�er the file has been broken into events, fields will also be extracted, as follows:

Header Line: Regex matching a file header line. For example, ^# .

Field Delimiter: Field delimiter regex. For example, \s� .

Field Regex: Regex with one capturing group, capturing all the fields to be broken by field
delimiter. For example, ^��Ff]ields[�]?\s+(.*)

Null Values: Representation of a null value. Null fields are not added to events.

Clean Fields: Whether to clean up field names by replacing non [a�zA-Z0-9] characters with
_ .

Using the values above, let's see how this sample file breaks up:

Sample Event - File Header

��� input ���
2020-05-19 16�32�12 moen3628 ipsum[5213]� Use the mobile TCP feed, then you can program the auxi
 Try to connect the FTP sensor, maybe it will connect the digital bus!
 Try to navigate the AGP panel, maybe it will quantify the mobile alarm!
2020-05-19 16�32�12 moen3628 ipsum[5213]� Use the mobile TCP feed, then you can program the auxi
 Try to connect the FTP sensor, maybe it will connect the digital bus!
 Try to navigate the AGP panel, maybe it will quantify the mobile alarm!

��� output event 1 ���
{
 "_raw": "2020-05-19 16�32�12 moen3628 ipsum[5213]� Use the mobile TCP feed, then you can progr
 "_time": 1589920332
}

��� output event 2 ���
{
 "_raw": "2020-05-19 16�32�12 moen3628 ipsum[5213]� Use the mobile TCP feed, then you can progr
 "_time": 1589920332
}

File Header

Example

��� input ���
#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p proto
#types time string addr port addr port enum
1331904608.080000 - 192.168.204.59 137 192.168.204.255 137 udp
1331904609.190000 - 192.168.202.83 48516 192.168.207.4 53 udp

Page 576 of 680

You can use the JSON Array to extract events from an array in a JSON document (e.g., an
Amazon CloudTrail file).

Array Field: Optional path to array in a JSON event with records to extract. For example,
Records .

Timestamp Field: Optional path to timestamp field in extracted events. For example, eventTime
or level1.level2.eventTime .

JSON Extract Fields: Enable this slider to auto-extract fields from JSON events. If disabled, only
_raw and time will be defined on extracted events.

Timestamp Format: If JSON Extract Fields is set to No, you must set this to Autotimestamp or
Current Time. If JSON Extract Fields is set to Yes, you can select any option here.

Using the values above, let's see how this sample file breaks up:

Sample Event - JSON Document (Array)

��� output event 1 ���
{
 "_raw": "1331904608.080000 - 192.168.204.59 137 192.168.204.255 137 udp",
 "ts": "1331904608.080000",
 "id_orig_h": "192.168.204.59",
 "id_orig_p": "137",
 "id_resp_h": "192.168.204.255",
 "id_resp_p": "137",
 "proto": "udp",
 "_time": 1331904608.08
}

��� output event 2 ���
{
 "_raw": "1331904609.190000 - 192.168.202.83 48516 192.168.207.4 53 udp",
 "ts": "1331904609.190000",
 "id_orig_h": "192.168.202.83",
 "id_orig_p": "48516",
 "id_resp_h": "192.168.207.4",
 "id_resp_p": "53",
 "proto": "udp",
 "_time": 1331904609.19
}

JSON Array

Example

��� input ���
{"Records"�[{"eventVersion":"1.05","eventTime":"2020-04-08T01�35�55Z","eventSource":"ec2.amazona
{"eventVersion":"1.05","eventTime":"2020-04-08T01�35�56Z","eventSource":"ec2.amazonaws.com","eve

��� output event 1 ���
{
 "_raw": "{\"eventVersion\":\"1.05\",\"eventTime\":\"2020-04-08T01�35�55Z\",\"eventSource\":\"e
 "_time": 1586309755,
 "cribl_breaker": "j�array"
}

Page 577 of 680

You can use the JSON New Line Delimited breaker to break and extract fields in newline-delimited
JSON streams.

Example

Using default values, let's see how this sample stream breaks up:

Sample Event - Newline Delimited JSON Breaker

You can use the Timestamp breaker to break events at the beginning of any line in which LogStream
finds a timestamp. This type enables breaking on lines whose timestamp pattern is not known ahead
of time.

��� output event 2 ���
{
 "_raw": "{\"eventVersion\":\"1.05\",\"eventTime\":\"2020-04-08T01�35�56Z\",\"eventSource\":\"e
 "_time": 1586309756,
 "cribl_breaker": "j�array"
}

JSON New Line Delimited

��� input ���
{"time":"2020-05-25T18�00�54.201Z","cid":"w1","channel":"clustercomm","level":"info","message":"
{"time":"2020-05-25T18�00�54.246Z","cid":"w0","channel":"clustercomm","level":"info","message":"

��� output event 1 ���
{
 "_raw": "{\"time\":\"2020-05-25T18�00�54.201Z\",\"cid\":\"w1\",\"channel\":\"clustercomm\",\"l
 "time": "2020-05-25T18�00�54.201Z",
 "cid": "w1",
 "channel": "clustercomm",
 "level": "info",
 "message": "metric sender",
 "total": 720,
 "dropped": 0,
 "_time": 1590429654.201,
}

��� output event 2 ���
{
 "_raw": "{\"time\":\"2020-05-25T18�00�54.246Z\",\"cid\":\"w0\",\"channel\":\"clustercomm\",\"l
 "time": "2020-05-25T18�00�54.246Z",
 "cid": "w0",
 "channel": "clustercomm",
 "level": "info",
 "message": "metric sender",
 "total": 720,
 "dropped": 0,
 "_time": 1590429654.246,
}

Timestamp

Page 578 of 680

Example

Using default values, let's see how this sample stream breaks up:

Sample Event - Timestamp Based Breaker

The CSV breaker extracts fields in CSV streams that include a header line. Selecting this type exposes
these extra fields:
- Delimiter: Delimiter character to use to split values. Defaults to: ,
- Quote Char: Character used to quote literal values. Defaults to: "
- Escape Char: Character used to escape the quote character in field values. Defaults to: "

Example: Using default values, let's see how this sample stream breaks up:

Using default values, let's see how this sample stream breaks up:

Sample Event - CSV Breaker

��� input ���
{"level":"debug","ts":"2021-02-02T10�38�46.365Z","caller":"sdk/sync.go:42","msg":"Handle ENIConf
{"level":"debug","ts":"2021-02-02T10�38�56.365Z","caller":"sdk/sync.go:42","msg":"Handle ENIConf

��� output event 1 ���
{
 "_raw": "{\"level\":\"debug\",\"ts\":\"2021-02-02T10�38�46.365Z\",\"caller\":\"sdk/sync.go:42\
 "_time": 1612262326.365
}

��� output event 2 ���
{
 "_raw": "{\"level\":\"debug\",\"ts\":\"2021-02-02T10�38�56.365Z\",\"caller\":\"sdk/sync.go:42\
 "_time": 1612262336.365
}

CSV

Example

��� input ���
time,host,source,model,serial,bytes_in,bytes_out,cpu
1611768713,"myHost1","anet","cisco","ASN4204269",11430,43322,0.78
1611768714,"myHost2","anet","cisco","ASN420423",345062,143433,0.28

��� output event 1 ���
{
 "_raw": "\"1611768713\",\"myHost1\",\"anet\",\"cisco\",\"ASN4204269\",\"11430\",\"43322\",\"0.
 "time": "1611768713",
 "host": "myHost1",
 "source": "anet",
 "model": "cisco",
 "serial": "ASN4204269",
 "bytes_in": "11430",
 "bytes_out": "43322",
 "cpu": "0.78",
 "_time": 1611768713

Page 579 of 680

Event Breaker rulesets shipped by Cribl will be listed under the Cribl tag, while user-built rulesets will
be listed under Custom. Over time, Cribl will ship more patterns, so this distinction allows for both
sets to grow independently. In the case of an ID/Name conflict, the Custom pattern takes priority in
listings and search.

}

��� output event 2 ���
{
 "_raw": "\"1611768714\",\"myHost2\",\"anet\",\"cisco\",\"ASN420423\",\"345062\",\"143433\",\"0
 "time": "1611768714",
 "host": "myHost2",
 "source": "anet",
 "model": "cisco",
 "serial": "ASN420423",
 "bytes_in": "345062",
 "bytes_out": "143433",
 "cpu": "0.28",
 "_time": 1611768714
}

� With Type: CSV selected, an Event Breaker will properly add quotes around all values,
regardless of their initial state.

Cribl versus Custom Rulesets

Page 580 of 680

Lookups Library

Lookups are data tables that can be used in Cribl LogStream to enrich events
as they're processed by the Lookup Function. You can access the Lookups
library under Knowledge > Lookups, which provides a management interface
for all lookups.

This library is searchable, and each lookup can be tagged as necessary. There's
full support for .csv files. Compressed files are supported, but must be in
gzip format (.gz extension). You can add files in multimedia database
(.mmdb) binary format, but you cannot edit these binary files through
LogStream's UI.

Lookups Library

In single-instance deployments, all files handled by the interface are stored in
$CRIBL_HOME/data/lookups . In distributed deployments, the storage path

on the Master Node is $CRIBL_HOME/groups/<groupname>/data/lookups/
for each Worker Group.

What Are Lookups

How Does the Library Work

ℹ For large and/or frequently replicated lookup files, you might want
to bypass the Lookups Library UI and instead manually place the files
in a di�erent location. This can both reduce deploy tra�ic and
prevent errors with LogStream's default Git integration. For details,
see Managing Large Lookups.

Adding Lookup Files

Page 581 of 680

To upload or create a new lookup file, click + Add New, then click the
appropriate option from the drop-down.

Adding a lookup file

To re-upload, expand, edit, or delete an existing .csv or .gz lookup file,
click its row on the Lookups page. (No editing option is available for .mmdb
files; you can only re-upload or delete these.)

In the resulting modal, you can edit files in Table or Text mode. However, Text
mode is disabled for files larger than 1 MB.

Editing in table mode

Modifying Lookup Files

Page 582 of 680

Editing in text mode

For large lookup files, you'll need to provide extra memory beyond basic
requirements for LogStream and the OS. To determine how much extra
memory to add to a Worker Node for a lookup, use this formula:

Lookup file's uncompressed size (MB) * 2.25 (to 2.75) *

 numWorkerProcesses = Extra RAM required for lookup

For example, if you have a lookup file that is 1 GB (1,000 MB) on disk, and three
Worker Processes, you could use an average 2.50 as the multiplier:

1,000 * 2.50 * 3 = 7,500

In this case, the Node's server or VM would need an extra 7,500 MB (7.5 GB) to
accommodate the lookup file across all three worker processes.

We've cited a squishy range of 2.25–2.75 for the multiplier, because we've
found that it varies inversely with the number of columns in the lookup file:

The fewer columns, the higher the extra memory overhead (2.75
multiplier).

Memory Sizing for Large Lookups

What's with That Multiplier?

Page 583 of 680

The more columns, the lower the overhead (2.25 multiplier).

In Cribl's testing:

5 columns required a multiplier of 2.75

10 columns required a multiplier of only 2.25.

These are general (not exact) guidelines, and this multiplier depends only on
the lookup table's number of columns. The memory overhead imposed by
each additional row appears to decline when more columns are present in the
data.

See also:

Lookup Function.

Ingest-time Lookups use case.

Managing Large Lookups use case.

Redis Function for faster lookups using a Redis integration (bypasses the
Lookups Library).

Other Scenarios

Page 584 of 680

Parsers Library

Parsers are definitions and configurations for the Parser Function. You can find
the library under Knowledge > Parsers, and its purpose is to provide an
interface for creating and editing Parsers. The library is searchable, and each
parser can be tagged as necessary.

