
Cribl LogStream Documentation Manual

Version: v2.3

Generated: 2020-09-16 08:58:44

INTRODUCTION 6

About Cribl LogStream 6

Basic Concepts 7

DEPLOYMENT 9

Deployment Types 9

Single-Instance Deployment 11

Distributed Deployment 18

Bootstrap Workers from Master 29

Splunk App Deployment * 33

Sizing and Scaling 37

Config Files 40

cribl.yml 42

inputs.yml 44

outputs.yml 45

licenses.yml 47

regexes.yml 48

breakers.yml 49

mappings.yml 50

instance.yml 51

Licensing 52

User Authentication 57

Version Control 61

Persistent Queues 68

Securing 71

Monitoring 73

Upgrading 79

Diagnosing Issues 84

Uninstalling 86

WORKING WITH DATA 87

Routes 87

Pipelines 91

Event Model 95

Event Processing Order 97

Data Onboarding 99

Functions 102

Auto Timestamp 107

Aggregations 111

CEF Serializer 117

Clone 119

Comment 120

Drop 122

Dynamic Sampling 123

Eval 126

Flatten 129

GeoIP 131

Grok 133

JSON Unroll 135

Lookup 137

Mask 141

Numerify 146

Parser 148

Publish Metrics 155

Regex Extract 160

Regex Filter 163

Rename 164

Rollup Metrics 166

Sampling 168

Serialize 170

Suppress 173

Tee 176

Trim Timestamp 179

Unroll 181

XML Unroll 183

Prometheus Publisher (beta) 186

Reverse DNS (beta) 188

Sources 190

Splunk TCP 192

Splunk HEC 195

Syslog 199

Elasticsearch API 202

TCP JSON 205

TCP (RAW) 208

HTTP/S (Bulk API) 212

Raw HTTP/S 216

Kafka 219

Kinesis 222

Kinesis Firehose 225

Azure Event Hubs 227

Metrics 229

SQS 232

S3 235

Office 365 Services 240

Office 365 Activity 243

SNMP Trap 246

Datagens 248

Cribl Internal 250

Collectors 252

Filesystem/NFS 254

S3 257

Script 260

REST 263

Scheduling and Running 269

Destinations 275

Output Router 278

Splunk Single Instance 280

Splunk Load Balanced 283

Splunk HEC 289

S3 Compatible Stores 292

Kinesis Streams 295

CloudWatch Logs 298

SQS 301

Filesystem/NFS 305

Elasticsearch 307

Honeycomb 310

TCP JSON 313

Syslog 316

Kafka 320

Azure Blob Storage 324

Azure Monitor Logs 327

Azure Event Hubs 330

StatsD 333

StatsD Extended 336

Graphite 339

SNMP Trap 342

InfluxDB 344

MinIO 347

Wavefront 351

SignalFx 353

DevNull 355

Default 356

Data Preview 357

Securing Data 361

Encryption 362

Decryption 366

Scripts 368

Using Datagens 370

CLI Reference 375

EXPRESSION REFERENCE 382

Introduction to Expression Syntax 382

Cribl Expressions 385

KNOWLEDGE 393

Regex Library 393

Grok Patterns Library 396

Event Breakers 398

Lookups Library 406

Parsers Library 408

Schema Library 410

Global Variables Library 412

USE CASES 414

Ingest-time Fields 414

Ingest-time Lookups 417

Sampling 421

Access Logs: Apache, ELB, CDN, S3, etc. 423

Firewall Logs: VPC Flow Logs, Cisco ASA, Etc. 426

Masking and Obfuscation 429

Regex Filtering 433

Encrypting Sensitive Data 435

Syslog Data Reduction 440

KNOWN ISSUES 447

Known Issues 447

THIRD-PARTY SOFTWARE 449

Credits 449

Introduction 451

About Cribl LogStream 451

Basic Concepts 452

Deployment 454

Deployment Types 454

Single-Instance Deployment 456

Distributed Deployment 463

Bootstrap Workers from Master 474

Splunk App Deployment * 478

Sizing and Scaling 482

Config Files 485

cribl.yml 487

inputs.yml 489

outputs.yml 490

licenses.yml 492

regexes.yml 493

breakers.yml 494

mappings.yml 495

instance.yml 496

Licensing 497

User Authentication 502

Version Control 506

Persistent Queues 513

Securing 516

Monitoring 518

Upgrading 524

Diagnosing Issues 529

Uninstalling 531

Working With Data 532

Routes 532

Pipelines 536

Event Model 540

Event Processing Order 542

Data Onboarding 544

Functions 547

Page 6 of 900

Auto Timestamp 552

Aggregations 556

CEF Serializer 562

Clone 564

Comment 565

Drop 567

Dynamic Sampling 568

Eval 571

Flatten 574

GeoIP 576

Grok 578

JSON Unroll 580

Lookup 582

Mask 586

Numerify 591

Parser 593

Publish Metrics 600

Regex Extract 605

Regex Filter 608

Rename 609

Rollup Metrics 611

Sampling 613

Serialize 615

Suppress 618

Tee 621

Trim Timestamp 624

Unroll 626

XML Unroll 628

Prometheus Publisher (beta) 631

Reverse DNS (beta) 633

Sources 635

Splunk TCP 637

Splunk HEC 640

Syslog 644

Elasticsearch API 647

TCP JSON 650

TCP (RAW) 653

HTTP/S (Bulk API) 657

Page 7 of 900

Raw HTTP/S 661

Kafka 664

Kinesis 667

Kinesis Firehose 670

Azure Event Hubs 672

Metrics 674

SQS 677

S3 680

Office 365 Services 685

Office 365 Activity 688

SNMP Trap 691

Datagens 693

Cribl Internal 695

Collectors 697

Filesystem/NFS 699

S3 702

Script 705

REST 708

Scheduling and Running 714

Destinations 720

Output Router 723

Splunk Single Instance 725

Splunk Load Balanced 728

Splunk HEC 734

S3 Compatible Stores 737

Kinesis Streams 740

CloudWatch Logs 743

SQS 746

Filesystem/NFS 750

Elasticsearch 752

Honeycomb 755

TCP JSON 758

Syslog 761

Kafka 765

Azure Blob Storage 769

Azure Monitor Logs 772

Azure Event Hubs 775

StatsD 778

Page 8 of 900

StatsD Extended 781

Graphite 784

SNMP Trap 787

InfluxDB 789

MinIO 792

Wavefront 796

SignalFx 798

DevNull 800

Default 801

Data Preview 802

Securing Data 806

Encryption 807

Decryption 811

Scripts 813

Using Datagens 815

CLI Reference 820

Expression Reference 827

Introduction to Expression Syntax 827

Cribl Expressions 830

Knowledge 838

Regex Library 838

Grok Patterns Library 841

Event Breakers 843

Lookups Library 851

Parsers Library 853

Schema Library 855

Global Variables Library 857

Use Cases 859

Ingest-time Fields 859

Ingest-time Lookups 862

Sampling 866

Access Logs: Apache, ELB, CDN, S3, etc. 868

Firewall Logs: VPC Flow Logs, Cisco ASA, Etc. 871

Masking and Obfuscation 874

Regex Filtering 878

Encrypting Sensitive Data 880

Syslog Data Reduction 885

Known Issues 892

Page 9 of 900

Known Issues 892

Third-Party Software 894

Credits 894

Page 10 of 900

INTRODUCTION

About Cribl LogStream
Getting started with Cribl LogStream

Cribl LogStream helps you process machine data – logs, instrumentation data,

application data, metrics, etc. – in real time, and deliver them to your analysis platform

of choice. It allows you to:

Add context to your data, by enriching it with information from external data

sources.

Help secure your data, by redacting, obfuscating, or encrypting sensitive fields.

Optimize your data, per your performance and cost requirements.

Cribl LogStream ships in a single, no-dependencies package. It provides a refreshing

and modern interface for working with and transforming your data. It scales with – and

works inline with – your existing infrastructure, and is transparent to your applications.

Cribl LogStream is built for administrators, managers, and users of operational and

security intelligence products and services.

What Is Cribl LogStream?

Who Is Cribl LogStream For?

Updated 3 months ago

Page 11 of 900

Basic Concepts
Notable features and concepts to get a fundamental understanding of Cribl
LogStream

As we describe features and concepts, it helps to have a mental model of Cribl

LogStream as a system that receives events from various sources, processes them,

and then sends them to one or more destinations.

Let's zoom in on the center of the above diagram, to take a closer look at the

processing and transformation options that LogStream provides internally. The basic

interface concepts to work with are Routes, which manage data flowing from and to

Pipelines, which consist of Functions.

Routes evaluate incoming events against filter expressions to find the appropriate

Pipeline to send them to. Routes are evaluated in order. A Route can be associated

Routes

Page 12 of 900

with only one Pipeline and one output. By default, a Route-Pipeline-Output tuple will

consume matching events.

If the Route's Final flag is disabled, one or more event clones are sent down the

associated Pipeline, while the original event continues down the rest of the Routes.

This is very useful in cases where the same set of events needs to be processed in

multiple ways and delivered to different destinations. For more details, see Routes.

A series of Functions is called a Pipeline, and the order in which the Functions are

executed matters. Events are delivered to the beginning of a pipeline by a Route, and

as they're processed by a Function, the events are passed to the next Function down

the line.

Events only move forward – toward the end of the Pipeline, and eventually out of the

system. For more details, see Pipelines.

At its core, a Function is a piece of code that executes on an event, and that

encapsulates the smallest amount of processing that can happen to that event. For

instance, a very simple Function can be one that replaces the term foo with bar on

each event. Another one can hash or encrypt bar . Yet another function can add a
field – say, dc=jfk-42 – to any event with source=*us-nyc-application.log .

Functions process each event that passes through them. To help improve

performance, functions can optionally be configured with filters, to limit their

processing scope to matching events only. For more details, see Functions.

Pipelines

Functions

Updated 26 days ago

Page 13 of 900

DEPLOYMENT

Deployment Types
Deployment guide to get you started with Cribl

There are at least two key factors that will determine the type of Cribl LogStream

deployment in your environment:

Amount of Incoming Data: This is defined as the amount of data planned to be

ingested per unit of time. E.g. How many MB/s or GB/day?

Amount of Data Processing: This is defined as the amount of processing that will

happen on incoming data. E.g., is most data passing through and just being

routed? Or are there a lot of transformations, regex extractions, field encryptions?

Is there a need for heavy re-serialization?

When volume is low and/or amount of processing is light, you can get started with a

single instance deployment.

To accommodate increased load, we recommend scaling up and perhaps out with

multiple instances.

If you have an existing Splunk Heavy Forwarder infrastructure that you want to use,

you can deploy Cribl App for Splunk. See the note below before you plan.

Single Instance Deployment

Distributed Deployment

Splunk App Deployment

Cribl App for Splunk Deprecation Notice⚠

Click here.

Page 14 of 900

Updated 2 months ago

Page 15 of 900

Single-Instance Deployment
Getting started with Cribl LogStream on a single instance

For small-volume or light processing environments – or for test and evaluation use

cases – a single instance of Cribl LogStream might be sufficient to serve all inputs,

processing of events, and sending to outputs. This page outlines how to implement a

single-instance deployment.

OS:

Linux: RedHat, CentOS, Ubuntu, AWS Linux, Suse (64bit)

System:

+4 physical cores, +8GB RAM

5GB free disk space (more if persistent queuing is enabled)

Browser Support: Firefox 65+, Chrome 70+, Safari 12+, Microsoft Edge

Architecture

Requirements

ℹ We assume that 1 physical core is equivalent to 2 virtual/hyperthreaded

CPUs (vCPUs). All quantities listed above are minimum requirements. To

fulfill the above requirements using cloud-based virtual machines, see

Recommended AWS, Azure, and GCP Instance Types.

Page 16 of 900

By default, LogStream listens on the following ports:

The above ports can be overridden in the following configuration files:

Cribl UI port (9000): Default definitions for host , port , and other settings are
set in $CRIBL_HOME/default/cribl/cribl.yml , and can be overridden by
defining alternatives in $CRIBL_HOME/local/cribl/cribl.yml .

Data Ports: HTTP In (10080), TCPJSON in (10420) Splunk to Cribl (10000) :
Default definitions for host , port and other settings are set in

$CRIBL_HOME/default/cribl/inputs.yml , and can be overridden by defining
alternatives in $CRIBL_HOME/local/cribl/inputs.yml .

Install the package on your instance of choice. Download it here.

Ensure that the above ports are available.

Un-tar in a directory of choice, e.g., /opt/ :
tar xvzf cribl-<version>-<build>-<arch>.tgz

Go to the $CRIBL_HOME/bin directory, where the package was extracted (e.g.:

/opt/cribl/bin). Here, you can use ./cribl to:

⚠ Mac OS is no longer supported as of v. 2.3, due to LogStream's

incorporation of Linux-native features.

Network Ports

UI 9000

HTTP In 10080

Splunk to Cribl LogStream data port
localhost:10000 (Cribl App

for Splunk)

| criblstream Splunk search command to

Cribl LogStream

localhost:10420 (Cribl App

for Splunk)

User options + Other data ports as required.

Overriding Default Ports

Installing on Linux

Running

Component Default Port

Page 17 of 900

Start: ./cribl start

Stop: ./cribl stop

Reload: ./cribl reload

Restart: ./cribl restart

Get status: ./cribl status

Next, go to http://<hostname>:9000 and log in with default credentials

(admin:admin). You can now start configuring Cribl LogStream with Sources and

Destinations, or start creating Routes and Pipelines.

Cribl LogStream ships with a CLI utility that can update your system's configuration so

that LogStream can start at system boot time. Boot-start is currently supported only

on Linux. Newer systems use systemd to start processes at boot, while older ones

use initd .

To enable Cribl LogStream to start at boot time with systemd, you need to run the

boot-start command. If the user that you want to run LogStreams does not exist,

create it prior to executing. E.g., running LogStream as user charlize on boot:

sudo $CRIBL_HOME/bin/cribl boot-start enable -m systemd -u charlize

This will install a unit file (as below) and start Cribl LogStream at boot time as user

charlize . A ‑configDir option can be used to specify where to install the unit file.

If not specified, this location defaults to /etc/systemd/system .

If necessary, change ownership for the Cribl LogStream installation:

[sudo] chown -R charlize $CRIBL_HOME

Next, use the enable command to ensure that the service starts on system boot:

[sudo] systemctl enable cribl

To disable starting at boot time, run the following command:

ℹ For other available commands, see CLI Reference.

ℹ In the case of an API port conflict, the process will retry binding for 10

minutes before exiting.

Enabling Start on Boot

Using systemd

Page 18 of 900

sudo $CRIBL_HOME/bin/cribl boot-start disable

Installed systemd File

To enable Cribl LogStream to start at boot time with initd, you need to run the boot-
start command. If the user that you want to run LogStreams does not exist, create it

prior to executing. E.g., running LogStream as user charlize on boot:

sudo $CRIBL_HOME/bin/cribl boot-start enable -m initd -u charlize

This will install an init.d script in /etc/init.d/cribl.init.d , and start Cribl
LogStream at boot time as user charlize . A ‑configDir option can be used to

specify where to install the script. If not specified, this location defaults to

/etc/init.d .

If necessary, change ownership for the Cribl LogStream installation:

[sudo] chown -R charlize $CRIBL_HOME

To disable starting at boot time, run the following command:

sudo $CRIBL_HOME/bin/cribl boot-start disable

[Unit]
Description=Systemd service file for Cribl LogStream.
After=network.target

[Service]
Type=forking
User=charlize
Restart=on-failure
RestartSec=5
LimitNOFILE=65536
PIDFile=/install/path/to/cribl/pid/cribl.pid
ExecStart=/install/path/to/cribl/bin/cribl start
ExecStop=/install/path/to/cribl/bin/cribl stop
ExecStopPost='/bin/rm -f /install/path/to/cribl/pid/cribl.pid'
ExecReload=/install/path/to/cribl/bin/cribl reload
TimeoutSec=60

[Install]
WantedBy=multi-user.target

Using initd

Do NOT Run LogStream as Root!⚠

If LogStream is required to listen on ports 1–1024, it will need privileged

access. On a Linux system with POSIX capabilities, you can achieve this by

adding the CAP_NET_BIND_SERVICE capability. For example: # setcap
cap_net_bind_service=+ep $CRIBL_HOME/bin/cribl

Page 19 of 900

You can direct all outbound HTTP/S requests to go through proxy servers. You do so

by setting a few environment variables before starting LogStream, as follows:

Configure the HTTP_PROXY and HTTPS_PROXY environment variables either with your

proxy's IP address, or with a DNS name that resolves to that IP address. Optionally,

follow either convention with a colon and the port number to which you want to send

queries.

HTTP_PROXY examples:

HTTPS_PROXY examples:

You can use HTTP Basic authentication on HTTP or HTTPS proxies. Specify the user

name and password in the proxy URL. For example:

On some OS versions (such as CentOS), you must add an -i switch to the

setcap command. For example: # setcap -i
cap_net_bind_service=+ep $CRIBL_HOME/bin/cribl

Upon starting the LogStream server, a Port xxx is already in use
error might indicate that setcap did not successfully execute.

System Proxy Configuration

$ export HTTP_PROXY=http://10.15.20.25:1234
$ export HTTP_PROXY=http://proxy.example.com:1234

$ export HTTPS_PROXY=http://10.15.20.25:5678
$ export HTTPS_PROXY=http://proxy.example.com:5678

Case Conflictsℹ

The environment variables' names can be either uppercase or lowercase.

However, if you set duplicate versions of the same name, the lowercase

version takes precedence. E.g., if you've set both HTTPS_PROXY and

https_proxy , the IP address specified in https_proxy will take effect.

Authenticating on Proxies

$ export HTTP_PROXY=http://username:password@proxy.example.com:1234
$ export HTTPS_PROXY=http://username:password@proxy.example.com:5678

Bypassing Proxies with NO_PROXY

Page 20 of 900

If you've set the above environment variables, you can negate them for specified (or

all) hosts. Set the NO_PROXY environment variable to identify URLs that should bypass

the proxy server, and instead be sent as direct requests. Use the following format:

$ export NO_PROXY="<list of hosts/domains>"

Usage notes:

Within the list, separate the host/domain names with commas or spaces.

Optionally, each host/domain entry can be followed by a port. If specified, the port

must match. If not specified, the protocol's default port is assumed.

If specified, subdomain names must match. E.g., NO_PROXY=foo.example.com
will send requests directly to https://foo.example.com, but

https://bar.example.com requests will go through the proxy.

You can use leading wildcards like NO_PROXY="*.us, .org" .

NO_PROXY="*" disables all proxies.

NO_PROXY with an empty list disables no proxies.

Proxy configuration is relevant to the following LogStream components that make

outbound HTTP/S requests:

S3 Compatible Stores

AWS Kinesis Streams

AWS CloudWatch Logs

AWS SQS

Azure Blob Storage

Azure Event Hubs

Azure Monitor Logs

Elasticsearch

Honeycomb

Splunk HEC

AWS Kinesis Streams

AWS SQS

AWS S3

Azure Event Hubs

Where Proxies Apply

Destinations

Sources

Page 21 of 900

S3 Collector

A single-instance installation can be configured to scale up and utilize as many

resources on the host as required. See Sizing and Scaling for details.

Collectors

Scaling Up

Updated a day ago

Page 22 of 900

Distributed Deployment
Getting started with Cribl LogStream on a distributed deployment

To sustain higher incoming data volumes, and/or increased processing, you can scale

from a single instance up to a multi-instance, distributed deployment. Instances in the

deployment serve all inputs, process events, and send to outputs independently. The

instances are managed centrally by a single Master Node, which is responsible for

keeping configurations in sync, and for tracking and monitoring their activity metrics.

Single Instance – a normal Cribl LogStream instance, running by itself.

Master Node – a Cribl LogStream instance running in master mode, used to centrally

author configurations and monitor a distributed deployment.

Worker Node – a Cribl LogStream instance running as a managed worker, whose

configuration is fully managed by a Master Node.

Worker Group – a collection of Worker Nodes that share the same configuration.

Worker Process – a process within a Single Instance or Worker Nodes that handles

data inputs, processing, and output

Mapping Ruleset – an ordered list of Filters, used to map Workers to Worker Groups.

This is an overview of distributed LogStream deployment's components.

Distributed Deployment

Concepts

ℹ A Worker Node's local running config can be manually overridden/changed,

but changes won't persist on the filesystem.

Architecture

Page 23 of 900

Distributed deployment architecture

OS:

Linux: RedHat, CentOS, Ubuntu, AWS Linux, Suse (64bit)

System:

+4 physical cores, +8GB RAM

5GB free disk space

Git: git must be available on the Master Node. See details below.

Browser Support: Firefox 65+, Chrome 70+, Safari 12+, Microsoft Edge

See Single-Instance Deployment for requirements and Sizing and Scaling for capacity

planning details.

Master Node Requirements

ℹ We assume that 1 physical core is equivalent to 2 virtual/hyperthreaded

CPUs (vCPUs). All quantities listed above are minimum requirements.

⚠ Mac OS is no longer supported as of v. 2.3, due to LogStream's

incorporation of Linux-native features.

Worker Node Requirements

Network Ports – Master Node

Page 24 of 900

In a distributed deployment, Workers communicate with the Master Node these ports.

Ensure that the Master is reachable on those ports from all Workers.

By default, all LogStream Worker instances listen on the following ports:

See Single-Instance Deployment, as the installation procedures are identical.

LogStream requires git (version 1.8.3.1 or higher) to be available locally on the host

where the Master Node will run. Configuration changes must be committed to git

before they're deployed.

If you don't have git installed, check here for details on how to get started.

The Master node uses git to:

Manage configuration versions across worker groups.

Provide users with an audit trail of all configuration changes.

Allow users to display diffs between current and previous config versions.

Using the UI:

API 9000

Heartbeat 4200

Network Ports – Worker Nodes

UI 9000

HTTP In 10080

User options + Other data ports as required.

Installing on Linux

Version Control with git

Setting up Master and Worker Nodes

1. Configuring a Master Node

Component Default Port

Component Default Port

Page 25 of 900

In Settings > Distributed Management, select Mode Master. Supply the required

Master settings (Address and Port). Customize the optional settings if desired. Then

click Save to restart.

Or, through instance.yml :

In $CRIBL_HOME/local/_system/instance.yml , under the distributed section, set

mode to master :

$CRIBL_HOME/local/_system/instance.yml

Using the UI:

In Settings > Distributed Management, select Mode Worker. Supply the required

Master settings (Address and Port). Customize the optional settings if desired. Then

click Save to restart.

Or, through instance.yml :

In $CRIBL_HOME/local/_system/instance.yml , under the distributed section, set

mode to worker :

$CRIBL_HOME/local/_system/instance.yml

distributed:
 mode: master
 master:
 host: <IP or 0.0.0.0>
 port: 4200
 tls:
 disabled: true
 ipWhitelistRegex: /.*/
 authToken: <auth token>
 enabledWorkerRemoteAccess: false
 compression: none
 connectionTimeout: 5000
 writeTimeout: 10000

Worker UI Accessℹ

If you enable the Worker UI access option (enabledWorkerRemoteAccess
key), you will be able to click through from the Master's Manage Worker

Nodes screen to an authenticated view of each Worker's UI. An orange

header labeled Viewing Worker: <host/GUID> will appear to confirm that

you are remotely viewing a Worker's UI.

2. Configuring a Worker Node

distributed:
 mode: worker

Page 26 of 900

Alternatively, you can start Worker Nodes with environment variables. For example:

CRIBL_DIST_MASTER_URL=tcp://criblmaster@masterHostname:4203 ./cribl
start

See the Environment Variables section for more details.

The Master Node has two primary roles:

1. Serves as a central location for Workers' operational metrics. The Master ships

with a monitoring console that has a number of dashboards, covering almost

every operational aspect of the deployment.

2. Serves as a central location for authoring, validating, deploying, and synchronizing

configurations across Worker Groups.

 envRegex: /^CRIBL_/
 master:
 host: <master address>
 port: 4200
 authToken: <token here>
 compression: none
 tls:
 disabled: true
 connectionTimeout: 5000
 writeTimeout: 10000
 tags:
 - tag1
 - tag2
 - tag42
 group: teamsters

How Do Workers and Master Work Together

Page 27 of 900

Master Node/Worker Nodes relationship

UI access to Master Node: TCP 9000.

Worker Node to Master Node: TCP 9000 (API access).

Worker Node to Master Node: TCP 4200 (Heartbeat/Metrics).

Workers will periodically (every 10 seconds) send a heartbeat to the Master. This

heartbeat includes information about themselves, and a set of current system metrics.

The heartbeat payload includes facts – such as hostname, IP address, GUID, tags,

environment variables, current software/configuration version, etc. – that the Master

tracks with the connection.

The failure of a Worker Node to successfully send two consecutive heartbeat

messages to the Master will cause the respective Worker to be removed from the

Workers page in the Master's UI until the Master receives a heartbeat message from

the affected Worker.

When a Worker Node checks in with the Master:

The Worker sends heartbeat to Master.

The Master uses the Worker s̓ facts and Mapping Rules to map it to a Worker

Group.

The Worker Node pulls its Group's updated configuration bundle, if necessary.

Network Port Requirements (Defaults)

Master/Worker Node Communication

Config Bundle Management

Page 28 of 900

Config bundles are compressed archives of all config files and associated data that a

Worker needs to operate. The Master creates bundles upon Deploy, and manages

them as follows:

Bundles are wiped clean on startup.

While running, at most 5 bundles per group are kept.

Bundle cleanup is invoked when a new bundle is created.

The Worker pulls bundles from the Master and manages them as follows:

Last 5 bundles and backup files are kept.

At any point in time, all files created in the last 10 minutes are kept.

Bundle cleanup is invoked after a reconfigure.

Worker Groups facilitate authoring and management of configuration settings for a

particular set of Workers. To create a new Worker Group, go to the Worker Groups

top-level menu and click + Add New.

Clicking on the newly created group will present you with an interface for authoring

and validating its configuration. You can configure everything for this Group as if it

were a single Cribl LogStream instance – using exactly the same visual interface for

Routes, Pipelines, Sources, Destinations and System Settings.

Mapping Rulesets are used to map Workers to Worker Groups. Only one Mapping

Ruleset can be active at any one time. A ruleset is a list of rules that evaluate Filter

expressions on the information that Workers send to the Master.

The ruleset behavior is similar to Routes, where the order matters and the Filter section

supports full JS expressions. The ruleset matching strategy is first-match, and one

Worker can belong to only one Worker Group. At least one Worker Group should be

defined and present in the system.

Worker Groups

Configuring a Worker Group

ℹ To explicitly set passwords for Worker Groups, see User Authentication.

Mapping Workers to Worker Groups

Example

Page 29 of 900

Define a rule for all hosts that satisfy this condition:

IP address starts with 10.10.42 , AND

More than 6 CPUs, OR CRIBL_HOME environment variable contains w0 , AND

Belongs to Group420 .

Rule Name: myFirstRule

Filter: (conn_ip.startsWith('10.10.42.') && cpus > 6) ||
env.CRIBL_HOME.match('w0')

Group: Group420

To create a Mapping Ruleset, start on the Mappings top-level menu, then click + Add

New.

Click on the newly created item, and start adding rules by clicking on + Add Rule.

While working with or tuning rules, the Preview in the right pane will show which

currently reporting and tracked workers map to which Worker Groups.

A ruleset must be activated before it can be used by the Master. To activate it, go to

Mappings and click Activate on the required ruleset. You can also Clone a ruleset if

you'd like to work on it offline, test different filters, etc.

Although not required, Workers can be configured to send a group with their payload.

See below how this ranks in mapping priority.

When an instance runs as Master, the following are created automatically:

A default Worker Group.

A default Mapping Ruleset,

with a default Rule matching all (true).

Priority for mapping to a group is as follows: Mapping Rules > Group sent by Worker >

default Group.

If a Filter matches, use that Group.

Else, if a Worker has a Group defined, use that.

Else, map to the default Group.

Rule Configuration

Creating a Mapping Ruleset

ℹ The Mappings top-level menu appears only when you have started

LogStream with the DISTRIBUTED MANAGEMENT > Mode set to Master.

Mapping Order of Priority

Page 30 of 900

The typical workflow for deploying configurations is the following:

1. Work on configs.

2. Commit (and optionally push).

3. Deploy.

Deployment is the last step after configuration changes have been saved and

committed. Deploying here means propagating updated configs to Workers. Deploying

new configurations is done at the Group level. To deploy, locate your desired Group

and click on Deploy. Workers that belong to the group will start pulling updated

configurations on their next check-in.

On the Master, a group's configuration lives under:

$CRIBL_HOME/groups/<groupName>/local/cribl/ .
On the managed Worker, after configs have been pulled, they're extracted under:

$CRIBL_HOME/local/cribl/ .

On the Master, a group's lookup files live under:

$CRIBL_HOME/groups/<groupName>/data/lookups .

On the managed Worker, after configs have been pulled, lookups are extracted under:

$CRIBL_HOME/data/lookups . When deployed via the Master, lookup files are
distributed to Workers as part of a configuration deployment.

If you want your lookup files to be part of the LogStream configuration's version

control process, we recommended deploying using the Master Node. Otherwise, you

can update your lookup file out-of-band on the individual workers. The latter is

especially useful for larger lookup files (> 10 MB, for example), or for lookup files

maintained using some other mechanism, or for lookup files that are updated

frequently.

Deploying Configurations

⚠ When a Worker Node pulls its first configs, the admin password will be

randomized, unless specifically changed. I.e., users won't be able to log in

on the Worker Node with default credentials.

Configuration Files

Lookup Files

ℹ Some configuration changes will require restarts, while many others require

only reloads. See here for details. Restarts/reloads of each worker process

are handled automatically by the Worker.

Page 31 of 900

During a restart, to minimize ingestion disruption and increase availability of network

ports, worker processes on a Worker Node are restarted in a rolling fashion. 20% of

running processes – with a minimum of one process – are restarted at a time. A

worker process must come up and report as started before the next one is restarted.

This rolling restart continues until all processes have restarted. If a worker process fails

to restart, configurations will be rolled back.

If data flows in via Load Balancers, make sure to register all instances. Each Cribl

LogStream node exposes a health endpoint that your Load Balancer can check to

make a data/connection routing decision.

CRIBL_DIST_MASTER_URL – URL of the Master Node. Format:

<tls|tcp>://<authToken>@host:port?
group=defaultGroup&tag=tag1&tag=tag2&tls.<tls-settings below> .

tls.privKeyPath – Private Key Path.

tls.passphrase – Key Passphrase.

tls.caPath – CA Certificate Path.

tls.certPath – Certificate Path.

tls.rejectUnauthorized – Validate Client Certs. Boolean, defaults to

false .

tls.requestCert – Authenticate Client (mutual auth). Boolean, defaults to

false .

tls.commonNameRegex – Regex matching peer certificate > subject >

common names allowed to connect. Used only if tls.requestCert is set to

true .

CRIBL_DIST_MODE – worker | master . Defaults to worker iff

CRIBL_DIST_MASTER_URL is present.

CRIBL_HOME – Auto setup on startup. Defaults to parent of bin directory.

CRIBL_CONF_DIR – Auto setup on startup. Defaults to parent of bin directory.

Worker Process Rolling Restart

Auto-Scaling Workers and Load-Balancing Incoming
Data

curl http://<host>:<port>/api/v1/health {"status":"healthy"}

Environment Variables

Health Check Endpoint Healthy Response

Page 32 of 900

CRIBL_NOAUTH – Disables authentication. Careful here!!

Deprecated variables: CRIBL_CONFIG_LOCATION , CRIBL_SCRIPTS_LOCATION

When you install and first run the software, a GUID is generated and stored in a .dat
file located in CRIBL_HOME/bin/ , e.g.:

cat CRIBL_HOME/bin/676f6174733432.dat
{"it":1570724418,"phf":0,"guid":"48f7b21a-0c03-45e0-a699-01e0b7a1e061"}

When deploying Cribl LogStream as part of a host image or VM, be sure to remove this

file, so that you don't end up with duplicate GUIDs. The file will be regenerated on next

run.

Workers GUID

Updated a day ago

Page 33 of 900

Bootstrap Workers from Master
Boot fully provisioned workers

This feature of LogStream allows workers to completely provision themselves on initial

boot, directly from the master. It allows a fleet of any number of nodes to launch. and

be fully functional within the cluster, in seconds.

A LogStream Master Node (v2.2 or higher) provides a bootstrap API endpoint, at

/init/install-worker.sh , which returns a shell script. You can run this shell script
on any supported machine (see Restrictions below) without LogStream installed, fully

provisioning the machine as a Worker Node.

Although you can specify the download URL when you execute the initial curl

command, the LogStream package is not downloaded until the script is generated by

the API, and then later executed.

GET http://<master hostname or IP>:9000/init/install-worker.sh

How Does It Work?

Root Access or sudo⚠

Note that the script will install LogStream into /opt/cribl , and will make
system-level changes. For systems like Ubuntu, which don't allow direct

root access, you'll need to use the sudo command when executing the

script.

API Spec

Request Format

Query Strings

token required

Master Node s̓ shared secret (authToken). By
default, this is set to criblmaster . You can
find this secret in the the Master Node's

Distributed Settings section.

group optional
Name of the cluster s̓ work group. If not

specified, falls back to default .

String Required? Description

Page 34 of 900

HTTP

Shell

download_url optional Provide the complete URL to a Cribl

LogStream installation binary. This is especially

useful if the Worker Nodes donʼt have access

to the Internet to download from cribl.io.

Example HTTP Request

GET http://<master hostname or IP>:9000/init/install-worker.sh?token=7936

Response

#!/bin/sh

START CRIBL MASTER TEMPLATE SETTINGS ###

CRIBL_MASTER_HOST="<Master FQDN/IP>"
CRIBL_AUTH_TOKEN="<Auth token string>"
CRIBL_VERSION="<Version>"
CRIBL_GROUP="<Default group preference>"
CRIBL_MASTER_PORT="<Master heartbeat port>"
CRIBL_DOWNLOAD_URL="<download url>"

END CRIBL MASTER TEMPLATE SETTINGS ###

Set defaults
checkrun() { $1 --help >/dev/null 2>/dev/null; }
faildep() { [$? -eq 127] && echo "$1 not found" && exit 1; }
[-z "${CRIBL_MASTER_HOST}"] && echo "CRIBL_MASTER_HOST not set" && exit
CRIBL_INSTALL_DIR="${CRIBL_INSTALL_DIR:-/opt/cribl}"
CRIBL_MASTER_PORT="${CRIBL_MASTER_PORT:-4200}"
CRIBL_AUTH_TOKEN="${CRIBL_AUTH_TOKEN:-criblmaster}"
CRIBL_GROUP="${CRIBL_GROUP:-default}"
if [-z "${CRIBL_DOWNLOAD_URL}"]; then
 FILE="cribl-${CRIBL_VERSION}-linux-x64.tgz"
 CRIBL_DOWNLOAD_URL="https://cdn.cribl.io/dl/$(echo ${CRIBL_VERSION}
fi
UBUNTU=0
CENTOS=0
AMAZON=0

echo "Checking dependencies"
checkrun curl && faildep curl
checkrun adduser && faildep adduser
checkrun usermod && faildep usermod
BOOTSTART=1
SYSTEMCTL=1
checkrun systemctl && [$? -eq 127] && BOOTSTART=0
checkrun update-rc.d && [$? -eq 127] && BOOTSTART=0

Page 35 of 900

An easy way of wrapping HTTP methods is to use the curl command. Here is an

example, which uses a GET operation by default, with the same URL used in the

above HTTP example:

Shell

The GET and curl procedures above will only output the contents of the script that

needs executing – the script will still need to be manually executed. However, you can

automate that part, too, using the command below. This passes the script's contents

to the sh shell to immediately execute. As noted above, on Ubuntu and similar

systems, you might need to insert sudo before the sh .

Shell

We'll now graduate to the next level by adding more to the above commands. All the

preceding commands excluded the download_url parameter so, by default, the

script gets configured to download the LogStream package from the public Cribl

repository.

To successfully execute the curl command while also specifying the

download_url , you must enclose the URL in double quotes. The reason for this is

that the & character that joins multiple HTTP parameters is interpreted by the shell as

the operator to run commands in the background. Quoting the URL, as shown in this

example, prevents this.

echo "Checking OS version"
lsb_release -d 2>/dev/null | grep -i ubuntu && [$? -eq 0] && UBUNTU=1
cat /etc/system-release 2>/dev/null | grep -i amazon && [$? -eq 0] && A

echo "Creating cribl user"
if [$UBUNTU -eq 1]; then
 adduser cribl --home /home/cribl --gecos "Cribl LogStream User" --dis
fi
if [$CENTOS -eq 1] || [$AMAZON -eq 1]; then
 adduser cribl -d /home/cribl -c "Cribl LogStream User" -m
 usermod -aG wheel cribl
fi

curl Option

curl http://<master hostname or IP>:9000/init/install-worker.sh?token=793

Chaining Script Execution

curl http://<master hostname or IP>:9000/init/install-worker.sh?token=793

Adding Download URL

Page 36 of 900

Shell

Keep the following in mind when using this feature:

Each Worker must normally have access to the internet in order to download the

Cribl LogStream installation binary from cribl.io. Where this isnʼt feasible, you can

use the download_url switch to point to a binary in a restricted location.

By default, Worker Nodes communicate with the Master on port 4200. Ensure

that access between all Workers and the Master is open on this port.

TLS is not enabled by default. If enabled and configured, access to this feature

will be over https instead of http .

Ubuntu, CentOS, and Amazon Linux are the only supported Worker platforms.

For public-cloud customers, an easy way to use this feature is in an instance s̓ user

data. Simply use the following script (changing the command as needed. based on the

information above). Upon launch, the Worker Node will reach out to the Master,

download the script, download the LogStream package from the specified location,

and then install and configure LogStream:

Shell

curl "http://<master hostname or IP>:9000/init/install-worker.sh?token=79

Status Codes

200 – OK All is well. You should have received the script as a response.

403 –

Forbidden

Either the node is not configured as a Master, or the token

provided is invalid.

Restrictions

User Data

#!/bin/bash
curl http://<master-node-ip/host-address>:9000/init/install-worker.sh?tok

Updated 2 months ago

Status Code Reason

Page 37 of 900

Splunk App Deployment *
Getting started with Cribl App for Splunk

In a Splunk environment, Cribl LogStream can be installed and configured as a Splunk

app (Cribl App for Splunk). Depending on your requirements and architecture, it can

run either on a Search Head or on a Heavy Forwarder. Cribl App for Splunk cannot be

used in a Cribl LogStream Distributed Deployment, and cannot be managed by a Cribl

Master Node.

When running on a SH, Cribl LogStream is set to mode-searchhead, the default mode

for the app. It listens for localhost traffic generated by a custom command: |
criblstream . The command is used to forward search results to the LogStream
instance's TCP JSON input on port 10420 , but it's also capable of sending to any
other LogStream instance listening for TCP JSON.

Once received, data can be processed and forwarded to any of the supported

Destinations. In addition, several out-of-the box saved searches are ready to run and

send their results to Cribl with a single click.

Select an instance on which to install.

Ensure that ports 10000 , 10420 , and 9000 are available. See the Requirements

section for more info.

Get the bits here, and install as a regular Splunk app.

Restart the Splunk instance.

Go to https://<instance>/en-US/app/cribl or https://<instance>:9000 ,
and log in with Splunk admin role credentials.

Cribl App for Splunk for HFs Is Deprecated as of Cribl LogStream v.2.1⚠

Cribl will continue to support this package, but customers are advised to

begin planning now for the eventual removal of support.

See Single-Instance Deployment and Distributed Deployment for

alternatives.

Deploying Cribl App for Splunk

Running on a Search Head (SH)

Installing the Cribl App for Splunk on a SH

Page 38 of 900

Working with search results in a Cribl LogStream pipeline.

Sending search results to any Destination supported by Cribl LogStream.

When running on an HF, Cribl LogStream is set to mode-hwf. It receives events from

the local Splunk process per routing configurations in props.conf and

transforms.conf . Data is parsed and processed first by Splunk pipelines, and then
by LogStream. By default, all data except internal indexes is routed out right after the

Typing pipeline.

Cribl LogStream is capable of accepting data streams (unbroken events) or events

from other sources. In this case, the HF will deliver events locally to LogStream, which

processes them and sends them to one or more destinations downstream. When

receivers are Splunk indexers, LogStream can also load-balance across them.

Select an instance on which to install.

Typical Use Cases for Search Head Mode

Running on a Heavy Forwarder (HF)

Installing the Cribl App for Splunk on a HF

Page 39 of 900

Ensure that ports 10000 , 10420 , and 9000 are available. See here.

Get the bits here, and install as a regular Splunk app.

Set Cribl to mode-hwf: $SPLUNK_HOME/etc/apps/cribl/bin/cribl mode-hwf .

Restart the Splunk instance.

Go to https://<instance>:9000 and log in with Splunk admin role credentials.

When Cribl App for Splunk is installed on a HF (in mode-hwf), below are the relevant

sections in configuration files that enable Splunk to send data to Cribl LogStream:

apps/cribl/default/outputs.conf

apps/cribl/default/inputs.conf

apps/cribl/default/transforms.conf

⚠ The SPLUNK_HOME environment variable must be defined.

Note About Splunk Warnings✅

If you come across messages similar to the following example, on

startup or in logs, please ignore them. They are benign warnings.

Invalid value in stanza [route2criblQueue]/[hecCriblQueue]
in /opt/splunk/etc/apps/cribl/default/transforms.conf, line
11: (key: DEST_KEY, value: criblQueue) / line 24: (key:
DEST_KEY, value: $1)

Relevant configurations in Cribl App for Splunk on a HF

[tcpout]
disabled = false
defaultGroup = cribl

[tcpout:cribl]
server=127.0.0.1:10000
sendCookedData=true
useACK = false
negotiateNewProtocol = false
negotiateProtocolLevel = 0

[splunktcp]
route=has_key:_replicationBucketUUID:replicationQueue;has_key:_dstrx:typi

[route2cribl]
SOURCE_KEY = _MetaData:Index

Page 40 of 900

apps/cribl/default/props.conf

The props.conf stanza above will apply the above transforms to everything.

Depending on your requirements, you might want to target only a subset of your

sources, sourcetypes, or hosts. For example, the diagram below shows the effective

configurations of outputs.conf , props.conf , and transforms.conf to send

<bluedata> events through Cribl LogStream.

To send data from Cribl LogStream to a set of Splunk indexers, use the LogStream UI

to go to Destinations > Splunk Load Balanced, then enter the required information.

REGEX = ^[^_]
DEST_KEY = _TCP_ROUTING
FORMAT = cribl

[route2criblQueue]
SOURCE_KEY = _MetaData:Index
REGEX = ^[^_]
DEST_KEY = queue
FORMAT = criblQueue

[default]
TRANSFORMS-cribl = route2criblQueue, route2cribl

Configuring Cribl LogStream with a Subset of Your Data

Configure Cribl LogStream to Send Data to Splunk Indexers

Updated 19 days ago

Page 41 of 900

Sizing and Scaling

A Cribl LogStream installation can be scaled up within a single instance and/or scaled

out across multiple instances. Scaling allows for:

Increased data volumes of any size.

Increased processing complexity.

Increased deployment availability.

Increased number of destinations.

A single-instance Cribl LogStream installation can be configured to scale up and utilize

as many resources on the host as required. Allocation of resources is governed

through the General Settings > Worker Processes Settings section.

Memory (MB): Amount of memory available to each worker process, in MB. Defaults

to 2048 .

Process count: Indicates the number of worker processes to spawn. Negative

numbers can be used to tie the number of workers relative to the number of CPUs in

the system. Any setting less than 1 is interpreted as { number of CPUs available
minus this setting }.

For example, assuming a Cribl LogStream system with 6 physical cores (12 vCPUs):

If Process count is set to 4 , then the system will spawn 4 processes, using up to

4 vCPUs, leaving 8 free.

If Process count is set to -2 , then the system will spawn 10 processes (12-2),

using up to 10 vCPUs. This will leave 2 vCPUs free.

It's important to understand that worker processes operate in parallel, i.e.,

independently of each other. This means that:

Scale Up

ℹ Throughout these guidelines, we assume that 1 physical core is equivalent

to 2 virtual/hyperthreaded CPUs (vCPUs).

ℹ LogStream incorporates guardrails that prevent spawning more processes

than available vCPUs.

Page 42 of 900

1. Data coming in on a single connection will be handled by a single worker process.

To get the full benefits of multiple worker processes, data should come over

multiple connections..

E.g., it's better to have 5 connections to TCP 514, each bringing in 200GB/day,

than one at 1TB/day.

2. Each worker process will maintain and manage its own outputs. E.g., if an instance

with 2 worker processes is configured with a Splunk output, then the Splunk

destination will see 2 inbound connections.

As with most data processing applications, Cribl LogStream's expected resource

utilization will be commensurate with the type of processing that is occurring. For

instance, a function that adds a static field on an event will likely perform faster than

one that applies a regex to finding and replacing a string. At the time of this writing:

A worker process will use up to 1 physical core, or 2 vCPUs.

Processing performance is proportional to CPU clock speed.

All processing happens in-memory.

Processing does not require significant disk allocation.

Current guidance for capacity planning is: Allocate 1 physical core for each

400GB/day of IN+OUT throughput. So, to estimate the number of cores needed:

Sum your expected input and output volume, then divide by 400GB.

Example 1: 100GB IN -> 100GB out to each of 3 destinations = 400GB total = 1

physical core.

Example 2: 3TB IN -> 1TB out = 4TB total = 10 physical cores.

Example 3: 4 TB IN -> full 4TB to Destination A, plus 2 TB to Destination B = 10TB

total = 25 physical cores.

You could meet the requirement above with multiples of the following instances:

AWS – Compute Optimized Instances. For other options, see here.

Capacity and Performance Considerations

Estimating Requirements

Recommended AWS, Azure, and GCP Instance Types

c5d.2xlarge (4 physical cores,

8vCPUs)

c5.2xlarge (4 physical cores,

8vCPUs)

c5d.4xlarge or higher (8 physical cores,

16vCPUs)

c5.4xlarge or higher (8 physical cores,

16vCPUs)

Minimum Recommended

Page 43 of 900

Azure – Compute Optimized Instances

GCP – Compute Optimized Instances

When data volume, processing needs, or other requirements exceed what a single

instance can sustain, a Cribl LogStream deployment can span multiple nodes. This is

known as a Distributed Deployment, and it can be configured and managed centrally

by a single master instance. See Distributed Deployment for more details.

Standard_F8s_v2 (4 physical

cores, 8vCPUs)

Standard_F16s_v2 or higher (8 physical

cores, 16vCPUs)

c2-standard-8 (4 physical cores,

8vCPUs)

n2-standard-8 (4 physical cores,

8vCPUs)

c2-standard-16 or higher (8 physical cores,

16vCPUs)

n2-standard-16 or higher (8 physical cores,

16vCPUs)

Scale Out

Updated about a month ago

Minimum Recommended

Minimum Recommended

Page 44 of 900

Config Files

Even though all the Routes, Pipelines, and Functions can be managed from the UI, it's

important to understand how the configuration works under the hood. At the time of

this writing this is how configuration paths and files are laid on the filesystem.

All paths below are relative to $CRIBL_HOME .

Understanding Configuration Paths and Files

Local

Configurations
local/cribl

System

Configuration

(default|local)/cribl/cribl.yml
See cribl.yml

API

Configuration
(default|local)/cribl/api.yml

Source

Configuration

(default|local)/cribl/inputs.yml
See inputs.yml

Destination

Configuration

(default|local)/cribl/outputs.yml
See outputs.yml

License

Configuration
(default|local)/cribl/licenses.yml

Regexes

Configuration
(default|local)/cribl/regexes.yml

Breakers

Configuration
(default|local)/cribl/breakers.yml

Limits

Configuration
(default|local)/cribl/limits.yml

$CRIBL_HOME

Standalone Install:

/path/to/install/cribl/

Splunk App Install:

$SPLUNK_HOME/etc/apps/cribl/

Default

Configurations
default/cribl

Page 45 of 900

Any configuration changes resulting from UI interactions, for instance, changing

the order of functions in a pipeline, or changing the order of routes, do not

require restarts.

All Cribl LogStream configuration file changes resulting from direct file

manipulations in

(bin|local|default)/cribl/... will require restarts.

In the case of a Cribl App for Splunk, Splunk configurations file changes may or

may not require restarts. Please check with recent Splunk docs.

Similar to most *nix systems, Cribl configurations in local take precedence over

those in default . There is no layering of configuration files.

Pipelines

Configuration

(default|local)/cribl/pipelines/<pname>
Each pipeline's conf is contained therein

Routes

Configuration
(default|local)/cribl/pipelines/routes.yml

Functions
(default|local)/cribl/functions/<function_name>
Each function's code, conf is contained therein

Functions Conf
(default|local)/cribl/functions/<function_name>/...
Each function's conf contained therein.

Configurations and Restart

Configuration Layering and Precedence

Editing Configuration Files Manually⚠

When config files must be edited manually, all changes should be done in

local .

Updated 2 months ago

Page 46 of 900

cribl.yml

cribl.yml contains settings for configuring API and other system properties.

$CRIBL_HOME/default/cribl/cribl.yml

api:
 # Address to bind to. Default: 0.0.0.0
 host: 0.0.0.0
 # Port to listen to. Default: 9000
 port: 9000
 # Flag to enable/disable UI. Default: false
 disabled : false
 # SSL Settings
 ssl:
 # SSL is enabled by default
 disabled: false
 # Path to private key
 privKeyPath: /path/to/privkey.pem
 # Path to certificate
 certPath: /path/to/cert.pem
auth:
 # Type of authentication.
 type: splunk
 host: localhost
 port: 8089
 ssl: true
workers: # worker processes, memory in MB
 count: 2
 memory: 2048
kms.local:
 # Encryption key management system settings. Default type: local.
 type: local
crypto:
 # Crypto settings.
 keyPath: $CRIBL_HOME/local/cribl/auth/keys.json
system:
 # Upgradability options: api, auto, false
 upgrade: api
 # Restart options: api, false
 restart: api
 # installType options: standalone, splunk-app
 installType: standalone
 # Flag to enable/disable intercom. Default: true
 intercom: true
license:
 accepted: true
distributed mode: master | worker | single
distributed:
 mode: master

Page 47 of 900

Updated 9 months ago

Page 48 of 900

inputs.yml

inputs.yml contains settings for configuring inputs into Cribl.

$CRIBL_HOME/default/cribl/inputs.yml

inputs:
 # Input name
 local-splunk:
 # Input type
 type: splunk
 # Address to listen to for incoming events
 host: localhost
 # Port to listen to for incoming events
 port: 10000
...

 secureTCPJSON:
 type: tcpjson
 disabled: false
 host: 0.0.0.0
 port: 10002
 tls:
 disabled: false
 privKeyPath: /opt/privkey.pem
 certPath: /opt/cert.pem
 requestCert: false
 rejectUnauthorized: false
 ipWhitelistRegex: /.*/
 authToken: ""

Updated 11 months ago

Page 49 of 900

outputs.yml

outputs.yml contains settings for configuring outputs from Cribl. Also see

Destinations for more info.

$CRIBL_HOME/default/cribl/outputs.yml

outputs:
 # Default output setting
 default:
 type: default
 defaultId: local-splunk
 # Output Name
 local-splunk:
 # Output type
 type: splunk
 # Output host address to send data from
 host: localhost
 # Output port to send data from
 port: 9999
 # Output name
 myFilesystemDestination:
 # Output type
 type: filesystem
 # Final destination path. Writable by Cribl.
 destPath: /path/to/destiation
 # Staging destination path. Writable by Cribl.
 stagePath: /tmp/foo
 # Partition schema for outputted files
 partitionExpr: >-
 `${host}/${sourcetype}`
 # Format of the output data
 format: json
 # The output filename prefix
 baseFileName: CriblOut
 # Compression options. None | Gzip
 compress: none
 # Maximum uncompressed output file size
 maxFileSizeMB: 32
 # Maximum amount of time to keep inactive files open.
 maxFileOpenTimeSec: 300
 # Maximum amount of time to keep inactive files open.
 maxFileIdleTimeSec: 30
 # Maximum number of files to keep open concurrently.
 maxOpenFiles: 100
 myS3Destination:
 # Output type
 type: s3
 # S3 bucket address
 bucket: s2.bucket.address.here
 # Prefix to append to files before uploading
 destPath: keyprefix

Page 50 of 900

 # AWS API key, if not present will fallback on env.AWS_ACCESS_KEY_ID
 awsApiKey: key
 # AWS Secret Key. If left blank, Cribl will fallback on env.AWS_SECR
 awsSecretKey: secretkey
 # Staging destination path. Writable by Cribl.
 stagePath: /tmp/foo

Partition schema for outputted files

Updated 11 months ago

Page 51 of 900

licenses.yml

licenses.yml maintains a list of licenses for Cribl.

$CRIBL_HOME/default/cribl/licenses.yml

licenses:
 # List of license keys
 - eyJ0eXAiOiJKV1QiLCJhasdfasfasdfdasfasdfa-Abo2_ogVbR_5VKeAelZlTc5b-TKQ

Updated 11 months ago

Page 52 of 900

regexes.yml

regexes.yml maintains a list of regexes. Cribl's Regex Library ships under default .

$CRIBL_HOME/default/cribl/regexes.yml

...
"uuid":
 lib: cribl
 description: UUID/GUID
 regex: /[0-9a-f]{8}-[0-9a-f]{4}-[1-5][0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9
 sampleData: 9a50fa34-58b1-4a67-8b8d-ea9c0ae48c8f

 eb671525-2b9e-4140-ae21-a0a8a81b506e
 tags: uuid,guid
"aws_secret_key":
 description: AWS Secret Access Key
 regex: /(?<![A-Za-z0-9\/+=])[A-Za-z0-9\/+=]{40}(?![A-Za-z0-9\/+=])/gm
 lib: cribl
 sampleData: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
 tags: aws,access,key,secret
"aws_access_key":
 lib: cribl
 description: AWS Access Key ID
 regex: /(A3T[A-Z0-9]|AKIA|AGPA|AIDA|AROA|AIPA|ANPA|ANVA|ASIA)[A-Z0-9]{1
 sampleData: >-2
 AKIAIOSFODNN7EXAMPLE
 tags: aws,access,key
"private_key":
 description: Private key block
 regex: /-----BEGIN (DSA|RSA|EC|PGP|OPENSSH) PRIVATE KEY(\sBLOCK)?-----
 lib: cribl
 tags: ssh,openssh,dsa,ec,rsa,private key
"slack_token":
 lib: cribl
 description: Slack Token
 regex: /xox[p|b|o|a][\s\S]*/g
 sampleData: xoxp-23984754863-2348975623103

 xoxa-23984754863-2348975623103

 xoxb-23984754863-2348975623103

 xoxo-23984754863-2348975623103
 tags: slack,token
...

Updated 2 months ago

Page 53 of 900

breakers.yml

Cribl's default Event Breaker Library is located under

$CRIBL_HOME/default/cribl/breakers.yml .

$CRIBL_HOME/default/cribl/breakers.yml

...
AWS Ruleset:
 lib: cribl
 description: Event breaking rules for common AWS data sources
 tags: flowlogs,elb,alb,loadbalancer,cdn
 rules:
 - name: AWS VPC Flow
 condition: /^\d+\s+\d+\s+eni-\w+.*(OK|NODATA|SKIPDATA)?$/.test(_raw
 eventBreakerRegex: /[\n\r]+/
 timestampAnchorRegex: /(?=\d{10}\s\d{10})/
 timestamp:
 type: format
 length: 150
 format: "%s"
 timestampTimezone: utc
 maxEventBytes: 1024
 - name: AWS ALB
 condition: /^(?:https?|h2|wss?)\s\d+-\d+-\d+.*?arn:aws:elasticloadb
 eventBreakerRegex: /[\n\r]+/
 timestampAnchorRegex: /\w+\s/
 timestamp:
 type: format
 length: 150
 format: "%Y-%m-%dT%H:%M:%S.%f%Z"
 timestampTimezone: local
 maxEventBytes: 4096
 - name: AWS ELB
 condition: /^\d+-\d+-\d+.*?(?:\d+\.\d+\s){3}/.test(_raw) || sourcet
 eventBreakerRegex: /[\n\r]+/
 timestampAnchorRegex: /^/
 timestamp:
 type: format
 length: 150
 format: "%Y-%m-%dT%H:%M:%S.%f%Z"
 timestampTimezone: local
 maxEventBytes: 4096
...

Updated 2 months ago

Page 54 of 900

mappings.yml

Mapping ruleset configurations are located under

$CRIBL_HOME/local/cribl/mappings.yml .

$CRIBL_HOME/default/cribl/mappings.yml

...
rulesets:
 default: # ruleset name
 conf:
 functions:
 - filter: env.CRIBL_HOME.match('w0') # filter to match
 id: eval
 description: w0 # rule name/id
 final: true
 conf:
 add:
 - name: groupId
 value: "'myGroup42'" # group to map to
 - filter: env.CRIBL_HOME.match('w1')
 id: eval
 description: w1
 final: true
 conf:
 add:
 - name: groupId
 value: "'NewGroup22'"
 newruleset: # another ruleset
 conf:
 functions:
 - filter: (cpus>12 && env.CRIBL_HOME.match('w0')) || release.sta
 id: eval
 description: catch all
 final: true
 conf:
 add:
 - name: groupId
 value: "'NewGroup2'"
...

Updated 2 months ago

Page 55 of 900

instance.yml

Instance configuration is located under $CRIBL_HOME/local/_system/instance.yml .

$CRIBL_HOME/local/_system/instance.yml

distributed:
 # mode master | worker | single
 mode: master
 master:
 host: 0.0.0.0
 port: 4203
 tls:
 disabled: true
 ipWhitelistRegex: /.*/
 authToken: criblmaster
 compression: none
 connectionTimeout: 5000
 writeTimeout: 10000
 group: default
 envRegex: /^CRIBL_/
 tags:
 - tag1
 - tag2
 - tag42

Updated 2 months ago

Page 56 of 900

Licensing

Every Cribl LogStream version ships with a Free license that allows for processing of

up to 1 TB/day. Free and One licenses require sending anonymized telemetry

metadata to Cribl. (For details, see Telemetry Data below).

Enterprise, Standard, and Sales Trial licenses do not require sending telemetry

metadata, and are entitled to a defined, per-license daily ingestion volume.

You can add and manage licenses in Settings > Licensing.

Cribl offers five LogStream license types, summarized below.

This is a license available for purchase.

Up to unlimited data ingestion.

All other LogStream features included.

Contact Cribl Sales at sales@cribl.io for more information.

This is a license available for purchase. Compared to an Enterprise license, it offers a

cost discount, in exchange for some limitations:

Daily ingestion up to 5 TB/day.

Maximum 1 Worker Group.

Free/One License Expiration (v. 2.2.x or Lower)✅

For these versions, the latest Free or One license expires on: 2020-12-

15T00�00�00+00�00

For LogStream v. 2.3 and above, Free and One licenses do not expire.

License Types

ℹ For a detailed comparison of what's included in each license type, please

see Cribl Pricing.

Enterprise License

Standard License

Page 57 of 900

Contact Cribl Sales at sales@cribl.io for more information.

Free licenses ship in the download package, and are permanent. They impose some

limitations:

Daily ingestion up to 1 TB/day.

Maximum 10 Worker Processes.

Maximum 1 Worker Group.

LogStream One is a type of free license that allows for higher processing volume, but

only to Splunk or Elasticsearch Destinations. This combination is designed to help

users explore LogStream's value in routing large data volumes to these common

services. Contact Cribl Sales at sales@cribl.io to convert a Free license to LogStream

One.

Daily ingestion up to 5 TB/day, only to Splunk and Elasticsearch outputs.

Maximum 50 Worker Processes

Maximum 1 Worker Group

A license type used when preparing a POC (proof of concept), or a pilot, with

requirements that go beyond those afforded by the Free or One license. Contact Cribl

Sales at sales@cribl.io for more information.

Multiple license types can coexist on an instance. However, only a single type of

license can be effective at any one time. When multiple types coexist, the following

method of resolution is used:

If there are any unexpired Enterprise or Standard licenses – use only these

licenses to compute the effective license.

Else, if there are any Sales Trial licenses – use only Sales Trial licenses to compute

the effective license.

Free License

"One" License

Sales Trial License

ℹ LogStream Free and LogStream One licenses require sending of

anonymized telemetry metadata to Cribl. These licenses will block inputs if

sending fails after a grace period of 24 hours.

Combining License Types

Page 58 of 900

Else, if there exists a Free or One license – use only the Free or One license to

compute the effective license.

When an Enterprise or Standard license expires, Cribl LogStream will fall back to the

Sales Trial or Free/One types. However, an expired Sales Trial license cannot fall back

to a Free/One license.

In distributed deployments of LogStream versions through 2.2.x, licenses should be

configured both on the Master Node and on each of the Worker Groups. This allows

for different Worker Groups to have different licensing capacities.

To configure the Master: Settings > Licensing.

To configure Worker Groups: Worker Groups > [Select a Group] > System

Settings > Licensing.

LogStream will attempt to balance (or rebalance) Worker Processes/threads as evenly

as possible across all licensed Worker Nodes.

A Free or One license requires sharing of telemetry metadata with Cribl. Cribl uses

this metadata to help us understand how to improve the product and prioritize new

License Expiration Behavior⚠

Upon expiration of a paid license, if there is no fallback license, Cribl

LogStream will backpressure and block all incoming data.

Licensing in Distributed Deployments

LogStream 2.2.x or Earlier

LogStream 2.3.x or Higher

✅ As of LogStream 2.3, licenses are no longer required on Worker Groups.

The Master will push license information down to Worker Groups as part of

the heartbeat.

⚠ LogStream 2.3 changes licensing in other ways that might require you to

update an existing LogStream configuration. Please see Upgrading to

LogStream 2.3.

Telemetry Data

Page 59 of 900

features. Telemetry payloads are sent to an endpoint located on

https://cdn.cribl.io/telemetry/ . (For versions prior to 2.2, this endpoint is
34.220.85.61:8000 .)

If you would like this feature disabled in order to deploy on your environment, please

reach out to Cribl Sales at sales@cribl.io, and we will work with you to issue licenses on

a case-by-case basis.

Data Shared Per Interval (roughly every minute):

Version

Instance's GUID

Earliest, Latest Time

Number of Events In, Out

Number of Bytes In, Out

Number of Open, Closed, Active Connections

Number of Routes

Number of Pipelines

How do I check my license type, restrictions, and/or expiration date?

Open LogStream's Settings > Licensing page to see these details.

How can I track my actual data ingestion volume over the last 30 days?

Forward Cribl Internal metrics to your Metrics Destination of choice, and run a report

on cribl.total.in_bytes .

How does LogStream enforce license limits?

If your data throughput exceeds your license quota, Chuck Norris will track you down

and make your life a living hell.

However, that will happen only in your nightmares. In the product itself:

Free, One, and Standard licenses enforce data ingestion quotas through limits on

the number of Worker Groups and Worker Processes.

Enterprise license keys turn off all enforcement, between annual true-ups.

When an Enterprise or Standard license expires, LogStream will attempt to fall

back to a trial or free license, or – only if that fails – will block incoming data. For

details, see Combining License Types.

If I pull data from compressed S3 buckets, is my license quota applied to the

compressed or the uncompressed size of the file objects?

Licensing FAQ

Page 60 of 900

To measure license consumption, Cribl uses the uncompressed size.

Updated 6 days ago

Page 61 of 900

User Authentication

Cribl LogStream supports local, Splunk, LDAP, and SSO/OpenID Connect

authentication methods.

To set up local authentication, navigate to Settings > General Settings >

Authentication Settings and select Local.

You can then manage users through the Settings > Local Users UI. All changes made

to users are persisted in a file located at

$CRIBL_HOME/local/cribl/auth/users.json .

Line format:

{"username":"user","first":"Elvis","last":"Bath","disabled":"false",
"passwd":"Yrt0MOD1w8OzyMYB8WMcEleOtYESMwZw2qIZyTvueOE"}

The file is monitored for modifications every 60s, and will be reloaded if changes are

detected.

Adding users through direct modification of the file is also supported, but not

recommended.

To manually add, change, or restore a password, replace the affected user's passwd
key-value pair with a password key, in this format: "password":"<newPlaintext>" .
LogStream will hash all plaintext password(s), identified by the password key, during

the next file reload, and will rename the plaintext password key.

Starting with the same users.json line above:

{"username":"user","first":"Elvis","last":"Bath","disabled":"false",
"passwd":"Yrt0MOD1w8OzyMYB8WMcEleOtYESMwZw2qIZyTvueOE"}

...you'd modify the final key-value pair to something like:

{"username":"user","first":"Elvis","last":"Bath","disabled":"false",
"password":"V3ry53CuR&pW9"}

Within at most one minute after you save the file, LogStream will rename the

password key back to passwd , and will hash its value, re-creating something
resembling the original example.

Local Authentication

Manual Password Replacement

Page 62 of 900

In a distributed deployment, LogStream always resets each Worker node's admin

password with a randomized password and different from the admin user's password

on the Master Node. This enhances security, but will lead to situations where you

cannot log into a Worker Node directly and must rely on accessing them via the

Master.

To remedy these lockouts, you can explicitly push a new password to your Worker

Groups. In the Master Node's UI:

1. From the top menu, select Worker Groups.

2. Select the Worker Group whose credentials you want to change.

3. From the Worker Groups submenu, select System Settings.

4. Select Local Users, then expand the user you want to update.

5. Update the Password field and select Save.

When Cribl LogStream first starts, it creates a

$CRIBL_HOME/local/cribl/auth/cribl.secret file. This file contains a key that is

used to generate auth tokens for users, encrypt their passwords, and encrypt

encryption keys.

Default local credentials are: admin/admin

Splunk authentication is very helpful when deploying in the same environment as

Splunk, and requires the user to have Splunk admin role permissions. To set up

Splunk authentication:

Navigate to Settings > General Settings > Authentication Settings and select

Splunk.

Host: Splunk hostname (typically a search head).

Port: Splunk management port (defaults to 8089).

SSL: Set to Yes if enabled.

Fallback to local: Attempt local authentication if Splunk authentication is

unsuccessful. Defaults to false.

Explicitly Setting Worker Passwords

The cribl.secret File

❗ Back up and secure access to this file by applying strict permissions – e.g.,

600 .

Splunk Authentication

Page 63 of 900

Note: the Splunk searchhead does not need to be locally installed on the Cribl

LogStream instance.

LDAP authentication is supported, and can be set up as follows:

Navigate to Settings > General Settings > Authentication Settings, and select LDAP.

Secure: Enable to use a secure LDAP connections (ldaps://). Disable for an
insecure (ldap://) connection.

LDAP servers: List of LDAP servers. Each entry should contain host:port (e.g.,

localhost:389).

Bind DN: Distinguished name of entity to authenticate with LDAP server. E.g.,

'cn=admin,dc=example,dc=org' .

Password: Distinguished Name password used to authenticate with LDAP server.

Search base: Starting point to search LDAP for users, e.g.,

'dc=example,dc=org' .

Username field: LDAP user search field, e.g., cn or (cn (or uid) .

Search filter: LDAP search filter to apply when finding user, e.g., (&
(group=admin)(!(department=123*))) . Optional.

Fallback to local: Attempt local authentication if LDAP authentication is down or is

mis-configured. Defaults to No .

Connection timeout (ms): Defaults to 5000 .

Reject unauthorized: Valid for secure LDAP connections. Set to Yes to reject

unauthorized server certificates.

SSO/OpenID authentication is supported, and can be set up as follows:

Navigate to Settings > General Settings > Authentication Settings and select

OpenID Connect.

Provider name: The name of the identity provider service. You can select Google

or Okta, both supported natively. Manual entries are also allowed.

Audience: The Audience from provider configuration. This will be the base URL,

e.g.: https://yourDomain.com:9000 .

Client ID: The client_id from provider configuration.

Client secret: The client_secret from provider configuration.

Email whitelist: Wildcard list of emails that are allowed access.

Authentication URL: The full path to the provider's authentication endpoint. Be

sure to configure the callback URL at the provider as

LDAP Authentication

SSO/OpenID Connect Authentication

Page 64 of 900

<yourDomainUrl>/api/v1/auth/authorization-code/callback , e.g.:
https://yourDomain.com:9000/api/v1/auth/authorization-code/callback .

Token URL: The full path to the provider's access token URL.

Logout URL: The full path to the provider's logout URL. Leave blank if the provider

does not support logout or token revocation.

Validate certs: Validate certificates. Set to No to allow insecure self-signed

certificates. Defaults to Yes .

Note the following details when filling in the form – for example, when using Okta:

<Issuer URI> is the account at the identity provider.

Audience is the URL of the host that will be connecting to the Issuer (e.g.,

https://localhost:9000). The issuer (Okta, in this example) will redirect back
to this site upon authentication success or failure.

Updated 15 days ago

Page 65 of 900

Version Control
Tracking, backing up, and restoring configuration changes for single-instance and
distributed deployments

Cribl LogStream can be integrated with remote Git repositories to provide version

control of configuration settings for standalone deployments as well as distributed

deployments. (Do not confuse these options with a Git repository responsible for

version control of Worker configurations, located on the Master Node in distributed

deployments.)

For distributed deployments, git must be installed and available locally on the host

running the Master Node.

To verify that git is available, run:

git --version

The minimum required version is: 1.8.3.1.

All configuration changes must be committed before they are deployed. The

Master notifies Workers that a new configuration is available, and Workers pull the new

configuration from the Master Node.

You can revert to a previous commit using the git CLI. You can also restore a Worker

Group's previous commit using LogStream's UI: Select the commit from the Config

Version drop-down, as shown below. Then, in the resulting modal, verify the diff'ed

configuration change and click OK.

Git Installation (Local or Standalone)

Reverting Commits

Page 66 of 900

Git remote repositories are supported – but not required – for version control of all

configuration changes. You can configure a Standalone/Master Node with Git remote

push capabilities either from the CLI, or through the UI via Settings > Distributed

Settings > Git Settings.

Remote URI schema patterns should match this regex:

(?:git|ssh|ftps?|file|https?|git@[-\w.]+):(\/\/)?(.*?)(\.git\/?)?$.

A list of supported formats can be found here.

For example:

GitHub or other providers:

<protocol>://git@example.com/<username>/<reponame>.git

Local Git servers: git://<host.xyz>:<port>/<user>/path/to/repo.git

You can set up SSH keys from the CLI, or upload keys via the UI. If you have a

passphrase set, this functionality is available only through the CLI – see Encryption:

Configuring Keys with CLI. The example below outlines the UI steps.

Support For Remote Repositories

Remote Formats Supported

ℹ Several examples and tutorial links on this page point to GitHub, based on

its wide adoption. The basic principles are the same for other Git repo

providers, including private Git servers. GitHub's own UI and documentation

periodically change, and linked tutorials' screenshots might differ from

GitHub's current UI.

Connecting to a Remote with SSH

Page 67 of 900

1. Create a new GitHub repository.

2. Add an SSH public key to your GitHub account.

3. In Cribl LogStream, go to Settings > Distributed Settings > Git Settings.

4. Fill in the remote repo URL and the SSH private key. In the example format below,

replace <username> with your user name on the repo's provider:

Remote URL: <protocol>://git@github.com:<username>/<reponame>.git
SSH private key: <ssh-private-key>

For additional details, see GitHub's Connecting to GitHub with SSH tutorial.

LogStream's Git settings

Cribl recommends connecting to a remote repo over HTTPS. The example below

shows a token-based HTTPS connection to GitHub.

1. Create a new GitHub repository.

2. Create a personal access token with repo privileges.

3. Copy the token to your clipboard.

4. In Cribl LogStream, go to Settings > Distributed Settings > Git Settings.

5. Fill in the Remote URL field with your repo name, user name, and token (in place

of a password). Use the format below, replacing both <username> placeholders

with your user name on the repo's provider:

https://<username>:<token>@github.com/<username>/<reponame>.git

For additional details, see GitHub's Creating a Personal Access Token tutorial.

Example: Connecting to GitHub with SSH

Connecting to a Remote with a Personal Access Token over
HTTPS (Recommended)

Example: Connecting to GitHub over HTTPS

Pushing to a Remote Repo

Page 68 of 900

Once you've configured a remote, a Git Push button appears in the Version Control

overlay.

Git Push button

If you enabled the Git Settings > Collapse Actions option, you will instead see a

combined Commit & Push button in the overlay.

Git combined actions button

Your first push to a remote repo might fail with one of several failed to push some
refs errors.

As a first step in debugging these errors, edit the $CRIBL_HOME/.git/config file to

make sure that its name and email key values match the credentials you've set on

your repo provider or git server.

Also make sure that the remote "origin" key value matches the remote you set

when you connected to the remote repo. This example shows all three keys, with

placeholder values:

Next, verify the remote repo from the command line, as follows:

Troubleshooting Push Errors

[user]
 name = <your-login-name>
 email = <email@example.com>
[remote "origin"]
 url = https://<user-name>:<token>@github.com/<username>/<repo-name>

cd $CRIBL_HOME/.git
git remote -v

Page 69 of 900

In response, git should echo your configured remote twice, respectively for fetch
and push operations.

If all of the above settings are correct, next see GitHub's Dealing with Non-Fast-

Forward Errors topic for command-line instructions on syncing your local repo to its

remote.

If a remote repo is configured and has the latest known good Master configuration,

this section outlines the general steps to follow for restoring the config from that repo.

Let's assume that the entire $CRIBL_HOME directory of the Master is corrupted, or

you're starting from scratch. Let's also assume that the remote is: git@github.com:
<username>/<reponame>.git .

Restoring from remote repo

1. Important: In a directory of choice, untar the same Cribl LogStream version that

you're trying to restore, but do not start it.

2. Ensure that you have proper access to the remote repo:

Use ls-remote to check access

3. Change directory into $CRIBL_HOME and initialize git :
git init

4. Next, add/configure the remote:

git remote add origin git@github.com:<username>/<reponame>.git

Restoring Master from Remote Repo

git ls-remote git@github.com:<username>/<reponame>.git
56331fabb4822eaec4ca0ffd008d6e9974c1e419f HEAD
5631fabb4822eaec4ca0ffd008d6e9974c1e419f refs/heads/master

Page 70 of 900

5. Lastly, set up local to exactly match the remote branch:

git fetch origin
git reset --hard origin/master

To confirm that the commits match, run this command while in $CRIBL_HOME . Note
the commit hash:

Confirm with git show

That last step above pulls in all the latest configs from the remote repo, and you should

be able to start the Master as normal. Once up and running, Workers should start

checking in after about 60s.

A .gitignore file specifies files that git should ignore when tracking changes.

Each line specifies a pattern, which should match a file path to be ignored. Cribl

LogStream ships with a .gitgnore file containing a number of patterns/rules, under a

section of the file labeled CRIBL SECTION .

.gitignore

git show --abbrev-commit
commit 5631fab (HEAD -> master, origin/master)
Author: First Last <email@example.com>
Date: Fri Jan 31 10:16:07 2020 -0500

 admin: Last commit before failure/crash

......

Verify cribl.secret⚠

The cribl.secret file – located at

$CRIBL_HOME/local/cribl/auth/cribl.secret – contains the secret key

that is used to encrypt sensitive settings on configuration files (e.g., AWS

Secret Access Key, etc.). Make sure this file is properly restored on the new

Master, because it is required for encrypted conf file settings to become

usable again.

.gitignore File

Do NOT REMOVE CRIBL and CUSTOM header lines!
DO NOT REMOVE rules under the CRIBL section as they may be reintroduced
You can ONLY comment out rules in the CRIBL section.
You can add new rules in the CUSTOM section.
CRIBL SECTION -- DO NOT REMOVE ###
default/ui/**
default/data/ui/**
bin/**

Page 71 of 900

User-defined, custom patterns/rules can be safely defined under the CUSTOM
SECTION .
Cribl LogStream will not modify the contents of CUSTOM SECTION .

If you have files that are skipped with .gitgnore , you will need to back them up and

restore them via other means. E.g., you can periodically copy/rsync them to a backup

destination, and then restore them to their original locations after you complete the

steps above.

log/**
pid/**
data/uploads/**
diag/**
/state/
CUSTOM SECTION -- DO NOT REMOVE ###

<User defined patterns/rules go here>

CRIBL Section

Do Not Remove CRIBL SECTION or CUSTOM SECTION Headers❗

The CRIBL SECTION is used by Cribl LogStream to define default

patterns/rules that ship with every version. Do not add or remove any of the

lines here, because Chuck Norris will easily find you!

Maslow's theory of higher needs does not apply to Chuck Norris. He has

only two needs: killing people and finding people to kill. Seriously, do not

remove them, as they will be overwritten on the next update. The only

modifications that will survive updates are commented lines.

CUSTOM Section

Files skipped with .gitignore

Updated 17 days ago

Page 72 of 900

Persistent Queues

Persistent queuing (PQ) is a feature that helps minimize data loss if a downstream

receiver is unreachable. Durability is provided by writing data to disk for the duration of

the outage, and forwarding it upon recovery.

PQs are implemented on the outbound side, meaning that each Source can take

advantage of a Destination's queue.

Each LogStream output has an in-memory queue that helps it absorb temporary

imbalances between inbound and outbound data rates. E.g., if there is an inbound

burst of data, the output will store events in the queue, and output them at the rate

that the receiver can sync (as opposed to blocking or dropping them). Only when this

queue is full will the output impose backpressure upstream.

Backpressure behavior can be configured to either block or drop. In block mode, the

output will refuse to accept new data until the receiver is ready. The system will back

propagate block "signals" all the way back to the sender (assuming it supports

backpressure, too). In drop behavior, the output will discard new events until the

receiver is ready.

In some environments, the in-memory queues and their block/drop behavior are

acceptable. Persistent queues serve environments where more durability is required

(e.g., outages last longer than memory queues can sustain), or where upstream

senders do not support backpressure (e.g., ephemeral/network senders),

Engaging persistent queues in these scenarios can help minimize data loss. Once the

in-memory queue is full, the LogStream output will write its data to disk. Then, when

the receiver is ready, the output will start draining the queues in FIFO (first in, first out)

fashion.

Persistent queues are:

Available at the output side (i.e., after processing).

Engaged only when all of the receivers of that output exert blocking.

Drained when at least one receiver can accept data.

Not infinite in size. I.e., if data cannot be delivered out, you might run out of disk

space.

How Does Persistent Queueing Work

Persistent Queue Details and Constraints

Page 73 of 900

Not able to fully protect in cases of application failure. E.g., in-memory data might

get lost if a crash occurs.

Not able to protect in cases of hardware failure. E.g., disk failure, corruption, or

machine/host loss.

The following LogStream Destinations support Persistent Queuing:

Splunk Single Instance

Splunk Load Balanced

Splunk HEC

Kinesis

Cloudwatch Logs

SQS

Azure Monitor Logs

Azure Event Hubs

StatsD

StatsD Extended

Graphite

TCP JSON

Syslog

Elasticsearch

Honeycomb

InfluxDB

Wavefront

SignalFx

Persistent Queueing is configured individually for each output that supports it. To

enable persistent queueing, go to the output's (Destination's) configuration page and

set the Backpressure Behavior control to Persistent Queueing. This exposes the

following additional controls:

Max file size: The maximum size to store in each queue file before closing it. Enter

a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is

applied. Enter a numeral with units of KB, MB, etc.