Parsers Library

Parsers can be used to extract or reserialize events. See Parser Function page
for examples.

CSV – Parse and reserialize comma-separated values.

ELFF – Parse and reserialize events in Extended Log File Format.

CLF – Parse and reserialize events in Common Log Format.

To create a parser, follow these steps:

1. Go to Knowledge > Parsers and click Add New.

2. Enter a unique ID.

3. Optionally, enter a Description.

What Are Parsers

Supported Parser Types:

Creating a Parser

Page 585 of 680

4. Select a Parser type (see the supported types above).

5. Enter the List of fields expected to be extracted, in order.
Click this field's Maximize icon (far right) if you'd like to open a modal
where you can work with sample data and iterate on results.

6. Optionally, enter any desired Tags.

Adding a new parser

Page 586 of 680

Schema Library

Schemas are JSON definitions that are used to validate of JSON events. They're based
on the popular JSON Schema standard, and all schemas matching dra� version 2019-09
are supported. You can find the library under Knowledge > Schemas. Its purpose is to
provide an interface for creating, editing, and maintaining Schemas.

You validate a schema using the C.Schema('<schema name>').validate(<object
field>) built-in method. This function can be called anywhere in Cribl LogStream that
JavaScript expressions are supported.

Typical use cases for Schema validation:

Making a decision before sending an event down to a destination.

Making a decision before accepting an event. (E.g., drop an event if invalid.)

Making a decision to route an event based on the result of validation.

To add this example JSON Schema, go to Knowledge > Schemas and click Add New.
Enter the following:

ID: schema1 .

Description: (Enter your own description here.)

Schema: Paste the following schema.

JSON Schema - Sample

What Are Schemas

Example

{
 "$id": "https:��example.com/person.schema.json",
 "$schema": "http:��json�schema.org/draft-07/schema#",
 "title": "Person",
 "type": "object",
 "required": ["firstName", "lastName", "age"],
 "properties": {
 "firstName": {
 "type": "string",
 "description": "The person's first name."
 },
 "lastName": {
 "type": "string",

Page 587 of 680

Assume that events look like this:

Events

To validate whether the employee field is valid per schema1 , we can use the following:

C.Schema('schema1').validate(employee)

Results:

First event is valid.

Second event is not valid because age is greater than the maximum of 42 .

Third event is not valid because age is missing.

Schema validation results for the above events

 "description": "The person's last name."
 },
 "age": {
 "description": "Age in years which must be equal to or greater than zero.",
 "type": "integer",
 "minimum": 0,
 "maximum": 42
 }
 }
}

{"employee"�{"firstName": "John", "lastName": "Doe", "age": 21}}
{"employee"�{"firstName": "John", "lastName": "Doe", "age": 43}}
{"employee"�{"firstName": "John", "lastName": "Doe"}}

Page 588 of 680

Global Variables Library

Global Variables are reusable JavaScript expressions that can be accessed in
Functions in any Pipeline. You can access the library under Knowledge > Global
Variables.

Typical use cases for Global Variables include:

Storing a constant that you can reference from any Function in any
Pipeline.

Storing a relatively long value expression, or one that uses one or more
arguments.

Global Variables can be of the following types:

Number

String

Boolean

Object

Array

Expression

Global Variables can be accessed via C.vars. – which can be called anywhere
in Cribl LogStream that JS expressions are supported. Typeahead is provided.
More on Cribl Expressions here.

Assign field foo the value in theAnswer Global Variable.

Global Variable Name: theAnswer <-- ships with Cribl LogStream by
default.

Global Variable Value: 42

Sample Eval Function: foo = C.vars.theAnswer

What Are Global Variables

Examples

Scenario 1:

Page 589 of 680

Assign field nowEpoch the current time, in epoch format.

Global Variable Name: epoch <-- ships with Cribl LogStream by default.

Global Variable Value: Date.now()/1000

Sample Eval Function: nowEpoch = C.vars.epoch()

Create a new field called storage , by converting the value of event field
size to human-readable format.

Global Variable Name: convertBytes <-- ships with Cribl LogStream by
default

Global Variable Value: `${Math.round(bytes / Math.pow(1024,
(Math.floor(Math.log(bytes) / Math.log(1024)))),

2)}${['Bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB',

'ZiB', 'YiB'][(Math.floor(Math.log(bytes) /

Math.log(1024)))]}`

Note the use of quotes or backticks around values. Use the opposite
delimiter for the enclosing expression.

Global Variable Argument: bytes

Sample Eval Function: storage = C.vars.convertBytes(size)

Note the use of bytes here as an argument.

Scenario 2:

Scenario 3:

Page 590 of 680

USE CASES
Ingest-time Fields

To add new fields to any event, we use the out-of-the-box Eval Function. We
can either apply a Filter to select the events, or we can use the default true
Filter expression to apply the Function to all incoming events.

Let's see how we add dc��nyc-42 to all events with
sourcetype��'access_combined' :

First make sure you have a Route and Pipeline configured to match desired
events.

Next, let's add a Eval function to it:

Defining the Eval Function's filter expression

Next, let's click on + Add Field, add our dc field, and click Save.

Adding Fields to Data in Motion

Adding Fields Example

Page 591 of 680

Adding the dc field

To confirm, verify that this search returns results:
sourcetype="access_combined" dc��nyc-42

You can add more conditions to the filter, if you'd like. For example, to limit
the field to only events from hosts that start with web-01 , we can change
the filter input as below:

Refining the filter

Page 592 of 680

This is a very powerful method to change incoming events in real time. In
addition to providing the right context at the right time, users can further
benefit substantially by using tstats for faster analytics.

You can remove fields by listing and/or wildcarding field names. Let's see how
we can remove all fields that start with date_ .:

First, make sure you have a Route and Pipeline configured to match
desired events.

Next, let's add a Eval function to it (as above).

Next, in Remove Fields, add date_* and hit Save.

Goodbye date_ field

To confirm, verify that this search: sourcetype="access_combined"
date_minute=* will soon stop returning results. Enjoy a more e�icient
Splunk!

Removing Fields

Page 593 of 680

Ingest-time Lookups

To enrich events with new fields from external sources (such as .csv files), we use LogStream's out-
of-the-box Lookup Function. Ingestion-time lookups are not only great for normalizing field names
and values, but also ideal for use cases where:

Fast access via the looked-up value is required. For example, when you don't have a datacenter
field in your events, but you do have a host�to�datacenter map, and you need to search by
datacenter .

Looked-up information must be temporally correct. For example, assume that you have a highly
dynamic infrastructure, and you need to resolve a resource name (e.g., a container name) to its
address. You can't a�ord to defer this to search time/runtime, as the resource and its records
might no longer exist.

Let's assume we have the following lookup file. Given the field conn_state in an event, we would
like to add a corresponding ingestion-time field called action .

bro_conn_state.csv

First, make sure you have a Route and Pipeline configured to match desired events.

Next, let's add a Lookup function to the Pipeline, with these settings:

Enriching Data in Motion

ℹ To use large binary databases (like GeoIP .mmdb files) for LogStream lookups, see
Managing Large Lookups. To achieve faster lookups, use LogStream's Redis Function.

Working with Lookups – Example 1

action,"conn_state","conn_state_meaning"
dropped,S0,"Connection attempt seen, no reply."
allowed,S1,"Connection established, not terminated."
allowed,SF,"Normal establishment and termination."
blocked,REJ,"Connection attempt rejected."
allowed,S2,"Connection established and close attempt by originator seen (but no reply from respo
allowed,S3,"Connection established and close attempt by responder seen (but no reply from origin
allowed,RSTO,"Connection established, originator aborted (sent a RST)."
allowed,RSTR,"Established, responder aborted."
dropped,RSTOS0,"Originator sent a SYN followed by a RST, we never saw a SYN-ACK from the respond
dropped,RSTRH,"Responder sent a SYN ACK followed by a RST, we never saw a SYN from the (purporte
dropped,SH,"Originator sent a SYN followed by a FIN, we never saw a SYN ACK from the responder (
dropped,SHR,"Responder sent a SYN ACK followed by a FIN, we never saw a SYN from the originator.
allowed,OTH,"No SYN seen, just midstream traffic (a 'partial connection' that was not later clos

Page 594 of 680

Lookup file path: $SPLUNK_HOME/etc/apps/Splunk_TA_bro/lookups/bro_conn_state.csv
(note that Environment variables are allowed in the path).

Lookup Field Name in Event set to conn_state .

Corresponding Field Name in Lookup set to conn_state .

Output Field Name from Lookup set to action .

Lookup Field Name in Event set to action .

Lookup Function to add action field

To confirm success, verify that this search returns expected results: sourcetype="bro"
action��allowed . Change the action value as necessary.

Let's assume we have the following lookup file, and given both the fields impact and priority in
an event, we would like to add a corresponding ingestion-time field called severity .

cisco_sourcefire_severity.csv

Working with Lookups – Example 2

impact,priority,severity
1,high,critical
2,high,critical

Page 595 of 680

First, make sure you have a Route and Pipeline configured to match desired events.

Next, let's add a Lookup function to the Pipeline, with these settings:

Lookup file path:
$SPLUNK_HOME/etc/apps/Splunk_TA_sourcefire/lookups/cisco_sourcefire_severity.csv

(note that Environment variables are allowed in the path).

Lookup Field Name(s) in Event set to impact and priority .

Corresponding Field Name(s) in Lookup set to impact and priority .

Output Field Name from Lookup set to severity .

Lookup Field Name in Event set to severity .

3,high,high
4,high,high
0,high,high
"*",high,high
.....
"*",medium,medium
1,low,medium
2,low,medium
3,low,low
4,low,low
0,low,low
"*",low,low
1,none,low
2,none,low
3,none,informational
4,none,informational
0,none,informational
"*",none,informational

Page 596 of 680

Lookup Function to add severity field

To confirm success, verify that this search returns expected results:
sourcetype="cisco:sourcefire" severity��medium . Change the severity value as necessary.

Page 597 of 680

Sampling

Let's say that you wanted to analyze and troubleshoot with highly
verbose/voluminous data – for example, CDN logs, ELB Access Logs, or VPC
Flows – but you were concerned about storage requirements and search
performance. With Sampling, you can bring in enough samples that your
analysis remains statistically significant, and also do all the necessary
troubleshooting.

See the example below, or see more details in Access Logs and Firewall Logs.

Let's use the out-of-the-box Sampling function to sample all events from
sourcetype��'access_combined' where status is '200' . We'll sample
these at 5�1 (and all other events at 1�1). This should lower the

volume of all verbose successes (200 s), but still bring in

��all�� potentially erroneous events (400 s, 500`s, etc.) that can be
used for troubleshooting.

First, make sure you have a Route and Pipeline configured to match
desired events.

Next, let's add a Regex Extract Function to extract the status field from
_raw , and let's call the resulting field ��status . Remember, fields that

start with �� are special fields in Cribl LogStream, and can be used
anywhere in a Pipeline.

Sampling at Ingest-Time

Sampling Example

Page 598 of 680

Extracting the ��status field

Next, let's add a Sampling function, and scope it to all events where
sourcetype��'access_combined' . Let's apply a filter condition of ��status
�� 200 , and a Sample Rate of 5 .

Sampling success responses

To confirm that sampling works, compare the event count of all 200 s before
and a�er.

ℹ Each time an event goes through the Sampling function, an index-
time sampled��<rate> field is added to it. You can use this field in
your statistical functions, as necessary.

Page 599 of 680

Access Logs: Apache, ELB, CDN, S3, etc.

Access logs are extremely common. They're o�en emitted by web servers or
similar/related technologies (proxies, loadbalancers, etc.), and tend to be
highly voluminous. Typical examples include Apache access logs, and CDN logs
such as those from Amazon Cloudfront, Amazon S3 Server Access Logs, AWS
ELB Access Logs, etc.

For large installations, bringing everything into an analytics tool is o�en so
cost-prohibitive (storage, resources, license, etc.) that most users don't even
bother. However, some of the logs contain relevant information when looked at
individually (e.g., errors). The much larger majority contains relevant
information when looked at in the aggregate (e.g., successes to determine
tra�ic patterns, etc.).

It would be great if we could find a middle ground. With the Sampling Function,
you can! Specifically, you can:

Ingest enough sample events from the majority category that your
aggregate analysis remains statistically significant.

Ingest all events from the minority categories, and perform
troubleshooting and introspection with full-fidelity data.

Most of the access logs (including the ones mentioned above) have very similar
formats. One quick way to sample is to look at the value of the status field.
2XX s indicate success and tend to be, by far, the most common ones – with
200 being the top. Therefore, 200 is the perfect candidate for sampling. All

other statuses occur much less frequently, indicate conditions that o�en need
to be looked at, and can be brought in with full fidelity.

Recipe for Sampling Access Logs

Using status as the Sampling Condition

Sample Status 200 at 5:1

Page 600 of 680

1. Add a Regex Extract Function that looks at these sourcetypes:
sourcetype��'access_combined' ��

sourcetype��'aws:s3:accesslogs'

2. Configure that Function to extract a field called ��status with this
regex: /HTTP\/\d\.\d"\s(?<��status>\d+)/

Defining the Regex Extract Function

3. Add a Sampling Function to sample 5�1 when ��status��200 .

4. Save.

Sampling success reponses

Note About Sampling

Page 601 of 680

Each time an event goes through the Sampling Function, an index-time
sampled��<rate> field is added to it. Use this field in your statistical

Functions, as necessary.

Examples of other sourcetypes that will benefit from sampling, but might need
a di�erent ��status extraction regex:

Other Sourcetypes

Amazon Cloudfront Access Logs sourcetype��'aws:cloudfront:accesslogs'

Amazon ELB Access Logs sourcetype��'aws:elb:accesslogs'

Sourcetype Filter Expression

Page 602 of 680

Firewall Logs: VPC Flow Logs, Cisco ASA, Etc.

Firewall logs are another source of important operational (and security) data. Typical examples
include Amazon VPC Flow Logs, Cisco ASA Logs, and other technologies such as Juniper, Checkpoint,
pfSense, etc.

As with Access Logs, bringing in everything for operational analysis might be cost-prohibitive. But
sampling with Cribl LogStream can help you:

Ingest enough sample events from the majority category that your aggregate analysis remains
statistically significant. E.g., sample all ACCEPT s at 5�1 .

Ingest all events from the minority categories, and perform troubleshooting and introspection
with full-fidelity data. E.g., bring in all REJECT s.

AWS' VPC Flow Logs feature enables you to capture information about the IP tra�ic going to and from
network interfaces in your VPC. Flow Log data can be published to Amazon CloudWatch Logs and
Amazon S3.

Typical VPC Flow Logs look like this:

Flow Log Records for Accepted and Rejected Tra�ic

Let's use a very simple Filter condition and only look for ACCEPT events:

1. Add a Regex Extract Function that looks at: sourcetype��'aws:cloudwatchlogs:vpcflow'

2. Configure that Function to extract a field called ��action with this regex: /(?
<��action>ACCEPT)/

Recipe for Sampling Firewall Logs

Sampling VPC Flow Logs

2 123456789010 eni�abc123de 172.31.16.139 172.31.16.21 20641 22 6 20 4249 1418530010 1418530070
2 123456789010 eni�abc123de 172.31.9.69 172.31.9.12 49761 3389 6 20 4249 1418530010 1418530070 R

Page 603 of 680

Extracting the ��action field

3. Add a Sampling Function to sample 5�1 when ��action��"ACCEPT" .

4. Save.

Sampling ACCEPT events

Each time an event goes through the Sampling Function, an index-time field is added to it: sampled:
<rate> . It's advisable that you use that in your statistical functions, as necessary.

Note About Sampling

Other Sourcetypes

Page 604 of 680

Other sourcetypes that will benefit from sampling, but might need a di�erent ��action extraction
regex:

Cisco ASA Logs sourcetype��'cisco:asa'

Related sourcetypes to consider sampling:
sourcetype��'cisco:fwsm'

sourcetype��'cisco:pix'

Sourcetype Filter Expression

Page 605 of 680

Masking and Obfuscation

To mask patterns in real time, we use the out-of-the-box Mask Function . This is
similar to sed , but with much more powerful functionality.

The Mask Function accepts multiple replacement rules, and accepts multiple
fields to apply them to.

Match Regex is a JS regex pattern that describes the content to be replaced. It
can optionally contain matching groups. By default, it will stop a�er the first
match, but using /g will make the Function replace all matches.

Replace Expression is a JS expression or literal to replace matched content.

Matching groups can be referenced in the Replace Expression as g1 , g2 ...
gN , and the entire match as g0 .

There are several masking methods that are available under C.Mask. :

C.Mask.random : Generates a random alphanumeric string
C.Mask.repeat : Generates a repeating char/string pattern, e.g., XXXX
C.Mask.REDACTED : The literal 'REDACTED'
C.Mask.md5 : Generates a MD5 hash of given value
C.Mask.sha1 : Generates a SHA1 hash of given value
C.Mask.sha256 : Generates a SHA256 hash of given value

Almost all methods have an optional len parameter which can be used to
control the length of the replacement. len can be either a number or string. If
it's a string, its length will be used. For example:

Masking and Anonymization of Data in Motion

Masking Capabilities

Page 606 of 680

Defining the replacement length

Let's look at the various ways that we can mask a string like this one:
cardNumber=214992458870391 . The Regex Match we'll use is:
/(cardNumber=)(\d+)/g . In this example:

g0 = cardNumber=214992458870391

g1 = cardNumber=

g2 = 214992458870391

Replace Expression: `${g1}${C.Mask.random()}`

Result: cardNumber=HRhc

Replace Expression: `${g1}${C.Mask.random(7)}`

Result: cardNumber=neNSm8r

Replace Expression: `${g1}${C.Mask.random(g2)}`

Result: cardNumber=DroJ73qmyaro51u3

Masking Examples

Random Masking with default character length (4):

Random Masking with defined character length:

Random Masking with length preserving replacement:

Page 607 of 680

Replace Expression: `${g1}${C.Mask.repeat()}`

Result: Result: cardNumber=XXXX

Replace Expression: `${g1}${C.Mask.repeat(6, 'Y')}`

Result: cardNumber=YYYYYY

Replace Expression: `${g1}${C.Mask.repeat(g2)}`

Result: cardNumber=XXXXXXXXXXXXXXX

Replace Expression: `${g1}${C.Mask.REDACTED}`

Result: cardNumber=REDACTED

Replace Expression: `${g1}${C.Mask.md5(g2)}`

Result: cardNumber=f5952ec7e6da54579e6d76feb7b0d01f

Replace Expression: `${g1}${C.Mask.md5(g2, 12)}`

Result: cardNumber=d65a3ddb2749
*Replacement length will not exceed that of the hash algorithm output;
MD5: 32 chars, SHA1: 40 chars, SHA256: 64 chars.

Replace Expression: `${g1}${C.Mask.md5(g2, -12)}`

Result: cardNumber= 933bfcebf992
*Replacement length will not exceed that of the hash algorithm output;
MD5: 32 chars, SHA1: 40 chars, SHA256: 64 chars.

Repeat Masking with default character length (4):

Repeat Masking with defined character choice and length:

Repeat Masking with length preserving replacement:

Literal REDACTED masking:

Hash Masking (applies to: md5, sha1 and sha256):

Hash Masking with le� N-length* substring (applies to: md5,
sha1 and sha256):

Hash Masking with right N-length* substring (applies to: md5,
sha1 and sha256):

Page 608 of 680

Replace Expression: `${g1}${C.Mask.md5(g2, g2)}`

Result: cardNumber= d65a3ddb27493f5
*Replacement length will not exceed that of the hash algorithm output;
MD5: 32 chars, SHA1: 40 chars, SHA256: 64 chars.

Hash Masking with length* preserving replacement (applies to:
md5, sha1 and sha256):

Page 609 of 680

Lookups as Filters for Masks

You can make your data architecture more maintainable by using Lookups to
route and transform events within Cribl LogStream. This use case
demonstrates an unusual solution, but one that served one Cribl customer's
particular goals (which might overlap with yours):

Ingest many – hundreds of – di�erent sourcetype / index field
combinations.

Send all this data through a common Pipeline.

Stack four Mask Functions in the Pipeline.

Evaluate and process each sourcetype / index field combination only
within its applicable Mask Functions – either two or three Masks per
combination.

To enable this approach, the example below centralizes masking logic for
multiple conditions in a Lookup table and corresponding Lookup Functions.
The Lookup's output filters events to the applicable Mask Functions.
Specifically, we'll show how to instruct LogStream to:

Check for a particular index / sourcetype combination in each event,
and

Based on that combination, determine which Masks to apply to that event.

Overview

⚠ This last restriction reduces latency, by preventing Mask Functions
from evaluating non-applicable events, simply to ignore them.

Just to reiterate, this use case outlined here responded to this
customer's requirements – one Pipeline combining multiple Mask
Functions, for many sourcetype / index combinations.
More typically, you'd use multiple Pipelines to process di�erent
sourcetype / index combinations.

Design the Lookup

Page 610 of 680

To use a lookup as a filter, you'd start by creating a comma-separated lookup
table in this format, and adding it to LogStream:

index_tracker.csv

Below the header, each row specifies an index, a sourcetype, and (in the third
column) a pipe-delimited list of applicable masks.

To make this example work, the table must have only one row for each
index/sourcetype combination. (This unusual restriction is particular to this
scenario.) So, as you build out the lookup table, you cannot add new masks for
existing index/sourcetype combinations by appending new rows. Instead, you
must modify the third column of the existing rows.

Create a LogStream Pipeline with a Lookup Function configured like this,
pointing to your lookup table:

Lookup Function's configuration

index,sourcetype,masks
apache_common, sourcetypec, ssn|credit_card|auth_token
syslog,sourcetypeb,ssn|auth_token
weblog,sourcetypea,auth_token|bearer_token

Configure the Pipeline

Page 611 of 680

This Function keys against both the index and sourcetype fields. When it
finds a matching combination, it adds a new key-value pair to your event for
future filtering.

The key of that key-value pair (namely, ��masks) starts with a double
underscore, to make it a LogStream internal field. This convention ensures
that the key-value pair will not get passed along to the Destination.

However, you might prefer to export the key-value pair. For example, you might
want a Splunk Destination to index the list of masks applied to a given event,
alongside that event. (This approach applies to many forensic use cases.) If so,
remove the double underscore from the above Function's Lookup Field Name
in Event value, and from the subsequent Filter expressions for each Mask
Function.

Each Mask Function has a JavasScript Filter that breaks the pipe-delimited
string into an array, and determines whether the tag for that type of mask (e.g.,
bearer_auth) is in the ��masks key-value pair. If so, it applies the mask

processing. If not, the event moves on to the Pipeline's next Mask Function.

Here are the four Mask Functions below the Lookup Function:

Mask Functions

In this particular example, the pipe-delimited mask tags in the lookup table's
third column match the Mask Functions' names, as well as matching their Filter
conditions. This is just for simplicity – the Functions could have any names, as
long as the Filter expressions match the tags.