Persistent Queue Support

Configuring Persistent Queueing

Page 74 of 900

Queue file path: The location for the persistent queue files. This will be of the

form: your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Minimum Free Disk Space⚠

Sufficient disk space is required for queuing to operate properly. You

configure the minimum disk space in Settings > General Settings > Limits

> Min Free Disk Space. If available disk space falls below this threshold,

LogStream will stop maintaining persistent queues, and data loss will begin.

The default is 5GB. Be sure to set this on your worker nodes rather than on

the master node when in distributed mode.

Updated a day ago

Page 75 of 900

Securing

You can secure Cribl LogStream's API and UI access by configuring SSL. To do so, you

can use your own private keys and certs, or you can generate a pair with OpenSSL, as

shown here:

openssl req -nodes -new -x509 -newkey rsa:2048 -keyout myKey.pem -out
myCert.pem -days 420

This command will generate both a self-signed cert (certified for 420 days), and an

unencrypted, 2048-bit RSA private key.

In the LogStream UI, you can configure the key and cert via Settings > Encryption

Keys and Settings > Certificates. Alternatively, you can edit the local/cribl.yml
file's api section to directly set the privKeyPath and certPath attributes. For

example:

cribl.yml

This table shows TLS client/server pairs, and encryption defaults, per traffic type.

api:
 host: 0.0.0.0
 port: 9000
 disabled : false
 ssl:
 disabled: false
 privKeyPath: /path/to/myKey.pem
 certPath: /path/to/myCert.pem
...

TLS Settings and Traffic Types

UI Browser
Cribl

LogStream

Default

disabled

Default

disabled

Defa

disa

API Worker Master
Default

disabled

Default

disabled

Defa

disa

Worker-to-

Master
Worker Master

Default

disabled

Default

disabled

Defa

disa

Data Any data Cribl Default Default Defa

Traffic Type TLS Client
TLS

Server
Encryption

Cert

Auth

CN

Che

Page 76 of 900

You can configure advanced, system-wide TLS settings for versions, cipher lists, and

ECDH Curve names via Settings > System > General Settings > Default TLS

Settings.

Where LogStream Sources and Destinations support TLS, each Source's or

Destination's configuration provides a CA Certificate Path field where you can point to

corresponding Certificate Authority (CA) .pem file(s). However, you can also use

environment variables to manage CAs globally. Here are some common scenarios:

1. How do I add a set of trusted root CAs to the list of trusted CAs that

LogStream trusts?

Set this environment variable:

NODE_EXTRA_CA_CERTS=/path/to/file_with_certs.pem – for details, see nodejs

docs.

2. How do I make LogStream trust all TLS certificates presented by any server it

connects to?

Set this environment variable: NODE_TLS_REJECT_UNAUTHORIZED=0 – for details,

see nodejs docs.

sender LogStream

(Source)

disabled disabled disa

Data

Cribl

LogStream

(Destination)

Any data

receiver

Default

disabled

Default

disabled

Defa

disa

Authentication

Local

LDAP

Splunk

Okta

* Google

--

Browser

Cribl

LogStream

Cribl

LogStream

Cribl

LogStream

Cribl

LogStream

--

Cribl

LogStream

Cribl

LogStream

Splunk

Search

Head

Okta

Google

--

Default

Disabled

Custom

Default

Enabled

Default

Enabled

Default

Enabled

CA Certificates and Environment Variables

Updated 10 days ago

Page 77 of 900

Monitoring

To get an operational view of a Cribl LogStream deployment, you can consult these

resources:

Monitoring page: Select Monitoring from the top menu. This exposes information

about traffic in and out of the system. It tracks events, bytes, splits by data fields

over time, and a wider range of system metrics. Coverage is limited to the

previous 24 hours.

Monitoring page

Internal logs and metrics: Select Logs from the Monitoring submenu.

LogStream's internal logs and metrics provide comprehensive information about

the status of an instance, its inputs, outputs, pipelines, routes, functions, and

traffic metrics.

Health endpoint: Query this endpoint on any instance to check the instance's

health. (Details below.)

LogStream provides the following log types, by originating process:

API Server Logs – These logs are emitted primarily by the API/main process.

They correspond to the top-level cribl.log that shows up on the Diag page.

Types of Logs

Page 78 of 900

Filesystem location: $CRIBL_HOME/log/cribl.log

Worker Process(es) Logs – These logs are emitted by all the worker processes,

and are very common in standalone instances or Worker Nodes. Filesystem

location: $CRIBL_HOME/log/worker/N/cribl.log

Worker Group Logs – These logs are emitted by all processes that help a Master

Node configure Worker Groups. Filesystem location:

$CRIBL_HOME/log/group/GROUPNAME/cribl.log

LogStream rotates logs every 5 MB, keeping the most recent 5 logs. In a distributed

deployment, all Workers forward their metrics to the Master Node, which then

consolidates them to provide a deployment-wide view.

LogStream supports forwarding internal logs and metrics to your preferred external

monitoring solution. To send out internal data, go to Data > Sources and enable the

Cribl Internal Source.

This will send all cribl.log logs and internal metrics down through Routes and

Pipelines, just like another data source. Both logs and metrics will have a field called

source , set to the value cribl , which you can use in Route filters.

LogStream exists because logs are great and wonderful things! Using its Monitoring >

Logs page, you can search all LogStream's internal logs at once – from a single

location, for both Master and Worker Nodes. This enables you to query across all

internal logs for strings of interest.

The labels on this screenshot highlight the key controls you can use (see the

descriptions below):

Forward Logs and Metrics Externally

ℹ CriblMetrics Override

The Disable field metrics setting (in Settings > System > General

Settings > Limits) applies only to metrics sent to the Master Node. When

the Cribl Internal Source is enabled, LogStream ignores this Disable field

metrics setting, and full-fidelity data will flow down the Routes.

Search Internal Logs

Page 79 of 900

Logs page (controls highlighted)

1. Log file selector: Choose the Node to view. In a Distributed Deployment, this list

will be hierarchical, with Workers displayed inside their Master.

2. Fields selector: Click the Main | All | None toggles to quickly select or deselect

multiple check boxes below.

3. Fields: Select or deselect these check boxes to determine which columns are

displayed in the Results pane at right. (The upper Main Fields group will contain

data for every event; other fields might not display data for all events.)

4. Time range selector: Select a standard or custom range of log data to display.

5. Search box: To limit the displayed results, enter a JavaScript expression here. An

expression must evaluate to truthy to return results. You can press Shift+Enter

to insert a newline.

Typeahead assist is available for expression completion:

Click a field in any event to add it to a query:

Click other fields to append them to a query:

Page 80 of 900

Shift+click to negate a field:

6. Click the Search box's history arrow (right side) to retrieve recent queries:

7. The Results pane displays most-recent events first. Each event's icon is color-

coded to match the event's severity level.

Click individual log events to unwrap an expanded view of their fields:

Through LogStream's System Settings, you can adjust the level (verbosity) of internal

logging data processed, per logging channel. You can also redact fields in customized

ways.

Select Settings > System > Logging > Levels to open the Manage Logging Levels

page. Here, you can:

Modify one channel by clicking its Level column. In the resulting drop-down, you

can set a verbosity level ranging from error up to debug. (Top of composite

ℹ To modify the depth of information that is originally input to the Logs

page, see Logging Settings.

Logging Settings

Change Logging Levels

Page 81 of 900

screenshot below.)

Modify multiple channels by selecting their check boxes, then clicking the

Change log level drop-down at the bottom of the page. (Bottom of composite

screenshot below.) You can select all channels at once by clicking the top check

box. You can search for channels at top right.

Manage Logging Levels screen

Select Settings > System > Logging > Redactions: to open the Redact Internal Log

Fields page. Here, you can customize the redaction of sensitive, verbose, or just ugly

data within LogStream's internal logs.

Redact Internal Log Fields page

It's easiest to understand this page's fields from bottom to top:

Default fields: LogStream always redacts these fields. You can't modify this list.

Additonal fields: Type or paste in the names of other fields you want to redact.

Use a tab or hard return to confirm each entry.

Change Logging Redactions

Page 82 of 900

Custom redact string: Unless this field is empty, it defines a literal string that will

override LogStream's default redaction pattern, explained below.

By default, LogStream transforms this page's selected fields by applying the following

redaction pattern:

Echo the field value's first two characters.

Replace all intermediate characters with a literal ... ellipsis.

Echo the value's last two characters.

Anything you enter in the Custom redact string field will override this default

??...?? pattern.

Each LogStream instance exposes a health endpoint – typically used in conjunction

with a Load Balancer – that you can use to make operational decisions.

Default Redact String

Health Endpoint

curl http(s)://<host>:<port>/api/v1/health {"status":"healthy"}

Updated about 7 hours ago

Health Check Endpoint Healthy Response

Page 83 of 900

Upgrading

This page outlines how to upgrade Cribl LogStream's Single-Instance or Distributed

Deployment packages along one of the following supported upgrade paths:

v2.x ==> v2.x

v1.7.x/v2.0.x ==> v2.x.x

v1.6.x or below ==> v1.7.x ==> v2.x.x

This path requires upgrading only the single/standalone node:

1. Stop Cribl LogStream.

2. Uncompress the new version on top of the old one.

On some Linux systems, tar might complain with: cribl/bin/cribl: Cannot
open: File exists . In this case, please remove the cribl/bin/cribl directory

if it's empty, and untar again. If you have custom functions in cribl/bin/cribl ,
please move them under $CRIBL_HOME/local/cribl/functions/ before

untarring again.

3. Restart LogStream.

For a distributed deployment, the order of upgrade is: Upgrade first the Master Node,

then upgrade the Worker Nodes, then commit and deploy the changes on the Master.

1. Commit and deploy your desired last version. (This will be your most recent

checkpoint.)

Optionally, git push to your configured remote repo.

⚠ See notes on Upgrading to LogStream 2.3 below.

LogStream does not support direct upgrades from a Beta to a GA version.

To get the GA version running, you must perform a new install.

Standalone/Single-Instance

Distributed Deployment

Upgrade the Master Node

Page 84 of 900

2. Stop Cribl LogStream.

Optional but recommended: Back up the entire $CRIBL_HOME directory.

Optional: Check that the Worker Nodes are still functioning as expected. In

absence of the Master Node, they should continue to work with their last

deployed configurations.

3. Uncompress the new LogStream version on top of the old one.

4. Restart LogStream and log back in.

5. Wait for all the Worker Nodes to report to the Master, and ensure that they are

correctly reporting the last committed configuration version.

Worker Node version mismatch

These are the same basic steps as when upgrading a Standalone Instance, above:

1. Stop Cribl LogStream on each Worker Node.

2. Uncompress the new version on top of the old one.

3. Restart LogStream.

ℹ Workers' UI will not be available until the Worker version has been upgraded

to match the version on the Master. Errors like those below will appear until

the Worker nodes are upgraded.

Upgrade the Worker Nodes

Commit and Deploy Changes on the Master Node

Page 85 of 900

1. Ensure that newly upgraded Worker Nodes report to the Master with their new

software version.

2. Commit and deploy the newly updated configuration only after all Workers have

upgraded.

Post-2.1.4 upgrade to 2.2

As of version 2.3, LogStream Free and One licenses are permanent, but they enforce

certain restrictions that especially affect distributed deployments:

Even if you have more than one Worker Group defined, only one Worker Group will

be visible and usable.

This will be the first Group listed in $CRIBL_HOME/local/cribl/groups.yml
– typically, the default Group. You can edit groups.yml to move the

desired Group to the top.

Your cluster will be limited to 10 Worker Processes across all Worker Nodes.

LogStream will balance (or rebalance) these Processes as evenly as possible

across the Worker Nodes.

Authentication will fall back to local authorization. You will not be able to

authenticate via Splunk, LDAP, or SSO/OpenID.

Git Push to remote repos will not be supported through the product.

Upgrading to LogStream 2.3

Page 86 of 900

As of LogStream 2.3, licenses no longer need to be deployed directly to Worker

Groups. The Master will push license information down to Worker Groups as part of

the heartbeat.

Follow these steps to upgrade from v.1.7, or higher, of the Cribl App for Splunk:

1. Stop Splunk.

2. Untar/unzip the new app version on top of the old one.

On some Linux systems, tar might complain with: cribl/bin/cribl: Cannot
open: File exists . In this case, please remove the cribl/bin/cribl directory

if it's empty, and untar again. If you have custom functions in cribl/bin/cribl ,
please move them under $CRIBL_HOME/local/cribl/functions/ before

untarring again.

3. Restart Splunk.

As of v.1.7, contrary to prior versions, Cribl's Splunk App package defaults to

Search Head Mode. If you have v.1.6 or earlier deployed as a Heavy Forwarder app,

upgrading requires an extra step to restore this setting:

1. Stop Splunk.

2. Untar/unzip the new app version on top of the old one.

3. Convert to HF mode by running: $SPLUNK_HOME/etc/apps/cribl/bin/cribld
mode-hwf

4. Restart Splunk.

⚠ If you are upgrading LogStream Free or LogStream One from version 2.2.x

or lower, these changes might require you to adjust your existing

configuration and/or workflows.

See Licensing for details on all current license options.

Splunk App Package Upgrade Steps

⚠ See Deprecation note for v.2.1.

Upgrading from Splunk App v.1.6 (or Lower)

Page 87 of 900

Updated 6 days ago

Page 88 of 900

Diagnosing Issues

To help diagnose LogStream problems, you can share a diagnostic bundle with Cribl

Support. The bundle contains a snapshot of configuration files and logs at the time the

bundle was created, and gives troubleshooters insights into how LogStream was

configured and operating at that time.

The following directories (and their contents) off of $CRIBL_HOME are included:

/default/*

/local/*

/log/*

/groups/*

/groups/*

state/jobs - includes only latest 10 task of latest 10 jobs.

Users can create and share bundles either from the UI or from the CLI. In either case,

you'll need outbound internet access to https://diag-upload.cribl.io and a valid Case

number to share the bundle with Cribl Support.

To create a bundle, go to Settings > Diagnostics > Diagnostic Bundle and click

Create diagnostic bundle.

To download the bundle locally to your machine, click Export.

To share the bundle with Cribl Support, toggle Send to Cribl Support to Yes,

enter your case number, and then click Export.

Previously created bundles are stored in $CRIBL_HOME/diag . They're also listed in the
UI, where you can re-download them or share them with Cribl Support.

To create a bundle using the CLI, use the diag command.

diag command CLI

What's in the Diagnostic Bundle

Creating and Exporting a Diagnostic Bundle

Using the UI

Using the CLI

Page 89 of 900

$CRIBL_HOME/bin/cribl diag
Usage: [sub-command] [options] [args]

Commands:
get - List existing Cribl LogStream diagnostic bundles
create - Creates diagnostic bundle for Cribl LogStream
send - Send LogStream diagnostic bundle to Cribl Support, args:
 -c <caseNumber> - Cribl Case Number
 [-p <path>] - Diagnostic bundle path (if empty, then new bundle wi

Creating a diagnostic bundle
$CRIBL_HOME/bin/cribl diag create
Created Cribl LogStream diagnostic bundle at /opt/cribl/diag/cribl-logst

Creating and sending a diagnostic bundle
$CRIBL_HOME/bin/cribl diag send -c 420420
Sent LogStream diagnostic bundle to Cribl Support

Sending a previously created diagnostic bundle
$CRIBL_HOME/bin/cribl diag send -p /opt/cribl/diag/cribl-logstream-<hos
Sent LogStream diagnostic bundle to Cribl Support

Updated 2 months ago

Page 90 of 900

Uninstalling

Stop Cribl LogStream (stopping the main process).

Back up necessary configurations/data.

Remove the directory where Cribl LogStream is installed.

Stop Splunk.

Back up necessary configurations/data.

Remove the Cribl App in $SPLUNK_HOME/etc/apps .

Remove the Cribl module in $SPLUNK_HOME/etc/modules/cribl (some versions).

Uninstalling the Standalone Version

Uninstalling the Splunk App Version

Updated 2 months ago

Page 91 of 900

WORKING WITH DATA

Routes

Before incoming events are transformed by a processing Pipeline, Cribl LogStream

uses a set of filters to first select a subset to deliver to the correct Pipeline. This

process is done via Routes.

Routes apply filter expressions on incoming events to send matching results to the

appropriate Pipeline. Filters are JavaScript-syntax–compatible expressions (e.g.,

source=='foo.log' && fieldA=='bar' , true , etc.) that are configured with each
Route.

Routes are evaluated in their display order, top->down. The stats in the Events column

shown below are for the most-recent 15 minutes.

Routes and events

What Are Routes

How Do Routes Work

ℹ There can be multiple Routes in the system, but each Route can be

associated with only one Pipeline.

Page 92 of 900

In this example, incoming events will be evaluated first against the Route named

Collection Processing Route, then against Palo Alto Firewall Traffic, then against

Archival, and so on. At the end, the Main Route serves as a catch-all for any event

that does not match any of the other Routes.

To apply a Route before another, simply drag it vertically. In addition, you can turn

Routes On/Off inline as necessary.

Routes can be configured with an output Destination that denotes where to send

events after they're processed by the Pipeline.

When an event that enters the system and matches a route-pipeline pair, usually it will

either be:

Dropped by a function, or

Transformed (optionally) and exit the system.

This behavior is ensured by the Final toggle in Route settings. It defaults to Yes ,
meaning that matched events will be consumed by that Route, and will not be

evaluated against any other Routes that sit below it.

If the Final toggle is set to No , clone(s) of the matching events will be processed by
the configured Pipeline, and the original events will be allowed to continue their trip to

be evaluated and/or processed by other Route-Pipeline pairs.

Output Destination

The Final Toggle

Page 93 of 900

This is very useful in cases where the same set of events needs to be processed

differently and delivered to different Destinations. Each clone can be decorated with

key-value pairs as necessary.

Depending on your cloning needs, you might want to follow a most specific first or

most general first processing strategy. The general goal is to minimize the number of

filters/Routes an event gets evaluated against. For example:

If cloning is not needed at all (i.e., all Final toggles stay at default), then it makes

sense to start with the broadest expression at the top, so as to consume as many

events as early as possible.

If cloning is needed on a narrow set of events, then it might make sense to do that

upfront, and follow it with a Route that consumes those clones immediately after.

A Route group is a collection of consecutive Routes that can be moved up and down

the Route stack together. Groups help with managing long lists of Routes. They are a

UI visualization only: While Routes are in a group, those Routes maintain their global

position order.

Output Routers are another way to route data. They are meta-destinations, in that they

allow actual Destination selection based on rules. Rules are evaluated in order,

top->down, with the first match being the winner.

Final Flag and Cloning Considerations

Route Groups

ℹ Route groups work much like Function groups.

Routing with Output Router

Updated 26 days ago

Page 94 of 900

Page 95 of 900

Pipelines

After your data has been matched by a Route, it gets delivered to a Pipeline. A Pipeline

is a list of Functions that work on the data. As with Routes, the order in which the

Functions are listed matters.

Events are always delivered to the beginning of a Pipeline via a Route. The data in the

Stats column shown below are for the last 15 minutes.

Pipelines and Route inputs

Within the Pipeline, events are processed by each Function, in order. A Pipeline will

always move events in the direction that points outside of the system. This is on

purpose, so as to keep the design simple and avoid potential loops.

Pipeline Functions

What Are Pipelines

ℹ Functions in a Pipeline are evaluated in order, top->down.

How Do Pipelines Work

Page 96 of 900

Clicking the gear icon as displayed in the screenshot above will take you to the

pipeline's settings as shown below. In Pipeline Settings you can adjust the Async

Function Timeout which helps to adjust for functions that can take much longer to

execute than normal such as a Lookup function on a large lookup file.

Pipeline Settings

Clicking the Advanced Mode button in the screenshot above will take you to the raw

editing mode of the function as shown in the screenshot below. This is JSON

formatted text. In this mode you can copy the function definition and also utilize

import/export capabilities.

Advanced Pipeline Editing

ℹ You can streamline the above display by organizing related Functions into

Function groups.

Types of Pipelines

Page 97 of 900

You can apply various Pipeline types at different stages of data flow. All Pipelines have

the same basic internal structure (a series of Functions) – the types below differ only in

their position in the system.

Input conditioning, processing, and output conditioning Pipelines

These are Pipelines that are attached to a Source to condition (normalize) the events

before they're delivered to a processing Pipeline. They are optional.

Typical use cases are event formatting, or applying Functions to all events of an input.

(E.g., extract a message field before pushing events to various processing Pipelines.)

You configure these pre-processing Pipelines on individual Sources. Fields extracted

using pre-processing Pipelines are made available to Routes.

These are "normal" event processing Pipelines.

These Pipelines are attached to a Destination to normalize the events before they're

sent out. Typical use cases are applying Functions that transform or shape events per

receiver requirements. (E.g., to ensure that a _time field exists for all events bound to

a Splunk receiver.) You configure these post-processing Pipelines on individual

Destinations.

Functions in a Pipeline are equipped with their own filters. Even though filters are not

required, we recommend using them as often as possible.

Pre-Processing Pipelines

Processing Pipelines

Post-Processing Pipelines

Considerations

Page 98 of 900

As with Routes, the general goal is to minimize extra work that a Function will do. The

fewer events a Function has to operate on, the better the overall performance. For

example, if a Pipeline has two Functions, f1 and f2, and if f1 operates on source
'foo' and f2 operates on source 'bar' , it might make sense to apply
source=='foo' versus source=='bar' filters on these two Functions, respectively.

Updated 21 days ago

Page 99 of 900

Event Model

All data processing in Cribl LogStream is based on discrete data entities commonly

known as events. An event is defined as a collection of key-value pairs (fields). Some

Sources deliver events directly, while others might deliver bytestreams that need to be

broken up by Event Breakers. Events travel from a Source through Pipelines'

Functions, and on to Destinations.

The internal representation of a Cribl LogStream event is as follows:

Cribl LogStream Event Model

Some notes about these representative fields:

Fields that start with a double-underscore are known as internal fields, and each

Source can add one or many to each event. For example, Syslog adds both a

__inputId and a __srcIpPort field. Internal fields are used only within Cribl

LogStream, and are not passed down to Destinations.

Upon arrival from a Source, if an event cannot be JSON-parsed, all of its content

will be assigned to _raw .

If a timestamp is not configured to be extracted, the current time (in UNIX epoch

format) will be assigned to _time .

One way to see what an event looks like as it travels through the system is to use the

Capture feature. While in Preview (right pane):

1. Click Start a Capture.

{
 "_raw": "<body of non-JSON parse-able event>",
 "_time": "<timestamp in UNIX epoch format>",
 "__inputId": "<Id/Name of Source that delivered the event>",
 "__other1": "<Internal field1>",
 "__other2": "<Internal field2>",
 "__otherN": "<Internal fieldN>",
 "key1": "<value1>",
 "key2": "<value2>",
 "keyN": "<valueN>",
 "...": "..."
}

Using Capture

Page 100 of 900

2. In the resulting modal, enter a Filter expression to narrow down the events of

interest.

3. Click Capture... and (optionally) change the default Time and/or Event limits.

4. Select the desired Where to capture option. There are four options:

1. Before the pre-processing Pipeline – Capture events right after they're

delivered by the respective Input.

2. Before the Routes – Capture events right after the pre-processing Pipeline,

before they go down the Routes.

3. Before the post-processing Pipeline – Capture events right after the

Processing Pipeline that actually handled them, before any post-processing

Pipeline.

4. Before the Destination – Capture events right after the post-processing

Pipeline, before they go out to the configured Destination.

Updated 3 days ago

Page 101 of 900

Event Processing Order

The expanded schematic below shows how all events in the Cribl LogStream

ecosystem are processed linearly, from left to right.

LogStream in great detail

Here are the stages of event processing:

1. Sources: Data arrives from your choice of external providers. (LogStream

supports Splunk, HTTP/S, Elastic Beats, Amazon Kinesis/S3/SQS, Kafka, TCP raw

or JSON, and many others.)

2. Custom command: Optionally, you can pass this input's data to an external

command before the data continues downstream. This external command will

consume the data via stdin , will process it and send its output via stdout .

3. Event Breakers can, optionally, break up incoming bytestreams into discrete

events.

4. Fields/Metadata: Optionally, you can add these enrichments to each incoming

event. You add fields by specifying key/value pairs, per Source, in a format similar

to LogStream's Eval function. Each key defines a field name, and each value is a

JavaScript expression (or constant) used to compute the field's value.

5. Pre-processing Pipeline: Optionally, you can use a single Pipeline to condition

(normalize) data from this input before the data reaches the Routes.

6. Routes map incoming events to Processing Pipelines and Destinations. A Route

can accept data from multiple Sources, but each Route can be associated with

Page 102 of 900

only one Pipeline and one Destination.

7. Processing Pipelines perform all event transformations. Within a Pipeline, you

define these transformations as a linear series of Functions. A Function is an

atomic piece of JavaScript code invoked on each event.

8. Post-processing Pipeline: Optionally, you can append a Pipeline a to condition

(normalize) data from each Processing Pipeline before the data reaches its

Destination.

9. Destinations: Each Route/Pipeline combination forwards processed data to your

choice of streaming or storage Destination. (LogStream supports Splunk, Syslog,

Elastic, Kafka/Confluent, Amazon S3, Filesystem/NFS, and many other options.)

Pipelines Everywhereℹ

All pipelines have the same basic internal structure – they're a series of

functions. The three pipeline types identified above differ only in their

position in the system.

Updated 14 days ago

Page 103 of 900

Data Onboarding

Onboarding data into Cribl LogStream can vary in complexity, depending on your

organization's needs, requirements, and constraints. Proper onboarding from all

Sources is key to system performance, troubleshooting, and ultimately the quality of

data and decisions both in LogStream and in downstream Destinations.

Typically, a data onboarding process revolves around these steps, both before and

after turning on the Source:

Create configuration settings.

Verify that settings do the right thing.

Iterate.

Below, we break down individual steps.

Cribl recommends that you take the following steps to verify and tune incoming data,

before it starts flowing.

Use a sample of your real data in Data Preview. Sample data can come from a sample

Source file that you upload or paste into LogStream.

You can also obtain sample data in a live data capture from a Source. One way to do

this before going to production is to configure your Source with a devnull Pipeline

(which just drops all events) as a pre-processing Pipeline. Then, let data flow in for just

long enough to capture a sufficient sample.

While events can be processed almost arbitrarily by functions in LogStream Pipelines,

make sure you understand the event processing order. This is very important, as it tells

you exactly where certain processing steps occur. For instance, as we'll see just below,

quite a few steps can be accomplished at the Source level, before data even hits

LogStream Routes.

General Onboarding Steps

Before Turning On the Source

Preview Sample Data

Check the Processing Order

Page 104 of 900

Source-level processing options

Where supported, data streams will be handled by custom commands. These are

external system commands that can (optionally) be used to pre-process the data.

Verify that such commands are doing what's expected, as they are the very first in a

series of processing steps.

Next, data streams are handled by Event Breakers, which:

Convert data streams into discrete events.

Extract and assign timestamps to each event.

If the resulting events do not look correct, feel free to use non-default breaking rules

and timestamp recognition patterns. Downstream, you can use the Auto Timestamp

function to modify _time as needed, if timestamps were not recognized properly.

Examples of such errors are:

Timestamps too far out in the future or past

Wrong timezone.

Incorrect timestamp is selected from multiple timestamps present in the event.

Next, events can be enriched with Fields (Metadata). This is where you'd add static or

dynamic fields to all events delivered by a particular Source.

Custom Command

Event Breakers

Fields (Metadata)

Pre-Processing Pipeline

Page 105 of 900

Next, you can optionally configure a pre-processing Pipeline on a particular Source.

This is extremely useful in these cases:

Drop non-useful events as early as possible (so as to save on CPU processing).

Normalize events from this Source to conform a certain shape or structure.

Fix/touch up events accordingly. E.g., if event breakers assigned the wrong

timestamp, this is the best place to use the Auto Timestamp function to adjust

_time .

Verify, verify, verify your data's integrity before turning on the Source.

Use data Destinations to verify that certain metrics of interest are accurate. This will

depend significantly on the capabilities of each Destination, but here's a basic

checklist list of things to ensure:

Timestamps are correct.

All necessary fields are assigned to events.

All expected events show up correctly. (E.g., if a Drop or Suppress Function was

configured, ensure that it's not dropping unintended events.)

Throughput – both in bytes and in events per second (EPS) – is what's expected,

or is within a certain tolerance.

Iterate on the steps above as necessary. E.g., adjust fields values and timestamps as

needed.

We Can't Say This Enough

After Turning On the Source

Iterate

✅ Remember that there is almost always a workaround. Any arbitrary event

transformation that you need is likely just a Function or two away.

Updated 22 days ago

Page 106 of 900

Functions

When events enter a Pipeline, they're processed by a series of Functions. At its core, a

Function is code that executes on an event, and it encapsulates the smallest amount

of processing that can happen to that event.

The term "processing" means a variety of possible options: string replacement,

obfuscation, encryption, event-to-metrics conversions, etc. For example, a Pipeline

can be composed of several Functions – one that replaces the term foo with bar ,
another one that hashes bar , and a final one that adds a field (say, dc=jfk-42) to
any event that matches source=='us-nyc-application.log' .

Functions are atomic pieces of JavaScript code that are invoked on each event that

passes through them. To help improve performance, Functions can be configured with

filters to further scope their invocation to matching events only.

You can add as many functions in a Pipeline as necessary, though the more you have,

the longer it will take each event to pass through. Also, you can turn Functions On/Off

within a Pipeline as necessary. This enables you to preserve structure as you optimize

or debug.

What Are Functions

How Do They Work

Page 107 of 900

Functions stack in a Pipeline

Similar to the Final toggle in Routes, the Final toggle here controls the flow of

events at the Function level. Its states are:

No (default): means that matching events processed by this Function will be

passed down to the next Function.

Yes : means that this Function is the last one that will be applied to matching
events. All Functions further down the Pipeline will be skipped.

Cribl LogStream ships with several Functions out-of-the-box, and you can chain them

together to meet your requirements. For more details, see individual Functions, and

the Use Cases section, within this documentation.

For an overview of adding custom Functions to Cribl LogStream, see our blog post,

Extending Cribl: Building Custom Functions.

Add, remove, update fields:

Eval, Lookup, Regex Extract

Find & Replace, including basic sed -like, obfuscate, redact, hash, etc.:
Mask, Eval

Add GeoIP information to events:

GeoIP

Extract fields:

Regex Extract, Parser

Extract timestamps:

Auto Timestamp

Drop events:

Drop, Regex Filter, Sampling, Suppress, Dynamic Sampling

Sample events (e.g, high-volume, low-value data):

Sampling, Dynamic Sampling

The Final Toggle

Out-of-the-Box Functions

Custom Functions

What Functions to Use When

Page 108 of 900

Suppress events (e.g, duplicates, etc.):

Suppress

Serialize events to CEF format (send to various SIEMs):

CEF Serializer

Serialize / change format (e.g., convert JSON to CSV):

Serialize

Convert JSON arrays into their own events:

JSON Unroll, XML Unroll

Flatten nested structures (e.g., nested JSON):

Flatten

Aggregate events in real-time (i.e. statistical aggregations):

Aggregations

Convert events to metrics format:

Publish Metrics, Prometheus Publisher (beta)

Resolve hostname from IP address:

Reverse DNS (beta)

Extract numeric values from event fields, converting them to type number :
Numerify

Send events out to a command or a local file, via stdin , from any point in a

Pipeline:

Tee

Convert an XML event's elements into individual events:

XML Unroll

Duplicate events in the same Pipeline, with optional added fields:

Clone

Add a text comment within a Pipeline's UI, to label steps without changing event

data:

Comment

A Function group is a collection of consecutive Functions that can be moved up and

down a Pipeline's Functions stack together. Groups help you manage long stacks of

Functions by streamlining their display. They are a UI visualization only: While

Functions are in a group, those Functions maintain their global position order in the

Pipelie

Function Groups

Page 109 of 900

To build a group from any Function, click the Function's ••• (Options) menu, then

select Group Actions > Create Group.

Creating a group

You'll need to enter a Group Name before you can save or resave the Pipeline.

Optionally, enter a Description.

Naming a group

Once you've saved at least one group to a Pipeline, other Functions' ••• (Options) >

Group Actions submenus will add options to Move to Group or Ungroup/Ungroup All.

Expanded Group Actions submenu

A saved group that's empty displays a dashed target into which you can drag and drop

Functions.

ℹ Function groups work much like Route groups.

Page 110 of 900

Drag-and-drop target

Updated 26 days ago

Page 111 of 900

Auto Timestamp

The Auto Timestamp Function extracts time to a destination field, given a source field

in the event. By default, Auto Timestamp makes a first best effort and populates

_time . When you add a sample (via paste or a local file), you should accomplish time
and event breaking at the same time you add the data.

This Function allows fine-grained and powerful transformations to populate new time

fields, or to edit existing time fields. You can use the Function's Additional timestamps

section to create custom time fields using regex and custom JavaScript strptime
functions.

Filter: Filter expression (JS) that selects data to be fed through the Function. The

default true setting passes all events through the Function.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Source field: Field to search for a timestamp. Defaults to _raw .

Destination field: Field to place extracted timestamp in. Defaults to _time . Supports
nested addressing.

Default timezone: Select a timezone to assign to timestamps that lack timezone info.

Defaults to Local . (This drop-down includes support for legacy names: EST5EDT ,
CST6CDT , MST7MDT , and PST8PDT .)

Time expression: Expression with which to format extracted time. Current time, as a

JavaScript Date object, is in global time . Defaults to time.getTime() / 1000 .

Description

Usage

Advanced Settings

ℹ For details about Cribl LogStream's Library (native) time methods, see:

C.Time – Time Functions.

Page 112 of 900

Start scan offset: How far into the string to look for a time string.

Max timestamp scan depth: Maximum string length at which to look for a timestamp.

Default time: How to set the time field if no timestamp is found. Defaults to Current

time.

Additional timestamps: Add Regex/Strptime pairs to extract additional timestamp

formats.

Regex: Regex, with first capturing group matching the timestamp.

Strptime format: Timestamp in strptime format.

Referencing https://github.com/d3/d3-time-format#locale_format:

Directives marked with an asterisk (*) might be affected by the locale definition.

Format Reference

%a - abbreviated weekday name.*
%A - full weekday name.*
%b - abbreviated month name.*
%B - full month name.*
%c - the locale’s date and time, such as %x, %X.*
%d - zero-padded day of the month as a decimal number [01,31].
%e - space-padded day of the month as a decimal number [1,31]; equivalen
%f - microseconds as a decimal number [000000, 999999].
%H - hour (24-hour clock) as a decimal number [00,23].
%I - hour (12-hour clock) as a decimal number [01,12].
%j - day of the year as a decimal number [001,366].
%m - month as a decimal number [01,12].
%M - minute as a decimal number [00,59].
%L - milliseconds as a decimal number [000, 999].
%p - either AM or PM.*
%Q - milliseconds since UNIX epoch.
%s - seconds since UNIX epoch.
%S - second as a decimal number [00,61].
%u - Monday-based (ISO 8601) weekday as a decimal number [1,7].
%U - Sunday-based week of the year as a decimal number [00,53].
%V - ISO 8601 week of the year as a decimal number [01, 53].
%w - Sunday-based weekday as a decimal number [0,6].
%W - Monday-based week of the year as a decimal number [00,53].
%x - the locale’s date, such as %-m/%-d/%Y.*
%X - the locale’s time, such as %-I:%M:%S %p.*
%y - year without century as a decimal number [00,99].
%Y - year with century as a decimal number.
%Z - time zone offset, such as -0700, -07:00, -07, or Z.
%% - a literal percent sign (%).

Complying with the Format

Page 113 of 900

In order to use auto timestamping upon ingestion, the formatting used must match the

%Z parameters above. So:

2020/06/10T17:17:35.004-0700 , 2020/06/10T17:17:35.004-07:00 ,
2020/06/10T17:17:35.004-07 , or 2020/06/10T10:17:35.004Z will all be

parsed. However:

Auto Timestamp will not parse 2020/06/10T11:17:35.004 EST correctly, unless

you use the Additional Timestamps section s̓ internal Regex or Strptime Format

operators.

Filter: name.startsWith('kumquats') && value=='specific string here'

This will allow the Auto Timestamp Function to act only on events matching the

specified parameters.

To add this sample (after creating an Auto Timestamp Function with the above Filter

expression): Go to Preview > Add a Sample > Paste a Sample, and add the data

snippet above. Do not make any changes to timestamping or line breaking, and select

Save as Sample File.

By default, LogSteram will inspect the first 150 characters, and extract the first valid

timestamp it sees. You can modify this character limit under Advanced Settings >

Max Timestamp Scan Depth.

LogStream grabs the first part of the event, and settles on the first matching value to

display for time :

_time 1569006235
GMT: Friday, 20 September 2019, 7�03�55 PM GMT

Your Local Time: Friday, 20 September 2019 PDT, 12�03�55 AM GMT -07�00

Because no explicit timezone has been set (under Default Timezone), _time inherits

the Local timezone, which in this example is GMT -07:00 .

Basic Example

Sample:

Sep 20 12:03:55 PA-VM 1,2019/09/20 13:03:58,CRIBL,TRAFFIC,end,2049,2019/0

Page 114 of 900

The datetime.strptime() method creates a datetime object from the string passed

in by the Regex field.

Here, we'll use datetime.strptime() to match a timestamp in AM/PM format at the

end of a line.

Sample:

This is a sample event that will push the datetime values further on
inside the event. This is still a sample event and finally here is the
datetime information!: Server_UTC_Timestamp="04/27/2020 2:30:15 PM"

Max timestamp scan depth: 200

Click to add Additional timestamps:

Regex: (\d{1,2})\/(\d{2})\/(\d{4})\s(\d{1,2}):(\d{2}):(\d{2})\s(\w{2})

Strptime format: '%m/%d/%Y %H:%M:%S %p'

Timezone Dependencies and Detailsℹ

LogStream uses ICU for timezone information. It does not query external

files or the operating system. The bundled ICU is updated periodically.

For additional timezone details, see: https://www.iana.org/time-zones.

Advanced Settings Example

Gnarly Detailsℹ

This Function supports the %f (microseconds) directive, but LogStream

will truncate it to millisecond resolution.

For further examples, see Extracting Timestamps from Messy Logs.

Updated about a month ago

Page 115 of 900

Aggregations

The Aggregations Function performs aggregate statistics on event data.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Time window: The time span of the tumbling window for aggregating events. Must be

a valid time string (e.g., 10s). Must match pattern \d+[sm]$.

Aggregates: Aggregate function(s) to perform on events. E.g.,

sum(bytes).where(action=='REJECT').as(TotalBytes) . Expression format:
aggFunction(<FieldExpression>).where(<FilterExpression>).as(<outputField
>) . See more examples below.

Note: When used without as() , the aggregate's output will be placed in a field
labeled <aggFunction>_<fieldName> . If there are conflicts, the last aggregate
wins. For example, given two aggregates –

sum(bytes).where(action=='REJECT') and sum(bytes) – the latter one

(sum_bytes) is the winner.

Group by Fields: Fields to group aggregates by.

Evaluate fields: Set of key/value pairs to evaluate and add/set. Fields are added in the

context of an aggregated event, before theyʼre sent out. Does not apply to

passthrough events.

Cumulative aggregations: Determines if the aggregations should be retained for

cumulative aggregations, or reset to 0, when flushing out an aggregation table event.

Defaults to No .

Lag tolerance: The lag tolerance represents the tumbling window tolerance to late

events. Must be a valid time string (e.g., 10s). Must match pattern \d+[sm]$.