Page 612 of 680

Lookups and Regex Magic

Regular expressions are not just for field extractions – they can also be used inside lookup tables, and
in Functions, to replace and manipulate values within fields. Let's walk through a Pipeline that
demonstrates four di�erent ways to leverage regular expressions in LogStream.

When organizations use host naming standards, it is easy to understand things like regions,
availability zones (AZs), IP addresses, and more. For example, consider an Amazon host called:

ec2-35-162-133-145.us�west1-a.compute.amazonaws.com

This is an EC2 host with a (dashed) IP address 35-162-133-145 , in the us�west1 region, in
Availability Zone a . You can also see the domain: compute.amazonaws.com .

While we can understand the enriched host names, we don't know which indexes to route the data to,
nor which sourcetypes to assign to the events, without looking up this information from another
source. Doing so is o�en a huge challenge for organizations. To solve this challenge, let's combine
Regex Extract, Lookup, and Eval Functions with some sample events to demonstrate the power of
LogStream.

The events below have timestamps broken out, but no indexes, sourcetypes, or other details have
been assigned yet:

Why Lookup Tables Matter

Sample Events

Page 613 of 680

Before we can assign an index or sourcetype, we need to extract the host , region , az , and
domain fields from the events. We can use a Regex Extract Function with this regular expression to

extract all four fields:

GMT�\s+(?<host>[^.]+)\.(?<region>\w�-\w�\d+)-(?<az>[^.]+)\.(?<domain>[^�]+)�

Here's that Regex Extract in a LogStream Pipeline:

On the OUT tab of LogStream's Preview pane, the extracted fields of az , domain , host , and
region now appear below the _raw event. You can use these extracted fields for searching in your

preferred search solution.

The Regex Extract Function

Results of the Regex Extract Function

Page 614 of 680

We still need to determine the index and sourcetype. LogStream's Lookup Function enriches events
with external fields. We'll use it with the newly extracted region field to assign an index and
sourcetype to these events.

First, we need to create a lookup table for the Function to reference. For this, we'll use regex again.

In the table below, five simple regular expressions map the extracted region field to the appropriate
index and sourcetype . For example, the region us�west1-a starts with us , so it matches the

first regular expression: us.+

We use this lookup table's first row to assign an index of usa_index_tier , and a sourcetype of
cloud�init , to each matching event. The region patterns in the table's four remaining rows work

the same way.

Lookups

Lookup File

Page 615 of 680

With the lookup table saved as region_index_sourcetype.csv , the Lookup Function below
matches the events' extracted region field against the regular expressions, and returns the
matching index and sourcetype .

There's actually more here than meets the eye. Note that we've specified no Output Fields. From the
Lookup Function's documentation, we know this means that the Function will default to outputting
all fields in the lookup table. So we get the contents of both remaining columns in the table we saw
above: index and sourcetype .

With the Lookup Function added to our Pipeline, the Preview pane's OUT tab shows that the index
and sourcetype are now added to each event.

Lookup Function

Results of the Lookup Function

Page 616 of 680

Since the IP address is present in the host field, we can create the host_ip field using an Eval
Function with this replace method:

host.replace(/\w�-(\d+)-(\d+)-(\d+)-(\d+)/,'$1.$2.$3.$4')

This regular expression uses capture groups and pulls the four IP octets present in the hostname to
build the host_ip . These four capture groups are noted as $1.$2.$3.$4 , respectively. This
method is very fast, and removes the need to perform a DNS lookup from the host field to get the
host's IP address. Magic!

Getting Host IP Address from Host Name

Page 617 of 680

The host_ip field is now added to the events, displayed below host :

Finally, let's put some sense into the sourcetype field, using another Eval Function. By combining
the values of the ${sourcetype}_${region}_${az} , the sourcetype becomes cloud�init_us�
west1_a – so now you can understand much more about the sourcetype at a glance.

Examine this Eval Function's value expression, taking careful note of the backticks (` `) and braces
({ }) that surround the field names, and the underscore (_) that separates them.

Results of the Eval Function and Replace Method

Customizing the Sourcetype

Page 618 of 680

Take a look at the updated sourcetypes, and enjoy exploring LogStream with your new knowledge!

Results of the Eval Function to Combine Values

Try This at Home

Page 619 of 680

Below you'll find the the lookup table, Pipeline, and sample events demonstrated in this use case.
Create the lookup file first, and then import the Pipeline. (The order matters, because the Pipeline
import depends on the lookup table's presence.)

To create the lookup table in LogStream's UI, select Knowledge > Lookups, then click + Add New and
select Create with Text Editor.

Copy and paste in the header and rows listed below, then save the result as:
region_index_sourcetype.csv .

region_index_sourcetype.csv

Below is an export of the whole LogStream Pipeline presented here. Import this JSON to get a
Pipeline named: setting_index_by_region_availability_zone.json .

Magic Pipeline

Lookup Table

region,index,sourcetype
us.+,usa_index_tier,cloud�init
asia.+,apac_index_tier,cloud�init
europe.+,emea_index_tier,cloud�init
northamerica.+,na_index_tier,cloud�init
southamerica.+,ltam_index_tier,cloud�init

Pipeline

{
 "id": "setting_index_by_region_availability_zone",
 "conf": {
 "output": "default",
 "groups": {},
 "asyncFuncTimeout": 1000,
 "functions": [
 {
 "filter": "true",
 "conf": {
 "comment": "This pipeline demonstrates four different ways to leverage regular express
 },
 "id": "comment"
 },
 {
 "filter": "true",
 "conf": {
 "source": "_raw",
 "iterations": 100,
 "overwrite": false,
 "regex": "/GMT�\\s+(?<host>[^.]+)\\.(?<region>\\w�-\\w�\\d+)-(?<az>[^.]+)\\.(?<domain>
 },
 "id": "regex_extract",
 "disabled": false,
 "description": "Extract host, region, availability_zone, and domain"
 },
 {

Page 620 of 680

And here's a sample of raw events that you can upload or copy/paste into LogStream's Preview pane
to test the Pipeline's Functions:

Sample events

From here, modify the sample data, lookup table, and Functions to adapt this approach to your own
needs!

 "filter": "true",
 "conf": {
 "matchMode": "regex",
 "matchType": "specific",
 "reloadPeriodSec": 60,
 "addToEvent": false,
 "inFields": [
 {
 "eventField": "region"
 }
],
 "ignoreCase": false,
 "file": "region_index_sourcetype.csv"
 },
 "id": "lookup",
 "disabled": false,
 "description": "Lookup index and sourcetype using regex matching"
 },
 {
 "filter": "true",
 "conf": {
 "add": [
 {
 "name": "host_ip",

Sample Events

Feb 06 2021 02�18�31.286 GMT� ec2-35-162-133-145.us�west1-a.compute.amazonaws.com: cloud�init[29
Feb 06 2021 03�33�30.302 GMT� ec2-48-169-111-182.us�east2-b.compute.amazonaws.com: cloud�init[29
Feb 06 2021 06�29�11.841 GMT� ec2-21-187-232-201.asia�northeast3-a.compute.amazonaws.com: cloud�
Feb 06 2021 12�59�44.232 GMT� ec2-76-187-246-132.europe�west3-b.compute.amazonaws.com: cloud�ini
Feb 06 2021 17�04�16.921 GMT� ec2-67-205-202-104.northamerica�northeast1-c.compute.amazonaws.com
Feb 06 2021 19�45�47.687 GMT� ec2-87-209-176-201.southamerica�east1-a.compute.amazonaws.com: Dat

Page 621 of 680

Regex Filtering

To filter events in real time, we use the out-of-the-box Regex Filter Function.
This is similar to nullqueueing with TRANSFORMS in Splunk, but the matching
condition is way more flexible.

Let's see how we can filter out any sourcetype��'access_combined' events
whose _raw field contains the pattern Opera :

First, make sure you have a Route and Pipeline configured to match desired
events.

Next, let's add a Regex Filter Function to it:

Defining the Regex Filter Function

Next, verify that this search does not return any results:
sourcetype="access_combined" Opera

You can add more conditions to the Filter input field. For example, to further
limit the filtering to only events from hosts with domain dnto.ca , change the
filter input as shown below:

Regex Filtering of Data in Motion

Regex Filtering Example

Page 622 of 680

Filtering by host

This is a very flexible method for filtering incoming events in real time, on
virtually any arbitrary conditions.

Page 623 of 680

Encrypting Sensitive Data

With Cribl LogStream, you can encrypt your sensitive data in real time before
it's forwarded to and stored at a destination. Using the out-of-the-box Mask
function, you can define patterns to encrypt with specific key IDs or key classes.
To decrypt in Splunk, you will need to install Cribl App for Splunk on your
search head. (The app will default to mode�searchhead .)

Symmetric encryption keys can be configured through the CLI or the UI.
They're used to encrypt the patterns, and users are free to define as many keys
as required.

Key classes are collections of keys that can be used to implement multiple
levels of access control. Users (or groups of users) that have access to data with
encrypted patterns can be associated with key classes. You can use these
classes to provide more-granular access rights, such as read versus decryption
permissions on a dataset.

1. Define one or more keys and key classes on Cribl LogStream. (See UI- and
CLI-based instructions.)

2. Sync auth with the decryption side (Splunk Search Head)

3. Apply the Mask function to patterns of interest, using C.Crypto.encrypt().

4. Decrypt on the Splunk search head, using Role-Based Access Control on
the decrypt command.

Encryption at Ingest-Time and Decryption in Splunk

Keys and Key Classes

Encrypting in Cribl LogStream and Decrypting in Splunk

Page 624 of 680

Encrypting in LogStream, decrypting in Splunk

Generate keys via the UI, in Settings > Encryption Keys:

Adding a new encryption key

Or generate one or more keys via the CLI. In a single-instance deployment:

$CRIBL_HOME/bin/cribl keys add �c 1 �i

���

$CRIBL_HOME/bin/cribl keys add �c <N> �i

Example

Encryption Side

Page 625 of 680

In a distributed deployment, to generate keys on a Worker Group named
uk :

$CRIBL_HOME/bin/cribl keys add �c 1 �i �g uk

���

$CRIBL_HOME/bin/cribl keys add �c <N> �i �g uk

Add �e <epoch> to the above commands if you'd like to set expiration for
your keys.

Download the Cribl/LogStream App for Splunk from Cribl's
Download LogStream page: In the On Prem section, select the Splunk app
from the drop-down list, as shown. Clicking the orange button downloads
a file named:
cribl�splunk�app��version‑#��<hash‑#��linux�x64.tgz .

Downloading Cribl's Splunk app

To install the Cribl/LogStream App for Splunk on your search head, untar
the package into your $SPLUNK_HOME/etc/apps directory. The app will
default to mode�searchhead .

Assign permissions to the decrypt command, per your requirements.

Assign capabilities to your Roles, per your requirements. Capability names
should follow the format cribl_keyclass_N , where N is the Cribl Key
Class. For example, a role with capability cribl_keyclass_1 has access

� For all command/syntax options, see Adding Keys.

Decryption Side

Page 626 of 680

to all key IDs associated with key class 1 . You can use more capabilities, as
long as they follow this naming convention.

Selecting capabiities

Sync auth/(cribl.secret|keys.json) . To decrypt data, the decrypt
command will need access to the same keys that were used to encrypt, in
the Cribl instance where encryption happened.

In a single-instance deployment, the cribl.secret and keys.json
files reside in: $CRIBL_HOME/local/cribl/auth/ .

In a distributed deployment, these files reside on the Master Node in:
$CRIBL_HOME/groups/<group‑name>/local/cribl/auth/ .

When using LogStream's UI, you can download these files by clicking
the Get Key Bundle button.

Sync/copy these files over to their counterparts on the search head
(decryption side). In a non-Splunk integration, you would copy these
assets to wherever decryption will take place.

Modifying Keysℹ

When you update keys by editing the keys.json file, you must add
them back to to the directories above (respectively, on a single
instance or on a distributed deployment's Master Node).

Page 627 of 680

Before Encryption: Sample un-encrypted events. Notice the values of fieldA
and fieldB .

Events before encryption

Next, encrypt fieldA values with key class 1 , and fieldB with key class 2 .

Encrypting two fields with separate key classes

A�er Encryption: again, notice the values of fieldA and fieldB .

Both fields encrypted

Usage

Page 628 of 680

Here, we've decrypted fieldB but not fieldA . This is because the logged-in
user has been assigned the capability cribl_keyclass_2 , but not
cribl_keyclass_1 .

One field decrypted

Page 629 of 680

Syslog Data Reduction

When ingesting data from syslog senders, Cribl LogStream can readily trim
data volume by 30% or more, optimizing infrastructure for downstream
services like Splunk or Elasticsearch. Here, we outline some best practices for
replacing your syslog server with LogStream.

By default, a LogStream Syslog Source will produce the following fields:
_time , appname , facility and facilityName , host , message , and
severity and severityName .

Parsed syslog event

This output is much more readable, but we haven't saved any volume – we now
have redundant pairs of fields (numeric versus text) representing the facility
and severity.

Below, we'll outline how to streamline syslog events to something more like
this:

Parsed and redacted syslog event

Syslog Event Parsing

Page 630 of 680

This extracts the essentials, removes the redundancies, adds one new field that
identifies the LogStream Pipeline we're about to build, and shrinks the
outbound _raw payload to just its message component. For still further
e�iciencies, we'll look at how to drop or downsample frequent events, and how
to balance high-volume syslog inputs across LogStream worker processes.

Even before setting up a syslog Source, our first step is to create a pre-
processing Pipeline that will be available to normalize incoming events on all
syslog Sources, reducing data volume as shown above.

The Pipeline starts with an Eval Function, whose Evaluate Fields section tags
syslog events with two new fields indicating their origin: sourcetype:
'syslog' and source: ��inputId . Because this Pipeline is designed only to
condition all incoming syslog data, we leave Filter set to its default true
value, to process all events.

Eval Function to tag syslog events' origin

A second Eval Function filters for the presence of a message field. If found, it
overwrites the _raw field with message , and then deletes message as
redundant. This function alone typically reduces syslog data volume by 15–
20%.

Create Pre-Processing Pipeline

Page 631 of 680

Eval Function to rewrite message as _raw

This third Eval Function deletes two redundant fields. Its Filter condition
makes sure both of these string fields exist and contain values: severity ��
null �� facility �� null . If so, it removes their corresponding numeric
fields, severity and facility .

Eval Function to remove redundant numeric fields

⚠ Before using this Pipeline in production, preview sample data to
verify that you're not dropping any essential information.

Page 632 of 680

To further shrink the output, this fourth Eval Function removes procid fields
that contain only a dash – meaning "no value extracted." We set Filter:
procid��'-' and Remove Fields: procid .

Eval Function to remove empty procid fields

With these four Functions enabled, the Preview pane's Basic Statistics confirm
that we've reduced the _raw field's length by more than 30%.

Data reduction example

With some syslog senders, like VMware ESX/ESXi, 80–90% of incoming events
can be of debug severity. To further reduce volume, you could use this final
Drop Function to drop all these events. Its Filter is simply
severityName��'debug' .

Dropping Noisy Data

Page 633 of 680

Drop Function to remove debug events

Enabling this Function could up our volume savings to about 40%. Depending
on your needs, you might prefer to:

Use a Function like this in your Route's processing Pipeline, rather than in
this upfront Pipeline.

Also drop info events.

Instead use a Sampling Function to sample debug events (at a ratio like
1:10), or a Dynamic Sampling function.

Instead use a Suppress Function to clamp down the frequency of debug
events.

Once we've built and saved the pre-processing Pipeline, our next step is to add
a Syslog Source.

Syslog Source configured for UDP and pre‑processing Pipeline

Create Syslog Source

Page 634 of 680

Specify the UDP Port where you want this Source to listen for syslog data.

Then attach the pre‑processing Pipeline that you created above, and save the
Source.

In the pre‑processing Pipeline, we tagged all incoming syslog events with new
sourcetype and source fields to indicate their origin. Alternatively, you

could use the Source's Fields/Metadata section to define similar key-value
pairs, specific to each of your Syslog Sources.

Create Routes, as needed, for each of your Syslog Sources. Give each Route a
corresponding Filter expression, and set its Output to the Destination where
you want to send its processed syslog data.

Example syslog Route

ℹ Cribl generally recommends selecting UDP, rather than TCP, for high-
volume syslog senders. This facilitates e�icient load balancing by not
continuously tying such senders to any one LogStream Worker
Process. See Sizing and Scaling for more details.

Fields/Metadata

Create Route(s)

Processing Pipelines, and Next Steps

Page 635 of 680

For any or all syslog Routes, you can define and attach a processing Pipeline.
These can apply more-granular Filters and Functions to further reduce volume,
using techniques like Sampling, Dynamic Sampling, or (as shown below) Drop
and Suppression. Your most-verbose Syslog Sources are ideal targets for such
further processing.

Example syslog processing Pipeline

Page 636 of 680

Splunk to Elasticsearch

To route data from existing Splunk infrastructure to Elasticsearch services, you might
face a daunting task: re-architecting your entire forwarding tier. This could require
retooling lots of servers – up to hundreds, or thousands – to uninstall their Splunk
forwarders, and swap in Elastic-compatible agents.

Cribl LogStream can reduce this e�ort to just a few hours: Configure one Splunk
outputs.conf stanza to output to LogStream, and propagate that across all your

Splunk servers. Done!

Next, you can easily configure LogStream to listen for Splunk data on one port, and to
route that data to all the Elasticsearch destinations you want to feed.

Also, in LogStream's core, you can easily design a Pipeline that modifies the original
Splunk event into Elastic's Common Schema – making it look exactly like an event
generated by an Elastic agent. These transformations help you make the most of
Elastic's o�erings, like Filebeats, etc.

Transforming to Elastic Common Schema

Some of the LogStream Functions useful in transforming Splunk-generated events into
Elastic's format are:

Transforming Data from Splunk to Elastic Format

Page 637 of 680

Regex Extract: Extract a portion of the raw event, and place it into a specified field.

Lookup: key o� the host IP to add fields like hostname , name , id , and type .

Eval: Turn key-value pairs into nested JSON objects.

GeoIP: Correlate source IP to a geographic database.

We'll show all four in our example Pipeline below, although you might need only a
subset.

LogStream Pipeline and Data Preview

LogStream will o�er you further time savings as you configure the internal data
transformation. LogStream's Data Preview features enable you to test transformations'
results as you build your Pipeline, before you commit or run it.

This eliminates blind guesswork in Splunk configuration files to specify source ‑> index
transformations, check the results, and then start all over again. In particular,
LogStream's Regex Extract Function provides a regex101-like UI, to facilitate precisely
designing and debugging your regex expressions.

Let's goat started on the example.

First, in a Splunk App, configure a Splunk forwarder (UF or HF) to specify your Cribl
Workers as destinations. Use outputs.conf stanzas of this form:

Goat Rid of Some Guesswork

Configure Splunk Forwarder

Page 638 of 680

.../outputs.conf

Push the app using the deployment server.

Next, in LogStream, configure a Splunk Source. The key requirement here is to set the
Port to listen on. (Optionally, you can also configure TLS, Event Breakers, metadata
fields, and/or a pre-processing Pipeline.)

Splunk Source configuration

To configure LogStream's output, set up an Elasticsearch Destination by specifying the
Bulk API URL and Index.

[tcpout]
disabled = false
defaultGroup = cribl, <optional_clone_target_group>,

[tcpout:cribl]
server = [<cribl_ip>|<cribl_host>]��port>, [<cribl_ip>|<cribl_host>]��port>, ���
sendCookedData=true

Configure Splunk Source in LogStream

Configure Elasticsearch Destination

Page 639 of 680

Elasticsearch Destination configuration

Next, this section shows several Functions that you can assemble into a Pipeline to
transform incoming Splunk events to match the Elastic Common Schema.

First, use a Regex Extract Function to break the Splunk events into fields. Try the
sample configuration shown below:

Configure Pipeline

Regex Extract Function

Page 640 of 680

Regex Extract Function

Here are the six rows of regex in this example:

Regex; Additional Regex

As you refine your expression, capture a sample of incoming Splunk data to test your
regex's results in LogStream's right Preview pane.

/\s\d\d\d\s(?<��bytes>[0-9]{2,})/
/(?<��method>GET|HEAD|POST|PUT|DELETE|CONNECT|OPTIONS|TRACE)/
/HTTP\/(?<��version>[0-9\.]*)\"/
/\s(?<��status>\d\d\d)\s/
/(?<��ip_address>(?�[0-9]{1,3}\.){3}[0-9]{1,3})\s/
/(?<��url>\s\/([^\s]*))/

Lookup Function

Page 641 of 680

In this example, we next add a Lookup Function, to translate HTTP error codes to
readable text. Note this Function's optional Reload Period field, in which you can
define a reload interval for a lookup file whose contents refresh frequently.

To enrich the Splunk data, we next use a GeoIP Function. This a specialized lookup
against a database of IP addresses by geographic location. This Function's output can
provide Elasticsearch with location fields like lat and long .

GeoIP Function

Page 642 of 680

GeoIP specialized lookup

Finally, to further enrich the outbound events, the Pipeline uses an Eval Function. This
adds multiple key-value pairs that define and populate fields conforming to the
Elastic Common Schema.

Eval Function

A�er attaching your Pipeline to a Route, here's an an exported event, all happy in
Elasticsearch with nested JSON.

Eval Function

Results

Page 643 of 680

Event as exported to Elasticsearch

For additional details on configuring Splunk forwarders for LogStream, see this related
documentation:

Configuring a Splunk (TCP) Forwarder

Configuring Cribl App for Splunk on an HF

For More Info

Page 644 of 680

Reducing Windows XML Events

Here, we demonstrate how to use just a few LogStream Functions to parse WindowsXML events and
reduce their volume by 34–70%, dramatically reducing your downstream infrastructure
requirements.

LogStream's internal C.Text.parseWinEvent method parses Windows XML strings and returns a
prettified JSON object. You can use this function within an Eval Function to parse an event or an ad
hoc XML string. It works like C.Text.parseXml, but with Windows events, it produces more-compact
output.

As you can see from its signature, C.Text.parseWinEvent accepts an optional nonValues
parameter that can further reduce an event's size by discarding characters that you specify as
redundant.

When working with XML, an anonymous Reddit user's quote sums up the challenge: "Some languages
can be read by human, but not by machines, while others can be read by machines but not by
humans. XML solves this problem by being readable to neither." An example of a Windows XML event
only reinforces this quote:

Using Eval and C.Text.parseWinEvent

ℹ (method) C.Text.parseWinEvent(xml: string, nonValues�� string[])� any

@param – xml – an XML string; or an event field containing the XML.

@param – nonValues – array of string values. Elements whose value equals any of the
values in this array will be omitted from the returned object. Defaults to ['-'] , meaning
that elements whose value equals - will be discarded.

@returns – an object representing the parsed Windows Event; or undefined if the input
could not be parsed.

XML: Threat or Menace?