Description

Usage

Time Window Settings

Page 116 of 900

Idle bucket time limit: The amount of time to wait before flushing a bucket that has

not received events. Must be a valid time string (e.g., 10s). Must match pattern \d+
[sm]$.

Passthrough mode : Determines whether to pass through the original events along

with the aggregation events. Defaults to No .

Metrics mode: Determines whether to output aggregates as metrics. Defaults to No ,
causing aggregates to be output as events.

Sufficient stats mode: Determines whether to output only statistics sufficient for the

supplied aggregations. Defaults to No , meaning output richer statistics.

Output prefix: A prefix that is prepended to all of the fields output by this

Aggregations Function.

Aggregation event limit: The maximum number events to include in any given

aggregation event. Defaults to unlimited.

Aggregation memory limit: The memory usage limit to impose upon aggregations.

Defaults to unlimited (i.e., the amount of memory available in the system).

avg(expr:FieldExpression) : Returns the average of the values of the parameter.
count(expr:FieldExpression) : Returns the number of occurrences of the values of
the parameter.

dc(expr: FieldExpression, errorRate: number = 0.01) : Returns the estimated
number of distinct values of the <expr> parameter, within a relative error rate.

distinct_count(expr: FieldExpression, errorRate: number = 0.01) : Returns
the estimated number of distinct values of the <expr> parameter, within a relative

error rate.

earliest(expr:FieldExpression) : Returns the earliest (based on _time)
observed value of the parameter.

first(expr:FieldExpression) : Returns the first observed value of the parameter.
last(expr:FieldExpression) : Returns the last observed value of the parameter.
latest(expr:FieldExpression) : Returns the latest (based on _time) observed
value of the parameter.

max(expr:FieldExpression) : Returns the maximum value of the parameter.

min(expr:FieldExpression) : Returns the minimum value of the parameter.

per_second(expr:FieldExpression) : Returns the per second rate (based on
_time) observed value of the parameter.
perc(level: number, expr: FieldExpression) : Returns <level> percentile value

Output Settings

Advanced Settings

List of Aggregate Functions

Page 117 of 900

of the numeric values of the <expr> parameter.

rate(expr:FieldExpression, timeString: string = '1s') : Returns the rate
(based on _time) observed value of the parameter.
stddev(expr:FieldExpression) : Returns the sample standard deviation of the
values of the parameter.

stddevp(expr:FieldExpression) : Returns the population standard deviation of the
values of the parameter.

sum(expr:FieldExpression) : Returns the sum of the values of the parameter.

sumsq(expr:FieldExpression) : Returns the sum of squares of the values of the

parameter.

variance(expr:FieldExpression) : Returns the sample variance of the values of the
parameter.

variancep(expr:FieldExpression) : Returns the population variance of the values
of the parameter.

As events are aggregated into windows, there is a good chance that most will arrive

later than their event time. For instance, given a 10s window (10:42:00 -
10:42:10), an event with timestamp 10:42:03 might come in 2 seconds later at

10:42:05 .

In several cases, there will also be late, or lagging, events that will arrive after the

latest time window boundary. For example, an event with timestamp 10:42:04 might

arrive at 10:42:12 . Lag Tolerance is the setting that governs how long to wait – after

the latest window boundary – and still accept late events.

How Do Time Window Settings Work?

Lag Tolerance

Page 118 of 900

The "bucket" of events is said to be in Stage 1, where it's still accepting new events,

but it's not yet finalized. Notice how in the third case, an event with event time

10:42:09 arrives 1 second past the window boundary at 10:42:11 , but it's still
accepted because it happens before the lag time expires.

After Lag time expires, the bucket moves to Stage 2.

If the bucket is created from a historic stream, then the bucket is initiated in Stage 2.

Lag time is not considered. A "historic" stream is one where the latest time of a bucket

is before now() . E.g., if the window size is 10s, and now()=10:42:42 , an event with

Page 119 of 900

event_time=10 will be placed in a Stage 2 bucket with range 10:42:10 -
10:42:20 .

While Lag Tolerance works with event time, Idle Bucket Time Limit works on arrival

time (i.e., real time). It is defined as the amount of time to wait before flushing a bucket

that has not received events.

After the Idle Time limit is reached, the bucket is "flushed" and sent out of the system.

Assume we're working with VPC Flowlog events that have the following structure:

version account_id interface_id srcaddr dstaddr srcport dstport protocol
packets bytes start end action log_status

For example:

2 99999XXXXX eni-02f03c2880e4aaa3 10.0.1.70 10.0.1.11 9999 63030 6 6556
262256 1554562460 1554562475 ACCEPT OK
2 496698360409 eni-08e66c4525538d10b 37.23.15.38 10.0.2.232 4373 8108 6 1
52 1554562456 1554562466 REJECT OK

Every 10s, compute sum of bytes and output it in a field called TotalBytes .

Time Window: 10s
Aggregations: sum(bytes).as(TotalBytes)

Every 10s, compute sum of bytes , output it in a field called TotalBytes , group by
srcaddr .

Idle Bucket Time Limit

Examples

Scenario A:

Scenario B:

Page 120 of 900

Time Window: 10s
Aggregations: sum(bytes).as(TotalBytes)
Group by Fields: srcaddr

Every 10s, compute sum of bytes but only where action is REJECT , output it in a
field called TotalBytes , group by srcaddr .

Time Window: 10s
Aggregations: sum(bytes).where(action=='REJECT').as(TotalBytes)
Group by Fields: srcaddr

Every 10s, compute sum of bytes but only where action is REJECT , output it in a
field called TotalBytes . Also, compute distinct count of srcaddr .

Time Window: 10s
Aggregations:

sum(bytes).where(action=='REJECT').as(TotalBytes)
distinct_count(srcaddr).where(action=='REJECT')

Scenario C:

Scenario D:

ℹ For further examples, see Engineering Deep Dive: Streaming Aggregations

Part 2 – Memory Optimization

Updated about a month ago

Page 121 of 900

CEF Serializer

The CEF Serializer takes a list of fields and/or values, and formats them in the Common

Event Format (CEF) standard. CEF defines a syntax for log records. It is composed of a

standard prefix, and a variable extension formatted as a series of key-value pairs.

CEF:Version|Device Vendor|Device Product|Device Version|Device Event
Class ID|Name|Severity|[Extension]

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Output field: The field to which the CEF formatted event will be output. Nested

addressing supported. Defaults to _raw .

CEF Header field definitions. The field values below will be written pipe (|)–delimited
in the Output Field. Names cannot be changed. Values can be computed with JS

expression, or can be constants.

cef_version: Defaults to CEF:0 .

device_vendor: Defaults to Cribl .

device_product: Defaults to Cribl .

device_version: Defaults to C.version .

device_event_class_id: Defaults to 420 .

name: Defaults to Cribl Event .

severity: Defaults to 6 .

Description

Format

Usage

Header Fields

Extension Fields

Page 122 of 900

CEF Extension field definitions. Field names and values will be written in key=value
format. Select each field's Name from the drop-down list. Values can be computed

with JS expressions, or can be constants.

For each CEF field, allowed values include strings, plus any custom Cribl function. For

example, if using a lookup:

Name: Name
Value expression: C.Lookup('lookup-exact.csv', 'foo').match('abc', 'bar')

This can be used for any of the CEF Header Fields.

The resulting event has the following structure for an Output Field set to _CEF_out :

_CEF_out:CEF:0|Cribl|Cribl|42.0-61c12259|420|Business Group
6|6|c6a1Label=Colorado_Ext_Bldg7

Example

Updated about a month ago

Page 123 of 900

Clone

The Clone Function clones events, with optional added fields. Cloned events will be

sent to the same Destination as the original event, because they are in the same

Pipeline.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Clones: Create clones with the specified fields added and set.

Fields: Set of key-value pairs to add. Nested addressing is supported.

In this example, the Destination will receive a clone with an env field set to staging .

Field: env
Value: staging

Description

Usage

Examples

Updated about a month ago

Page 124 of 900

Comment

The Comment Function adds a text comment in a Pipeline. It makes no changes to

event data. The added comment is visible only within the Pipeline UI, where it is useful

for labeling Pipeline steps.

Comment: Add your comment as plain text in this field.

This comment labels the Pipeline's next function:

Description

Usage

Examples

Page 125 of 900

Updated 2 months ago

Page 126 of 900

Drop

The Drop Function will drop/delete any events that meet the Filter expression.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Assume that we care only about errors, so we want to filter out any events that contain

the word “success,” regardless of case: “success,” “SUCCESS,” etc.

In our Drop Function, we l̓l use the JavaScript search() method to search the _raw
field s̓ contents for our target pattern. We know that search() returns a non-negative

integer to indicate the starting position of the first match in the string, or -1 if no

match. So we can evaluate the Function as true when the return value is >= 0 .

Filter: _raw.search(/success/i)>=0

Description

Usage

Example

Updated 2 months ago

Page 127 of 900

Dynamic Sampling

The Dynamic Sampling Function filters out events based on an expression, a sample

mode, and events' volume. Your sample mode s̓ configuration determines what

percentage of incoming events will be passed along to the next step.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events passed into the Function will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Sample mode: Defines how sample rate will be derived. For formulas and usage

details, see Sample Modes below. Supported methods:

Logarithmic (the default): log(previousPeriodCount) .

Square root: sqrt(previousPeriodCount) .

Sample group key: Expression used to derive sample group key. For example:

${domain}:${httpCode} . Each sample group will have its own derived sampling rate,
based on volume. Defaults to `${host}` .

All events without a host field passing through the Function will be associated with the

same group and sampled the same.

Sample period Sec: How often (in seconds) sample rates will be adjusted.

Defaults to 30 .

Minimum events: Minimum number of events that must be received, in previous

sample period, for sampling mode to be applied to current period. If the number

of events received for a sample group is less than this minimum, a sample rate of

1�1 is used. Defaults to 30 .

Max sampling rate. Maximum sampling rate. If the computed sampling rate is

above this value, the rate will be limited to this value.

Description

Usage

Advanced Settings

Page 128 of 900

Compared to static sampling, where users must select a sample rate a priori, Dynamic

Sampling allows for automatically adjusting sampling rates, based on incoming data

volume per sample group. This Function allows users to set only the

aggressiveness/coarseness of this adjustment. Square Root is more aggressive than

Logarithmic mode.

As an event passes through the Function, it's evaluated against the Sample Group Key

expression to determine the sample group it will be associated with. For example,

given an event with these fields: ...ip=1.2.3.42, port=1234... , and a Sample
Group Key of `${ip}:${port}` , the event will be associated with the
1.2.3.42:1234 sample group.

When a sample group is new, it will initially have a sample rate of 1:1 for Sample
Period seconds (this value defaults to 30 seconds). Once Sample Period seconds

have elapsed, a sample rate will be derived based on the configured Sample Mode ,
using the sample group's event volume during the previous sample period.

For example, assuming a Logarithmic Sample Mode:

Period 0 (first 30s): Number of events in sample group: 1000 , Sample Rate: 1:1 ,
Events allowed: ALL
Sample Rate calculation for next period: Math.ceil(Math.log(1000)) = 7

Period 1 (next 30s) -- Number of events in sample group: 4000 , Sample Rate: 7:1 :
Events allowed: 572
Sample Rate calculation for next period: Math.ceil(Math.log(4000)) = 9

Period 2 (next 30s) -- Number of events in sample group: 12000 , Sample Rate:
9:1 : Events allowed: 1334
Sample Rate calculation for next period: Math.ceil(Math.log(12000)) = 10

Period 3 (next 30s) -- Number of events in sample group: 2000 , Sample Rate:
10:1 : Events allowed: 200
Sample Rate calculation for next period: Math.ceil(Math.log(2000)) = 8
...

1. Logarithmic – The sample rate is derived, for each sample group, using a natural

log: Math.ceil(Math.log(lastPeriodVolume)) . This mode is less aggressive,
and drops fewer events.

How Does Dynamic Sampling Work

⚠ If the Sample Group Key is left at its `${host}` default, all events without

a host will be associated with the same group and sampled the same.

Sample Modes

Page 129 of 900

2. Square Root – The sample rate is derived, for each sample group, using:

Math.ceil(Math.sqrt(lastPeriodVolume)) . This mode is more aggressive,
and drops more events.

Here s̓ an example that illustrates the effectiveness of using the Square Root sample

mode.

Sample Mode: Square Root
Sample Period (sec): 20
Minimum Events: 3
Max. Sampling Rate: 3

Events In: 4.23K

Events Out: 1.41K

In this generic example, we reduced the incoming event volume from 4.23K to 1.41K.

Your own results will vary depending on multiple parameters – the Sample Group Key,

Sample Period, Minimum Events, Max Sampling Rate, and rate of incoming events.

Example

Settings:

Results:

ℹ For further examples, see Getting Smart and Practical With Dynamic

Sampling.

Updated about a month ago

Page 130 of 900

Eval

The Eval Function adds or removes fields from events. (In Splunk, these are index-time

fields.)

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Evaluate fields: Set of key/value pairs to add. The left-hand side input (Name) is the

key name. The right-hand side input (Value Expression) is a JS expression to compute

the value – this can be a constant. Nested addressing is supported. Strings intended to

be used as values must be single- or double-quoted.

Keep fields: List of fields to keep. Wildcards (*) and nested addressing are supported.

Takes precedence over Remove fields (below).

Remove fields: List of fields to remove. Wildcards (*) and nested addressing are

supported. Cannot remove fields matching Keep fields. Cribl LogStream internal fields

that start with __ (double underscore) cannot be removed via wildcard. Instead, they

need to be specified individually. For example, __myField cannot be removed by

specifying __myF* .

A field matching an entry in both Keep (wildcard or not) and Remove will not be

removed. This is useful for implementing “remove all but” functionality. For example, to

keep only _time, _raw, source, sourcetype, host , we can specify them all in

Keep, while specifying * in Remove.

Negated terms are supported in both Keep fields and Remove fields. The list is order-

sensitive when negated terms are used. Examples:

!foobar, foo* means "All fields that start with 'foo' except foobar ."

!foo*, * means "All fields except for those that start with 'foo'."

Description

Usage

Using Keep and Remove

Page 131 of 900

Scenario A: Create field myField with static value of value1 :

Name: myField

Value Expression: 'value1'

Scenario B: Set field action to blocked if login==error :

Name: action

Value Expression: login=='fail' ? 'blocked' : action

Scenario C: Create a multivalued field called myTags . (i.e., array):

Name: myTags

Value Expression: ['failed', 'blocked']

Scenario D: Add value error to a multivalued field myTags :

Name: myTags

Value Expression: login=='error' ? [...myTags, 'error'] : myTags

Scenario E: Rename an identification field to the shorter ID – copying over the

original field s̓ value, and removing the old field:

Name: ID

Value Expression: identification

Remove Field: identification

The Eval Function has the ability to execute expressions without assigning their value

to the field of an event. You can do this by simply leaving the left-hand side input

empty, and having the right-hand side do the assignment.

Simple Example: Object.assign(foo, JSON.parse(bar), JSON.parse(baz))
on the right-hand side (and left-hand side empty) will JSON-parse the strings in

bar and baz , merge them, and assign their value to foo , an already existing
field.

Another Example: To parse JSON, enter Object.assign(__e,
JSON.parse(_raw)) on the right-hand side (and left-hand side empty). __e is a

Examples

ℹ See Ingest-time Fields for more examples.

Advanced Usage Notes

Note 1

Page 132 of 900

special variable that refers to the (context) event within a JS expression. In this

case, content parsed from _raw is added at the top level of the event.

You can also use the Eval Function to set and unset control fields (e.g., _TCP_ROUTING
in Splunk), via this syntax: _ctrl.<name> . Control fields can be referenced only on
the left-hand side of Add. (I.e., they cannot be read or used on the right-hand side,

and cannot be referenced in Remove.)

To unset/delete a control field, set its value to undefined . These fields are normally
not needed for event computations, and modifying them is suggested to be done

only by experts. Please reach out to Cribl if you need help with this topic.

Note 2

Updated about a month ago

Page 133 of 900

Flatten

The Flatten Function is used to flatten fields out of a nested structure.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Fields: List of top-level fields to include for flattening. Supports * wildcards. Defaults

to empty array, which means all fields.

Prefix: Prefix string for flattened field names. Defaults to empty.

Depth: Number representing the nested levels to consider for flattening. Minimum 1 .
Defaults to 5 .

Delimiter: Delimiter to be used for flattening. Defaults to _ (underscore).

Add the following test sample in Preview > Paste a Sample:

input

Under Select Event Breaker, choose ndjson (newline-delimited JSON), and click Save

as a Sample File.

Here's sample output with all settings at default:

output

Description

Usage

Example

{ "accounting" : [{ "firstName" : "John", "lastName" : "Doe", "age" : 23

{
 "accounting_0_firstName": "John",
 "accounting_0_lastName": "Doe",

Page 134 of 900

Using the Flatten Function s̓ default settings, we successfully create top-level fields

from the nested JSON structure, as expected.

 "accounting_0_age": 23,
 "accounting_1_firstName": "Mary",
 "accounting_1_lastName": "Smith",
 "accounting_1_age": 32,
 "sales_0_firstName": "Sally",
 "sales_0_lastName": "Green",
 "sales_0_age": 27,
 "sales_1_firstName": "Jim",
 "sales_1_lastName": "Galley",
 "sales_1_age": 41,
}

Updated about a month ago

Page 135 of 900

GeoIP

The GeoIP Function enriches events with geo fields, given an IP address. It is

optimized for binary databases such as Maxmind's GeoIP.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

GeoIP file (.mmdb): Path to a Maxmind database, in binary format, with .mmdb
extension.

IP field: Field name in which to find an IP to look up. Can be nested. Defaults to ip .

Result field : Field name in which to store the GeoIP lookup results. Defaults to

geoip .

Assume that you are receiving SMTP logs, and need to see geolocation information

associated with IPs using the SMTP service.

Here s̓ a sample of our data, from IPSwitch IMail Server logs:

03:19 03:22 SMTPD(00180250) [192.168.1.131] connect 74.136.132.88 port
2539 03:19 03:22 SMTPD(00180250) [74.136.132.88] EHLO msnbc.com 03:19

Description

Usage

ℹ If the database file is located within the lookup directory

($CRIBL_HOME/data/lookups/), the GeoIP fIle does not need to be an

absolute path.

In distributed deployments, ensure that the Maxmind database file is in the

same location on both the Master and Worker Nodes.

Example

Page 136 of 900

03:22 SMTPD(00180250) [74.136.132.88] MAIL FROM:<info-jjgcdshx@test.us>
03:19 03:22 SMTPD(00180250) [74.136.132.88] RCPT To:<user@domain.com>

In this example, we l̓l chain together three Functions. First, we l̓l use a Regex Extract

Function to isolate the host s̓ IP. Next, we l̓l use the GeoIP Function to look up the

extracted IP against our geoIP database, placing the returned info into a new __geoip
field. Finally we l̓l use an Eval Function to parse that field s̓ city, state, country, ZIP,

latitude, and longitude.

Regex: \[(?<ip>\S+)\]
Source field: _raw
Result: 74.136.132.88

Event s̓ IP field: ip
Result field: __geoip

In the Eval Function s̓ Remove fields setting, you could specify the __geoip field for

removal, if desired. However, its __ prefix makes it an internal field anyway.

Function 1 – Regex Extract

Function 2 – GeoIP

Function 3 – Eval

City __geoip.city.names.en

Country __geoip.country.names.en

Zip __geoip.postal.code

Lat __geoip.location.latitude

Long __geoip.location.longitude

Updated 22 days ago

Name Value Expression

Page 137 of 900

Grok

The Grok Function extracts structured fields from unstructured log data, using

modular regex patterns.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Optional description of this Function's purpose in this Pipeline. Defaults

to empty.

Final: If toggled to Yes , stops data from being fed to downstream Functions. Defaults

to No .

Pattern: Grok pattern to extract fields. Syntax supported: %
{PATTERN_NAME:FIELD_NAME} .

Click + Add pattern to chain more patterns.

Source field: Field on which to perform Grok extractions. Defaults to _raw .

You can add and edit Grok patterns via LogStream's UI by selecting Knowledge >

Grok Patterns. Pattern files are located at:

$CRIBL_HOME/(default|local)/cribl/grok-patterns/

Example event:

Pattern: %{TIMESTAMP_ISO8601:event_time} %{LOGLEVEL:log_level} %
{GREEDYDATA:log_message}
Source Field: _raw

Description

Usage

Management

Example

{"_raw": "2020-09-16T04:20:42.45+01:00 DEBUG This is a sample debug log m

Page 138 of 900

Event after extraction:

Note the new fields added to the event: event_time , log_level , and
log_message .

Syntax for a Grok pattern is %{PATTERN_NAME:FIELD_NAME} . E.g.: %{IP:client}
%{WORD:method} .

Useful links for creating and testing Grok patterns:

http://grokdebug.herokuapp.com and

http://grokconstructor.appspot.com/.

Additional patterns are available here:

https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns.

{"_raw": "2020-09-16T04:20:42.45+01:00 DEBUG This is a sample debug log m
 "_time": 1600226442.045,
 "event_time": "2020-09-16T04:20:42.45+01:00",
 "log_level": "DEBUG",
 "log_message": "This is a sample debug log message",
}

References

Updated a day ago

Page 139 of 900

JSON Unroll

The JSON Unroll Function accepts a _raw field as a JSON string, and

unrolls/explodes an array of objects from the field into individual events.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Path: Path to array to unroll, e.g., foo.0.bar .

New name: The name that the exploded array element will receive in each new event.

Leave empty to expand the array element with its original name.

Assume you have an incoming event that has a _raw field as a JSON string like this:

Sample _raw field

Path: allCars
New Name: cars

Description

Usage

Examples

{"date":"9/25/18 9:10:13.000 PM",
 "name":"Amrit",
 "age":42,
 "allCars": [
 { "name":"Ford", "models":["Fiesta", "Focus", "Mustang"] },
 { "name":"GM", "models":["Trans AM", "Oldsmobile", "Cadillac"]
 { "name":"Fiat", "models":["500", "Panda"] },
 { "name":"Blackberry", "models":["KEY2", "Bold Touch 9900"] }
]
 }

Settings:

Page 140 of 900

Resulting Events

Output Events:

Event 1:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"cars"

Event 2:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"cars"

Event 3:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"cars"

Event 4:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"cars"

Updated about a month ago

Page 141 of 900

Lookup

The Lookup Function enriches events with external fields. CSV lookup table files are

supported.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Lookup file path (.csv, .csv.gz): Path to the location of the lookup file. Environment

variables can be referenced via $, e.g.: $HOME/file.csv .

Match mode: Defines the format of the lookup file, and indicates the matching logic

that will be performed. Defaults to Exact .

Match type: For CIDR and Regex Match modes, this attribute refines how to resolve

multiple matches. First match will return the first matching entry. Most specific
will scan all entries, finding the most specific match. All will return all matches in the

output, as arrays. Defaults to First match .

Lookup fields (.csv): Field(s) that should be used to key into the lookup table.

Lookup field name in event: Exact field name as it appears in events. Nested

addressing supported.

Corresponding field name in lookup: The field name as it appears in the lookup

file. Defaults to the Lookup field name in event value. This input is optional.

Description

Usage

Case-Sensitive / Multiple Matches⚠

Lookups are case-sensitive by default. (See the Ignore case option below.)

If the lookup file contains duplicate key names with different values, all

Match modes of this Function will use only the value in the key's final

instance, ignoring all preceding instances.

Page 142 of 900

Output field(s): Field(s) to add to events after matching the lookup table. Defaults to

all if not specified.

Output field name from lookup: Field name, as it appears in the lookup file.

Lookup field name in event: Field name to add to event. Defaults to the lookup

field name. This input is optional. Nested addressing is supported.

Reload period (sec): Periodically check the underlying file for modtime changes, and

reload if necessary. Use -1 to disable. Defaults to 60 .

Ignore case: Ignore case when performing Match mode: Exact lookups. Defaults to

No .

Add to raw event: Whether to append the looked-up values to the _raw field, as

key=value pairs. Defaults to No .

Assign a sourcetype field to events if their _raw field matches a particular regex.

paloalto.csv

Match mode: Regex

Match type: First match

Lookup field name in event: _raw

Corresponding field name in lookup: regex

Events before and after

Advanced Settings

Examples

Example 1: Regex Lookups

regex,sourcetype
"^[^,]+,[^,]+,[^,]+,THREAT",pan:threat
"^[^,]+,[^,]+,[^,]+,TRAFFIC",pan:traffic
"^[^,]+,[^,]+,[^,]+,SYSTEM",pan:system

BEFORE:

{"_raw": "Sep 20 13:03:55 PA-VM 1,2018/09/20 13:03:58,FOOBAR,TRAFFIC,end
{"_raw": "Sep 20 13:03:55 PA-VM 1,2018/09/20 13:03:58,FOOBAR,THREAT,end,2

AFTER:

Page 143 of 900

Assign a location field to events if their destination_ip field matches a particular

CIDR range.

paloaltoips.csv

Match mode: CIDR

Match type: See options below

Lookup field name in event: destination_ip

Corresponding field name in lookup: range

Events before and after

{"_raw": "Sep 20 13:03:55 PA-VM 1,2018/09/20 13:03:58,FOOBAR,TRAFFIC,end
 "sourcetype": "pan:traffic"
 }
{"_raw": "Sep 20 13:03:55 PA-VM 1,2018/09/20 13:03:58,FOOBAR,THREAT,end,2
 "sourcetype": "pan:threat"
 }

Example 2: CIDR Lookups

range,location
10.0.0.0/24,San Francisco
10.0.0.0/16,California
10.0.0.0/8,US

ℹ In Match mode: CIDR with Match type: Most specific, the lookup will

implicitly search for matches from most specific to least specific. There is

no need to pre-sort data.

Note that Match mode: CIDR with Match type: First Match is likely the

most performant with large lookups. This can be used as an alternative to

Most specific, if the file is sorted with the most specific/relevant entries

first. This mode still performs a table scan, top to bottom.

BEFORE:

{"_raw": "Sep 20 13:03:55 PA-VM 1, 2018/09/20 13:03:58,FOOBAR,TRAFFIC,end
 "destination_ip": "10.0.0.102"
 }

AFTER with Match Type: First Match

{"_raw": "Sep 20 13:03:55 PA-VM 1, 2018/09/20 13:03:58,FOOBAR,TRAFFIC,end
 "destination_ip": "10.0.0.102",

Page 144 of 900

See Ingest-time Lookups for other examples.

 "location": "San Francisco"
 }

AFTER with Match Type: Most Specific

{"_raw": "Sep 20 13:03:55 PA-VM 1, 2018/09/20 13:03:58,FOOBAR,TRAFFIC,end
 "destination_ip": "10.0.0.102",
 "location": "San Francisco"
 }

AFTER with Match Type: All

{"_raw": "Sep 20 13:03:55 PA-VM 1, 2018/09/20 13:03:58,FOOBAR,TRAFFIC,end
 "destination_ip": "10.0.0.102",
 "location": [
 "San Francisco",
 "California",
 "US",
]}

Updated about a month ago

Page 145 of 900

Mask

The Mask function masks, or replaces, patterns in events.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Masking rules: Match Regex and Replace Expression pairs. Defaults to empty.

Match regex: Pattern to replace. Use /g to replace all matches, e.g.:

/(bar)/g

Replace expression: A JS expression or literal to replace the matching

content.

Apply to fields: Fields on which to apply the masking rules. Defaults to _raw .
Wildcards (*) and nested addressing are supported.

Here, we'll simply search for the string dfhgdfgj , and replace that value (if found)
with Trans AM . This will help close America s̓ muscle-car gap:

Description

Usage

ℹ Negated terms are also supported. When you negate field names, the fields

list is order-sensitive. E.g., !foobar before foo* means "Apply to all

fields that start with foo , except foobar ." However, !foo* before *
means "Apply to all fields, except for those that start with foo ."

Examples

Example 1: Transform a String

Page 146 of 900

Event before masking

Configure the Mask Function > Masking Rules as follows:

Match Regex: dfhgdfgj
Replace Expression: Trans AM

Mask Function configuration

Result: Vroom vroom!

Page 147 of 900

Event after masking

Assume that you're ingesting data whose _raw fields contain unredacted Social

Security numbers in the Key=Value pattern social=######### .

Event with unredacted SSNs

Example 2: Mask Sensitive Data

Page 148 of 900

You can use a Mask Function to run an md5 hash of the social keys' numeric values,

replacing the original values with the hashed values. Configure the Masking Rules as

follows:

Match Regex: (social=)(\d+)
Replace Expression: `${C.Mask.md5(g2)}`

Mask Function configuration

Result: The sensitive values are replaced by their md5 hashes.

Event with hashed SSNs

ℹ In scenarios where you need to send unmodified values to certain

Destinations (such as archival stores), you can narrow the Mask Function's

scope by setting the associated Route's Output field.

For further masking examples, see Masking and Obfuscation.

Page 149 of 900

Updated about a month ago

Page 150 of 900

Numerify

The Numerify Function converts event fields that are numbers to type number .

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Ignore Fields: Specify fields to not numerify, one field per row. By default, Numerify

will apply to all fields. Wildcards (*) and nested addressing are supported.

Assume an event whose text contains a numeric value that must be extracted to

perform some numeric analysis. The text looks like this:

version=11.5.0.0.1.1588476445

We can extract the numeric value by chaining together two Functions:

1. A Regex Extract Function. Set its Regex field to /version=(?<ver>\d+)/ , to
capture the first set of digits found in the event string.

2. Then use Numerify.

This captures the substring 11 and converts it to a numeric 11 value.

Description

Usage

Double Negativesℹ

Negated terms are also supported. When you negate field names, the fields

list is order-sensitive. E.g., !foobar before foo* means "Ignore all fields

that start with foo , except foobar ." However, !foo* before * means

"Ignore all fields, except for those that start with foo ."

Examples

Scenario A:

Page 151 of 900

Assume email transaction log events like the sample below. The final field is the

message s̓ size, in bytes. We want to extract this as a numeric value, for analysis in

LogStream or downstream services:

03:19 03:22 SMTPD (00180250) [209.221.59.70]
C:\IMail\spool\D28de0018025017cd.SMD 3827

Again, we can accomplish this with two Functions:

1. A Regex Extract Function. To capture a substring of digits that follows six other

substrings (all separated by white space), we set the Regex field to:

\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+(?<bytes>\d+)

2. Then use Numerify.

Scenario B:

Updated 2 months ago

Page 152 of 900

Parser

The Parser Function can be used to extract fields out of events, or to reserialize

(rewrite) events with a subset of fields. Reserialization will maintain the format of the

events.

For example: If an event contains comma-delimited fields, and fieldA and fieldB
are filtered out, those fields' positions will be set to null , but not deleted completely.

Parser will not remove fields that it did not create. The Eval Function can do so.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Operation mode: Extract will create new fields. Reserialize will extract, filter fields,

and then reserialize. Serialize will put fields in a certain format. Defaults to Extract.

Source field: Field that contains text to be parsed. Not usually needed in Serialize

mode.

Destination field: Field in which to add extracted fields (Extract mode only).

Destination field: Name of field in which to add extracted and serialized fields.

(Extract and Serialize modes only.)

Type: Parser/Formatter type to use. Options:

CSV

JSON

K=V Pairs

Extended Log File Format (ELFF)

Common Log Format (CLF)

Library: Select an option from the Parsers Library.

Description

Usage

Page 153 of 900

List of fields: Fields expected to be extracted, in order. If not specified, Parser will

auto-generate fields.

Fields to keep: List of fields to keep. Supports wildcards (*). Takes precedence over
Fields to remove. Nested addressing supported.

Fields to remove: List of fields to remove. Supports wildcards (*). Cannot remove
fields matching Fields to keep. Nested addressing supported.

Fields filter expression: Expression to evaluate against {index, name, value}
context of each field. Return truthy to keep, falsy to remove field. Index is zero-based.

The Fields to keep, Fields to remove, and Fields filter expression settings interact as

follows:

Order of evaluation: Fields to keep > Fields to remove > Fields filter expression.

If a field is in both Fields to keep and Fields to remove, Fields to keep takes

precedence.

If a field is in both Fields to remove and Fields filter expression, Fields to remove

takes precedence.

Insert the following sample, using Preview > Add a Sample > Paste a Sample:

2019/06/24 05:10:55 PM Z
a=000,b=001,c=002,d=003,e=004,f=005,g1=006,g2=007,g3=008

Create the following test Parser Function (or import this Pipeline:

https://github.com/weeb-cribl/cribl-

samples/blob/master/parser/functions/parser/parser_1.json).

ℹ Negated terms are supported in both Fields to remove and Fields to keep.

When you use negated terms, the list is order-sensitive. E.g., !foobar,
foo* means "All fields that start with foo , except foobar ." However,
!foo*, * means "All fields, except for those that start with foo ."

How Fields Settings Interact

Example 1

Page 154 of 900

Parser Function initial configuration

First, set the Parser type to Key=Value Pairs .

Keep fields a , b , c . Drop the rest.

Expected result: a , b , c

Fields to Keep: a , b , c

Fields to Remove: *

Fields Filter Expression:

Result: The event will gain four new fields and values, as follows.

a: 000

b: 001

c: 002

cribl_pipe: parser2

Scenario A:

Page 155 of 900

Scenario A result

You can check your stats by clicking the Preview pane s̓ Basic Statistics (chart)

button. In the resulting pop-up, the Number of Fields should have incremented ty four.

Now that you have the hang of it, try out the other simple scenarios below.

Keep fields a , b , those that start with g . Drop the rest.

Expected result: a , b , g1 , g2 , g3

Fields to keep: a , b

Fields to remove: [empty]

Fields filter expression: name.startsWith('g')

Keep fields a , b , those that start with g but only if value is 007 . Drop the rest.

Expected result: a , b , g2

Fields to keep: a , b

Fields to remove: [empty]

Fields filter expression: name.startsWith('g') && value=='007'

Keep fields a , b , c , those that start with g , unless it's g1 . Drop the rest.

Expected result: a , b , c , g2 , g3

Fields to keep: a , b , c

Fields to remove: g1

Fields filter expression: name.startsWith('g')

Scenario B:

Scenario C:

Scenario D:

Page 156 of 900

Keep fields a , b , c , those that start with g but only if index is greater than 6 .
Drop the rest.

Expected result: a , b , c , g2 , g3

Fields to keep: a , b , c

Fields to remove: [empty]

Fields filter expression: name.startsWith('g') && index>6

Assume we have a JSON event that needs to be reserialized, given these

requirements:

1. Remove the level field only if it's set to info .

2. Remove the startTime field, and all fields in the values.total. path that end

in Cxn .

Parser Function configuration:

Scenario E:

ℹ The index refers to the location of a field in the array of all fields extracted

by this Parser. It is zero-based. In the case above, g2 and g3 have

index values of 7 and 8 , respectively.

Example 2

Page 157 of 900

Parser Function configuration for Example 2

JSON event after being processed by the Function:

Example 2 event transformation

Page 158 of 900

Insert the following sample, using Preview > Add a Sample > Paste a Sample:

2019/06/24 15:25:36 PM Z
a=000,b=001,c=002,d=003,e=004,f=005,g1=006,g2=007,g3=008,

For all scenarios below, first create a Parser Function to extract all fields, by setting the

Parser type to Key=Value Pairs . Then add a second Parser Function with the
configuration shown under Parser 2.

Serialize fields a , b , c , d in CSV format.

Expected result: _raw field will have this value 000,001,002,003

Operation mode: Serialize

Source field: [empty]

Destination field: [empty]

Type: CSV

List of fields: a , b , c , d (needed for positional formats)

Serialize fields a , b , c in JSON format, under a field called bar .

Expected result: bar field will be set to:

{"a":"000","b":"001","c":"002","d":"003"}

Operation mode: Serialize

Source field: [empty]

Destination field: bar

Type: JSON

List of fields: [empty]

Fields to keep: a , b , c , d

Example 3

Scenario A:

Parser 2:

Scenario B:

Parser 2:

Updated 2 months ago

Page 159 of 900

Publish Metrics

The Publish Metrics Function extracts, formats, and outputs metrics from events.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Metrics: List of metrics from event to extract and format. Formatted metrics can be

used by a destination to pass metrics to a metrics aggregation platform.

Event field name: The name of the field in event containing the metric value.

Metric name expression: JavaScript expression to evaluate metric field name.

Defaults to the Event Field Name value.

Metric type: Select Counter , Timer , or Gauge (the default).

Dimensions: Optional list of dimensions to associate with every extracted metric

value. If this Function is used to process output from the Aggregations Function, leave

this field blank, because dimensions will be automatically discovered. Defaults to !_*
* .

Description

Usage

ℹ The JavaScript expression will evaluate the metric field name only after

the metrics are processed for transport to the Destination. While in the

processing Pipeline, the metric name expression appears as a literal.

ℹ Dimensions supports wildcards and negated terms. When you use

negated terms, the list is order-sensitive. E.g., !foobar before foo*
means "All fields that start with foo , except foobar ." However, !foo*
before * means "All fields, except for those that start with foo ."

Page 160 of 900

Overwrite: If true, overwrite previous metric specs; otherwise, append. Defaults to

No .

Assume we're working with AWS VPC Flowlog events that have the following structure:

version account_id interface_id srcaddr dstaddr srcport dstport protocol
packets bytes start end action log_status

For example:

2 99999XXXXX eni-02f03c2880e4aaa3 10.0.1.70 10.0.1.11 9999 63030 6 6556
262256 1554562460 1554562475 ACCEPT OK

... and we want to use values of packets and bytes as metrics across these

dimensions: action , interface_id , and dstaddr .

To reference the packets and bytes fields by name, as ‘packets’ and ‘bytes’ ,
our Pipeline will need a Parser Function before the Publish Metrics Function.

Filter: Set as needed

Operation mode: Extract

Type: Extended Log File Format (automatically set when specifying a library)

Library: AWS VPC Flow Logs

Source: _raw
(No need to specify any other fields.)

Below, the metric_name prefix was arbitrarily chosen. Because there is no JavaScript

expression to evaluate – i.e. this is literal text – the strings specified for the Metric

name expression will be identical to those in the final metrics data sent to the

Destination. See Raw Output below.

Examples

Scenario A:

Parser Function

Publish Metrics Function

Metrics

bytes `metric_name.bytes` Gauge

packets `metric_name.packets` Gauge

Dimensions

Event Field NaLme Metric Name Expression Metric Type

Page 161 of 900

All specified dimension names must align with those from the original event. When you

preview the Function's output, the metrics and dimensions will all have special

highlighting to separate them from other fields. Additional highlighting is used to

differentiate the metrics from the dimensions. (If one or more metrics/dimensions are

not highlighted as expected, check the Function's configuration.)

metric_name.bytes:262256|g#action:REJECT,interface_id:eni-
02f03c2880e4aaa3,dstaddr:10.0.1.11

metric_name.packets:6556|g#action:REJECT,interface_id:eni-
02f03c2880e4aaa3,dstaddr:10.0.1.11

Formatted Output

Assume that we want to extract some metrics from specific fields in PANOS logs,

whose events have the following structure:

future_use_0,receive_time, serial_number, type, threat_content_type,
future_use_1, generated_time, source_ip, destination_ip, nat_source_ip,
nat_destination_ip, rule_name, source_user, destination_user,
application, virtual_system, source_zone, destination_zone,
inbound_interface, outbound_interface, log_action, future_use_2,
session_id, repeat_count, source_port, destination_port, nat_source_port,
nat_destination_port, flags, protocol, action, bytes, bytes_sent,
bytes_received, packets, start_time, elapsed_time, category,

action interface_id dstaddr

Raw Output

Compatible Destinationsℹ

All text after the # symbol represents the dimensions as key-value pairs. In

order for dimension data to be included in metrics, the Destination type

cannot be standard StatsD. However, StatsD Extended, Splunk, and

Graphite do support dimensions.

{
 "action": "REJECT",
 "interface_id": "eni-02f03c2880e4aaa3",
 "dstaddr": "10.0.1.11",
 "metric_name.bytes": 262256,
 "metric_name.packets": 6556,
}

Scenario B:

Dimensions

Page 162 of 900

future_use_3, sequence_number, action_flags, source_location,
destination_location, future_use_4, packets_sent, packets_received,
session_end_reason, device_group_hierarchy_level_1,
device_group_hierarchy_level_2, device_group_hierarchy_level_3,
device_group_hierarchy_level_4, virtual_system_name, device_name,
action_source, source_vm_uuid, destination_vm_uuid, tunnel_id_imsi,
monitor_tag_imei, parent_session_id, parent_start_time, tunnel_type,
sctp_association_id, sctp_chunks, sctp_chunks_sent, sctp_chunks_received

For example:

Jan 10 10:19:15 DMZ-internal.nsa.gov 1,2019/01/10
10:19:15,001234567890002,TRAFFIC,drop,2304,2019/01/10
10:19:15,209.118.103.150,160.177.222.249,0.0.0.0,0.0.0.0,InternalServer,,
,not-applicable,vsys1,inside,z1-FW-Transit,ethernet1/2,,All
traffic,2019/01/10
10:19:15,0,1,63712,443,0,0,0x0,udp,deny,60,60,0,1,2019/01/10
10:19:15,0,any,0,0123456789,0x0,Netherlands,10.0.0.0-
10.255.255.255,0,1,0,policy-deny,0,0,0,0,,DMZ-internal,from-
policy,,,0,,0,,N/A,0,0,0,0,1202585d-b4d5-5b4c-aaa2-d80d77ba456e,0

Our goal is to use the four values of bytes_sent , bytes_received, packets_sent ,
and packets_received as metrics across these dimensions: destination_ip ,
inbound_interface , outbound_interface , and destination_port .

Here again, our Pipeline will need a Parser Function before the Publish Metrics

Function.

Filter: Set as needed

Operation mode: Extract

Type: Extended Log File Format (automatically set when specifying a Library)

Library: Palo Alto Traffic

Source: _raw
(No need to specify any other fields.)

Set up the Publish Metrics Function as follows.

Parser Function

Publish Metrics Function

Metrics

bytes_sent metric.${host}.bytes_sent Counter

bytes_received metric.${host}.bytes_rcvd Counter

packets_sent metric.${host}.pkts_sent Counter

Event Field Name Metric Name Expression Metric Type

Page 163 of 900

destination_ip , inbound_interface , outbound_interface , destination_port

metric.10.10.12.192.bytes_sent:60|c|#destination_ip:160.177.222.249,inbou
nd_interface:ethernet1/2,destination_port:443
metric.10.10.12.192.bytes_rcvd:0|c|#destination_ip:160.177.222.249,inboun
d_interface:ethernet1/2,destination_port:443
metric.10.10.12.192.pkts_sent:1|c|#destination_ip:160.177.222.249,inbound
_interface:ethernet1/2,destination_port:443
metric.10.10.12.192.pkts_rcvd:0|c|#destination_ip:160.177.222.249,inbound
_interface:ethernet1/2,destination_port:443

Here again, all text after the # symbol represents the dimensions as key-value pairs.

(See the Compatible Destinations note above.) Unlike the first example, this example

uses JavaScript expressions, which you can see evaluated in the raw output where the

${host} has been converted to 10.10.12.192 .

packets_received metric.${host}.pkts_rcvd Counter

Added Dimensions

Raw Output

Updated 19 days ago

Page 164 of 900

Regex Extract

The Regex Extract Function extracts fields using regex named groups. (In Splunk,

these will be index-time fields). Fields that start with __ (double underscore) are

special fields in Cribl LogStream. They are ephemeral: they can be used by any

Function downstream, but will not be added to events, and will not exit the Pipeline.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Regex: Regex literal. Must contain named capturing groups, e.g.: (?<foo>bar) . Can
contain special _NAME_N and _VALUE_N capturing groups, which extract both the

name and value of a field, e.g.: (?<_NAME_0>[^\s=]+)=(?<_VALUE_0>[^\s]+) .
Defaults to empty. See Examples below.

Additional regex: Click + Add Regex to chain extra regex conditions.

Source field: Field on which to perform regex field extraction. Nested addressing is

supported. Defaults to _raw .

Max exec: The maximum number of times to apply the Regex to the source field when

the global flag is set, or when using _NAME_N and _VALUE_N capturing groups.

Named capturing groups will always use a value of 1 . Defaults to 100 .

Field name format expression: Expression to format field names when _NAME_
capturing groups are used. The original field name is in the global name . E.g., to
append XX to all field names: `${name}_XX` . If not specified, names will be sanitized
using regex: /^[_0-9]+|[^a-zA-Z0-9_]+/g .

Overwrite existing fields: Whether to overwrite existing event fields with extracted

values. If set to No (the default), existing fields will be converted to an array. If toggled

to Yes , Regex Extract will create array fields if applied multiple times, or if fields exist.
(E.g., if src_ip is extracted in an input Pipeline where it is assigned a value of

Description

Usage

Advanced Settings

Page 165 of 900

10.1.2.2 , and is also in a processing Pipeline with a value of 10.2.3.3 , then the
resulting field is ["10.1.2.2", "10.2.3.3"] .)

Assume a simple event that looks like this: metric1=23 metric2=42 dc=23 abc=xyz

Extract only the metric1 field:

Regex: metric1=(?<metric1>\d+)
Result: metric1:"23"

Use the first line of the sample here:

https://github.com/weeb-cribl/cribl-

samples/blob/master/parser/functions/parser/cisco_estreamer.log

Extract all k=v pairs, and add an _XX suffix to the end of the extracted fields:

Regex: (?<_NAME_0>[^\s]+)=(?<_VALUE_0>[^\s]+)

Result:

Examples

Scenario A:

Scenario B:

Page 166 of 900

ℹ For further examples, see Using Cribl to Analyze DNS Logs in Real Time –

Part 2.

Updated 2 days ago

Page 167 of 900

Regex Filter

The Regex Filter Function filters out events based on regex matches.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Regex: Regex to test against. Defaults to empty.

Additional regex: Click + Add Regex to chain extra regex conditions.

Field: Name of the field to test against the regex. Defaults to _raw . Supports nested
addressing.

See Regex Filtering for examples.

Description

Usage

Examples

Updated 2 months ago

Page 168 of 900

Rename

The Rename Function is designed to change fields' names or reformat their names

(e.g., by normalizing names to camelcase). You can use Rename to change specified

fields (much like the Eval Function), or for bulk renaming based on a JavaScript

expression (much like the Parser Function).

Compared to these alternatives, Rename offers a streamlined way to alter only field

names, without other effects. This function does not delete the original fields from

events, but rather sets them to undefined.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Optionally, enter a simple description of this step in the Pipeline. Defaults

to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Base fields: Enter one or more source field names to rename. If empty, rename will be

performed on top-level fields.

Rename fields: Each row here is a key-value pair that defines how to rename fields.

The current name is the key, and the new name is the value. Click + Add Field to add

more rows.

Current name: Original name of the field to rename. You must quote literal

identifiers (non-alphanumeric characters such as spaces or hyphens).

New name: New or reformatted name for the field. Here again, you must quote

literals.

Renaming expression: An optional JavaScript expression (or literal) used to compute

multiple fields' new names. This expression is evaluated against a {name, value}
context, and the expression returns a value with which to rename fields.

Description

Usage

ℹ You can use both Rename fields (to rename specified field names) and

Renaming expression* (to globally rename fields) in the same Function.

The Rename fields** strategy will execute first.

Page 169 of 900

Change the level field, and all fields that start with out , to all-uppercase.

Example event:

Rename Fields:

Current Name: level
New Name: LEVEL
Renaming Expression: name.startsWith('out') ? name.toUpperCase() : name

Event after Rename:

Example

{"inEvents": 622,
 "level": "info",
 "outEvents": 311,
 "outBytes": 144030,
 "activeCxn": 0,
 "openCxn": 0,
 "closeCxn": 0,
 "activeEP": 105,
 "blockedEP": 0
}

{"inEvents": 622,
 "LEVEL": "info",
 "OUTEVENTS": 311,
 "OUTBYTES": 144030,
 "activeCxn": 0,
 "openCxn": 0,
 "closeCxn": 0,
 "activeEP": 105,
 "blockedEP": 0
}

Updated a day ago

Page 170 of 900

Rollup Metrics

The Rollup Metrics Function aggregates frequently generated incoming metrics into

broader, more manageable time windows, or drop any unnecessary dimensions.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Optional description of this Function's purpose in this Pipeline. Defaults

to empty.

Final: If toggled to Yes , stops data from being fed to downstream Functions. Defaults

to No .

Dimensions: List of data dimensions across which to perform rollups. Supports

wildcards. Defaults to * wildcard, meaning all original dimensions.

Time window: The time span over which to roll up (aggregate) metrics. Must be a valid

time string (e.g., 10s). Must match pattern: \d+[sm]$.

Gauge Update: The operation to use when rolling up gauge metrics. Defaults to Last;

other options are Maximum, Minimum, or Average.

Assume that you have metrics coming in at a rate that is too high. For example, Cribl's

internal metrics come in at a 2s interval.

To roll up these metrics to 1-minute granularity, you would set up the Rollup Metrics

Function with a Time Window value of 60s .

Assume that you have metrics coming up with multiple dimensions – e.g. host ,
source , data_center , and application . You want to aggregate these metrics to
eliminate some dimensions.

Description

Usage

Examples

Scenario A:

Scenario B:

Page 171 of 900

Here, you would configure Rollup Metrics Function with a Time Window value that

matches the metrics' generation – e.g., 10s . In the Dimensions field, you would
remove the default * wildcard, and would specify only the dimensions you want to

keep – e.g.: host , data_center .

Updated 4 days ago

Page 172 of 900

Sampling

The Sampling Function filters out events, based on an expression and a sampling rate.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Sampling rules: Events matching these rules will be sampled at the rates you specify:

Filter: Filter expression matching events to be sampled. Use true to match all.

Sampling rate: Enter an integer N . (Defaults to 1 .) Sampling will pick 1/ N
events matching this rule.

Setting this Function s̓ Sampling rate to 30 would mean that only 1 of every 30

events would be kept.

Let s̓ assume that we save this setting, and then capture data from a datagen Source

by selecting Preview > Start a Capture > Capture. In the Capture Sample Data

modal, select: 100 seconds, 100 events, and As they come in. Then start the

capture, and Save as Sample File.

Description

Usage

How It Works

Page 173 of 900

Next, in the Preview pane, click Simple beside the new file s̓ name. If you then click

the Basic Statistics (chart) button, you should see that weʼve kept about 4 of the

original 100 events, or close to 1 in 30.

See Sampling for examples.

Examples

Updated 2 months ago

Page 174 of 900

Serialize

Use the Serialize Function to serialize an event's content into a predefined format.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Type: Data output format. Defaults to CSV .

Library: Browse Parser/Formatter library.

Fields to serialize: Required for CSV , ELFF , and CLF Types. (All other formats

support wildcard field lists.)

Source field: Field containing the object to serialize. Leave blank to serialize top-level

event fields.

Destination field: Field to serialize the data into. Defaults to _raw .

Assume a simple event that looks like this: {"time":"2019-08-
25T14:19:10.240Z","channel":"input","level":"info","message":"initializin
g input","type":"kafka"}

We want to serialize these fields: _time , channel , level , and type into a single

string, in CSV format, stored in a new destination field called test .

To properly extract the key-value pairs from this event structure, we l̓l use a built-in

Event Breaker:

1. Copy the above sample event to your clipboard.

Description

Usage

Examples

Scenario A: JSON to CSV

Page 175 of 900

2. In the Preview pane, select Paste a Sample, and paste in the sample event.

3. Under Select Event Breaker, choose ndjson (newline-delimited JSON), and click

Save as a Sample File.

Now youʼre ready to configure the Serialize Function, using the settings below:

Type: CSV
Fields to Serialize: _time channel level type
Destination Field: test
Source Field: [leave empty]

Result: test: 1566742750.24,input,info,kafka

In the new test field, you now see the time , channel , level , and type keys

extracted as top-level fields.

Let s̓ assume that a merchant wants to extract a subset of each customer order, to

aggregate anonymized order statistics across their customer base. The transaction

data is originally in CSV format, but the statistical data must be in JSON.

Here s̓ a CSV header (which we donʼt want to process), followed by a row that

represents one order:

orderID,custName,street,city,state,zip
20200622102822,john smith,100 Main St.,Anytown,AK,99911

To convert to JSON, we l̓l need to first parse each field from the CSV to a manipulable

field in the Pipeline, which the Serialize Function will be able to reference. In this

example, the new manipulable field is message .

Use the Parser Function:

Filter: true
Operation mode: Extract
Type: CSV
Source field: _raw
Destination field: message
List of fields: orderID custName street city state zip

Now use the Serialize Function:

Filter: true
Type: JSON
Fields to serialize: city state
Source field: message
Destination field: orderStats

Scenario B: CSV to JSON

Page 176 of 900

Updated about a month ago

Page 177 of 900

Suppress

The Suppress Function suppresses events over a time period, based on evaluating a

key expression.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Key expression: Suppression key expression used to uniquely identify events to

suppress. For example, `${ip}:${port}` will use the fields ip and port from

each event to generate the key.

Number to allow: The number of events to allow per time period. Defaults to 1 .

Suppression period (sec): The number of seconds to suppress events after 'Number

to allow' events are received. Defaults to 300 .

Drop suppressed events: Specifies if suppressed events should be dropped, or just

tagged with suppress=1 . Defaults to Yes , meaning drop.

Maximum cache size : The maximum number of keys that can be cached before idle

entries are removed. Before changing the default 50000 , contact Cribl Support to
understand the implications.

Suppression period timeout: The number of suppression periods of inactivity before a

cache entry is considered idle. This defines a multiple of the Suppression period (sec)

value. Before changing the default 2 , contact Cribl Support to understand the
implications.

Num events to trigger cache clean-up: Check cache for idle sessions every N events

when cache size exceeds the Maximum cache size. Before changing the default

10000 , contact Cribl Support to understand the implications.

Description

Usage

Advanced Settings

Page 178 of 900

In the examples below, Filter is the Function-level Filter expression:

1. Suppress by the value of the host field:

Filter: true
Key expression: host
Number to allow: 1
Suppression period (sec): 30

Using a datagen sample as a source, generate at least 100 events over 2 minutes.

Result: One event per unique host value will be allowed in every 30s. Events

without a host field will not be suppressed.

2. Suppress by the value of the host and port tuple :

Filter: true
Key expression: `${host}:${port}`
Number to allow: 1
Suppression period (sec): 300

Result: One event per unique host : port tuple value will be allowed in every

300s.

3. To guarantee that suppression applies only to events with host and port ,
check for their presence using a Filter:

Filter: host!=undefined && port!=undefined
Key expression: `${host}:${port}`
Number to allow: 1
Suppression period (sec): 300

4. Decorate events that qualify for suppression:

Filter: true
Key expression: `${host}:${port}`
Number to allow: 1
Suppression period (sec): 300
Drop suppressed events: No

Result: No events will be suppressed. But all qualifying events will gain an added

field suppress=1 , which can be used downstream to further transform these

events.

Examples

⚠ Suppression will also apply to events without a host or a port field. The

reason is that if field is not present, `${field}` results in the literal

undefined .

Page 179 of 900

Updated about a month ago

Page 180 of 900

Tee

The Tee Function tees events out to a command of choice, via stdin . The output is
one JSON-formatted event per line. You can send the events to (for example) a local

file on the LogStream worker. This can be useful in verifying the data being processed

in a Pipeline.

The Filesystem/NFS Destination offers similar capability, but only after the data leaves

the Pipeline. Tee, by comparison, can be inserted at any point in the Pipeline.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Command: Command to execute and receive events (via stdin) – one JSON-

formatted event per line.

Args: Click + Add Arg to supply arguments to the command.

Restart on exit: Restart the process if it exits and/or we fail to write to it. Defaults to

Yes .

Environment variables: Environment variables to set or overwrite. Click + Add

Variable to add key/value pairs.

Data is passed to the command through its stdin , using the following protocol:

First line: Metadata serialized in JSON, containing the following fields:

format: Serialization format for event. Defaults to JSON .

conf: Full Function configuration.

Remaining: Payload.

Description

Usage

Communication Protocol

Page 181 of 900

Assume that we are parsing PANOS Traffic logs, and want to see how they look at a

particular step in the processing Pipeline We l̓l assume that the Parser Function is

already in place, so we l̓l insert the Tee Function at any (arbitrary) later point in the

Pipeline.

The Tee Function itself requires only that we define the Command field. In this

particular example, that Command will be tee itself.

Weʼve also clicked + Add Arg, to specify a local output file in the resulting Args field.

(A file path would normally be the first argument to a tee command executed from

the command line. The LogStream user must have write permission on the specified

file path.)

Command: tee

Args: /opt/cribl/foo.log

In this first scenario, assume that we have the Parser configured to parse, but not

keep any fields. After changes are deployed and PANOS logs are received, if we tail

foo.log , wed̓ see the following:

Line 1: {"format":"json","conf":{"restartOnExit":true,"env":
{},"command":"tee","args":["/opt/cribl/foo.log"]}

Line 2: {"_raw":"Oct 09 10:19:15 DMZ-internal.nsa.gov 1,2019/10/09
10:19:15,001234567890002,TRAFFIC,drop,2304,2019/10/09
10:19:15,209.118.103.150,160.177.222.249,0.0.0.0,0.0.0.0,InternalServer,,
,not-applicable,vsys1,inside,z1-FW-Transit,ethernet1/2,,All
traffic,2019/10/09
10:19:15,0,1,63712,443,0,0,0x0,udp,deny,60,60,0,1,2019/10/09
10:19:15,0,any,0,0123456789,0x0,Netherlands,10.0.0.0-
10.255.255.255,0,1,0,policy-deny,0,0,0,0,,DMZ-internal,from-
policy,,,0,,0,,N/A,0,0,0,0,1202585d-b4d5-5b4c-aaa2-
d80d77ba456e,0","_time":1593185574.663,"host":"127.0.0.1"}

In Line 2 above, note that the _raw field makes up most of the contents, with only the

_time and host fields added.

Assume that we use the Tee Function, using the same Command and arguments, but

weʼve modified the the Parser Function to retain five fields: receive_time ,
source_port , destination_port bytes_received , and packets_received .

Examples

Scenario A:

Scenario B:

Page 182 of 900

This time, if we tail foo.log , we l̓l see something like the following. If you compare
this output to the previous output example, you l̓l notice the five fields appended to

this event:

Line 3: {"_raw":"Oct 09 10:19:15 DMZ-internal.nsa.gov 1,2019/10/09
10:19:15,001234567890002,TRAFFIC,drop,2304,2019/10/09
10:19:15,209.118.103.150,160.177.222.249,0.0.0.0,0.0.0.0,InternalServer,,
,not-applicable,vsys1,inside,z1-FW-Transit,ethernet1/2,,All
traffic,2019/10/09
10:19:15,0,1,63712,443,0,0,0x0,udp,deny,60,60,0,1,2019/10/09
10:19:15,0,any,0,0123456789,0x0,Netherlands,10.0.0.0-
10.255.255.255,0,1,0,policy-deny,0,0,0,0,,DMZ-internal,from-
policy,,,0,,0,,N/A,0,0,0,0,1202585d-b4d5-5b4c-aaa2-
d80d77ba456e,0","_time":1593185606.965,"host":"127.0.0.1","receive_time":
"2019/10/09
10:19:15","source_port":"63712","destination_port":"443","bytes_received"
:"0","packets_received":"0"}

ℹ In this Function s̓ Command field, you can specify commands other than

tee itself. For example: By using nc as the command, and specifying

localhost and a port number (as two separate arguments), you l̓l see

event data being received via nc on the specified port.

Updated about a month ago

Page 183 of 900

Trim Timestamp

The Trim Timestamp Function removes timestamp patterns from events, and

(optionally) stores them in a specified field.

This Function looks for a timestamp pattern that exists between the characters

indicated by numeric timestartpos and timeendpos fields. It removes

timestartpos and timeendpos along with the timestamp pattern.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this step in the Pipeline. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Field name: Name of field in which to save the timestamp. (If empty, timestamp will

not be saved to a field.)

Remove the timestamp pattern (indicated by timestartpos and timeendpos) from
_raw , and stash it in a field called time_field .

Example event before:

Field Name: time_field

Example Event after:

Description

Usage

Example

{"_raw": "Event [Event=UpdateBillingProvQuote, timestamp=1581426279, prop
"timestartpos":0,
"timestartpos":23
}

{"_raw": "2020-05-22 16:32:11,359 Event [Event=UpdateBillingProvQuote, ti
"time_field":"2020-05-22 16:32:11,359"
}

Page 184 of 900

Updated about 17 hours ago

Page 185 of 900

Unroll

The Unroll Function accepts an array field – or an expression to evaluate an array field

– and breaks/unrolls the array into individual events.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Source field expression: Field in which to find/calculate the array to unroll. E.g.:

_raw , _raw.split(/\n/) . Defaults to _raw .

Destination field: Field (within the destination event) in which to place the unrolled

value. Defaults to _raw .

Assume we want to break/unroll each line of this event:

Sample Event

Source field expression: _raw.split(/\n/)

Description

Usage

Example

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.5 38000 5356 ? Ss 2018 2:02 /lib/sys
root 2 0.0 0.0 0 0 ? S 2018 0:00 [kthread
root 3 0.0 0.0 0 0 ? S 2018 1:51 [ksofti
root 5 0.0 0.0 0 0 ? S< 2018 0:00 [kworke
root 7 0.0 0.0 0 0 ? S 2018 3:55 [rcu_sch
root 8 0.0 0.0 0 0 ? S 2018 0:00 [rcu_bh]

Settings

Page 186 of 900

Destination field: _raw

Resulting Events

ℹ The split() JavaScript method breaks _raw into an ordered set of

substrings/values, puts these values into an array, and returns the array.

Event 1:
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

Event 2:
root 1 0.0 0.5 38000 5356 ? Ss 2018 2:02 /lib/sys

Event 3:
root 2 0.0 0.0 0 0 ? S 2018 0:00 [kthread

Event 4:
root 3 0.0 0.0 0 0 ? S 2018 1:51 [ksofti

Event 5:
root 5 0.0 0.0 0 0 ? S< 2018 0:00 [kworke

Event 6:
root 7 0.0 0.0 0 0 ? S 2018 3:55 [rcu_sch

Event 7:
root 8 0.0 0.0 0 0 ? S 2018 0:00 [rcu_bh]

Updated about a month ago

Page 187 of 900

XML Unroll

The XML Unroll Function accepts a proper XML event with a set of elements, and

converts the elements into individual events.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Unroll elements regex: Path to the array to unroll. E.g.:

^root\.child\.ElementToUnroll$

Copy elements regex: Regex matching elements to copy into each unrolled event.

E.g.: ^root\.(childA|childB|childC)$

Unroll index field: LogStream will add a field with this name, containing the 0-based

index at which the element was located within the event. In Splunk, this will be an

index-time field. Supports nested addressing. Name defaults to unroll_idx .

Pretty print: Whether to pretty print the output XML.

Assume that the following sample is ingested as a single event:

sample.xml

Description

Usage

Examples

<?xml version="1.0" encoding="UTF-8"?>
<Parent>
 <myID>123456</myID>
 <branchLocation>US</branchLocation>
 <Child>
 <state>NY</state>
 <city>New York</city>
 </Child>
 <Child>
 <state>NJ</state>

Page 188 of 900

Set up the XML Unroll Function using these settings:

Unroll elements regex: ^Parent\.Child$
Copy elements regex: ^Parent\.(myID|branchLocation)$

Output 4 Events:

Resulting Events

 <city>Edgewater</city>
 </Child>
 <Child>
 <state>CA</state>
 <city>Oakland</city>
 </Child>
 <Child>
 <state>CA</state>
 <city>San Francisco</city>
 </Child>
</Parent>

ℹ If you insert this sample using Preview > Add a Sample > Paste a Sample,

adjust Event Breaker settings to add the sample as a single event. One way

to do this is to add a regex Event Breaker that (by design) will not match

anything present in the sample. For example: /[\n\r]+donotbreak(?!\s)/

Event 1
<?xml version="1.0"?>
<Child>
 <myID>123456</myID>
 <branchLocation>US</branchLocation>
 <state>NY</state>
 <city>New York</city>
</Child>

Event 2
<?xml version="1.0"?>
<Child>
 <myID>123456</myID>
 <branchLocation>US</branchLocation>
 <state>NJ</state>
 <city>Edgewater</city>
</Child>

Event 3
<?xml version="1.0"?>
<Child>
 <myID>123456</myID>
 <branchLocation>US</branchLocation>
 <state>CA</state>
 <city>Oakland</city>
</Child>

Page 189 of 900

Event 4
<?xml version="1.0"?>
<Child>
 <myID>123456</myID>
 <branchLocation>US</branchLocation>
 <state>CA</state>
 <city>San Francisco</city>
</Child>

Updated about a month ago

Page 190 of 900

Prometheus Publisher (beta)

The Prometheus Publisher Function allows for metrics to be published to a

Prometheus-compatible metrics endpoint. These can be upstream metrics received by

LogStream, or metrics derived from the output of LogStreams̓ Publish Metrics or

Aggregation Functions. A Prometheus instance is responsible for collecting the

metrics at that endpoint, and for performing its own processing of the metric data.

In the current LogStream version, the endpoint is: http://<worker_node_IP>:<api-
port>/metrics . Within LogStream, that endpoint redirects from
http://<worker_node_IP>:9000/metrics to

http://<worker_node_IP>:9000/api/v1/metrics .

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Fields to publish: Wildcard list of fields to publish to the Prometheus endpoint.

Batch write interval: How often, in milliseconds, the contents should be published.

Defaults to 5000 .

Passthrough mode: If set to No (the default), overrides the Final setting, and

suppresses output to downstream Functions' Destinations. Toggle to Yes to allow

events to flow to consumers beyond the Prometheus endpoint.

Description

⚠ If used, this Function must follow any Publish Metrics or Aggregations

Functions within the same Pipeline. This is to ensure that any data not

originating from a metrics input is transformed into metrics format.

Usage

Advanced Settings

Page 191 of 900

Update mode: On the default No setting, suppresses output to downstream

Functions' Destinations. (This overrides the Final setting.) Toggle to Yes to allow

events to flow to consumers beyond the Prometheus endpoint.

This example uses the same PANOS sample data as the Publish Metrics Function, and

is similarly preceded in a Pipeline by a Parser Function that extracts fields from the

PANOS log.

Filter: Set as appropriate.

Fields to publish: Set as appropriate. We l̓l use the default of * for this example.

Advanced settings: Accept defaults.

After committing and deploying changes, you should be able to use a curl command

to verify that metrics are being published, just a few seconds after data is ingested on

an idle system.

curl output

Now, we need to have Prometheus scrape the metrics. In this very basic example, you

can add the target endpoint to the prometheus.yml file, under the scrape_configs
-> static_configs section. Specify the endpoint in IP:port syntax, because

Prometheus assumes (and requires) /metrics for all endpoints.

Restart Prometheus. Within just a few seconds, you should be able to use its query

interface to retrieve metrics published by LogStream.

Example

$ curl http://<worker_node_IP>:9000/metrics
TYPE perf_192_168_1_248_bytes_sent counter
metric_192_168_1_248_bytes_sent {destination_ip="160.177.222.249",inbound

TYPE perf_192_168_1_248_bytes_rcvd counter
metric_192_168_1_248_bytes_rcvd {destination_ip="160.177.222.249",inbound

TYPE perf_192_168_1_248_pkts_sent counter
metric_192_168_1_248_pkts_sent {destination_ip="160.177.222.249",inbound_

TYPE perf_192_168_1_248_pkts_rcvd counter
metric_192_168_1_248_pkts_rcvd {destination_ip="160.177.222.249",inbound_

Updated about a month ago

Page 192 of 900

Reverse DNS (beta)

The Reverse DNS Function resolves hostnames from a numeric IP address, using a

reverse DNS lookup.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Lookup field name: Name of the field containing the IP address to look up.

Output field name: Name of the field in which to add the resolved hostname. Leave

blank to overwrite the lookup field.

Reload period (minutes): How often to refresh the DNS cache. Use 0 to disable

refreshes. Defaults to 60 minutes.

Lookup field name: dest_ip
Output field name: dest_host
Result: See the dest_ip field, and the newly created dest_host field, in the events.

Description

Usage

Lookup Fields

⚠ If the field value is not in IPv4 or IPv6 format, the lookup is skipped.

Example

Page 193 of 900

Updated about a month ago

Page 194 of 900

Sources

Cribl LogStream can receive data from various Sources, including Splunk, HTTP,

Elastic Beats, Kinesis, Kafka, TCP JSON, and many others.

Supported data Sources that send to Cribl LogStream:

Splunk TCP

Splunk HEC

Syslog

Elasticsearch API

TCP JSON

TCP Raw

HTTP/S

HTTP/ Raw

Kinesis Firehose

SNMP Traps

Metrics

Data from these Sources is normally sent to a set of LogStream Workers through a

loadbalancer. Some Sources, such as Splunk forwarders, have native loadbalancing

capabilities, so you should point these directly at LogStream.

Supported Sources that Cribl LogStream fetches data from:

Kafka

PUSH Sources

PULL Sources

Page 195 of 900

Kinesis Streams

Azure Event Hubs

SQS

S3

Office 365 Services

Office 365 Activity

Sources that are internal to Cribl LogStream:

Datagens

Cribl Internal

For each Source type, you can create multiple definitions, depending on your

requirements.

To configure Sources, select Data > Sources, select the desired type from the tiles or

the left menu, and then click + Add New.

Internal Sources

Configuring and Managing Sources

Updated 8 days ago

Page 196 of 900

Splunk TCP

Cribl LogStream supports receiving Splunk data from Universal or Heavy Forwarders.

Select Data > Sources, then select Splunk > Splunk TCP from the Data Sources

page's tiles or left menu. Click Add New to open the New Splunk source pane, which

provides the following fields.

Input ID: Enter a unique name to identify this Splunk Source definition.

Address: Enter hostname/IP to listen for Splunk data. E.g., localhost or 0.0.0.0 .

Port: Enter port number.

IP whitelist regex: Regex matching IP addresses that are allowed to establish a

connection. Defaults to .* (i.e., all IPs).

Enabled defaults to No . When toggled to Yes :

Certificate name : Name of the predefined certificate.

Private key path: Path on server where to find the private key to use in PEM format.

Path can reference $ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

Certificate path : Path on server where to find certificates to use, in PEM format. Path

can reference $ENV_VARS .

CA certificate path : Path on server where to find CA certificates to use in PEM format.

Path can reference $ENV_VARS .

ℹ Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl LogStream to Receive Splunk TCP
Data

General Settings

TLS Settings (Server Side)

Page 197 of 900

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the

input data stream before the data is sent through the Routes. Defaults to System
Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Enable proxy protocol: Defaults to No . Toggle to Yes if the connection is proxied by

a device that supports Proxy Protocol V1 or V2.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Processing Settings

Event Breakers

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 198 of 900

Field for this Source:

__inputId

To configure a Splunk forwarder (UF, HF) use the following outputs.conf stanzas:

.../outputs.conf

Configuring a Splunk Forwarder

[tcpout]
disabled = false
defaultGroup = cribl, <optional_clone_target_group>,

[tcpout:cribl]
server = [<cribl_ip>|<cribl_host>]:<port>, [<cribl_ip>|<cribl_host>]:<po
sendCookedData=true
useACK = false
negotiateNewProtocol = false
negotiateProtocolLevel = 0

Updated 3 days ago

Page 199 of 900

Splunk HEC

Cribl LogStream supports receiving data over HTTP/S using the Splunk HEC (HTTP

Event Collector).

Select Data > Sources, then select Splunk > HEC from the Data Sources page's tiles

or left menu. Click Add New to open the New Splunk HEC source pane, which

provides the following fields.

Input ID: Enter a unique name to identify this Splunk HEC Source definition.

Address: Enter the hostname/IP on which to listen for HTTP(S) data. (E.g., localhost
or 0.0.0.0 .)

Port: Enter the port number.

Splunk HEC endpoint: Absolute path on which to listen for the Splunk HTTP Event

Collector API requests. This input supports the /event and /raw endpoints.

Defaults to /services/collector .

Allowed Indexes: List the values allowed in the HEC event index field. Allows

wildcards. Leave blank to skip validation.

Splunk HEC acks: Whether to enable Splunk HEC acknowledgments. Defaults to No .

Token: Shared secret to be provided by any client (Authorization: <token>).

Click Generate to create a new secret. If empty, unauthenticated access will be

permitted.

Description: Optional description for this token.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl LogStream to Receive Data over
Splunk HEC

General Settings

Auth Tokens

Page 200 of 900

Fields: Fields (metadata) to add to events referencing this token. Each field is a

Name/Value pair.

Enabled: Defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path : Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

CA certificate path : Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Enable proxy protocol: Defaults to No . Toggle to Yes if the connection is proxied by

a device that supports Proxy Protocol V1 or V2.

This section defines event breaking rulesets that will be applied, in order, on the /raw
endpoint.

ℹ These fields may be overridden by fields added at the request level.

TLS Settings (Server Side)

Advanced Settings

Processing Settings

Event Breakers

Page 201 of 900

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the

input data stream before the data is sent through the Routes. Defaults to System
Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

These fields may be overridden by fields added at the token or request level.

In this section's Pipeline drop-down list, you can select a single existing Piipeline to

process data from this input before the data is sent through the Routes.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__inputId

__hecToken

Configure Cribl LogStream to listen on port 10080 with an authToken of

myToken42 .

Send a payload to your Cribl LogStream receiver.

Note: Token specification can be either Splunk <token> or <token> .

Splunk HEC Event Endpoint

Fields (Metadata)

Pre-Processing Pipeline

Internal Fields

Format and Endpoint Example

curl -k http://<myCriblHost>:10080/services/collector/event -H 'Authoriza

curl -k http://<myCriblHost>:10080/services/collector -H 'Authorization:

Page 202 of 900

Multiple Events
curl -k http://<myCriblHost>:10080/services/collector -H 'Authorization:

Updated 6 days ago

Page 203 of 900

Syslog

Cribl LogStream supports receiving of data over syslog.

Select Data > Sources, then select Syslog from the Data Sources page's tiles or left

menu. Click Add New to open the New Syslog source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this Syslog Source definition.

Address: Enter the hostname/IP on which to listen for data., E.g. localhost or

0.0.0.0 .

UDP port: Enter the UDP port number to listen on. Not required if listening on TCP.

TCP port: Enter the TCP port number to listen on. Not required if listening on UDP.

Enabled: Defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

ℹ Type: Push | TLS Support: YES | Event Breaker Support: No

This Syslog Source supports RFC 3164 and RFC 5424.

Configuring Cribl LogStream to Receive Data over
Syslog

General Settings

TLS Settings (TCP Only)

Page 204 of 900

CA certificate path: Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Enable proxy protocol: Defaults to No . Toggle to Yes if the connection is proxied by

a device that supports Proxy Protocol v1 or v2.

IP whitelist regex: Regex matching IP addresses that are allowed to send data.

Defaults to .* (i.e., all IPs).

Max buffer size (events) : Maximum number of events to buffer when downstream is

blocking. The buffer is only in memory. (This setting is applicable only to UDP syslog.)

Default timezone: Timezone to assign to timestamps without timezone info. Defaults

to local .

Single msg per UDP: Whether to treat UDP packet data received as a full Syslog

message. Defaults to No . (I.e., newlines in the packet will be treated as event
delimiters.)

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Page 205 of 900

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but are accessible and Functions can use them to make

processing decisions.

Fields for this Source:

__inputId

__srcIpPort

Internal Fields

Updated about 8 hours ago

Page 206 of 900

Elasticsearch API

Cribl LogStream supports receiving data over HTTP/S using the Elasticsearch Bulk API.

(See the Configuring Filebeat example below.)

Select Data > Sources, then select Elasticsearch API from the Data Sources page's

tiles or left menu. Click Add New to open the New New Elastic source pane, which

provides the following fields.

Input ID: Enter a unique name to identify this Elasticsearch Source definition.

Address: Enter the hostname/IP on which to listen for Elasticsearch data. (E.g.,

localhost or 0.0.0.0 .)

Port: Enter the port number.

Auth tokens: Shared secrets to be provided by any client (Authorization: <token>).

Click Generate to create a new secret. If empty, unauthenticated access will be

permitted.

Elasticsearch API endpoint (for Bulk API): Absolute path on which to listen for

Elasticsearch API requests. Currently, the only supported option is the default

/elastic , which LogStream expands as /elastic/_bulk . Other entries are faked
as success. Use an empty string to disable.

Enabled: Defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: No

Configuring LogStream to Receive Data over HTTP(S),
Using the Elasticsearch Bulk API Protocol

General Settings

TLS Settings (Server Side)

Page 207 of 900

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path : Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

CA certificate path : Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

The Elasticsearch API input normalizes the following fields:

@timestamp becomes _time at millisecond resolution.

host is set to host.name .

Original object host is stored in __host .

The Elasticsearch Destination does the reverse, and it also recognizes the presence of

__host .

Processing Settings

Fields (Metadata)

Pre-Processing

Field Normalization

Page 208 of 900

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__inputId

__id

__type

__index

__host

To set up Filebeat to send data to LogStream, use its Elasticsearch output. If an Auth

Token is configured here, add it in Filebeat configuration under

output.elasticsearch.headers , as in this example:

...filebeat.yml

Internal Settings

Configuring Filebeat

output.elasticsearch:
 # Array of hosts to connect to.
 hosts: ["http://<LOGSTREAM_HOST>:9200/elastic"]

output.elasticsearch.headers:
 Authorization: "myToken42"

Updated a day ago

Page 209 of 900

TCP JSON

Cribl LogStream supports receiving of data over TCP in JSON format (see protocol

below).

Select Data > Sources, then select TCP JSON from the Data Sources page's tiles or

left menu. Click Add New to open the New TCP JSON source pane, which provides

the following fields.

Input ID: Enter a unique name to identify this TCP JSON Source definition.

Address: Enter hostname/IP to listen for TCP JSON data. E.g., localhost or

0.0.0.0 .

Port: Enter port number.

IP whitelist regex: Regex matching IP addresses that are allowed to establish a

connection. Defaults to .* (i.e., all IPs).

Shared secret (authToken): Shared secret to be provided by any client (in

authToken header field). Click Generate to create a new secret. If empty,

unauthenticated access will be permitted.

Enabled: Defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: No

Configuring Cribl LogStream to Receive TCP JSON
Data

General Settings

TLS Settings (Server Side)

Page 210 of 900

Certificate path : Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

CA certificate path : Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized

with the list of supplied CAs. Defaults to No .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Enable proxy protocol: Toggle to Yes if the connection is proxied by a device

that supports Proxy Protocol v1 or v2.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Field for this Source:

__inputId

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 211 of 900

LogStream expects TCP JSON events in newline-delimited JSON format:

1. A header line. Can be empty – e.g., {} . If authToken is enabled (see above) it
should be included here as a field called authToken . When authToken is not

set, the header line is optional. In this case, the first line will be treated as an

event if does not look like a header record.

In addition, if events need to contain common fields, they can be included here

under fields . In the example below, region and AZ will be automatically

added to all events.