Page 645 of 680

This Windows XML _raw event is 1.36KB in size:

In our initial Eval Function below, the Value Expression uses C.Text.parseWinEvent to simply parse
the _raw Windows XML event and turn it into a prettified JSON object:

The resulting JSON event is now down to 921.00B in size, a 34.07% reduction of the event:

Eval to the Rescue

Page 646 of 680

But we can do better. The fields containing essentially null values ('0','0�0', or '-') bloat
events, demanding extra infrastructure and storage:

Let's amplify the reduction by removing all of the fields whose values are in the set: ['0','0�0','-
'] . This improved version of our Eval Function parses the Windows XML event, and discards
['0','0�0','-'] values. (Its preceding row also tidies up events by removing tabs and curly braces,

and replacing newlines and returns with commas.) The result is an even smaller prettified JSON
object:

Removing Unnecessary Fields with a Better Eval

Page 647 of 680

If you compare this Preview-pane screenshot to the Preview screenshot above, you can confirm that
the fields with values matching [‘0’,‘0�0’,’-’] are removed:

The event is now down to 678.00B in size, translating to a 51.47% reduction from the original event:

Page 648 of 680

LogStream's Flatten Function is designed to flatten fields out of a nested structure. Let's flatten the
JSON object within _raw , to see if we can further reduce the event's size before we send it to our
preferred destinations:

Using Flatten, we've successfully created top-level fields from the nested JSON structure:

Flatten Function

Page 649 of 680

The flattened field names are extracted from _raw and delimited with _ . These field names are
quite long. We can optimize them using the Rename Function.

Rename is designed to change fields' names, or to reformat their names (e.g., to normalize names to
camelcase). You can use Rename to change specified fields (much like Eval), or to accomplish bulk
renaming based on a JavaScript expression (much like the Parser Function). But Rename o�ers a
streamlined way to alter only field names, without other e�ects.

Let's use Rename to remove any unnecessary prefixes from the field names, to further shrink our
events. In the Renaming Expression, we build a JavaScript expression to match the field names'
prefixes (up to the underscore):

� Don't worry about the _raw field's deletion (red strikeout). This is the Flatten Function's
default behavior. We'll restore _raw a�er we clean and reduce the event even more.

Rename Function

Page 650 of 680

The resulting field names are now much more compact, and easier to work with and manage:

We started with bloated Windows XML data, and we've parsed and prettified it into JSON. Next, we'll
extract key-value pairs. We'll use the Serialize Function, which serializes an event's content into a
predefined format.

We set Serialize to change the Type to key-value pairs. (The Function's other supported target Types
include JSON Object and CSV.) Here, Serialize takes the extracted fields and puts them back into
_raw :

Serialize Function

Page 651 of 680

In the Preview pane, the _raw field is now back, serialized into compact, tidy key-value pairs:

The last step is to remove any of the extracted fields you don't need before sending events to your
destinations. We'll again call on the Eval Function, which adds or removes fields in events. (For a
Splunk destination, these are index-time fields.) This final Eval Function looks like this:

Page 652 of 680

To sum up, we've successfully transformed the original Windows XML event into key-value pairs:

And we've dramatically reduced the event's size, while retaining all of the necessary fields. The event
is now down to 513.00B in size, translating to a 63.28% reduction from the original Windows XML:

Below is an export of the whole LogStream Pipeline presented here. Import this JSON to experiment
with it and modify it to match your own needs:

Win XML Pipeline

Try This at Home

{
 "id": "Windows_Security_Events",
 "conf": {
 "output": "default",
 "groups": {},
 "asyncFuncTimeout": 1000,

Page 653 of 680

Finally, here's a sample of Windows XML events that you can upload to LogStream's Preview pane to
try this out:

Sample data

 "functions": [
 {
 "filter": "true",
 "conf": {
 "comment": "This LogStream Pipeline reduces Microsoft Windows XML events, retains full
 },
 "id": "comment"
 },
 {
 "filter": "true",
 "conf": {
 "add": [
 {
 "name": "_raw",
 "value": "_raw.replace(/[{}\\t]/gm,'').replace(/[\\n\\r]+/gm,',')"
 },
 {
 "name": "_raw",
 "value": "C.Text.parseWinEvent(_raw,['0�0','0','-'])"
 }
]
 },
 "id": "eval",
 "disabled": false,
 "description": "Remove tabs & curly braces; replace newlines & returns with commas. Pars
 },
 {
 "filter": "true",
 "conf": {
 "fields": [
 "_raw"
],
 "prefix": "",
 "depth": 5,
 "delimiter": "_"
 },
 "id": "flatten",
 "disabled": false,
 "description": "Flatten the object into key value fields"
 },
 {
 "filter": "true",
 "conf": {
 "baseFields": [],
 "renameExpr": "name.replace(/_raw_Event_\\w�_/,'')",

<Event xmlns='http:��schemas.microsoft.com/win/2004/08/events/event'><System><Provider Name='Mic
<Event xmlns='http:��schemas.microsoft.com/win/2004/08/events/event'><System><Provider Name='Mic
 SeBackupPrivilege
 SeRestorePrivilege
 SeTakeOwnershipPrivilege
 SeDebugPrivilege
 SeSystemEnvironmentPrivilege
 SeLoadDriverPrivilege
 SeImpersonatePrivilege
 SeDelegateSessionUserImpersonatePrivilege
 SeEnableDelegationPrivilege��Data>��EventData>��Event>

Page 654 of 680

<Event xmlns='http:��schemas.microsoft.com/win/2004/08/events/event'><System><Provider Name='Mic
<Event xmlns='http:��schemas.microsoft.com/win/2004/08/events/event'><System><Provider Name='Mic
<Event xmlns='http:��schemas.microsoft.com/win/2004/08/events/event'><System><Provider Name='Mic

Page 655 of 680

BEST PRACTICES
Managing Large Lookups

This page o�ers a general approach to managing large lookup files. While
LogStream's Git integration normally helps manage configuration changes,
large lookups are exceptions. In many cases, you might want to exclude these
files from Git, to reduce excessive deploy tra�ic. This approach can also
prevent Git Push commands from encountering large file errors.

Good scenarios for this approach are:

Large binary files – like databases – which don't benefit from Git's typical
e�icient storage of only the deltas between versions. (With binary files, Git
must replace the whole file for each new version.)

Files updated frequently and/or files updated independent of LogStream.

Files replicated on many Worker Nodes.

We'll illustrate this with an example that o�en combines all three conditions:
setting up the free, popular MaxMind GeoLite2 City database to support
LogStream's GeoIP lookup Function. This example anticipates a LogStream
production distributed deployment, where the GeoLite database is updated
nightly across multiple Workers.

This example includes complete instructions for this particular setup. However,
you can generalize the example to other MaxMind databases, and to other
large lookup files – including large .csv 's that similarly receive frequent
updates.

The general approach for handling large lookups is:

Do not place these files in the standard $CRIBL_HOME/data/lookups .

About the MaxMind GeoLite Example

Reducing Deploy Tra�ic

Page 656 of 680

Instead, place them in a $CRIBL_HOME subdirectory that's excluded from
Git version control, through inclusion in the $CRIBL_HOME/.gitignore
file. Deploying the files to the Master Node and all desired Workers will
require a manual procedure and will be required for the initial deployment
as well as subsequent updates.

The example below uses $CRIBL_HOME/state subdirectory, which is already
listed in the default .gitignore file that ships with LogStream.

Let's move on to the MaxMind GeoLite specifics.

To enable the GeoIP Function using the MaxMind GeoLite 2 City database, your
first steps are:

1. Create a free MaxMind account, at the page linked above.

2. Log in to your MaxMind account portal and select Download Databases.

3. On the Download page, look for the database you want. (In this example,
you'd locate the GeoLite2 City section.) Note the Format: GeoIP2 Binary,
and select Download GZIP.

GeoLite2 City database: Download binary GZIP

4. Extract the archive to your local system.

ℹ If you prefer, you can use a di�erent path, including a path outside
$CRIBL_HOME . If you choose this alternative, be sure to add that

path to .gitignore .

However, Cribl recommends using a $CRIBL_HOME subdirectory like
$CRIBL_HOME/state , because this inherits appropriate

permissions and simplifies backup/restore operations.

Download and Extract the Database

Page 657 of 680

5. Change to the directory created when you extracted the archive. This
directory's name will correspond to the date you downloaded the file, so in
the above 2020-10-06 example, you would use: $ cd GeoLite2-
City_20201006

In distributed deployments, Cribl recommends copying the MaxMind database
separately to the Master and all Worker Nodes, e.g.. placing it in the
$CRIBL_HOME/state path. This will minimize the Git commit/deploy overhead

around nightly updates to the binary database file.

Once in the database's directory, execute commands of this form:

Shell

The above commands copy the .mmdb database file into your user's home
directory on each Node. Next, we’ll move it to $CRIBL_HOME/state on each
Node. Execute these commands on both the Master and Worker Nodes:

Shell

Now that the database is in place, your Pipelines can use the GeoIP Function to
enrich data. In the Function's GeoIP file (.mmdb) field, insert the complete
$CRIBL_HOME/state/<filename>.mmdb file path.

Copy the Database File to the Master and Worker
Nodes (Recommended)

$ scp *.mmdb <user>@<master�node��
$ scp *.mmdb <user>@<worker�node��

⚠ Copy the file to each Worker in the Worker Group where you intend
to use LogStream's GeoIP Function.

$ sudo mv ~��.mmdb <$CRIBL_HOME>/state/
$ sudo chown -R cribl:cribl <$CRIBL_HOME>/state/

Copy the Database File Only to the Master
(Alternative)

Page 658 of 680

In smaller deployments, you might choose to copy this MaxMind database only
to Master Node, and to let Workers receive updates via Git commit/deploy. In
this case, the final commands above might look like this:

Shell

To set up automatic updates, see MaxMind's Automatic Updates for GeoIP2 and
GeoIP Legacy Databases documentation. You'll need two modifications specific
to LogStream:

This must be set up on the Master, and on each Worker in any Group using
GeoIP lookups.

The default setting in GeoIP.conf writes output to
/usr/local/share/GeoIP . You must change this setting to the path

where your databases actually reside. If you're using the recommended
architecture above, you'd set: DatabaseDirectory
��CRIBL_HOME>/state/ .

Storage aside, large lookup files can also require additional RAM on each
Worker Node that processes the lookups. For details, see Memory Sizing for
Large Lookups.

$ sudo cp ~��.mmdb /opt/cribl/groups/<group�name>/data/lookups/
$ cd /opt/cribl/groups/<group�name>/data/lookups/
$ sudo chown cribl:cribl *.mmdb

Automatic Updates to the MaxMind Database

Memory Considerations

Page 659 of 680

VIDEOS
Videos

Prefer to watch rather than read? These (mostly) brief demonstrations will help
you identify and apply LogStream features that meet your needs.

Browse all Cribl videos here.

Browse all concept videos here.

Introducing Cribl LogStream

Conceptual overview of LogStream's capabilities

Concept: LogStream Cloud

All Videos

Concept Videos

Introducing Cribl LogStream

from Cribl

01:45

Concept: LogStream Cloud

from Cribl

Page 660 of 680

Conceptual walkthrough of Cribl's LogStream Cloud o�ering
Sign up for the beta a:t https://cribl.io/logstream-cloud-beta/

Concept: Receive

A quick walkthrough of LogStream's data ingestion capabilities

Concept: Reduce

02:09

Cribl Concept: Receive

from Cribl

01:35

Cribl Concept: Reduce

from Cribl

Page 661 of 680

A quick walkthrough of LogStream's data reduction capabilities

Concept: Transform

A quick walkthrough of LogStream's data transformation capabilities

Concept: Collect

A quick overview of LogStream's data collection capabilities

01:35

Cribl Concept: Transform

from Cribl

01:18

Cribl Concept: Collect

from Cribl

02:03

Page 662 of 680

Concept: Pipelines

A brief conceptual walkthrough of how Pipelines work in LogStream

Concept: Routes

A brief conceptual walkthrough of how LogStream routes data

Concept: Role-Based Access Control

Cribl Concept: Pipelines

from Cribl

01:51

Cribl Concept: Route

from Cribl

01:58

Cribl Concept-Role Based Access

Control

from Cribl

Page 663 of 680

A quick walkthrough of LogStream's RBAC and audit logging capabilities

Concept: Redis Lookups

A brief walkthrough of the LogStream's Redis Function, and of how to use it to
enrich your data

Browse all how-to videos here.

How-to: Common Source Configuration

01:43

Cribl Concept-Redis Lookups

from Cribl

02:24

How-to Videos

Cribl How-To: Common Source

Configuration

from Cribl

Page 664 of 680

A quick walkthrough of LogStream Sources' common attributes

How-to: Creating a Pipeline

A quick walkthrough of the steps to create a LogStream Pipeline

How-to: Creating a Route

01:50

Cribl How-To: Creating a Pipeline

from Cribl

01:44

How-To: Creating a Route

from Cribl

02:36

Page 665 of 680

A walkthrough of creating a Route in LogStream

Cribl How-to: Configuring an S3 Data Collector

Learn how to create a data collector to pull data from AWS S3 buckets

Cribl How-to: Configuring a REST API Data Collector

A walkthrough on creating a data collector to pull data from a REST API

Cribl How-to: Data Collection Scheduling

Cribl How-To: S3 Data Collector

from Cribl

02:55

Cribl How-To: Configuring a REST API

Data Collector

from Cribl

02:46

Cribl How-To: Data Collection

Scheduling

Page 666 of 680

A brief walkthrough on scheduling data collection jobs in LogStream

from Cribl

02:03

Page 667 of 680

TROUBLESHOOTING
Diagnosing Issues

To help diagnose LogStream problems, you can share a diagnostic bundle with Cribl Support. The
bundle contains a snapshot of configuration files and logs at the time the bundle was created, and
gives troubleshooters insights into how LogStream was configured and operating at that time.

The following directories (and their contents) o� of $CRIBL_HOME are included:

/default��

/local��

/log��

/groups��

/state/jobs�� – includes only the latest 10 task from the latest 10 jobs.

Users can create and securely share bundles with Cribl Support either from the UI or from the CLI. In
either case, you'll need outbound internet access to https://diag-upload.cribl.io and a valid Support
Case number.

To create a bundle, go to Settings > Diagnostics > Diagnostic Bundle and click Create diagnostic
bundle.

To download the bundle locally to your machine, click Export.

To share the bundle with Cribl Support, toggle Send to Cribl Support to Yes, enter your case
number, and then click Export.

You can create a bundle from individual workers if you have the Worker UI access setting enabled. Go
to Workers > <worker-name> > System Settings > Diagnostics > Diagnostic Bundle, and click
Create Diagnostic Bundle.

Previously created bundles are stored in $CRIBL_HOME/diag . They're also listed in the UI, where you
can re-download them or share them with Cribl Support.

To create a bundle using the CLI, use the diag command.

What's in the Diagnostic Bundle

Creating and Exporting a Diagnostic Bundle

Using the UI

Using the CLI

Page 668 of 680

diag command CLI

$CRIBL_HOME/bin/cribl diag
Usage: [sub�command] [options] [args]

Commands:
get - List existing Cribl LogStream diagnostic bundles
create - Creates diagnostic bundle for Cribl LogStream
send - Send LogStream diagnostic bundle to Cribl Support, args:
 �c <caseNumber> - Cribl Case Number
 [-p <path>] - Diagnostic bundle path (if empty, then new bundle will be created)

�� Creating a diagnostic bundle
$CRIBL_HOME/bin/cribl diag create
Created Cribl LogStream diagnostic bundle at /opt/cribl/diag/cribl�logstream��hostname��<datetim

�� Creating and sending a diagnostic bundle
$CRIBL_HOME/bin/cribl diag send �c 420420
Sent LogStream diagnostic bundle to Cribl Support

�� Sending a previously created diagnostic bundle
$CRIBL_HOME/bin/cribl diag send �p /opt/cribl/diag/cribl�logstream��hostname��<datetime>.tar.g
Sent LogStream diagnostic bundle to Cribl Support

Page 669 of 680

Known Issues

Problem: In configuration modals for the Azure Blob Storage and O�ice 365 Message
Trace Sources, the Enabled slider cannot be toggled o�, and its tooltip doesn't appear.
Workaround: Disable your configured Source (where required) from the
Manage Blob Storage Sources or the Manage Message Trace Sources page.
Fix: Planned for LogStream 2.4.5.

Problem: Within the SpaceOut game, you cannot shoot, and your player is immortal.
Workaround: There are other video games. A�er we defeat COVID, you'll even be able to
buy a PS5.
Fix: Planned for LogStream 2.4.5.

Problem: Attempting to change the admin password via the UI triggers a 403/Forbidden
message. You can reset the password by editing users.json , but can't save
configuration changes to Settings, Pipelines, etc., because RBAC Roles are not properly
applied.
Workaround: Using a 2.3.x version of the App enables local authentication and enables
changes to Cribl/LogStream passwords and configuration/settings.
Fix: Planned for LogStream 2.4.4.

Problem: LogStream's Azure Event Hubs Destination provides a Compression option that
defaults to Gzip . However, compressed Kafka messages are not yet supported on Azure
Event Hubs.
Workaround: Manually reset Compression to None , then resave Azure Event Hubs
Destinations.
Fix: Planned for LogStream 2.4.4.

2021-03-30 – v.2.4.4 – Can't disable some Sources from within their
config modals

2021-03-29 – v.2.4.x – SpaceOut Destination is broken

2021-03-24 – v.2.4.x – Cribl App for Splunk blocks admin password
changes, configuration changes, and Splunk-based authentication

2021-03-22 – v.1.7 through 2.4.3 – Azure Event Hubs Destination:
Compression must be manually disabled

Page 670 of 680

Problem: When copying/pasting List of Fields contents between Parser Functions via the
Copy button, the paste operation inserts unintended metadata instead of the original
field references.
Workaround: Manually re-enter the second Parser Function's List of Fields.
Fix: Planned for LogStream 2.4.4.

Problem: A�er upgrading to v.2.4.3, the UI fails to recognize valid TLS .key files,
displaying spurious error messages of the form:
"File does not exist: $CRIBL_HOME/local/cribl/auth/certs/<keyname>key ."
An a�ected Master will not restart. A�ected Workers will restart, but will not apply
changes made through the UI.
Workaround: Ideally, specify an absolute path to each key file, rather than relying on
environment variables. If you're locked out of the UI, you'll need to manually edit the
referenced paths within these configuration files in LogStream subdirectories:
local/cribl/cribl.yml (General > API Server TLS settings) and/or
local/_system/instance.yml (Distributed > TLS settings). Contact Cribl Support if you

need assistance. A more drastic workaround is to disable TLS for the a�ected
connections.
Fix: Planned for LogStream 2.4.4.

Problem: The Redis Function, when used with a specific username and Redis 6.x's Access
Control List feature, fails due to authentication problems.
Workaround: In the Function's Redis URL field, point to the Redis default account,
either with a password (e.g., redis:��default:Password1@192.168.1.20�6379) or
with no password (redis://192.168.1.20:6379). Do not specify a user other than default .
Fix: Planned for LogStream 2.4.4.

Problem: For the Splunk Single Instance and Splunk Load Balanced Destinations, the in-
app documentation omits the UI's Advanced Settings section. Some fields are

2021-03-17 – v.2.4.2, 2.4.3 – Parser Function > List of Fields copy/paste
fails

2021-03-13 – v.2.4.3 – UI can't find valid TLS .key files, blocking Master
restarts and Worker reconfiguration

2021-03-12 – v.2.4.2 – Redis Function with specific username can't
authenticate against Redis 6.x ACLs

2021-03-09 – v.2.4.3 – Splunk Destinations' in-app docs mismatch UI's
current field order

Page 671 of 680

documented out-of-sequence, or are omitted.
Workaround: Refer to the UI's tooltips, to the corrected Splunk Single Instance and
Splunk Load Balanced online docs, and/or to the corrected PDF.
Fix: Staged for LogStream 2.4.4.

Problem: A�er enabling Settings > Distributed Settings > Git Settings > General >
Collapse Actions, selecting Commit & Deploy throws a 500 error.
Workaround: Disable the Collapse Actions setting, then commit and deploy separately.
Fix: Planned for LogStream 2.4.4.

Problem: As of v.2.4.3, LogStream's AWS-related Sources & Destinations provide options
to reuse HTTP connections, and to establish TLS connections to servers with self-signed
certificates. However, the S3 Collector does not yet provide these options.
Fix: Planned for LogStream 2.4.4.

Problem: A�er adding a rule to a Knowledge > Event Breaker Ruleset, pressing Esc
closes the parent Ruleset modal along with the child Rule modal.
Workaround: Close the Rule modal by clicking either its Cancel button or its close box.
Fix: Planned for LogStream 2.4.3.

Problem: An Aggregations Function, when used in a post-processing Pipeline, sends data
to LogStream's Default Destination rather than to the Pipeline's attached Destination.
Workaround: If applicable, use the Function in a processing or pre-processing Pipeline
instead.
Fix: Planned for LogStream 2.4.3.

Problem: When viewing an Event Breaker's results on Safari, no events are displayed on
the Preview pane's OUT tab.

2021-03-08 – v.2.4.3 – Enabling Git Collapse Actions breaks Commit &
Deploy

2021-03-08 – v.2.4.3 – S3 Collector lacks options to reuse HTTP
connections and allow-self signed certs

2021-03-04 – v.2.4.2 – Esc key closes both Event Breaker Ruleset modals

2021-03-04 – v.2.4.2 – Aggregations Function in post-processing
Pipeline addresses wrong Destination

2021-02-25 – v.2.4.2 – On Safari, Event Breaker shows no OUT events

Page 672 of 680

Workaround: Use another supported browser.
Fix: Planned for LogStream 2.4.3.

Problem: Collection jobs are missing from the Monitoring > Sources page, even though
they are returned by metric queries. Also, the Job Inspector > Live modal displays an
empty, unintended Configure tab.
Workaround: Use the Job Inspector to access collection results. Ignore the Configure tab.
Fix: Planned for LogStream 2.4.4.

Problem: If a Git remote repo was previously configured, upgrading to LogStream v.2.4.2
throws errors of this form upon startup: Failed to initialize git repository.
Config versioning will not be available���Invalid URL��� . The Master cannot
commit or deploy to any Worker Group.
Workarounds: 1. Downgrade back to v.2.4.1 (or your previous working version). 2. Switch
from Basic authentication to SSH authentication against the repo, to remove the
username from requests. (The apparent root cause is Basic/http auth using a valid URL
and username, but missing a password.)
Fix: Planned for LogStream 2.4.3.

Problem: If Splunk indexers have forwarder tokens enabled, and worked with LogStream
2.3.x before, upgrading to LogStream 2.4.x causes data to stop flowing.
Workaround: If you encounter this problem, rolling back to your previously installed
LogStream version (such as v.2.3.4) resolves it.
Fix: Planned for LogStream 2.4.3.

Problem: Splunk HEC JSON payloads containing nested objects trigger high CPU usage,
due to a flaw in JSON parsing.
Workaround: If you encounter this problem, rolling back to your previously installed
LogStream version (such as v.2.3.4) resolves it.
Fix: In LogStream 2.4.2.