2. A JSON event/record per line.

Sample TCP JSON Events

If a TCP JSON Source is routed to a Splunk destination, fields within the JSON payload

are mapped to Splunk fields. Fields that do not have corresponding (native) Splunk

fields become index-time fields. For example, let's assume we have a TCP JSON event

as below:

{"_time":1541280341, "host":"myHost", "source":"mySource", "_raw":"this
is a sample event ", "fieldA":"valueA"}

Here, _time , host , and source become their corresponding fields in Splunk. The

value of _raw becomes the actual body of the event, and fieldA becomes an

index-time field (fieldA ::̀ valueA``).

1. Configure Cribl LogStream to listen on port 10001 for TCP JSON. Set

authToken to myToken42 .

2. Create a file called test.json with the payload above.

3. Send it over to your Cribl LogStream host: cat test.json | nc <myCriblHost>
10001

Format

{"authToken":"myToken42", "fields": {"region": "us-east-1", "AZ":"az1"}}

{"_raw":"this is a sample event ", "host":"myHost", "source":"mySource",
{"host":"myOtherHost", "source":"myOtherSource", "_raw": "{\"message\":\"

TCP JSON Field Mapping to Splunk

Example

Updated 6 days ago

Page 212 of 900

TCP (RAW)

Cribl LogStream supports receiving of data over TCP. (See examples and header

options below.)

Select Data > Sources, then select TCP from the Data Sources page's tiles or left

menu. Click Add New to open the New TCP source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this TCP Source definition.

Address: Enter hostname/IP to listen for raw TCP data. E.g., localhost or 0.0.0.0 .

Port: Enter port number.

IP whitelist regex: Regex matching IP addresses that are allowed to establish a

connection. Defaults to .* (i.e,. all IPs).

Enable Header: Toggle to Yes to indicate that client will pass a header record with

every new connection. The header can contain an authToken , and an object with a
list of fields and values to add to every event. These fields can be used to simplify

Event Breaker selection, routing, etc. Header format:

{ "authToken" : "myToken", "fields": { "field1": "value1", "field2":
"value2" }} .

Shared secret (authToken): Shared secret to be provided by any client (in

authToken header field). Click Generate to create a new secret. If empty,

unauthenticated access will be permitted.

Enabled: Defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl LogStream to Receive TCP Data

General Settings

TLS Settings (Server Side)

Page 213 of 900

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path : Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

In this section, you can pass the data from this input to an external command for

processing before the data continues downstream.

Enabled: Defaults to No . When toggled to Yes :

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument for the command. You can

drag arguments vertically to resequence them.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the

input data stream before the data is sent through the Routes. Defaults to System
Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the Routes. Defaults to 10000 .

Processing Settings

Custom Command

Event Breakers

Fields (Metadata)

Page 214 of 900

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Enable proxy protocol: Defaults to No . Toggle to Yes if the connection is proxied by

a device that supports Proxy Protocol V1 or V2.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and functions can use them to

make processing decisions.

Fields accessible for this Source:

__inputId

__srcIpPort

__channel

Every new TCP connection may contain an optional header line, with an authToken
and a list of fields and values to add to every event.

Sample raw TCP test

1. Configure LogStream to listen on port 7777 for raw TCP. Set authToken to

myToken42 .

2. Create a file called test.raw , with the payload above.

Pre-Processing

Advanced Settings

Internal Fields

TCP Source Example

{"authToken":"myToken42", "fields": {"region": "us-east-1", "AZ":"az1"}}

this is event number 1
this is event number 2

Enabling the Example

Page 215 of 900

3. Send it over to your Cribl LogStream host, using this command: cat test.raw |
nc <myCriblHost> 7777

Updated 6 days ago

Page 216 of 900

HTTP/S (Bulk API)

Cribl LogStream supports receiving data over HTTP/S using the Cribl Bulk API, Splunk

HEC, or Elastic Bulk API.

Select Data > Sources, then select HTTP from the Data Sources page's tiles or left

menu. Click Add New to open the New HTTP source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this HTTP(S) Source definition.

Address: Enter the hostname/IP on which to listen for HTTP(S) data. (E.g., localhost
or 0.0.0.0 .)

Port: Enter the port number.

Auth tokens: Shared secrets to be provided by any client (Authorization: <token>).

Click Generate to create a new secret. If empty, unauthenticated access will be

permitted.

Cribl HTTP event API: Absolute path on which to listen for Cribl HTTP API requests.

Currently, the only supported option is the default /cribl , which LogStream expands

as /cribl/_bulk . Use an empty string to disable. Maximum payload size is 2MB.

Elastic API endpoint (for Bulk API): Absolute path on which to listen for Elasticsearch

API requests. Currently, the only supported option is the default /elastic , which
LogStream expands as /elastic/_bulk . Other entries are faked as success. Use an
empty string to disable.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: No

Configuring Cribl LogStream to Receive Data over HTTP(S)

General Settings

ℹ Cribl generally recommends instead using the dedicated Elasticsearch API

Source. The Elastic API implementation here is provided for backward

compatibility, and for users who want to ingest multiple inputs on one

HTTP/S port.

Page 217 of 900

Splunk HEC endpoint: Absolute path on which to listen for Splunk HTTP Event

Collector (HEC) API requests. Use an empty string to disable. Default entry is

/services/collector .

Splunk HEC acks: Whether to enable Splunk HEC acknowledgements. Defaults to

No .

Enabled defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized

with the list of supplied CAs. Defaults to No .

ℹ This Splunk HEC implementation is an event (i.e., not raw) endpoint. For

details, see Splunk's documentation. To send data to it from a HEC client,

use either /services/collector or /services/collector/event . (See
the examples below.)

Cribl generally recommends instead using the dedicated Splunk HEC

Source. The Splunk HEC implementation here is provided for backward

compatibility, and for users who want to ingest multiple inputs on one

HTTP/S port.

TLS Settings (Server Side)

Processing Settings

Page 218 of 900

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__inputId

__id (Elastic In)

__type (Elastic In)

__index (Elastic In)

__host (Elastic In)

LogStream expects HTTP(S) events to be formatted as one JSON record per event.

Here are two event records:

Sample Event Format

Note 1: Events can be sent as separate POSTs, but Cribl highly recommends

combining multiple events in newline-delimited groups, and POSTing them together.

Note 2: If an HTTP(S) source is routed to a Splunk destination, fields within the JSON

payload are mapped to Splunk fields. Fields that do not have corresponding (native)

Splunk fields become index-time fields. For example, let's assume we have a HTTP(S)

event like this:

Fields (Metadata)

Pre-Processing

Internal Fields

Format and Endpoint

{"_time":1541280341, "_raw":"this is a sample event ", "host":"myHost", "
{"_time":1541280341, "host":"myOtherHost", "source":"myOtherSource", "_ra

Page 219 of 900

{"_time":1541280341, "host":"myHost", "source":"mySource", "_raw":"this
is a sample event ", "fieldA":"valueA"}

Here, _time , host and source become their corresponding fields in Splunk. The

value of _raw becomes the actual body of the event, and fieldA becomes an

index-time field. (fieldA :: valueA).

For the following examples:

1. Configure Cribl to listen on port 10080 for HTTP (default). Set authToken to

myToken42 .

2. Send a payload to your Cribl LogStream receiver.

Cribl Single Event Example:

Cribl Endpoint - Multiple Events

Splunk HEC Event Endpoint

Examples

Cribl Endpoint – Single Event

curl -k http://<myCriblHost>:10080/cribl/_bulk -H 'Authorization: myToken

Cribl Endpoint – Multiple Events

curl -k http://<myCriblHost>:10080/cribl/_bulk -H 'Authorization: myToken

Splunk HEC Event Endpoint

curl -k http://<myCriblHost>:10080/services/collector/event -H 'Authoriza

curl -k http://<myCriblHost>:10080/services/collector -H 'Authorization:

ℹ For Splunk HEC, the token specification can be either Splunk <token> or

<token> .

Updated 5 days ago

Page 220 of 900

Raw HTTP/S

Cribl LogStream supports receiving raw HTTP data. The Raw HTTP Source listens on a

specific port, captures every HTTP request to that port, and creates a corresponding

event that it pushes to its configured Event Breakers.

Select Data > Sources, then select Raw HTTP from the Data Sources page's tiles or

left menu. Click Add New to open the New Raw HTTP source pane, which provides

the following fields.

Input ID: Enter a unique name to identify this Raw HTTP Source definition.

Address: Enter the address to bind on. Defaults to 0.0.0.0 (all addresses).

Port: Enter the port number to listen on.

Auth tokens: Shared secrets to be provided by any client. Click Generate to create a

new secret. If empty, permits open access.

Enabled: Defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path : Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

ℹ Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl LogStream to Receive Raw HTTP
Data

General Settings

TLS Settings (Server Side)

Page 221 of 900

CA certificate path : Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the

input data stream before the data is sent through the Routes. Defaults to System
Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Allowed URI paths: List of URI paths accepted by this input. Supports wildcards, e.g.,

/api/v*/hook . Defaults to * , which allows all paths.

Allowed HTTP methods: List of HTTP methods accepted by this input. Supports

wildcards, e.g., P*, GET . Defaults to * , which allows all methods.

Processing Settings

Event Breakers

Fields (Metadata)

Pre-Processing

Advanced Settings

Page 222 of 900

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and functions can use them to

make processing decisions.

Fields accessible for this Source:

__inputId

__srcIpPort

__channel

Internal Fields

Updated 6 days ago

Page 223 of 900

Kafka

Cribl LogStream supports receiving data records from a Kafka cluster.

Select Data > Sources, then select Kafka from the Data Sources page's tiles or left

menu. Click Add New to open the New Kafka source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this Source definition.

Brokers: List of Kafka brokers to use, e.g., localhost:9092 .

Topics: List of topics to subscribe to.

Group ID: The name of the consumer group to which this Cribl LogStream instance

belongs.

From beginning: Whether to start reading from the earliest available data. Relevant

only during initial subscription. Defaults to Yes .

Enabled: defaults to No . When toggled to Yes :

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension.

This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

ℹ Type: Pull | TLS Support: YES | Event Breaker Support: No

Configuring Cribl LogStream to Receive Data from
Kafka Topics

General Settings

TLS Settings (Client Side)

Page 224 of 900

CA certificate path: Path on client containing CA certificates (in PEM format) to use to

verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format)

to use. Path can reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

This section governs SASL (Simple Authentication and Security Layer) authentication.

Enabled: Defaults to No . When toggled to Yes :

SASL mechanism: Use this drop-down to select the SASL authentication mechanism

to use.

Username: Enter the username for your account.

Password: Enter the account's password.

This section governs Kafka Schema Registry Authentication for AVRO-encoded data

with a schema stored in the Confluent Schema Registry.

Enabled: defaults to No . When toggled to Yes :

Schema registry URL: URL for access to the Confluent Schema Registry. (E.g.,

http://<hostname>:8081 .)

TLS enabled: defaults to No . When toggled to Yes, displays the following TLS

settings for the Schema Registry:

Validate server certs: Require client to reject connections to servers whose certs are

not signed by a CA specified in the CA Certificate Path field. Defaults to No .

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension.

This must be a host name, not an IP address.

Authentication

Schema Registry

ℹ These have the same format as the TLS Settings (Client Side) above.

TLS Settings (Schema Registry)

Page 225 of 900

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to

verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format)

to use. Path can reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__inputId

__topicIn (indicates the Kafka topic that the event came from; see

__topicOut in our Kafka Destination documentation)

__schemaId (when using Schema Registry)

Processing Settings

Fields (Metadata)

Pre-Processing

Internal Fields

Updated 6 days ago

Page 226 of 900

Kinesis

Cribl LogStream supports receiving data records from Amazon Kinesis Streams.

Select Data > Sources, then select Kinesis from the Data Sources page's tiles or left

menu. Click Add New to open the New Kinesis source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this Kinesis Stream Source definition.

Stream name: Kinesis stream name (not ARN) to read data from.

Shard iterator start: Location at which to start reading a shard for the first time.

Defaults to Earliest Record .

Record data format: Format of data inside the Kinesis Stream records. Gzip

compression is automatically detected. Options include:

Cribl (the default): Use this option if LogStream wrote data to Kinesis in this

format. This is a type of NDJSON.

Newline JSON: Use if the records contain newline-delimited JSON (NDJSON)

events – e.g., Kubernetes logs ingested through Kinesis. This is a good choice if

you don't know the records' format.

CloudWatch Logs: Use if you've configured CloudWatch to send logs to Kinesis.

Event per line: NDJSON can use this format when it fails to parse lines as valid

JSON.

API key: If not present, will fall back to env.AWS_ACCESS_KEY_ID , or to the metadata
endpoint for IAM credentials.

Secret key: If not present, will fall back to env.AWS_SECRET_ACCESS_KEY , or to the
metadata endpoint for IAM credentials.

ℹ Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: No

Configuring Cribl LogStream to Receive Data from
Kinesis Streams

General Settings

Page 227 of 900

Region: Region where the Kinesis stream is located. Required.

Enable for Kinesis stream: Use Assume Role credentials to access Kinesis stream.

Defaults to No .

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Shard selection expression: A JavaScript expression to be called with each shardId
for the stream. The shard will be processed if the expression evaluates to a truthy

value. Defaults to true .

Service Period: Time interval (in minutes) between consecutive service calls. Defaults

to 1 minute.

Endpoint: Kinesis stream service endpoint. If empty, the endpoint will be automatically

constructed from the region.

Signature version: Signature version to use for signing Kinesis Stream requests.

Defaults to v4 .

Verify KPL checksums: Enable this setting to verify Kinesis Producer Library (KPL)

event checksums.

Assume Role

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 228 of 900

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Field for this Source:

__inputId

Updated a day ago

Page 229 of 900

Kinesis Firehose

Cribl LogStream supports receiving data from Amazon Kinesis Firehose delivery

streams via Kinesis' HTTP endpoint destination option.

Select Data > Sources, then select Amazon > Firehose from the Data Sources page's

tiles or left menu. Click Add New to open the New Firehose source pane, which

provides the following fields.

Input ID: Enter a unique name to identify this Source definition.

Address: Address to bind on. Defaults to 0.0.0.0 (all addresses).

Port: Enter the port number to listen on.

Auth tokens: Shared secrets to be provided by any client (Authorization: <token>).

Click Generate to create a new secret. If empty, unauthenticated access will be

permitted.

Enabled: Defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

ℹ Type: Push | TLS Support: YES | Event Breaker Support: No

Configuring LogStream to Receive Data over HTTP(S) from
Amazon Kinesis Firehose

General Settings

TLS Settings (Server Side)

Page 230 of 900

CA certificate path: Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and functions can use them to

make processing decisions.

Fields accessible for this Source:

__inputId

__firehoseArn

__firehoseReqId

__firehoseEndpoint

Processing Settings

Fields (Metadata)

Pre-Processing

Internal Fields

Updated 6 days ago

Page 231 of 900

Azure Event Hubs

Cribl LogStream supports receiving data records from Azure Event Hubs.

Select Data > Sources, then select Azure Event Hubs from the Data Sources page's

tiles or left menu. Click Add New to open the New Event Hubs source pane, which

provides the following fields.

Input ID: Enter a unique name to identify this source definition.

Brokers: List of Event Hubs Kafka brokers to connect to, e.g.,

yourdomain.servicebus.windows.net:9093 . Get the hostname from the host

portion of the primary or secondary connection string in Shared Access Policies.

Event Hub name: The name of the Event Hub (a.k.a. Kafka Topic) to subscribe to.

Group ID: Specifies the name of the consumer group to which this Cribl LogStream

instance belongs. Should always be $Default for Event Hubs.

From beginning: Whether to start reading from the earliest available data. Relevant

only during initial subscription. Defaults to Yes .

Enabled: Defaults to Yes .

Validate server certs: Whether to reject connections to servers without signed

certificates. Defaults to No . (For Event Hubs, this should always be disabled.)

ℹ Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: No

Configuring Cribl LogStream to Receive Data from
Azure Event Hubs

General Settings

TLS Settings (Client Side)

Authentication

Page 232 of 900

Enabled: Defaults to No . When toggled to Yes :

SASL mechanism: SASL (Simple Authentication and Security Layer)

authentication mechanism to use. Currently, PLAIN is the only mechanism

supported for Event Hubs Kafka brokers.

Username: The username for authentication. For Event Hubs, this should always

be $ConnectionString .

Password: Connection-string primary key or connection-string secondary key

from the Event Hub workspace.

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Processing Settings

Fields (Metadata)

Pre-Processing

Updated 6 days ago

Page 233 of 900

Metrics

Cribl LogStream supports receiving metrics in these wire formats/protocols: StatsD,

StatsD Extended, and Graphite. Automatic protocol detection will happen on the first

line received over a TCP connection or a UDP packet. Lines not matching the detected

protocol will be dropped.

Select Data > Sources, then select Metrics from the Data Sources page's tiles or left

menu. Click Add New to open the New Metrics source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this Source definition.

Address: Enter the hostname/IP to listen to. Defaults to 0.0.0.0 .

UDP port: Enter the UDP port number to listen on. Not required if listening on TCP.

TCP port: Enter the TCP port number to listen on. Not required if listening on UDP.

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

ℹ Type: Push | TLS Support: No | Event Breaker Support: No

Configuring Cribl LogStream to Receive Metrics

General Settings

Processing Settings

Fields (Metadata)

Pre-Processing

Page 234 of 900

Enable proxy protocol: Defaults to No . Toggle to Yes if the connection is proxied by

a device that supports Proxy Protocol v1 or v2.

IP whitelist regex: Regex matching IP addresses that are allowed to send data.

Defaults to .* (i.e., all IPs.)

Max buffer size (events) : Maximum number of events to buffer when downstream is

blocking. Defaults to 1000 .

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__srcIpPort

__metricsInType

Metric data is read into the following event schema:

Text

LogStream places sufficient information into a field called __criblMetric to enable

these events to be properly serialized out to any metric outputs (independent of the

input type).

The following Destinations natively support the __criblMetric field:

Splunk

Splunk HEC

InfluxDB

Statsd

Advanced Settings

Internal Fields

Metric Event Schema and Destination Support

_metric - the metric name
_metric_type - the type of the metric (gauge, counter, timer)
_value - the value of the metric
_time - metric_time or Date.now()/1000
dim1 - value of dimension1
dim3 - value of dimension2
....

Page 235 of 900

Statsd Extended

Graphite

Updated 6 days ago

Page 236 of 900

SQS

Cribl LogStream supports receiving events from Amazon Simple Queuing Service.

Select Data > Sources, then select SQS from the Data Sources page's tiles or left

menu. Click Add New to open the New SQS source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this SQS Source definition.

Queue: The name, URL, or ARN of the SQS queue to read events from. When

specifying a non-AWS URL, you must use the format: {url}/<queueName> . (E.g.,
https://host:port/<queueName> .) This value can be a constant or a JavaScript
expression.

Create queue: Create queue if it does not exist.

API Key: If not present, will fall back to env.AWS_ACCESS_KEY_ID , or to the metadata
endpoint for IAM credentials.

Secret key: If not present, will fall back to env.AWS_SECRET_ACCESS_KEY , or to the
metadata endpoint for IAM credentials.

Region: AWS Region where the SQS queue is located. Required, unless the Queue

entry is a URL or ARN that includes a Region.

Enable for SQS: Whether to use Assume Role credentials to access SQS. Defaults to

No .

ℹ Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: No

Configuring Cribl LogStream to Receive Data from
Amazon SQS

General Settings

Assume Role

Page 237 of 900

AWS account ID: SQS queue owner AWS account id. Leave empty if SQS queue is in

same AWS account.

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Endpoint: SQS service endpoint. If empty, the endpoint will be automatically

constructed from the AWS Region.

Signature version: Signature version to use for signing SQS requests. Defaults to v4 .

Max messages: The maximum number of messages that SQS should return in a poll

request. Amazon SQS never returns more messages than this value. (However, fewer

messages might be returned.) Acceptable values: 1 to 10. Defaults to 10 .

Visibility timeout seconds: The duration (in seconds) that the received messages are

hidden from subsequent retrieve requests, after being retrieved by a ReceiveMessage

request. Defaults to 600 .

Num receivers: The number of receiver processes to run. The higher the number, the

better the throughput, at the expense of CPU overhead. Defaults to 3 .

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 238 of 900

__inputId

__sqsSysAttrs

The following permissions are needed on the SQS queue:

sqs:ReceiveMessage
sqs:DeleteMessage
sqs:GetQueueAttributes
sqs:GetQueueUrl
sqs:CreateQueue (optional, if and only if you want LogStream to create the queue)

SQS Permissions

Troubleshooting Notes

⚠ VPC endpoints for SQS might need to be set up in your account. Check

with your administrator for details.

Updated about 15 hours ago

Page 239 of 900

S3

Cribl LogStream supports receiving data from Amazon S3, using event notifications

through SQS.

Select Data > Sources, then select S3 from the Data Sources page's tiles or left

menu. Click Add New to open the New S3 source pane, which provides the following

fields.

ℹ Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: YES

S3 Setup Strategy

ℹ The source S3 bucket must be configured to send s3:ObjectCreated:*
events to an SQS queue, either directly (easiest) or via SNS (Amazon

Simple Notification Service). See the event notification configuration

guidelines below.

SQS messages will be deleted after they're read, unless an error occurs, in

which case LogStream will retry. This means that although LogStream will

ignore files not matching the Filename Filter, their SQS events/notifications

will still be read, and then deleted from the queue (along with those from

files that match).

These ignored files will no longer be available to other S3 Sources targeting

the same SQS queue. If you still need to process these files, we suggest:

Using a different, dedicated SQS queue. (Preferred and recommended.)

Applying a broad filter on a single Source, then using input conditioning

Pipelines an/or Route filters for further processing.

Configuring Cribl LogStream to Receive Data from
Amazon S3

General Settings

Page 240 of 900

Input ID: Enter a unique name to identify this S3 Source definition.

Queue: The name, URL, or ARN of the SQS queue to read events from. When

specifying a non-AWS URL, you must use the format: {url}/<queueName> . (E.g.,
https://host:port/<queueName> .) This value can be a constant or a JavaScript
expression.

API key: If not present, will fall back to env.AWS_ACCESS_KEY_ID , or to the metadata
endpoint for IAM credentials.

Secret key: If not present, will fall back to env.AWS_SECRET_ACCESS_KEY , or to the
metadata endpoint for IAM credentials.

Region: AWS Region where the S3 bucket and SQS queue are located. Required,

unless the Queue entry is a URL or ARN that includes a Region.

Enable for S3: Whether to use Assume Role credentials to access S3. Defaults to

Yes .

Enable for SQS: Whether to use Assume Role credentials when accessing SQS

(Amazon Simple Queue Service). Defaults to No .

AWS account ID: SQS queue owner's AWS account ID. Leave empty if the SQS queue

is in the same AWS account.

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

In this section, you can pass the data from this input to an external command for

processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You can

drag arguments vertically to resequence them.

Assume Role

Processing Settings

Custom Command

Event Breakers

Page 241 of 900

This section defines event breaking rulesets that will be applied, in order.

Event Breaker Rulesets: A list of event breaking rulesets that will be applied to the

input data stream before the data is sent through the Routes. Defaults to System
Default Rule .

Event Breaker Buffer Timeout: The amount of time (in milliseconds) that the Event

Breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Endpoint: S3 service endpoint. If empty, defaults to AWS's region specific endpoint.

Otherwise, used to point to an S3 compatible endpoint.

Signature version: Signature version to use for signing SQS requests. Defaults to v4 .

Num receivers: The number of receiver processes to run,. The higher the number, the

better the throughput, at the expense of CPU overhead. Defaults to 3 .

Max messages: The maximum number of messages that SQS should return in a poll

request. Amazon SQS never returns more messages than this value. (However, fewer

messages might be returned.) Acceptable values: 1 to 10. Defaults to 10 .

Visibility timeout seconds: The duration (in seconds) that the received messages are

hidden from subsequent retrieve requests, after being retrieved by a ReceiveMessage

request. Defaults to 600 .

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 242 of 900

__inputId

__source

1. Create a Standard SQS Queue. Note its ARN.

2. Replace its access policy with one similar to below: Selecting the queue, and in

the Permissions tab, click Edit Policy Document (Advanced).

3. In the Amazon S3 console, add a notification configuration to publish events of

the s3:ObjectCreated:* type to the SQS queue.

Example SQS Access Policy

The following permission is required on the S3 bucket:

s3:GetObject

The following permissions are required on the SQS queue:

sqs:ListQueues

How to Configure S3 to Send Event Notifications to SQS

ℹ For step-by-step instructions, see AWS' Walkthrough: Configure a Bucket

for Notifications (SNS Topic and SQS Queue).

{
 "Version": "example-2020-04-20",
 "Id": "example-ID",
 "Statement": [
 {
 "Sid": "<SID name",
 "Effect": "Allow",
 "Principal": {
 "AWS":"*"
 },
 "Action": [
 "SQS:SendMessage"
],
 "Resource": "example-SQS-queue-ARN",
 "Condition": {
 "ArnLike": { "aws:SourceArn": "arn:aws:s3:*:*:example-bucket-name"
 }
 }
]
}

S3 and SQS Permissions

Page 243 of 900

sqs:SendMessage

sqs:SendMessageBatch

sqs:CreateQueue

sqs:GetQueueAttributes

sqs:SetQueueAttributes

sqs:GetQueueUrl

VPC endpoints for SQS and for S3 might need to be set up in your account. Check

with your administrator for details.

If you're having connectivity issues, but no problems with the CLI, see if the AWS

CLI proxy is in use. Check with your administrator for details.

Troubleshooting Notes

Updated about 15 hours ago

Page 244 of 900

Office 365 Services

Cribl LogStream supports receiving data from the Office 365 Service Communications

API. This facilitates analyzing the status and history of service incidents on multiple

Microsoft cloud services, along with associated incident and Message Center

communications.

Select Data > Sources, then select Office 365 > Services from the Data Sources

page's tiles or left menu. Click Add New to open the New Office 365 Services source

pane, which provides the following fields.

Input ID: Enter a unique name to identify this Office 365 Services definition.

Tenant ID: Enter the Office 365 Azure tenant ID.

App ID: Enter the Office 365 Azure application ID.

Client secret: Enter the Office 365 Azure client secret.

Here, you can configure polling separately for the following types of data from the

Office 365 Service Communications API:

Current Status: Get a real-time view of current and ongoing service incidents.

Messages: Find izxncident and Message Center communications.

Historical Status: Get a historical view of service incidents.

As of this revision, this Microsoft API provides data for Office 365, Yammer,

Dynamics CRM, and Microsoft Intune cloud services. For each of these content types,

this section provides the following controls:

Enabled: Toggle this to Yes for each service that you want to poll.

ℹ Type: Pull | TLS Support: NO | Event Breaker Support: YES

Configuring Cribl LogStream to Receive Data from
Office 365 Services

General Settings

Content Types

Page 245 of 900

Interval: Optionally, override the default polling interval. See About Polling Intervals

below.

Log level: Set the verbosity level to one of debug , info (the default), warn , or
error .

To poll the Office 365 Service Communications API, LogStream uses the Interval

field's value to establish the search date range and the cron schedule

(e.g.: */${interval} * * * *).

Therefore, intervals set in minutes – those for Current Status and Historical Status –

must divide evenly into 60 minutes to create a predictable schedule. Dividing 60 by

intervals like 1 , 2 , 3 , 4 , 5 , 6 , 10 , 12 , 15 , 20 , or 60 itself yields an integer,

so you can enter any of these values.

LogStream will reject intervals like 23 , 42 , or 45 , or 75 – which would yield non-

integer results, meaning unpredictable schedules.

The Historical Status service polls only once per day. So here, the Interval field's

value simply establishes the hour of the day at which to poll. (In distributed

deployments, this time is set based on the Master Node's system time. In single-

instance deployments, it is set based on the API server's time zone.)

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Keep Alive Time (seconds): How often Workers should check in with the scheduler to

keep their job subscription alive. Defaults to 60 .

Worker timeout (periods): The number of Keep Alive Time periods before an inactive

Worker will have its job subscription revoked. Defaults to 3 .

About Polling Intervals

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Page 246 of 900

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__final

__inputId

__isBroken

__source

Internal Fields

Updated a day ago

Page 247 of 900

Office 365 Activity

Cribl LogStream supports receiving data from the Office 365 Management Activity

API. This facilitates analyzing actions and events on Azure Active Directory, Exchange,

and SharePoint, along with global auditing and Data Loss Prevention data.

Select Data > Sources, then select Office 365 > Activity from the Data Sources

page's tiles or left menu. Click Add New to open the New Office 365 Activity source

pane, which provides the following fields.

Input ID: Enter a unique name to identify this Office 365 Services definition.

Tenant ID: Enter the Office 365 Azure tenant ID.

App ID: Enter the Office 365 Azure application ID.

Client secret: Enter the Office 365 Azure client secret.

Subscription Plan: Select the Office 365 subscription plan for your organization. This

is typically Enterprise and GCC Government Plan .

Here, you can configure polling independently for the following types of audit data

from the Office 365 Management Activity API:

Active Directory

Exchange

SharePoint

General: All workloads not included in the above content types

DLP.All: Data Loss Prevention events only, for all workloads

For each of these content types, this section provides the following controls:

ℹ Type: Pull | TLS Support: NO | Event Breaker Support: YES

Configuring Cribl LogStream to Receive Data from
Office 365 Activity

General Settings

Content Types

Page 248 of 900

Enabled: Toggle this to Yes for each service that you want to poll.

Interval: Optionally, override the default polling interval. See About Polling Intervals

below.

Log level: Set the verbosity level to one of debug , info (the default), warn , or
error .

To poll the Office 365 Management Activity API, LogStream uses the Interval field's

value to establish the search date range and the cron schedule (e.g.: */${interval}
* * * *).

Therefore, intervals set in minutes must divide evenly into 60 minutes to create a

predictable schedule. Dividing 60 by intervals like 1 , 2 , 3 , 4 , 5 , 6 , 10 , 12 ,
15 , 20 , or 60 itself yields an integer, so you can enter any of these values.

LogStream will reject intervals like 23 , 42 , or 45 , or 75 – which would yield non-

integer results, meaning unpredictable schedules.

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Keep Alive Time (seconds): How often Workers should check in with the scheduler to

keep their job subscription alive. Defaults to 60 .

Worker timeout (periods): The number of Keep Alive Time periods before an inactive

Worker will have its job subscription revoked. Defaults to 3 .

About Polling Intervals

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 249 of 900

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__final

__inputId

__isBroken

__source

Updated a day ago

Page 250 of 900

SNMP Trap

Cribl LogStream supports receiving data from SNMP Traps.

Select Data > Sources, then select SNMP Trap from the Data Sources page's tiles or

left menu. Click Add New to open the New SNMP Trap source pane, which provides

the following fields.

Input ID: Enter a unique name to identify this Source definition.

Address: Address to bind on. Defaults to 0.0.0.0 (all addresses).

UDP Port: Port on which to receive SNMP traps. Defaults to 162 .

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

ℹ Type: Push | TLS Support: NO | Event Breaker Support: No

Configuring Cribl LogStream to Receive SNMP Traps

General Settings

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Page 251 of 900

IP whitelist regex: Regex matching IP addresses that are allowed to send data.

Defaults to .* i.e. all IPs.

Max buffer size (events) : Maximum number of events to buffer when downstream is

blocking. Defaults to 1000 .

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__inputId

__snmpVersion : Acceptable values are 0 , 2 , 3 . Versions: 0 =v1, 2 =v2c,
3 =v3.

__srcIpPort : <hostname>|port

__snmpRaw : Buffer containing Raw SNMP packet

It's possible to work with SNMP metadata (i.e., we'll decode the packet). Options

include dropping, routing, etc.

SNMP packets can be forwarded to other SNMP destinations. However, the

contents of the incoming packet cannot be modified – i.e., we'll forward the

packets verbatim as they came in.

SNMP packets can be forwarded to non-SNMP destinations (e.g., Splunk, Syslog,

S3, etc.).

Non-SNMP input data cannot be sent to SNMP destinations.

Internal Fields

Considerations for Working with SNMP Trap Data

Updated 6 days ago

Page 252 of 900

Datagens

Cribl LogStream supports generating of data from datagen files. See Using Datagens

for more details.

Select Data > Sources, then select Datagens from the Data Sources page's tiles or

left menu. Click Add New to open the New Datagen source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this Source definition.

Datagens: List of datagens.

Data generator file: Name of the datagen file.

Events per second per Worker Node: Maximum number of events to generate

per second, per worker node. Defaults to 10 .

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

ℹ Type: Internal | TLS Support: N/A | Event Breaker Support: No

Configuring Cribl LogStream to Generate Sample Data

General Settings

Processing Settings

Fields (Metadata)

Pre-Processing

Page 253 of 900

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__inputId

Internal Fields

Updated 6 days ago

Page 254 of 900

Cribl Internal

The Cribl Internal Source enables you to capture and send LogStream's own internal

logs and metrics through Routes and Pipelines. In distributed mode, only Worker

Node internal logs can be processed through this Source. (Logs on the Master remain

on the Master, since the Master Node is not part of any processing path.)

Select Data > Sources, then select Cribl Internal from the Data Sources page's tiles

or left menu. Then click the CriblLogs and/or CriblMetrics accordion to expose the

corresponding section's settings, listed below.

Enabled: Toggle to Yes to enable Cribl logs as a Source.

Input ID: Enter a unique name to identify this CriblLogs Source definition.

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

ℹ Type: Internal | TLS Support: N/A | Event Breaker Support: No

Configuring Cribl Internal Logs/Metrics to Behave as a
Data Source

CriblLogs Settings – General

CriblLogs Settings – Processing

Fields (Metadata)

Pre-Processing

CriblMetrics Settings – General

Page 255 of 900

Enabled: Toggle to Yes to enable Cribl metrics as a Source.

Input ID: Enter a unique name to identify this CriblMetrics Source definition.

Metric name prefix: Enter an optional prefix that will be applied to metrics provided by

LogStream. The prefix defaults to cribl.logstream. .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

The following fields will be added to all events/metrics:

source : set to cribl .

host : set to the hostname of the Cribl instance.

Use these fields to guide these events/metrics through Cribl Routes.

CriblMetrics Settings – Processing

Fields (Metadata)

Pre-Processing

Internal Fields

⚠ These internal fields are subject to change and modification. Cribl provides

them to assist with analytics and diagnostics, but does not guarantee that

they will remain available.

Updated 6 days ago

Page 256 of 900

Collectors

Collectors enable you to dispatch on-demand collection tasks that fetch data from

local or remote locations. As of v.2.3, LogStream supports scheduled collection jobs.

These recurring jobs can make batch collection of stored data more like continual

processing of streaming data.

You can configure a LogStream node to retrieve data from a remote system via Data >

Collectors. Data collection is a multi-step process:

First, define a collector instance. In this step, you configure collector-specific settings

by selecting a collector type and pointing it at a specific target. (E.g., the target will be

a directory if the type is Filesystem, or an S3 bucket/path if the type is Amazon S3.)

Next, schedule or manually run the collector. In this step, you configure scheduled-

job–specific or run-specific settings – such as the Run Mode, the Filter expression to

match the data against, the time range, etc.

When a node receives this configuration, it prepares the infrastructure to execute a

collection job. A collection job is typically made up of one or more tasks that: discover

the data to be fetched; fetch data that match the run filter; and finally, pass the results

either through the Routes or (optionally) into a specific Pipeline and Destination.

You might process data from inherently non-streaming sources, such as REST

endpoints, blob stores, etc. Scheduled jobs enable you to emulate a data stream by

scraping data from these sources in batches, on a set interval.

You can schedule a specific job to pick up new data from the source – data that hadnʼt

been picked up in previous invocations of this scheduled job. This essentially

transforms a non-streaming data source into a streaming data source.

In a distributed deployment, collectors are set up at the Worker Group level, and the

tasks are executed by Worker Nodes. The Master Node oversees the task distribution,

and tries to maintain a fair balance across jobs.

How Do Collectors Work

Scheduled Collector Jobs

Collectors in Distributed Deployments

Page 257 of 900

What's Next
See the configuration instructions for the collector type you want to configure,

Then proceed to instructions for scheduling and running collection jobs.

Filesystem/NFS

S3

Script

REST

Scheduling and Running

When Workers ask for tasks, the Master will normally try to assign the next task from a

job with the least tasks in progress. This is known as Least In Flight Scheduling and

provides the fairest task distribution for most cases. Default behavior can be changed

via Settings > General Settings > Job Limits > Job Scheduling.

Cribl LogStream currently provides the following collector options:

Filesystem/NFS – enables data collection from local or remote filesystem

locations.

S3 – enables data collection from Amazon S3 buckets or S3-compatible stores.

Script – enables data collection via custom scripts.

REST – enables data collection via REST API calls. Provides four Discover options,

to support progressively more complex (and dynamic) item enumerations.

Collector Types

Updated 12 days ago

Page 258 of 900

Filesystem/NFS

Cribl LogStream supports collecting data from a local or a remote filesystem location.

From the top menu, select Data > Collectors. On the resulting Manage Collectors

page, click Add New. This displays the following options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., DysonV11Roomba960 .

Collector type: Defines the type of Collector to configure.

Auto-populate from: Select a Destination with which to auto-populate Collector

settings. Useful when replaying data.

Directory: The directory from which to collect data. Symlinks will not be followed.

Templating is supported (e.g., /myDir/${host}/${year}/${month}/). More on
templates and Filters.

Recursive: If set to Yes (the default), data collection will recurse through

subdirectories.

Destructive: If set to Yes , the Collector will delete files after collection. Defaults to
No .

Max batch size (files) : Maximum number of files to batch before recording as results.

Configuring a Filesystem Collector

Collector Settings

ℹ Set this to Filesystem to configure the Collector as shown below.

The sections described below are spread across several tabs. Click the tab

links at left, or the Next and Prev buttons, to navigate among tabs. Click

Save when you've configured your Collector.

Result Settings

Page 259 of 900

The Result Settings determine how LogStream transforms and routes the collected

data.

In this section, you can pass the data from this input to an external command for

processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You can

drag arguments vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete

events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order,

to the input data stream. Defaults to System Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), events will be sent to normal routing and

event processing. Toggle to No to select a specific pipeline/destination combination,

in these two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

Preprocess Pipeline: Pipeline to process results before sending to Routes. Optional.

Custom Command

Event Breakers

Fields (Metadata)

Result Routing

Advanced Settings

Page 260 of 900

What's Next

Scheduling and Running

Advanced Settings enable you to customize post-processing and administrative

options.

Time to Live: How long to keep the job's artifacts on disk after job completion. This

also affects how long a job is listed in Job Inspector. Defaults to 4h .

Updated 14 days ago

Page 261 of 900

S3

Cribl LogStream supports collecting data from Amazon S3 stores.

From the top menu, select Data > Collectors. On the resulting Manage Collectors

page, click Add New. This displays the following options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., Attic42TreasureChest .

Collector type: Defines the type of Collector to configure.

Auto-populate from: Select a Destination with which to auto-populate Collector

settings. Useful when replaying data.

S3 bucket: Simple Storage Service bucket from which to collect data.

Region: S3 Region from which to retrieve data.

Path: Path, within the bucket, from which to collect data. Templating is supported

(e.g., /myDir/${host}/${year}/${month}/). More on templates and Filters.

API key: Enter API key. If empty, will fall back to env.AWS_ACCESS_KEY_ID , or to the
metadata endpoint for IAM credentials. Optional when running on AWS.

Secret key: Enter secret key. if empty, will fall back to env.AWS_SECRET_ACCESS_KEY ,
or to the metadata endpoint for IAM credentials. Optional when running on AWS.

Recursive: If set to Yes (the default), data collection will recurse through

subdirectories.

Configuring an S3 Collector

Collector Settings

ℹ Set this to S3 to configure the Collector as shown below.

The sections described below are spread across several tabs. Click the tab

links at left, or the Next and Prev buttons, to navigate among tabs. Click

Save when you've configured your Collector.

Page 262 of 900

Max batch size (files) : Maximum number of files to batch before recording as results.

Endpoint: S3 service endpoint. If empty, LogStream will automatically construct the

endpoint from the region.

Signature version: Signature version to use for signing S3 requests. Defaults to v4 .

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

The Result Settings determine how LogStream transforms and routes the collected

data.

In this section, you can pass the data from this input to an external command for

processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You can

drag arguments vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete

events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order,

to the input data stream. Defaults to System Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Advanced Collector Settings

Result Settings

Custom Command

Event Breakers

Fields (Metadata)

Page 263 of 900

What's Next

Scheduling and Running

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), events will be sent to normal routing and

event processing. Toggle to No to select a specific pipeline/destination combination,

in these two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

Preprocess Pipeline: Pipeline to process results before sending to Routes. Optional.

Advanced Settings enable you to customize post-processing and administrative

options.

Time to live: How long to keep the job's artifacts on disk after job completion. This

also affects how long a job is listed in Job Inspector. Defaults to 4h .

Result Routing

Advanced Settings

Updated 14 days ago

Page 264 of 900

Script

Cribl LogStream supports flexible data collection configured by your custom scripts.

From the top menu, select Data > Collectors. On the resulting Manage Collectors

page, click Add New. This displays the following options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., sh2GetStuff .

Collector type: Defines the type of Collector to configure.

Discover script: Script to discover which objects/files to collect. This script should

output one task per line in stdout .

Collect script: Script to perform data collections. Pass in tasks from the Discover

script as $CRIBL_COLLECT_ARG . Should output results to stdout .

Shell: Shell in which to execute scripts. Defaults to /bin/bash .

Configuring a Script Collector

Collector Settings

ℹ Set this to Script to configure the Collector as shown below.

The sections described below are spread across several tabs. Click the tab

links at left, or the Next and Prev buttons, to navigate among tabs. Click

Save when you've configured your Collector.

With Great Power Comes Great Responsibility!⚠

Scripts will allow you to execute almost anything on the system where Cribl

LogStream is running. Make sure you understand the impact of what you're

executing before you do so! These scripts run as the user running

LogStream, so if you are running it as root, these commands will run with

root user permissions. ☠ ☠

Page 265 of 900

The Result Settings determine how LogStream transforms and routes the collected

data.

In this section, you can pass the data from this input to an external command for

processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You can

drag arguments vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete

events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order,

to the input data stream. Defaults to System Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), events will be sent to normal routing and

event processing. Toggle to No to select a specific pipeline/destination combination,

in these two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

Preprocess Pipeline: Pipeline to process results before sending to Routes. Optional.

Result Settings

Custom Command

Event Breakers

Fields (Metadata)

Result Routing

Page 266 of 900

What's Next

Scheduling and Running

Advanced Settings enable you to customize post-processing and administrative

options.

Time to live: How long to keep the job's artifacts on disk after job completion. This

also affects how long a job is listed in Job Inspector. Defaults to 4h .

Advanced Settings

Updated 14 days ago

Page 267 of 900

REST

Cribl LogStream supports collecting data from REST endpoints.

From the top menu, select Data > Collectors. On the resulting Manage Collectors

page, click Add New. This displays the following options and fields.

The Collector Settings determine how data is collected before processing.

Unique ID for this Collector. E.g., rest42json .

Defines the type of Collector to configure.

Once you've selected the REST Collector type above, this exposes a Discover type

drop-down. Here you have four options, corresponding to different use cases. Each

Discover type selection will expose a different set of Collector Settings fields. Below,

we cover the Discover types from simplest to most-complex.

Discover type: None matches cases where one simple API call will retrieve all the

data you need. This suppresses the Discover stage. (Example: Collect a list of

configured LogStream Pipelines.)

Discover type: Item List matches cases where you want to enumerate a known

list of items to retrieve. (Example: Collect network traffic data that's tagged with

Configuring a REST Collector

Collector Settings

Collector ID

Collector Type

ℹ Set this to REST to configure the Collector as shown below.

The sections described below are spread across several tabs. Click the tab

links at left, or the Next and Prev buttons, to navigate among tabs. Click

Save when you've configured your Collector.

Discover Type

Page 268 of 900

specific subnets.)

Discover type: JSON Response provides a Discover result field where you can

(optionally) define Discover tasks as a JSON array of objects. Each entry returned

by Discover will generate a Collect task. (Example: Collect data for specific geo

locations the National Weather Service API's stream of worldwide weather data.

This API requires multiple parameters in the request URL – latitude, longitude, etc.

– so an Item List would not work.)

Discover type: HTTP Request matches cases where you need to dynamically

discover what you can collect from a REST endpoint. This Discover type most

fully exploits LogStream's Discover-Before-Collect architecture. (Example: Make a

REST call to get a list of available log files, then run Collect against each of those

files.)

These remaining Collector Settings options appear for Discover type: None , as well
as for all other Discover type selections:

Collect URL: URL (constant or expression) to use for the Collect operation.

Collect method: Select the HTTP verb to use for the Collect operation, GET or POST .

Collect parameters: Optional HTTP request parameters to append to the request

URL. These refine or narrow the request. Click + Add Parameter to add parameters as

key-value pairs:

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Collect headers:: Click + Add Header to (optionally) add collection request haaders

as key-value pairs:

Name: Header name.

Value: JavaScript expression to compute the header's value (can be a constant).

Common Collector Settings / Discover Type: None

Time Range Variablesℹ

The following fields fields accept ${earliest} and ${latest} variables,

which reference any Time Range values that have been set in manual or

scheduled collection jobs:

Collect URL, Collect parameters, Collect headers

Discover URL, Discover parameters, Discover headers.

As an example, here is a Collect URL entry using these variables:

http://localhost/path?from=${earliest}&to=${latest}

Page 269 of 900

In the Authentication drop-down, select an authentication method to use for discover

and collect REST requests:

None : Compatible with REST servers like AWS, where you embed a secret
directly in the request URL.

Basic : Compatible with Basic Authentication servers. Selecting Basic exposes

additional fields in which you specify a Basic Auth zxUsername and Password.

Login : Enables you to specify several credentials, then perform a POST to an

endpoint during the Discover operation. The POST response returns a token,

which LogStream uses for later Collect operations.

Selecting Login exposes the following additional fields:

Login URL: URL for the login API call, which is expected to be a POST call.

Username: Login username.

Password: Login password.

POST Body: Template for POST body to send with the login request. The

${username} and ${password} variables specify the corresponding

credentials' locations in the message.

Token Attribute: Path to the token attribute in the login response body. Supports

nested attributes.

Authorize Expression: JavaScript expression used to compute the Authorization

header to pass in Discover and Collect calls. Uses ${token} to reference the

token obtained from the login POST request.

Setting the Discover type to Item List exposes this additional field above the

Common Collector Settings:

Discover Items: List of items to return from the Discover task. Each returned item will

generate a Collect task, and can be referenced using ${id} in the Collect URL, the

Collect parameters, or the Collect headers.

ℹ By adding the appropriate Collect headers, you can specify API Key–based

authentication as an alternative to the Authentication: Basic or Login
options below.

Authentication

Discover Type: Item List

Page 270 of 900

Setting the Discover type to JSON Response exposes these additional fields above

the Common Collector Settings:

Discover result: Allows hard-coding the Discover result. Must be a JSON object.

Works with the Discover data field.

Discover data field: Within the response JSON, name of the field or array element to

pull results from. Leave blank if the result is an array of values. Sample entry: items,
json: { items: [{id: 'first'},{id: 'second'}] }

Setting the Discover type to HTTP Request exposes these additional fields above the

Common Collector Settings:

Discover URL: Enter the URL to use for the Discover operation. This can be a constant

URL, or an expression to derive the URL.

Discover method: Select the HTTP verb to use for the Discover operation, GET or

POST .

Discover parameters: Optional HTTP request parameters to append to the Discover

request URL. These refine or narrow the request. Click + Add Parameter to add

parameters as key-value pairs:

Name: Parameter name.

Value: JavaScript expression to compute the parameter's value (can also be a

constant).

Discover headers: Optional Discover request headers.: Click + Add Header to add

headers as key-value pairs:

Name: Header name.

Value: JavaScript expression to compute the header's value (can also be a

constant).

Discover data field: Within the response JSON, name of the field that contains

Discover results. Leave blank if the result is an array.

Discover Type: JSON Response

Discover Type: HTTP Request

ℹ The following sections describe the Collector Settings' remaining tabs,

whose settings and content apply equally to all Discover type selections.

Result Settings

Page 271 of 900

The Result Settings determine how LogStream transforms and routes the collected

data.

In this section, you can pass the data from this input to an external command for

processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You can

drag arguments vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete

events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order,

to the input data stream. Defaults to System Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), events will be sent to normal routing and

event processing. Toggle to No to select a specific pipeline/destination combination,

in these two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

Preprocess Pipeline: Pipeline to process results before sending to Routes. Optional.

Custom Command

Event Breakers

Fields (Metadata)

Result Routing

Advanced Settings

Page 272 of 900

What's Next

Scheduling and Running

Advanced Settings enable you to customize post-processing and administrative

options.

Time to live: How long to keep the job's artifacts on disk after job completion. This

also affects how long a job is listed in Job Inspector. Defaults to 4h .

Updated 13 days ago

Page 273 of 900

Scheduling and Running

Once you've configured a Collector, you can either run it immediately to collect data,

or schedule it to run on a recurring schedule. Scheduling requires some extra

configuration upfront, so we cover this option first.

Click Schedule beside a configured Collector to display the Schedule configuration

modal. This provides the following controls.

Enabled: Slide to Yes to enable this collection schedule.

Cron schedule: A cron schedule on which to run this job.

The Estimated schedule below this field shows the next few collection runs, as

examples of the cron interval you've scheduled.

Skippable: Skippable jobs can be delayed up to their next run time if the system is

hitting concurrency limits. Defaults to Yes .

If toggled to Yes , the Skippable option obliges these concurrency limits in Settings >
General Settings > Job Limits:

Concurrent Job Limit

Concurrent Scheduled Job Limit

When the above limits delay a Skippable job:

The Skippable job will be granted slightly higher priority than non-Skippable jobs.

If the job receives resources to run before its next scheduled run, LogStream will

run the delayed job, then snap back to the original cron schedule.

If resources do not free up before the next scheduled run: LogStream will skip the

delayed run, and snap back to the original cron schedule.

Schedule Configuration

⚠ The scheduled job will keep running on this schedule forever, unless you

toggle Enabled back to Off .

Skippable Jobs and Concurrency Limits

Page 274 of 900

Set Skippable to No if you absolutely must have all your data, for compliance or other

reasons. In this case, LogStream will build up a backlog of jobs to run.

You can think of Skippable: No as behaving more like the TCP protocol, with

Skippable: Yes behaving more like UDP.

Most of the remaining fields and options below are shared with the Run configuration

modal, which you can open by clicking Run beside a configured Collector.

Depending on your requirements, you can schedule or run a collector in these modes:

Preview – default for Run, but not offered for Scheduled Jobs

Discovery – default for Scheduled Jobs

Full Run

In the Preview mode, a collection job will return only a sample subset of matching

results (e.g., 100 events). This is very useful in cases when users need a data sample

to:

Ensure that the correct data comes in.

Iterate on filter expressions.

Capture a sample to iterate on pipelines.

⚠ All collection jobs are constrained by the following Settings >

General Settings > Job Limits:

Concurrent Task Limit

Max Task Usage Percentage

Run Configuration and Shared Settings

Mode

Preview

ℹ Schedule configuration omits the Preview option, because Preview is

designed for immediate analysis and decision making. To configure a

Scheduled Job with high confidence, you might want to first manually run

Preview jobs with the same Collector, to verify that you're collecting the

data you expect.

Preview Settings

Page 275 of 900

In Preview mode, you can optionally set these limits:

Capture time (sec): Maximum time interval (in seconds) to collect data.

Capture up to N events: Maximum number of events to capture.

In Discovery mode, a collection job will return only the list of objects/files to be

collected, but none of the data. This mode is typically used to ensure that the Filter

expression and time range are correct before a Full Run job collects unintended data.

In Discovery mode, this slider enables you to send the discover results to LogStream

Routes. Defaults to No .

In Full Run mode, the collection job is fully executed by Worker Nodes, and will return

all data matching the Run configuration.

Set an Absolute or Relative time range for data collection.

Select the Absolute button to set fixed collection boundaries in your local time. Next,

use the Earliest and Latest controls to set the start date/time and end date/time.

Select the Relative button to set collection boundaries relative to the current time.

Next, use the Earliest and Latest to set start and end times like these:

Earliest example values: -1hr , -42m , - 42m@h

Latest example values: now , -20m , +42m@h

For Relative times, the Earliest and Latest controls accept the following syntax:

[+|-]<time_integer><time_unit>@<snap-to_time_unit>

To break down this syntax:

Discovery

Send to Routes

Full Run

Time Range

✅ The Relative option is particularly useful for configuring scheduled jobs.

Absolute

Relative

Relative Time Syntax

Page 276 of 900

The @ snap modifier always rounds down (backwards) from any specified time. This

is true even in relative time expressions with + (future) offsets. For example:

@d snaps back to the beginning of today, 12�00 AM (midnight).

+128m@h looks forward 128 minutes, then snaps back to the nearest round hour.

(If you specified this in the Latest field, and ran the Collector at 4�20 PM,

collection would end at 6�00 PM. The expression would look forward to 6�28 PM,

but snap back to 6�00 PM.)

Other options:

@w or @w7 to snap back to the beginning of the week – defined here as the

preceding Sunday.

To snap back to other days of a week, use w1 (Monday) through w6 (Saturday).

@m to snap back to the 1st of a month.

@q to snap back to the beginning of the most recent quarter – Jan. 1, Apr. 1, Jul.

1, or Oct. 1.

@y to snap back to Jan. 1.

This is a JavaScript filter expression that is evaluated against token values in the

provided collector path (see below), and against the events being collected. The Filter

value defaults to true , which matches all data, but this value can be customized
almost arbitrarily.

For example, if a Filesystem or S3 collector is run with this Filter:

host=='myHost' && source.endsWith('.log') || source.endsWith('.txt')

Offset
Specify: - for times in the past, + for times in the future, or

omit with now .

<time_integer> Specify any integer, or omit with now .

<time_unit>

Specify the now constant, or one of the following

abbreviations: s[econds] , m[inutes] , h[ours] , d[ays] ,
w[eeks] , m[onths] , q[uarters] , y[ears]

@<snap-

to_time_unit>

Optionally, you can append the @ modifier, followed by any of

the above <time_unit> s, to round down to the nearest
instance of that unit. (See the next section for details.)

Snap-to-Time Syntax

Filter

Syntax

Element
Values Supported

Page 277 of 900

...then only files/objects with .log or .txt extensions will be fetched. And, from

those, only those events with host field myHost will be collected.

For more extensive options, see Tokens for Filtering below.

Log Level: Level at which to set task logging. More-verbose levels are useful for

troubleshooting jobs and tasks, but use them sparingly.

Min task size: Minimum size of each task for the job. Defaults to 1 MB .

Max task size: Maximum size of each task for the job. Defaults to 10 MB .

Let's look at the options for path-based (basic) and time-based token filtering.

In collectors with paths, such as Filesystem or S3, LogStream supports path filtering

via token notation. Basic tokens' syntax follows that of JS template literals:

${<token_name>} – where token_name is the field (name) of interest.

For example, if the path was set to /var/log/${hostname}/${sourcetype}/ , you
could use a Filter such as hostname=='myHost' && sourcetype=='mySourcetype' to

collect data only from the /var/log/myHost/mySourcetype/ subdirectory.

In paths with time partitions, LogStream supports further filtering via time-based

tokens. This has a direct effect with earliest and latest boundaries. When a job runs

against a path with time partitions, the job traverses a minimal superset of the required

directories to satisfy the time range, before subsequent event _time filtering.

LogStream processes time-based tokens as follows:

For each path, time partitions must be notated in descending order. So

Year/Month/Day order is supported, but Day/Month/Year is not.

Paths may contain more than one partition. E.g., /my/path/2020-04/20/ .

In a given path, each time component can be used only once.

So /my/path/${_time:%Y}/${_time:%m}/${_time:%d}/... is a valid expression

format, but /my/path/${_time:%Y}/${_time:%m}/${host}/${_time:%Y}/...
(with a repeated Y) is not supported.

Advanced Settings

Tokens for Filtering

Basic Tokens

Time-based Tokens

About Partitions and Tokens

Page 278 of 900

For each path, all extracted dates/times are considered in UTC.

The following strptime format components are allowed:

'Yy' , for years

'mBbj' , for months

'dj' , for days

'HI' , for hours

'M' , for minutes

'S' , for seconds

Time-based token syntax follows that of a slightly modified JS template literal:

${_time: <some_strptime_format_component>} . Examples:

Token Syntax

/my/path/${_time:%Y}/${_time:%m}/${_time:%d}/... /my

/my/path/${_time:year=%Y}/${_time:month=%m}/${_time:date=%d}/... /my

/my/path/${_time:%Y-%m-%d}/... /my

Updated about 16 hours ago

Filter Ma

Page 279 of 900

Destinations

Cribl LogStream can send data to various Destinations, including Splunk, Kafka,

Kinesis, InfluxDB, Snowflake, Databricks, TCP JSON, and many others.

Destinations that accept events in real time are referred to as streaming Destinations:

Splunk Single Instance

Splunk Load Balanced

Splunk HEC

AWS Kinesis Streams

AWS CloudWatch Logs

AWS SQS

Elasticsearch

Honeycomb

TCP JSON

Syslog

Kafka

Azure Event Hubs

Azure Monitor Logs

StatsD

StatsD Extended

Graphite

InfluxDB

Wavefront

SignalFx

Streaming Destinations

Page 280 of 900

Destinations that accept events in groups or batches are referred to as non-streaming

Destinations:

S3 Compatible Stores

Filesystem/NFS

MinIO

Azure Blob Storage

LogStream also provides these special-purpose Destinations:

Output Router: Flexible "meta-destination." Here, you can configure rules that

route data to multiple outputs.

DevNull: An output that simply drops events. Preconfigured and active when you

install LogStream, so it requires no configuration. Useful for testing.

Default: Here, you can specify a default output from among your configured

Destinations.

Cribl LogStream uses a staging directory in the local filesystem to format and write

outputted events before sending them to configured Destinations. After a set of

conditions is met – typically file size and number of files, further details below – data is

compressed and then moved to the final Destination.

An inventory of open, or in-progress, files is kept in the staging directory's root, to

avoid having to walk that directory at startup. This can get expensive if staging is also

the final directory. At startup, Cribl LogStream will check for any leftover files in

progress from prior sessions, and will ensure that they're moved to their final

Destination. The process of moving to the final Destination is delayed after startup

(default delay: 30 seconds). Processing of these files is paced at one file per service

period (which defaults to 1 second).

Several conditions govern when files are closed and rolled out:

1. File reaches its configured maximum size.

2. File reaches its configured maximum open time.

3. File reaches its configured maximum idle time.

If a new file needs to be open, Cribl LogStream will enforce the maximum number of

open files, by closing files in the order in which they were opened.

Non-Streaming Destinations

Other Destinations

How Does Non-Streaming Delivery Work

Batching Conditions

Page 281 of 900

Data is delivered to all Destinations on an at-least-once basis. When a Destination is

unreachable, there are three possible behaviors:

Block - Cribl LogStream will block incoming events.

Drop - Cribl LogStream will drop events addressed to that Destination.

Queue - Cribl LogStream will Persistent-Queue events to that Destination.

You can configure the desired behavior through a Destination's Backpressure

Behavior option. If this option is not present, Cribl LogStream's default behavior is to

Block.

For each Destination type, you can create multiple definitions, depending on your

requirements.

To configure Destinations, select Data > Destinations, select the desired type from

the tiles or the left menu, then click + Add New.

Data Delivery

Configuring Destinations

Updated 8 days ago

Page 282 of 900

Output Router

Output Routers are meta-destinations that allow for output selection based on rules.

Rules are evaluated in order, top->down, with the first match being the winner.

Select Data > Destinations, then select Output Router from the Data Destinations

page's tiles or left menu. Click Add New to open the New Router destination pane,

which provides the following fields.

Router name: Enter a unique name to identify this Router definition.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Rules: A list of event routing rules. Each provides the following settings:

Filter expression: JavaScript expression to select events to send to output.

Output: Output to send matching events to.

Final: Flag that controls whether to stop the event from being checked against

other rules lower in the stack. Defaults to Yes .

An Output Router cannot reference another. This is by design, so as to avoid

cycles.

Events that do not match any of the rules are dropped. Use a catchall rule to

change this behavior.

No post-processing (conditioning) can be done here. Use Pre-Processing

Pipelines on the Source tier.

Data can be cloned by toggling the Final flag to No . (The default is Yes , i.e.,
no cloning.)

Configuring Cribl LogStream to Send to an Output Router

Notes

Example

Page 283 of 900

Scenario:

Send all events where host starts with 66 to Destination San Francisco .

From the rest of the events:

Send all events with method field POST or GET to both Seattle and Los
Angeles (i.e., clone).

Send the remaining events to New York City .

Router Name: router66

host.startsWith('66') San Francisco Yes

method=='POST' || method=='GET Seattle No

method=='POST' || method=='GET' Los Angeles Yes

true New York Yes

Updated 5 days ago

Filter Expression Output Final

Page 284 of 900

Splunk Single Instance

Splunk Enterprise is a streaming Destination type.

Select Data > Destinations, then select Splunk > Single Instance from the

Data Destinations page's tiles or left menu. Click Add New to open the

New Splunk Single Instance destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this Splunk Single Instance definition.

Address: Hostname of the Splunk receiver.

Port: The port number on the host.

Nested field serialization: Specifies how to serialize nested fields into index-time

fields. Defaults to None .

Throttling: Throttle rate in bytes per second. Multiple byte units such as KB, MB, GB

etc. are also allowed. E.g., 42 MB. Default value of 0 indicates no throttling. When

throttle engaged, excesses data will be dropped only if Backpressure Behavior is set to

drop, and blocked for all other settings.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Configuring Cribl LogStream to Output to Splunk
Destinations

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 285 of 900

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enabled defaults to No . When toggled to Yes :

Validate server certs: Require client to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension.

This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to

verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format)

to use. Path can reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to

establish, before retrying. Defaults to 10000 .

TLS Settings (Client Side)

Single .pem Fileℹ

If you have a single .pem file containing cacert , key , and cert
sections, enter it in all of these fields above: CA certificate path, Private

key path (mutual auth), and Certificate path (mutual auth).

Timeout Settings

Page 286 of 900

Write timeout: Amount of time (in milliseconds) to wait for a write to complete, before

assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Data sent to Splunk is not compressed.

If events have a Cribl LogStream internal field called __criblMetrics , they'll be
forwarded to Splunk as metric events.

If events do not have a _raw field, they'll be serialized to JSON prior to sending

to Splunk.

Processing Settings

Post-Processing

Notes about Forwarding to Splunk

Updated a day ago

Page 287 of 900

Splunk Load Balanced

Splunk is a streaming Destination type, and with Splunk Load Balanced output, you

can load-balance data out to multiple Splunk receivers.

Cribl LogStream will attempt to load-balance outbound data as fairly as possibly

across all receivers. Data is sent to all receivers simultaneously, and the amount sent to

each receiver depends on these parameters:

1. Respective destination weight.

2. Respective destination historical data.

By default, historical data is tracked for 300s. LogStream uses this data to influence

the traffic sent to each destination, to ensure that differences decay over time, and

that total ratios converge towards configured weights.

Suppose we have two receivers, A and B, each with weight of 1 (i.e., they are

configured to receive equal amounts of data). Suppose further that the load-balance

stats period is set at the default 300s and – to make things easy – for each period,

there are 200 events of equal size (Bytes) that need to be balanced.

Both A and B start this interval with 0 historical stats each.

Let's assume that, due to various circumstances, 200 events are "balanced" as

follows:

A = 120 events and B = 80 events – a difference of 40 events and a ratio of

1.5�1.

At the beginning of interval 2, the load-balancing algorithm will look back to the

previous interval stats and carry half of the receiving stats forward. I.e., receiver A will

start the interval with 60 and receiver B with 40. To determine how many events A and

How Does Load Balancing Work

Example

1 time=0s ---> time=300s 200

2 time=300s ---> time=600s 200

Interval Time Range Events to be dispensed

Interval Time Range Events to be dispensed

Page 288 of 900

B will receive during this next interval, LogStream will use their weights and their stats

as follows:

Total number of events: events to be dispensed + stats carried forward = 200
+ 60 + 40 = 300 .
Number of events per each destination (weighed): 300/2 = 150 (they're equal, due

to equal weight).

Number of events to send to each destination A: 150 - 60 = 90 and B: 150 - 40
= 110 .

Totals at end of interval 2: A=120+90=210 , B=80+110=190 , a difference of 20 events

and a ratio of 1.1�1.

Over the subsequent intervals, the difference becomes exponentially less pronounced,

and eventually insignificant. Thus, the load gets balanced fairly.

To configure load balancing, first select Data > Destinations, then select

Splunk > Load Balanced from the Data Destinations page's tiles or left menu. Then

click Add New to open the New Splunk Load Balanced destination pane, which

provides the following fields.

Output ID: Enter a unique name to identify this Splunk LB Destination definition.

DNS resolution period (seconds): Re-resolve any hostnames after each interval of

this many seconds, and pick up destinations from A records. Defaults to 60s.

Exclude current host IPs: Exclude all IPs of the current host from the list of any

resolved hostnames. Defaults to Yes .

Load balance stats period (seconds): Lookback traffic history period. Defaults to

300s. (Note that If multiple receivers are behind a hostname – i.e., multiple A records –

all resolved IPs will inherit the weight of the host, unless each IP is specified separately.

In Cribl LogStream load balancing, IP settings take priority over those from

hostnames.)

Nested field serialization: Specifies whether and how to serialize nested fields into

index-time fields. Select None (the default) or JSON .

Throttling: Throttle rate, in bytes per second. Multiple byte units such as KB, MB, GB,

etc., are also allowed. E.g., 42 MB . Default value of 0 indicates no throttling. When

throttling is engaged, excess data will be dropped only if Backpressure behavior is set

to Drop events. (Data will be blocked for all other Backpressure behavior settings.)

Configuring Cribl LogStream to Load-Balance to
Multiple Splunk Destinations

General Settings

Page 289 of 900

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Toggle to Yes to automatically discover indexers in an indexer clustering environment.

This displays the following fields:

Site: Clustering site from which indexers need to be discovered. In the case of a

single site cluster, default is the default entry.

Cluster Master URI: Full URI of Splunk Cluster Master, in the format:

scheme://host:port .
(Worker Nodes normally access the Cluster Master on port 8089 to get the list of

currently online indexers.)

Auth token: Authentication token required to authenticate to Cluster Master for

indexer discovery.

Refresh period: Time interval (in seconds) between two consecutive fetches of

indexer list from Cluster Master. Defaults to 60 .

The Destinations section appears only when Indexer discovery is set to No . Here,
you specify a known set of Splunk receivers on which to load-balance data.

Click + Add Destination to specify more receivers on new rows. Each row provides the

following fields:

Address: Hostname of the Splunk receiver. Optionally, you can paste in a comma-

separated list, in <host>:<port> format.

Port: Port number to send data to.

TLS: Whether to inherit TLS configs from group setting, or disable TLS. Defaults

to inherit .

TLS servername: Servername to use if establishing a TLS connection. If not

specified, defaults to connection host (if not an IP). Otherwise, uses the global

Indexer Discovery

ℹ To enable token authentication on the Splunk Cluster Master, follow the

steps in this Splunk documentation. The following capabilites are required:

list_indexer_cluster and list_indexerdiscovery .

If you have a failover site configured on Splunk's Cluster Master, Cribl

respects this configuration, and forwards the data to the failover site in case

of site failure.

Destinations

Page 290 of 900

TLS settings.

Load weight: The weight to apply to this Destination for load-balancing purposes.

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enabled: Defaults to No . When toggled to Yes :

Validate server certs: Require client to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Server name (SNI): Server Name Indication.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates to use to verify the

server's cert. Path can reference $ENV_VARS . Certificates in PEM format.

Private key path (mutual auth): Path on client containing the private key to use.

Path can reference $ENV_VARS . Private key file in PEM format. Use only if mutual

auth is required.

Certificate path (mutual auth): Path on client containing certificates to use.

Path can reference $ENV_VARS . Certificates in PEM format. Use only if mutual

auth is required.

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

TLS Settings (Client Side)

Page 291 of 900

Passphrase: Passphrase to use to decrypt private key.

Connection timeout: Amount of time (milliseconds) to wait for the connection to

establish, before retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete,

before assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

To connect to Splunk Cloud, you might need to extract the private and public key from

the Splunk-provided Splunk Cloud Certificate, which is typically bundled in an app.

Use the following steps:

Step 1. Test connectivity to Splunk Cloud, using the Root CA certificate:

openssl s_client -CApath path_to_ca.pem -connect
hostnameToSplunkCloud:9997

ℹ Single PEM File

If you have a single .pem file containing cacert , key , and cert
sections, enter this file's path in all of these fields above: CA certificate

path, Private key path (mutual auth), and Certificate path (mutual

auth).

Timeout Settings

Processing Settings

Post-Processing

SSL Configuration for Splunk Cloud – Special Note

Page 292 of 900

Step 2. Extract the Private key from the Splunk Cloud Certificate. At the prompt, you

will need the sslPassword value from the outputs.conf file bundled with the

Splunk Cloud app:

openssl ec -in path_to_server_cert.pem -out private.pem

Step 3. Extract the Public Key for the Server Certificate:

openssl x509 -in path_to_server_cert.pem -out server.pem

Step 4. In the LogStream Destination's TLS Settings (Client Side) section, enter the

following:

CA Certificate Path: Path to CA Certificate.

Private Key Path (mutual auth): Path to private.pem (Step 2 above).

Certificate Path (mutual auth): Path to server.pem (Step 3 above).

Data sent to Splunk is not compressed.

If events have a LogStream internal field called __criblMetrics , they'll be
forwarded to Splunk as metric events.

If events do not have a _raw field, they'll be serialized to JSON prior to sending

to Splunk.

Notes About Forwarding to Splunk

Updated a day ago

Page 293 of 900

Splunk HEC

Splunk HEC is a streaming Destination type. In a typical deployment, Cribl LogStream

will be installed/ co-located in a Splunk heavy forwarder. If this output is enabled, it can

send data out to a Splunk HEC (HTTP Event Collector) destination through the event

endpoint.

Select Data > Destinations, then select Splunk > HEC from the Data Destinations

page's tiles or left menu. Click Add New to open the New Splunk HEC destination

pane, which provides the following fields.

Output ID: Enter a unique name to identify this Splunk HEC definition.

Splunk HEC endpoint: URL of a Splunk HEC endpoint to send events to (e.g.,

http://myhost.example.com:8088/services/collector/event).

HEC auth token: Splunk HEC authentication token.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Configuring Cribl LogStream to Output to Splunk HEC
Destinations

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 294 of 900

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete

before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This

is set per Worker Process. Defaults to 5 . Each request can potentially hit a different
HEC receiver.

Max body size (KB): Maximum size, in KB, of the request body. Defaults to 4096 .
Lowering the size can potentially result in more parallel requests and also cause

outbound requests to be made sooner.

Flush period (sec): Maximum time between requests. Low values can cause the

payload size to be smaller than the configured Max body size. Defaults to 1 .

Processing Settings

Post-Processing

Advanced Settings

ℹ Retries happen on this flush interval.

Any HTTP response code in the 2xx range is considered success.

Any response code in the 5xx range is considered a retryable error,

which will not trigger Persistent Queue (PQ) usage.

Page 295 of 900

Extra HTTP headers: Click + Add Header to add Name/Value pairs to pass as

additional HTTP headers.

Next processing queue: Specify the next Splunk processing queue to send the events

to, after HEC processing. Defaults to indexQueue .

Default _TCP_ROUTING: Specify the value of the _TCP_ROUTING field for events that

do not have _ctrl._TCP_ROUTING set. Defaults to nowhere .

Cribl LogStream will attempt to use keepalives to reuse a connection for multiple

requests. After 2 minutes of the first use, the connection will be thrown away, and

a new connection will be reattempted. This is to prevent sticking to a particular

Destination when there is a constant flow of events.

If the server does not support keepalives – or if the server closes a pooled

connection while idle – a new connection will be established for next request.

When resolving the Destination's hostname, LogStream will pick the first IP in the

list for use in the next connection. Round-robin DNS would help with event

balancing.

Any other response code will trigger PQ (if PQ is configured as the

Backpressure behavior).

ℹ This is useful only when you expect the HEC receiver to route this data on

to another destination.

Notes on HTTP-based Outputs

Updated about 16 hours ago

Page 296 of 900

S3 Compatible Stores

S3 is a non-streaming Destination type. Cribl LogStream does not have to run on AWS

in order to deliver data to S3. Stores that are S3-compatible will also work with this

Destination type.

Select Data > Destinations, then select Amazon > S3 from the Data Destinations

page's tiles or left menu. Click Add New to open the New S3 destination pane, which

provides the following fields.

Output ID: Enter a unique name to identify this S3 definition.

S3 bucket name: Name of the destination S3 Bucket. This value can be a constant or

a JavaScript expression.

Region: Region where the S3 bucket is located.

API key: Enter your AWS API Key. If left blank, LogStream will fall back to

env.AWS_ACCESS_KEY_ID , or to the metadata endpoint for IAM credentials.

Secret key: Enter your AWS Secret Key. If left blank, Cribl LogStream will fall back to

env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM credentials.

Staging location: Filesystem location in which to locally buffer files before

compressing and moving to final destination. Cribl recommends that this location be

stable and high-performance.

Key prefix: Prefix to add to files before uploading. This value can be a constant or a

JavaScript expression.

Partitioning expression: JavaScript expression to define how files are partitioned and

organized. If left blank, Cribl LogStream will fall back to event.__partition . Defaults
to `${host}/${sourcetype}` . Partitioning by time is also possible, e.g.,
`${host}/${C.Time.strftime(_time, '%Y-%m-%d')}/${sourcetype}`

Data format: Format of the output data. Defaults to json .

File name prefix: The output filename prefix. Defaults to CriblOut .

Configuring Cribl LogStream to Output to S3
Destinations

General Settings

Page 297 of 900

Compress: Select the data compression format to use before moving data to final

destination. Defaults to none . Cribl recommends setting this to gzip .

Backpressure behavior: Select whether to block or drop events when all receivers in

this group are exerting backpressure. Defaults to Block .

Enable for S3: Use Assume Role credentials to access Kinesis stream. Defaults to No .

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Endpoint: S3 service endpoint. If empty, the endpoint will be automatically

constructed from the region.

Object ACL: Object ACL (Access Control List) to assign to uploaded objects.

Storage class: Select a storage class for uploaded objects. Defaults to Standard .

Server side encryption: Server side encryption type for uploaded objects. Defaults to

none .

Signature version: Signature version to use for signing S3 requests. Defaults to v4 .

Max file size (MB): Maximum uncompressed output file size. Files of this size will be

closed and moved to final output location. Defaults to 32 .

Assume Role

Processing Settings

Post-Processing

Advanced Settings

Page 298 of 900

Max file open time (sec): Maximum amount of time to write to a file. Files open for

longer than this limit will be closed and moved to final output location. Defaults to

300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open. Files

open for longer than this limit will be closed and moved to final output location.

Defaults to 30 .

Max open files: Maximum number of files to keep open concurrently. When exceeded,

the oldest open files will be closed and moved to final output location. Defaults to

100 .

The following permissions are needed to write to an Amazon S3 bucket:

s3:GetObject
s3:ListBucket
s3:GetBucketLocation
s3:PutObject

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Field for this Destination:

__partition

ℹ Cribl LogStream will close files when either of the Max file size (MB) or

the Max file open time (sec) conditions are met.

Amazon S3 Permissions

Internal Fields

Updated about 14 hours ago

Page 299 of 900

Kinesis Streams

Cribl LogStream can output events to Amazon Kinesis Data Streams records of up to

1MB uncompressed. Cribl LogStream does not have to run on AWS in order to deliver

data to a Kinesis Data Stream.

Select Data > Destinations, then select Amazon > Kinesis from the

Data Destinations page's tiles or left menu. Click Add New to open the New Kinesis

destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this Kinesis definition.

Stream name: Enter the name of the Kinesis Data Stream to which to send events.

API key: Enter your AWS API Key. If left blank, LogStream will fall back to

env.AWS_ACCESS_KEY_ID , or to the metadata endpoint for IAM credentials.

Secret key: Enter your AWS Secret Key. If left blank, LogStream will fall back to

env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM credentials.

Region: Select the AWS Region where the Kinesis Data Stream is located.

Endpoint: Kinesis Stream service endpoint. If empty, the endpoint will be automatically

constructed from the region.

Signature version: Signature version to use for signing Kinesis stream requests.

Defaults to v4 .

Put request concurrency: Maximum number of ongoing put requests before blocking.

Defaults to 5 .

Max record size (KB, uncompressed): Maximum size of each individual record before

compression. For non-compressible data, 1MB (the default) is the maximum

recommended size.

Flush period (sec): Maximum time between requests. Low settings could cause the

payload size to be smaller than its configured maximum.

Configuring Cribl LogStream to Output to Amazon
Kinesis Data Streams

General Settings

Page 300 of 900

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enable for Kinesis stream: Use Assume Role credentials to access Kinesis stream.

Defaults to No .

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Assume Role

Processing Settings

Post-Processing

Page 301 of 900

cribl_output – LogStream Destination that processed the event.

Currently, outputted events use the following record format:

Header line containing information about the payload (currently supports one

type, as shown below).

Newline-Delimited JSON (that is, each Kinesis record will contain multiple events,

in ndjson format).

Record payloads (including header and body) will be gzip-compressed, and then

Kinesis will base64-encode them.

Sample Kinesis Record

Format

{"format":"ndjson","count":8,"size":3960}
{"_raw":"07-03-2018 18:33:51.136 -0700 ERROR TcpOutputFd - Read error. Co
{"_raw":"07-03-2018 18:33:51.136 -0700 INFO TcpOutputProc - Connection t
...

Updated a day ago

Page 302 of 900

CloudWatch Logs

Cribl LogStream supports sending data to Amazon CloudWatch Logs. This is a

streaming Destination type. Cribl LogStream does not have to run on AWS in order to

deliver data to CloudWatch Logs.

Select Data > Destinations, then select Amazon > CloudWatch Logs from the

Data Destinations page's tiles or left menu. Click Add New to open the

New CloudWatch Logs destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this CloudWatch definition.

Log group name: CloudWatch log group to associate events with.

Log stream prefix: Prefix for CloudWatch log stream name. This prefix will be used to

generate a unique log stream name per Cribl LogStream instance. (E.g.,

myStream_myHost_myOutputId .)

API key: Enter your AWS API Key. If left blank, LogStream will fall back to

env.AWS_ACCESS_KEY_ID , or to the metadata endpoint for IAM credentials.

Secret key: Enter your AWS Secret Key. If left blank, LogStream will fall back to

env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM credentials.

Region: AWS region where the CloudWatch Logs group is located.

Endpoint: CloudWatch Logs service endpoint. If empty, defaults to AWS' Region-

specific endpoint. Otherwise, use this field to point to a CloudWatchLogs-compatible

endpoint.

Signature version: Signature version to use for signing CloudWatch Logs requests.

Defaults to v4 .

Max queue size: Maximum number of queued batches before blocking. Defaults to

5 .

Max record size (KB, uncompressed): Maximum size of each individual record before

compression. For non-compressible data, 1MB (the default) is the maximum

Configuring Cribl LogStream to Output to Amazon
CloudWatch Logs

General Settings

Page 303 of 900

recommended size.