2021-02-22 – v.2.4.3 – Collection jobs UI errors

2021-02-19 – v.2.4.2 – Upon upgrade, Git remote repo setting breaks,
blocking Worker Groups

2021-02-19 – v.2.4.0, 2.4.1, 2.4.2 – Splunk (S2S) Forwarder access
control blocks upon upgrade to LogStream 2.4.x

2021-02-10 – v.2.4.0, 2.4.1 – With Splunk HEC Source, JSON payloads
containing embedded objects trigger high CPU usage

Page 673 of 680

Problem: Worker Nodes cannot connect to the Master a�er the Master is upgraded to
v.2.4.0.
Workaround: Disable compression on the Workers. You can do so through the Workers'
UI at System Settings > Distributed Settings > Master Settings > Compression, or by
commenting out this line in each Worker's cribl.yml config file:

Fix: In LogStream 2.4.1.

Problem: S3 collection stops a�er upgrade to 2.4.0 due to secret key re-encryption.
Workaround: Re-configure S3, save and re-deploy.
Fix: In LogStream 2.4.1.

Problem: The Google Cloud Storage Destination fails to initialize, displaying an error of
the form: Bucket does not exist!
Workaround: In the outputs.yml file, under your cribl�gcp�bucket key endpoint,
add: https:��storage.googleapis.com . (in a single-instance deployment, locate this
file at $CRIBL_HOME/local/cribl/outputs.yml . In a distributed deployment, locate it
at $CRIBL_HOME/groups/<group name>/local/cribl/outputs.yml .)
Fix: In LogStream 2.4.1.

Problem: In this release, the Worker Groups > <group‑name> > System Settings UI did
not display the expected Access Management, Authentication, and Local Users sections.
Workaround: Manually edit the users.json file.
Fix: In LogStream 2.4.1.

Problem: On the Routes page, selecting Capture New in the right pane does not copy
custom Filter expressions to the resulting Capture Sample Data modal. That modal's

2021-01-30 – v.2.4.0 – Worker Nodes cannot connect to Master

compression: gzip

2021-01-25 – v.2.4.0 – S3 collection stops working due to auth secret
key issues.

2021-01-14 – v.2.4.0 – Google Cloud Storage Destination Needs Extra
Endpoint to Initialize

2021-01-14 – v.2.4.0 – Worker Groups' Settings > Access Management Is
Absent from UI

2021-01-13 – v.2.4.0 – Route Filters Aren't Copied to Capture Modal

Page 674 of 680

Filter Expression field always defaults to true .
Workarounds: 1. Bypass the Capture New button. Instead, from the Route's own
••• (Options) menu, select Capture. This initiates a capture with the Filter Expression
correctly populated. 2. Copy/paste the expression into the Capture Sample Data modal's
Filter Expression field. Or, if the expression is displayed in that field's history drop-down,
retrieve it.
Fix: In LogStream 2.4.1.

Problem: Clicking the Help link in a Destination's configuration modal displays
the error message: "Unable to load docs. Please check LogStream's online
documentation instead."
Workarounds: 1. Go directly to the online Destinations docs, starting here. 2. Follow the
UI link to the docs landing page, click through to open or download the current PDF, and
scroll to its Destinations section.
Fix: In LogStream 2.4.1.

Problem: Pressing Esc with focus on a modal's drop-down or slider doesn't close the
modal as expected. (Pressing Esc with focus on a free-text field, combo box, or nothing
does close the modal – displaying a confirmation dialog first, if you have unsaved
changes.)
Workarounds: Click the X close box at upper right, or click Cancel at lower right.
Fix: Planned for LogStream 2.4.2.

Problem: LogStream reports an expired Free license, and blocks inputs, even though
Free licenses in v.2.3.0 do not expire.
Workaround: This is caused by time-limited Free license key originally entered in a
LogStream version prior to 2.3.0. Go to Settings > Licensing, click to select and expand
your expired Free license, and click Delete license. LogStream will recognize the new,
permanent Free license, and will restore throughput.
Fix: In LogStream 2.4.1.

2021-01-13 – v.2.4.0 – Destinations' Documentation Doesn't Render
from UI

2021-01-13 – v.2.4.0 – Esc Key Doesn't Consistently Close Modals

2020-12-17 – v.2.3.0+ – Free-License Expiration Notice, Blocked Inputs

2020-11-14 – v.2.3.3 – Null Fields Redacted in Preview, but Still
Forwarded

Page 675 of 680

Problem: Where event fields have null values, LogStream (by default) displays them as
struck-out in the right Preview pane. The preview is misleading, because the events are
still sent to the output.
Workaround: If you do want to prevent fields with null values from reaching the output,
use an Eval Function, with an appropriate Filter expression, to remove them.
Fix: Preview corrected in LogStream 2.3.4.

Problem: A�er clicking Add Rule in a new or existing Event Breaker Ruleset, the
Event Breaker Rule modal's Rule Name field is disabled. Because Rule Name is
mandatory field, this also disables saving the Rule via the OK button.
Fix: In LogStream 2.3.3.

Problem: A�er inserting a new Function into a group and saving the Pipeline, deleting the
Function also deletes other Functions lower down in the same group.
Fix: In LogStream 2.3.2.
Workaround: Move the target Function out of the group, resave the Pipeline, and only
then delete the Function.

Problem: When a root user tries to enable boot-start as a di�erent user (e.g., using
/opt/cribl/bin/cribl boot�start enable �u <some‑username>), they receive an

error of this form:

Fix: In LogStream 2.3.2.
Workaround: Install LogStream 2.2.3 (which you can download here), then upgrade to
2.3.1.

Problem: Upon upgrading an earlier, licensed LogStream installation to v. 2.3.0, the
Worker Groups tab might be absent from the Master Node's top menu.

2020-10-27 – v.2.3.2 – Cannot Name or Save New Event Breaker Rule

2020-10-12 – v.2.3.1 – Deleting One Function Deletes Others in Same
Group

2020-09-27 – v.2.3.1 – Enabling Boot Start as Di�erent User Fails

error: found user=0 as owner for path=/opt/cribl, expected uid=NaN.
Please make sure CRIBL_HOME and its contents are owned by the uid=NaN by running:
[sudo] chown -R NaN�[$group] /opt/cribl

2020-09-17 – v.2.3.0 – Worker Groups menu tab hidden a�er upgrade to
LogStream 2.3.0

Page 676 of 680

Fix: In LogStream 2.3.1.
Workaround: Click the Home > Worker Groups tile to access Worker Groups.

Problem: Upon upgrading to v. 2.3.0, LogStream might fail to start on RHEL 6 or 7, with an
error message of the following form. This occurs when the user running LogStream
doesn't match the LogStream binary's owner. LogStream 2.3.0 applies a restrictive
permissions check using id �un <uid> , which does not work with the version of id
that ships with these RHEL releases.

Fix: In LogStream 2.3.1.
Workaround: Update your RHEL environment's id version, if possible.

Problem: Upon upgrading an earlier LogStream installation to v. 2.3.0, OIDC users might
be unable to restart the LogStream server.
Fix: In LogStream 2.3.1.
Workaround: Edit $CRIBL_HOME/default/cribl/cribl.yml to add the following lines
to its the auth section:

Problem: In a Distributed deployment, attempting to switch Distributed Settings from
Worker to Master Mode blocks with a spurious "Git not available...Please install and try
again" error message.
Fix: In LogStream 2.3.0.
Workaround: To initialize git , switch first from Worker to Single mode, and then from
Single to Master mode.

Problem: Entering valid credentials on the login page (e.g.,
http:��localhost:9000/login) yields only a spinner.

2020-09-17 – v.2.3.0 – Cannot Start LogStream 2.3.0 on RHEL 6, RHEL 7

id: 0� No such user
ERROR� Cannot run command because user=root with uid=0 does not own executable

2020-09-17 – v.2.3.0 – Cannot Start LogStream 2.3.0 with OpenId
Connect

filter_type: email_whitelist
scope: openid profile email

2020-06-11 – v.2.1.x – Can't switch from Worker to Master Mode

2020-05-19 – v.2.1.x – Login page blocks

Page 677 of 680

Fix: In LogStream 2.3.0.
Workaround: Trim /login from the URL.

Problem: In a Distributed deployment, deleting resources in default/ causes them to
reappear on restart.
Workaround/Fix: In progress.

Problem: Using in-product upgrade feature in v.1.7 (or earlier) fails to upgrade to v2.0,
due to package-name convention change.
Workaround/Fix: Download the new version and upgrade per steps laid out here.

Problem: Using in-product upgrade feature in v1.6 (or earlier) fails to upgrade to v1.7 due
to package name convention change.
Workaround/Fix: Download the new package and upgrade per steps laid out here.

Problem: When upgrading from v1.2 with a S3 output configured, stagePath was
allowed to be undefined. In v.1.4+, stagePath is a required field. This might causing
schema violations when upgrading older configs.
Workaround/Fix: Reconfigure the output with a valid stagePath filesystem path.

2020-02-22 – v.2.1.x – Deleting resources in default/

2019-10-22 – v. 2.0 – In-product upgrade issue on v2.0

2019-08-27 – v.1.7 – In-product upgrade issue on v1.7

2019-03-21 – v.1.4 – S3 stagePath issue on upgrade to v.1.4+

Page 678 of 680

THIRD-PARTYSOFTWARE
Credits

Various components in Cribl LogStream are built and enhanced with so�ware
under free or open source licenses. We thank those projects' contributors!

ag-grid-community – 19.1.2
ag-grid-react – 19.1.2
ajv – 6.9.2
ajv-errors – 1.0.1
antd – 3.26.15
as-table – 1.0.36
avsc – 5.4.9
aws-sdk – 2.530.0
@azure/storage-blob – 12.3.0
blueimp-md5 – 2.18.0
cidr-matcher – 1.0.5
clarinet – 0.12.4
classnames – 2.2.6
color-hash – 1.0.3
cron-parser – 2.15.0
d3-time – 1.1.0
d3-time-format – 2.2.3
date-fns – 1.29.0
di� – 3.5.0
di�2html – 2.11.3
echarts – 4.6.0
escodegen – 1.11.1
esprima – 4.0.1
express – 4.16.3
fast-array-di� – 1.0.0
fast-bitset – 1.3.2
file-saver – 1.3.8
good-fences – 0.9.1
http-proxy-agent – 3.0.0
https-proxy-agent – 4.0.0

Page 679 of 680

jwt-simple – 0.5.6
kafkajs – 1.11.0
kafkajs-snappy – 1.1.0
ldapts – 1.10.0
limiter – 1.1.4
lodash – 4.17.15
lz4js – 0.2.0
maxmind – 3.1.2
node-cache – 4.2.0
node-uuid – 1.4.8
numeral – 2.0.6
pako – 1.0.10
papaparse – 5.0.0-beta.0
pbf – 3.2.1
proxy-from-env – 1.0.0
query-string – 6.1.0
react – 16.13.1
react-dom – 16.13.1
react-grid-layout – 0.18.3
react-router-dom – 5.1.2
react-sortable-hoc – 1.11.0
react-split-pane – 0.1.91
@readme/markdown – 6.22.0
redis – 3.0.2
regexpp – 2.0.0
requirejs – 2.3.6
resize-observer-polyfill – 1.5.0
rxjs – 6.5.5
saxen – 8.1.0
simple-git – 1.126.0
snappyjs – 0.6.0
snmp-native – 1.2.0
streamcount – 1.0.1
tar-stream – 2.1.4
timezone-support – 2.0.2
@types/d3-time – 1.0.10
url – 0.11.0
winston – 3.0.0
xmlbuilder – 10.0.0
yaml – 1.3.2

Page 680 of 680