Flush period (sec): Maximum time between requests. Low settings could cause the

payload size to be smaller than its configured maximum.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enable for Cloudwatch Logs: Use Assume Role credentials to access Kinesis stream.

Defaults to No .

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Assume Role

Processing Settings

Post-Processing

Page 304 of 900

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Updated a day ago

Page 305 of 900

SQS

Cribl LogStream supports sending events to Amazon Simple Queuing Service.

Select Data > Destinations, then select Amazon > SQS from the Data Destinations

page's tiles or left menu. Click Add New to open the New SQS destination pane,

which provides the following fields.

Output ID: Enter a unique name to identify this SQS Destination.

Queue name: The name of the AWS SQS queue to send events to. This value can be a

constant or a JavaScript expression.

Message group ID: This parameter applies only to queues of type FIFO. Enter the tag

that specifies that a message belongs to a specific message group. (Messages

belonging to the same message group are processed in FIFO order.) Defaults to

cribl . Use event field __messageGroupId to override this value.

Create queue: Specifies whether to create the queue if it does not exist. Defaults to

Yes .

API key: Enter your AWS API Key. If left blank, LogStream will fall back to

env.AWS_ACCESS_KEY_ID , or to the metadata endpoint for IAM credentials.

Secret key: Enter your AWS Secret Key. If left blank, LogStream will fall back to

env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM credentials.

Region: Region where SQS queue is located.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Send Data to Amazon
SQS

General Settings

Persistent Queue Settings

Page 306 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enable for SQS: Use Assume Role credentials to access Kinesis stream. Defaults

to No .

AWS account ID: SQS queue owner's AWS account ID. Leave empty if the SQS queue

is in the same AWS account where this Cribl LogStream instance is located.

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Assume Role

Processing Settings

Post-Processing

Page 307 of 900

Endpoint: SQS service endpoint. If empty, the endpoint will be automatically

constructed from the region.

Signature version: Signature version to use for signing SQS requests. Defaults to v4 .

Max queue size: Maximum number of queued batches before blocking. Defaults to

100 .

Max record size (KB): Maximum size of each individual record. Per the SQS spec, the

maximum allowed value is 256 KB. (the default).

Flush period (sec): Maximum time between requests. Low settings could cause the

payload size to be smaller than its configured maximum. Defaults to 1 .

Max concurrent requests: The maximum number of in-progress API requests before

backpressure is applied. Defaults to 10 .

The following permissions are needed to write to an SQS queue:

sqs:ListQueues

sqs:SendMessage

sqs:SendMessageBatch

sqs:CreateQueue

sqs:GetQueueAttributes

sqs:SetQueueAttributes

sqs:GetQueueUrl

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and functions can use them to

make processing decisions.

Fields for this Destination:

__messageGroupId

__sqsMsgAttrs

__sqsSysAttrs

Advanced Settings

SQS Permissions

Internal Fields

Page 308 of 900

Updated about 15 hours ago

Page 309 of 900

Filesystem/NFS

Filesystem is a non-streaming Destination type that Cribl LogStream can use to output

files to a local or a network-attached filesystem (NFS).

Select Data > Destinations, then select Filesystem from the Data Destinations

page's tiles or left menu. Click Add New to open the New Filesystem destination

pane, which provides the following fields.

Output ID: Enter a unique name to identify this Filesystem definition.

Output location: Final destination for the output files.

Staging location: Local filesystem location in which to buffer files before compressing

and moving them to the final destination. Cribl recommends that this location be stable

and high-performance.

Partitioning expression: JavaScript expression to define how files are partitioned and

organized. Defaults to `${host}/${sourcetype}` . If left blank, Cribl LogStream will

fall back to event.__partition . Partitioning by time is also possible, e.g.:
`${host}/${C.Time.strftime(_time, '%Y-%m-%d')}/${sourcetype}`

Data format: Format of the output data. Defaults to json .

File name prefix: The output filename prefix. Defaults to CriblOut

Compress: Data compression format used before moving to final destination. Default

none . It is recommended that gzip is used.

Max file size (MB): Maximum uncompressed output file size. Files of this size will be

closed and moved to final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open for

longer than this will be closed and moved to final output location. Defaults to 300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open. Files

open for longer than this will be closed and moved to final output location. Defaults to

30 .

Configuring Cribl LogStream to Output to Filesystem
Destinations

General Settings

Page 310 of 900

Max open files: Maximum number of files to keep open concurrently. When exceeded,

the oldest open files will be closed and moved to final output location. Defaults to

100 .

Backpressure Behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Field for this Destination:

__partition

ℹ Cribl LogStream will close files when either of the Max file size (MB) or

the Max file open time (sec) conditions are met.

Processing Settings

Post-Processing

Internal Fields

ℹ To export events from an intermediate stage within a Pipeline to a file, see

the Tee Function.

Updated 3 days ago

Page 311 of 900

Elasticsearch

Cribl LogStream can send events to an Elasticsearch cluster using the Bulk API.

Select Data > Destinations, then select Elasticsearch from the Data Destinations

page's tiles or left menu. Click Add New to open the New Elasticsearch destination

pane, which provides the following fields.

Output ID: Enter a unique name to identify this Elasticsearch Destination definition.

Bulk API URL: URL of an Elasticsearch cluster to send events to.

(E.g., http://<myElasticCluster>:9200/_bulk .)

Index: Elasticsearch Index where to send events to. Note that this value can be

overwritten by an event's __index field.

Type: Specify document type to use for events. Note that this value can be overwritten

by an event's __type field.

Authentication enabled: Set to No by default. Toggle to Yes to enter a Username

and Password.

Backpressure behavior: Specify whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Configuring Cribl LogStream to Output to
Elasticsearch

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 312 of 900

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete

before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This

is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (s): Maximum time between requests. Low values could cause the

payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

This Destination normalizes the following fields:

Processing Settings

Post-Processing

Advanced Settings

Field Normalization

Page 313 of 900

_time becomes @timestamp at millisecond resolultion.

host.name is set to host .

See also our Elasticsearch Source documentation's Field Normalization section.

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Fields for this Destination:

__id

__type

__index

Cribl LogStream will attempt to use keepalives to reuse a connection for multiple

requests. After 2 minutes of the first use, the connection will be thrown away, and

a new one will be reattempted. This is to prevent sticking to a particular

destination when there is a constant flow of events.

If the server does not support keepalives (or if the server closes a pooled

connection while idle), a new connection will be established for the next request.

When resolving the Destination's hostname, LogStream will pick the first IP in the

list for use in the next connection. Round-robin DNS would help with event

balancing.

Internal Fields

Notes on HTTP-based Outputs

Updated about 16 hours ago

Page 314 of 900

Honeycomb

Cribl LogStream supports sending events to a Honeycomb dataset.

Select Data > Destinations, then select Honeycomb from the Data Destinations

page's tiles or left menu. Click Add New to open the New Honeycomb destination

pane, which provides the following fields.

Output ID: Enter a unique name to identify this Honeycomb definition.

Dataset name: Name of the dataset to send events to. (E.g.,

iLoveObservabilityDataset .)

API Key: Team API Key to which the dataset belongs. (E.g., teamWilde .)

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Configuring Cribl LogStream to Output to Honeycomb

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 315 of 900

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete

before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This

is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (sec): Maximum time between requests. Low values could cause the

payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Cribl LogStream will attempt to use keepalives to reuse a connection for multiple

requests. After 2 minutes of the first use, the connection will be thrown away, and

a new one will be reattempted. This is to prevent sticking to a particular

Destination when there is a constant flow of events.

If the server does not support keepalives (or if the server closes a pooled

connection while idle), a new connection will be established for the next request.

When resolving the Destination's hostname, LogStream will pick the first IP in the

list for use in the next connection. Round-robin DNS would help with event

balancing.

Processing Settings

Post-Processing

Advanced Settings

Notes on HTTP-based Outputs

Page 316 of 900

Updated about 16 hours ago

Page 317 of 900

TCP JSON

Cribl LogStream supports sending data over TCP in JSON format. TCP JSON is a

streaming Destination type.

Select Data > Destinations, then select TCP JSON from the Data Destinations page's

tiles or left menu. Click Add New to open the New TCP JSON destination pane, which

provides the following fields.

Output ID: Enter a unique name to identify this Destination definition.

Address: Hostname of the receiver.

Port: Port number to connect to on the host.

Auth token: Optional authentication token to include as part of the connection header.

Defaults to empty.

Compression: Codec to use to compress the data before sending. Defaults to None .

Throttling: Throttle rate in bytes per second. Multiple byte units such as KB, MB, GB

etc. are also allowed. E.g., 42 MB. Default value of 0 indicates no throttling. When

throttle engaged, excesses data will be dropped only if Backpressure Behavior is set to

drop, and blocked for all other settings.

Backpressure behavior: Specifies whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output in TCP JSON
Format

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 318 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enabled: Defaults to No . When toggled to Yes :

Validate server certs: Require client to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Server name (SNI): Server name for the SNI (Server Name Indication) TLS

extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to

use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Certificate path (mutual auth): Path on client containing certificates in (PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Passphrase: Passphrase to use to decrypt private key.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to

establish before retrying. Defaults to 10000 .

Write timeout: Amount of time (in milliseconds) to wait for a write to complete before

assuming connection is dead. Defaults to 60000 .

TLS Settings (Client Side)

Timeout Settings

Page 319 of 900

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

TCP JSON events are sent in newline-delimited JSON format, consisting of:

1. A header line. Can be empty, e.g.: {} . If Auth Token is enabled, the token will be
included here as a field called authToken . In addition, if events contain common
fields, they will be included here under fields .

2. A JSON event/record per line.

See an example in our TCP JSON Source topic.

Processing Settings

Post-Processing

Format

Example

Updated a day ago

Page 320 of 900

Syslog

Cribl LogStream supports sending of data over syslog via TCP. Syslog is a streaming

Destination type.

Select Data > Destinations, then select Syslog from the Data Destinations page's

tiles or left menu. Click Add New to open the New Syslog destination pane, which

provides the following fields.

Output ID: Enter a unique name to identify this Syslog definition.

Protocol: The network protocol to use for sending out syslog messages. Defaults to

TCP ; UDP is also available.

Address: Address/hostname of the receiver.

Port: Port number to connect to on the host.

Facility: Default value for message facility. If set, will be overwritten by the value of

__facility . Defaults to user .

Severity: Default value for message severity. If set, will be overwritten by the value of

__severity . Defaults to notice .

App name: Default value for application name. If set, will be overwritten by the value of

__appname . Defaults to Cribl .

Message format: The syslog message format supported by the receiver. Defaults to

RFC3164 .

Timestamp format: The timestamp format to use when serializing an event's time

field. Defaults to Syslog .

ℹ This Syslog Destination supports RFC 3164 and RFC 5424.

Configuring Cribl LogStream to output in Syslog
format

General Settings

Page 321 of 900

Throttling: Throttle rate in bytes per second. Multiple byte units such as KB, MB, GB

etc. are also allowed. E.g., 42 MB. Default value of 0 indicates no throttling. When

throttle engaged, excesses data will be dropped only if Backpressure Behavior is set to

drop, and blocked for all other settings.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enabled: Defaults to No . When toggled to Yes :

Validate server certs: Require client to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Server name (SNI): Server name for the SNI (Server Name Indication) TLS

extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to

use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

TLS Settings (Client Side)

Page 322 of 900

Certificate path (mutual auth): Path on client containing certificates in (PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Passphrase: Passphrase to use to decrypt private key.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to

establish, before retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete, before

assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Fields for this destination:

__priority

__facility

__severity

__procid

Timeout Settings

ℹ These timeout settings apply only to the TCP protocol.

Processing Settings

Post-Processing

Internal Fields

Page 323 of 900

__appname

__msgid

__syslogout

Updated about 8 hours ago

Page 324 of 900

Kafka

Cribl LogStream supports sending data to a Kafka topic. Kafka is a streaming

Destination type.

Select Data > Destinations, then select Kafka from the Data Destinations page's tiles

or left menu. Click Add New to open the New Kafka destination pane, which provides

the following fields.

Output ID: Enter a unique name to identify this Kafka definition.

Brokers: List of Kafka brokers to connect to. (E.g., localhost:9092 .)

Topic: The topic on which to publish events. Can be overwritten using event's

__topic field.

Acknowledgments: Select the number of required acknowledgments. Defaults to

Leader .

Record data format: Format to use to serialize events before writing to Kafka. Defaults

to JSON .

Compression: Codec to compress the data before sending to Kafka. Defaults to

Gzip .

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Enabled: defaults to No . When toggled to Yes, displays the following client-side

TLS settings:

Autofill?: This setting is experimental.

Validate server certs: Require client to reject any connection that is not

authorized by a CA in the CA certificate path, or by another trusted CA (e.g., the

system's CA). Defaults to No.

Configuring Cribl LogStream to Output to Kafka

General Settings

TLS Settings (Client Side)

Page 325 of 900

Server name (SNI): Server name for the SNI (Server Name Indication) TLS

extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to

use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Certificate path (mutual auth): Path on client containing certificates in (PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Passphrase: Passphrase to use to decrypt private key.

Authentication parameters to use when connecting to brokers. Using TLS is highly

recommended.

Enabled: Defaults to No . When toggled to Yes :

SASL mechanism: Select the SASL (Simple Authentication and Security Layer)

authentication mechanism to use,

Username: The username for authentication.

Password: The password for authentication.

This section governs Kafka Schema Registry Authentication for AVRO-encoded data

with a schema stored in the Confluent Schema Registry.

Enabled: defaults to No . When toggled to Yes :

Schema registry URL: URL for access to the Confluent Schema Registry.

(E.g., http://<hostname>:8081 .)

Default key schema ID: Used when __keySchemaIdOut is not present to

transform key values. Leave blank if key transformation is not required by default.

Default value schema ID: Used when __valueSchemaIdOut not present to

transform _raw . Leave blank if value transformation is not required by default.

Authentication

Schema Registry

Page 326 of 900

TLS enabled: defaults to No . When toggled to Yes, displays the following TLS

settings for the Schema Registry:

TLS Settings (Schema Registry)

Validate server certs: Require client to reject any connection that is not

authorized by a CA in the CA certificate path, or by another trusted CA (e.g., the

system's CA). Defaults to No.

Server name (SNI): Server name for the SNI (Server Name Indication) TLS

extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to

use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Certificate path (mutual auth): Path on client containing certificates in (PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Passphrase: Passphrase to use to decrypt private key.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

ℹ These have the same format as the TLS Settings (Client Side) above.

Processing Settings

Post-Processing

Advanced Settings

Page 327 of 900

Max record size (KB, uncompressed): Maximum size (KB) of each record batch

before compression. Setting should be < message.max.bytes settings in Kafka

brokers. Defaults to 768 .

Max events per batch: Maximum number of events in a batch before forcing a flush.

Defaults to 1000 .

Flush period (sec): Maximum time between requests. Low values could cause the

payload size to be smaller than its configured maximum. Defaults to 1 .

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Fields for this Destination:

__topicOut

__key

__headers

__keySchemaIdOut

__valueSchemaIdOut

Internal Fields

Updated 3 days ago

Page 328 of 900

Azure Blob Storage

Azure Blob Storage is a non-streaming Destination type. Cribl LogStream does not

have to run on Azure in order to deliver data to it. Azure Data Lake Storage Gen2

(hierarchical namespace) is also supported.

Select Data > Destinations, then select Azure > Azure Blob Storage from the

Data Destinations page's tiles or left menu. Click Add New to open the New Blob

Storage destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this Destination definition.

Account name: Enter your Azure Storage Account Name. If left blank, Cribl LogStream

will fall back to env.AZURE_STORAGE_ACCOUNT .

Account key: Enter your Azure Storage Key. If left blank, Cribl LogStream will fall back

to env.AZURE_STORAGE_KEY .

Container name: Enter the container name. (A container organizes a set of blobs,

similar to a directory in a file system.)

Create container: Defaults to No . Toggle to Yes to create the configured container

in Azure Blob Storage if it does not already exist.

Blob prefix: Prefix to add to files before uploading.

Staging location: Local filesystem location in which to buffer files before compressing

and moving them to the final destination. Cribl recommends that this location be stable

and high-performance.

Partitioning expression: JavaScript expression to define how files are partitioned and

organized. Defaults to `${host}/${sourcetype}` If left blank, Cribl LogStream will

fall back to event.__partition .

Data format: Format of the output data. Defaults to json .

File name prefix: The output filename prefix. Defaults to CriblOut .

Configuring Cribl LogStream to Output to Azure Blob
Storage

General Settings

Page 329 of 900

Compress: Data compression format used before moving to final destination. Defaults

to none . Cribl recommends setting to gzip .

Backpressure behavior: Whether to block or drop events when all receivers in this

group are exerting backpressure. Defaults to Block .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Max file size (MB): Maximum uncompressed output file size. Files reaching this size

will be closed and moved to the final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open for

longer than this limit will be closed and moved to final output location. Defaults to

300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open. Files

open for longer than this limit will be closed and moved to final output location.

Default: 30 .

Max open files: Maximum number of files to keep open concurrently. When exceeded,

the oldest open files will be closed and moved to final output location. Default: 100 .

Processing Settings

Post-Processing

Advanced Settings

ℹ LogStream will close files when either of the Max file size (MB) or the

Max file open time (sec) conditions are met.

Internal Fields

Page 330 of 900

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Field for this Destination:

__partition

Updated 3 days ago

Page 331 of 900

Azure Monitor Logs

Cribl LogStream supports sending of data over to Azure Monitor Logs. This is a

streaming Destination type.

Select Data > Destinations, then select Azure > Monitor Logs from the

Data Destinations page's tiles or left menu. Click Add New to open the

New Monitor Logs destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this Azure Monitor Logs definition.

Workspace ID: Enter the Azure Log Analytics Workspace ID. (See

Workspace->Advanced settings in the Azure Dashboard.)

Workspace key: Enter the Azure Log Analytics Workspace Primary or Secondary

Shared Key. (In the Azure Dashboard, see Workspace->Advanced settings.)

Log type: The Record Type of events sent to this LogAnalytics workspace. Defaults to

Cribl .

Resource ID: Resource ID of the Azure resource to associate the data with. This

populates the _ResourceId property, and allows the data to be included in resource-

centric queries. (Optional, but if this field is not specified, the data will not be included

in resource-centric queries.)

Backpressure behavior: Whether to block, drop, or queue events when all receivers in

this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output to Azure
Monitor Logs

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 332 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete

before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This

is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 .

Flush period (sec): Maximum time between requests. Low settings could cause the

payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Processing Settings

Post-Processing

Advanced Settings

Page 333 of 900

Cribl LogStream will attempt to use keepalives to reuse a connection for multiple

requests. After 2 minutes of the first use, the connection will be thrown away, and

a new one will be reattempted. This is to prevent sticking to a particular

Destination when there is a constant flow of events.

If keepalives are not supported by the server (or if the server closes a pooled

connection while idle), a new connection will be established for the next request.

When resolving the Destination's hostname, LogStream will pick the first IP in the

list for use in the next connection. Round-robin DNS would help with event

balancing.

Notes on HTTP-based Outputs

Updated about 16 hours ago

Page 334 of 900

Azure Event Hubs

Cribl LogStream supports sending data to Azure Event Hubs. This is a streaming

Destination type.

Select Data > Destinations, then select Azure > Event Hubs from the

Data Destinations page's tiles or left menu. Click Add New to open the

New Event Hubs destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this Azure Event Hubs definition.

Brokers: List of Event Hub Kafka brokers to connect to. (E.g.,

yourdomain.servicebus.windows.net:9093 .) Find the hostname in Shared Access
Policies, in the host portion of the primary or secondary connection string.

Event Hub name: The name of the Event Hub (a.k.a., Kafka Topic) on which to publish

events. Can be overwritten using the __topicOut field.

Acknowledgments: Control the number of required acknowledgments. Defaults to

Leader .

Record data format: Format to use to serialize events before writing to the Event Hub

Kafka brokers. Defaults to JSON .

Compression: Codec to use to compress the data before sending it to Event Hub

Kafka brokers. Defaults to Gzip .

Backpressure behavior: Whether to block, drop, or queue events when all receivers in

this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output to Azure Event
Hubs

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 335 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enabled Defaults to Yes .

Validate server certs: Defaults to No . For Event Hubs, this should always be disabled.

Authentication parameters to use when connecting to brokers. Using TLS is highly

recommended.

Enabled: Defaults to Yes . (Toggling to No hides the remaining settings in this

group.)

SASL mechanism: SASL (Simple Authentication and Security Layer) authentication

mechanism to use, PLAIN is the only mechanism currently supported for Event Hub

Kafka brokers.

Username: The username for authentication. For Event Hub, this should always be

$ConnectionString .

Password: Connection-string primary key or connection-string secondary key from

the Event Hub workspace.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

TLS Settings (Client Side)

Authentication

Processing Settings

Post-Processing

Page 336 of 900

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Max record size (KB, uncompressed): Maximum size (KB) of each record batch

before compression. Setting should be < message.max.bytes settings in Kafka

brokers. Defaults to 768 .

Max events per batch: Maximum number of events in a batch before forcing a flush.

Defaults to 1000 .

Flush period (sec): Maximum time between requests. Low settings could cause the

payload size to be smaller than its configured maximum. Defaults to 1 .

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Fields for this Destination:

__topicOut

__key

__headers

__keySchemaIdOut

__valueSchemaIdOut

Advanced Settings

Internal Fields

Updated a day ago

Page 337 of 900

StatsD

Cribl LogStream supports sending data to a StatsD Destination. This is a streaming

Destination type.

While on the Data Destinations page, select Metrics > StatsD from the tiles or the left

menu, then click Add New. The resulting New StatsD destination pane contains the

following fields.

Select Data > Destinations, then select Metrics > StatsD from the Data Destinations

page's tiles or left menu. Click Add New to open the New StatsD destination pane,

which provides the following fields.

Output ID: Enter a unique name to identify this StatsD definition.

Destination protocol: Protocol to use when communicating with the Destination.

Defaults to UDP .

Host: The hostname of the Destination.

Port: Destination port. Defaults to 8125 .

Throttling: Rate (in bytes per second) at which at which to throttle while writing to an

output. Also takes numerical values in multiples of bytes (KB, MB, GB, etc.). Default

value of 0 indicates no throttling.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output via StatsD

General Settings

ℹ The next two settings apply only to the TCP protocol, and are not displayed

for UDP.

Persistent Queue Settings

Page 338 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter

a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is

applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the

form: your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to

establish, before retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete, before

assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

ℹ This section is displayed only for TCP, and only when the Backpressure

behavior is set to Persistent Queue.

Timeout Settings

ℹ These timeout settings apply only to the TCP protocol, and are not

displayed for UDP.

Processing Settings

Post-Processing

Page 339 of 900

Max record size (bytes): Used when Protocol is UDP. Specifies the maximum size of

packets sent to the Destination. (Also known as the MTU – maximum transmission unit

– for the network path to the Destination system.) Defaults to 512 .

Flush period (sec): Used when Protocol is TCP. Specifies how often buffers should be

flushed, sending records to the Destination. Defaults to 1 .

Advanced Settings

Updated about 16 hours ago

Page 340 of 900

StatsD Extended

Cribl LogStream supports sending data to a StatsD Destination. This is a streaming

Destination type.

Select Data > Destinations, then select Metrics > StatsD Extended from the

Data Destinations page's tiles or left menu. Click Add New to open the New StatsD

Extended destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this StatsD Extended definition.

Destination protocol: Protocol to use when communicating with the Destination.

Defaults to UDP .

Host: The hostname of the Destination.

Port: Destination port. Defaults to 8125 .

Throttling: Rate (in bytes per second) at which at which to throttle while writing to an

output. Also takes numerical values in multiples of bytes (KB, MB, GB, etc.). Default

value of 0 indicates no throttling.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output via StatsD
Extended

General Settings

ℹ The next two settings apply only to the TCP protocol, and are not displayed

for UDP.

Persistent Queue Settings

ℹ This section is displayed only for TCP, and only when the Backpressure

behavior is set to Persistent Queue.

Page 341 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter

a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is

applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the

form: your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to

establish, before retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete, before

assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Timeout Settings

ℹ These timeout settings apply only to the TCP protocol, and are not

displayed for UDP.

Processing Settings

Post-Processing

Advanced Settings

Page 342 of 900

Max record size (bytes): Used when Protocol is UDP. Specifies the maximum size of

packets sent to the Destination. (Also known as the MTU – maximum transmission unit

– for the network path to the Destination system.) Defaults to 512 .

Flush period (sec): Used when Protocol is TCP. Specifies how often buffers should be

flushed, sending records to the Destination. Defaults to 1 .

Updated a day ago

Page 343 of 900

Graphite

Cribl LogStream supports sending data to a Graphite backend Destination. This is a

streaming Destination type.

Select Data > Destinations, then select Metrics > Graphite from the

Data Destinations page's tiles or left menu. Click Add New to open the New Graphite

destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this Graphite definition.

Destination protocol: Protocol to use when communicating with the Destination.

Defaults to UDP .

Host: The hostname of the Destination.

Port: Destination port. Defaults to 8125 .

Throttling: Rate (in bytes per second) at which at which to throttle while writing to an

output. Also takes numerical values in multiples of bytes (KB, MB, GB, etc.). Default

value of 0 indicates no throttling.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output to a Graphite
Backend

General Settings

ℹ The next two settings apply only to the TCP protocol, and are not displayed

for UDP.

Persistent Queue Settings

ℹ This section is displayed only for TCP, and only when the Backpressure

behavior is set to Persistent Queue.

Page 344 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter

a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is

applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the

form: your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to

establish, before retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete, before

assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Timeout Settings

ℹ These timeout settings apply only to the TCP protocol, and are not

displayed for UDP.

Processing Settings

Post-Processing

Advanced Settings

Page 345 of 900

Max record size (bytes): Used when Protocol is UDP. Specifies the maximum size of

packets sent to the Destination. (Also known as the MTU – maximum transmission unit

– for the network path to the destination system.) Defaults to 512 .

Flush period (sec): Used when Protocol is TCP. Specifies how often buffers should be

flushed, sending records to the Destination. Defaults to 1 .

Updated a day ago

Page 346 of 900

SNMP Trap

Cribl LogStream supports forwarding of SNMP Traps out.

While on the Data Destinations page, select SNMP Trap from the tiles or the left

menu, then click Add New. The resulting New SNMP destination pane contains the

following fields.

Select Data > Destinations, then select SNMP Trap from the Data Destinations

page's tiles or left menu. Click Add New to open the New SNMP destination pane,

which provides the following fields.

Output ID: Enter a unique name to identify this SNMP Trap definition.

SNMP Trap destinations: One or more SNMP destinations to forward traps to.

Address: Destination host.

Port: Destination port. Defaults to 162 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Configuring Cribl LogStream to Forward to SNMP
Traps

General Settings

Processing Settings

Post-Processing

Page 347 of 900

It's possible to work with SNMP metadata (i.e., we'll decode the packet). Options

include dropping, routing, etc. However, packets cannot be modified and sent to

another SNMP Destination.

SNMP packets can be forwarded to non-SNMP Destinations (e.g., Splunk, Syslog,

S3, etc.).

SNMP packets can be forwarded to other SNMP Destinations. However, the

contents of the incoming packet cannot be modified – i.e., we'll forward the

packets verbatim as they came in.

Non-SNMP input data cannot be sent to SNMP Destinations.

Considerations for Working with SNMP Traps Data

Updated 3 days ago

Page 348 of 900

InfluxDB

Cribl LogStream supports sending data to InfluxDB.

Select Data > Destinations, then select InfluxDB from the Data Destinations page's

tiles or left menu. Click Add New to open the New InfluxDB destination pane, which

provides the following fields.

Output ID: Enter a unique name to identify this InfluxDB definition.

Write API URL: URL of an InfluxDB cluster to send events to. (E.g.,

http://localhost:8086/write .)

Database name: The database on which to write data points.

Timestamp precision: Sets the precision for the supplied UNIX time values. Defaults

to Milliseconds .

Dynamic value fields: When enabled, LogStream will pull the value field from the

metric name. (E.g., db.query.user will use db.query as the measurement and

user as the value field). Defaults to Yes .

Value field name: Name of the field in which to store the metric when sending to

InfluxDB. This will be used as a fallback if dynamic name generation is enabled but

fails. Defaults to value .

Authentication enabled: Set to No by default. Toggle to Yes to enter a Username

and Password.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output to InfluxDB

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 349 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete

before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This

is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (sec): Maximum time between requests. Low values could cause the

payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Processing Settings

Post-Processing

Advanced Settings

Page 350 of 900

Updated about 16 hours ago

Page 351 of 900

MinIO

MinIO is a non-streaming Destination type, to which Cribl LogStream can output

objects.

Select Data > Destinations, then select MinIO from the Data Destinations page's tiles

or left menu. Click Add New to open the New MinIO destination pane, which provides

the following fields.

Output ID: Enter a unique name to identify this MinIO definition.

MinIO endpoint: MinIO service URL (e.g., http://minioHost:9000).

MinIO bucket name: Name of the destination MinIO bucket. Ensure that the bucket

already exists, otherwise MinIO will generate "bucket does not exist" errors.

API key: If left blank, LogStream will fall back to env.AWS_ACCESS_KEY_ID , or to the
metadata endpoint for IAM credentials.

Secret key: If left blank, Cribl LogStream will fall back to

env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM credentials.

Staging location: Filesystem location in which to locally buffer files before

compressing and moving to final destination. Cribl recommends that this location be

stable and high-performance.

Key prefix: Prefix to apply to files/objects before uploading to the specified bucket.

MinIO will display key prefixes as folders.

Partitioning expression: JavaScript expression to define how files are partitioned and

organized. If left blank, Cribl LogStream will fall back to event.__partition . Defaults
to `${host}/${sourcetype}` .

Configuring Cribl LogStream to Output to MinIO
Destinations.

General Settings

ℹ LogStream's internal __partition field can be populated in multiple ways.

The precedence order is: explicit Partitioning expression value ->

${host}/${sourcetype} (default) Partitioning expression value -> user-

Page 352 of 900

Data format: Format of the output data. Defaults to json .

File name prefix: The output filename prefix. Defaults to CriblOut .

Compress: Select the data compression format to use before moving data to final

destination. Defaults to none . Cribl recommends setting this to gzip .

Backpressure behavior: Select whether to block or drop events when all receivers in

this group are exerting backpressure. Defaults to Block .

The full path to a file consists of:

<bucket_name>/<keyprefix><partition_expression | __partition>
<file_name_prefix><filename>.<extension>

As an example, assume that the MinIO bucket name is bucket1 , the Key prefix is
aws , the Partitioning expression is `${host}/${sourcetype}` , the source is
undefined, the File name prefix is the default CriblOut , and the Data format is
json . Here, the full path as displayed in MinIO would have this form:

/bucket1/aws/192.168.1.241/undefined/CriblOut-<randomstring>0.json

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

defined event.__partition , set with an Eval Function (takes effect only
where this Partitioning expression field is blank).

How MinIO Composes File Names

ℹ Although MinIO will display the Key prefix and Partitioning expression

values as folders, both are actually just part of the overall key name, along

with the file name.

Processing Settings

Post-Processing

Page 353 of 900

Region: Region where the MinIO service/cluster is located. Leave blank when using a

containerized MinIO.

Object ACL: ACL (Access Control List) to assign to uploaded objects. Defaults to

Private .

Storage class: Select a storage class for uploaded objects. Defaults to Standard .

Server side encryption: Server side encryption type for uploaded objects. Defaults to

none .

Signature version: Signature version to use for signing MinIO requests. Defaults to

v4 .

Max file size (MB): Maximum uncompressed output file size. Files of this size will be

closed and moved to final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open for

longer than this limit will be closed and moved to final output location. Defaults to

300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open. Files

open for longer than this limit will be closed and moved to final output location.

Defaults to 30 .

Max open files: Maximum number of files to keep open concurrently. When exceeded,

the oldest open files will be closed and moved to final output location. Defaults to

100 .

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Field for this Destination:

__partition

Advanced Settings

ℹ Cribl LogStream will close files when either of the Max file size (MB) or

the

Max file open time (sec) conditions is met.

Internal Fields

Updated 3 days ago

Page 354 of 900

Page 355 of 900

Wavefront

Cribl LogStream supports sending events to Wavefront analytics.

Select Data > Destinations, then select Wavefront from the Data Destinations page's

tiles or left menu. Click Add New to open the New Wavefront destination pane, which

provides the following fields.

Output ID: Enter a unique name to identify this Wavefront definition.

Auth token: Wavefront API authentication token. For details, see Wavefront's

Generating an API Token topic. Required.

Domain name: WaveFront domain name, e.g., longboard . Required.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Configuring Cribl LogStream to Output to Wavefront

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 356 of 900

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Whether to compress the payload body before sending. Defaults to No .

Request timeout: Amount of time (in seconds) to wait for a request to complete

before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This

is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (sec): Maximum time between requests. Low values can cause the

payload size to be smaller than the configured Max body size. Defaults to 1 second.

Extra HTTP headers: Click + Add Header to insert extra headers as Name/Value

pairs.

For details on integrating with Wavefront, see these Wavefront resources:

Direct Data Ingestion, and adjacent topics on Wavefront Proxies.

Wavefront Data Format.

Processing Settings

Post-Processing

Advanced Settings

Notes About Wavefront

Updated about 16 hours ago

Page 357 of 900

SignalFx

Cribl LogStream supports sending events to SignalFx.

Select Data > Destinations, then select SignalFx from the Data Destinations page's

tiles or left menu. Click Add New to open the New SignalFx destination pane, which

provides the following fields.

Output ID: Enter a unique name to identify this SignalFx definition.

Auth token: SignalFx API access token. For details, see SignalFx's Manage Tokens

topic. Required.

Realm: SignalFx realm name (e.g., us0). Required.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Configuring Cribl LogStream to Output to SignalFx

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 358 of 900

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Whether to compress the payload body before sending. Defaults to No .

Request timeout: Amount of time (in seconds) to wait for a request to complete

before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This

is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (sec): Maximum time between requests. Low values can cause the

payload size to be smaller than the configured Max body size. Defaults to 1 second.

Extra HTTP headers: Click + Add Header to insert extra headers as Name/Value

pairs.

For details on integrating with SignalFx, see the SignalFx Developers Guide, with

particular reference to the SignalFx HTTP Send Metrics Reference.

Processing Settings

Post-Processing

Advanced Settings

Notes About SignalFx

Updated about 16 hours ago

Page 359 of 900

DevNull

The DevNull Destination simply drops events. Cribl provides this as a basic output to

test Pipelines and Routes.

DevNull requires no configuration: A DevNull Destination is preconfigured and active

as soon as you install Cribl LogStream.

To verify this, select Data > Destinations from the top menu. On the resulting Data

Destinations page, select DevNull from the tiles or the left menu. Look for the Live

indicator at the top right.

Configuring Cribl LogStream to Forward to DevNull

Updated 18 days ago

Page 360 of 900

Default

The Default Destination simply enables you to specify a default output from among

your configured Destinations.

Select this from the Default Output ID drop-down.

The only other field here is the Output ID, whose value is locked to default .

Updated 13 days ago

Page 361 of 900

Data Preview

Sample Data Preview is a LogStream feature that allows for visual inspection of events

as they make their trip into a Pipeline. It helps you shape and control events before

they're delivered to a Destination, as well as assisting with troubleshooting LogStream

Functions.

Preview works by taking a set of Sample events, passing them through the Pipeline,

and displaying the result in a separate pane. Any time a Function is modified, added, or

removed, the Pipeline changes, and so does its output.

Preview options

While you're in a Pipeline, you can add samples through one of the supported options:

Paste, Attach, or Capture New. The Paste and Attach options work with content that

needs to be broken into events, while the Capture New option works with events only.

When you click on the corresponding option, you'll be presented with a modal like the

one shown below.

Adding Sample Data (Using Paste as an Example)

Page 362 of 900

Add Sample Data modal

This is where the content of the paste (or uploaded file) is displayed.

An Event Breaker is a regular expression that tells Cribl LogStream how to break the

file or pasted content into events. Breaking will occur at the start of the match. Cribl

LogStream ships with several common breaker patterns out of the box, but you can

also configure custom breakers. The UI here is interactive, and you can iterate until you

find the exact pattern.

The Fields section enables users to add, or overwrite. key/value pairs on the sample.

There are two display options for the event: Event and Table. (You can also download

data as JSON or NDJSON, using the Advanced Settings menu at the top right.) Each

format can be useful, depending on the type of data you are previewing.

ℹ The Capture screen is slightly different – it does not require event breaking.

Paste Area

Event Breaker Settings

Fields

In Tab: Displaying Samples on the Way IN to the Pipeline

Page 363 of 900

Event, Table, Advanced, and Download options

As you add more samples to your system, you can easily access them via the Samples

drop-down near the top right, under Quick Stats.

Selecting an existing sample

As data traverses Functions in a Pipeline, events can be modified, and some might be

dropped altogether. When they're dropped, the Out tab displays them as grayed-out

text, with strikethrough. You can control their display using the Advanced Settings

menu's Show Dropped Events slider.

When LogStream's processing adds new fields, these fields are highlighted green. You

can control these fields' display using the Select Fields drop-down.

Out Tab: Displaying Samples on the Way OUT of the Pipeline

Page 364 of 900

Dropped and added fields in a Pipeline's output

Updated about 8 hours ago

Page 365 of 900

Securing Data

Cribl LogStream can be used to encrypt sensitive data in real time and route it to an

end system. Decrypted retrieval can be implemented on a per-system basis. Currently,

decryption is supported only when Splunk is the end system.

Data Encryption

Data Decryption

Updated 2 months ago

Page 366 of 900

Encryption

With Cribl LogStream, you can encrypt fields or patterns within events in real time, by

using C.Crypto.encrypt() in a Mask function. The Mask function accepts multiple

replacement rules and multiple fields to apply them to.

A Match Regex defines the pattern of content to be replaced. The Replace

Expression is a JS expression or literal to replace matched content. The

C.Crypto.encrypt() method can be used here to generate an encrypted string from

a value passed to it.

Symmetric keys can be configured through the CLI or UI. Users are free to define as

many keys as required. Each key is characterized by the following:

keyId : ID of the key.

algorithm : Algorithm used with the key

keyclass : Cribl Key Class (below) that the key belongs to.

kms : Key management system for the key. Defaults to local .

created : Time (epoch) when key was generated.

expires : Time (epoch) after which the key is invalid. Useful for key rotation.

useIV : Flag that indicates whether or not an initialization vector was used.

Encryption of Data in Motion

C.Crypto.encrypt() Syntaxℹ

(method) Crypto.encrypt(value: any, keyclass: number, keyId?:
string, defaultVal?: string): string
Encrypt the given value with the keyId or a keyId picked up automatically

based on keyclass

@param {string | Buffer} value - what to encrypt

@param - keyclass - if keyId isn't specified, pick one at the given key class

@param - keyId - encryption keyId, takes precedence over keyclass

@param - defaultVal - what to return if encryptions fails for any reason, if

unspecified the original value is returned

@returns - - if encryption succeeds the encrypted value, otherwise

defaultVal if specified, otherwise value.

Encryption Keys

Page 367 of 900

Key Classes in Cribl LogStream are collections of keys that can be used to implement

multiple levels of access control. Users (or groups of users) with access to data with

encrypted patterns can be associated with key classes, for even more granular,

pattern-level compartmentalized access.

Users U0, U1 have been given access to keyclass 0 which contains key IDs 0 and

1 . These keys are used to encrypt certain patterns in datasetA . Even though users
U0, U1, U2 have access to read this dataset, only U0 and U1 can decrypt its

encrypted patterns.

User U1 has been given access to an additional keyclass, 1 , which contains key IDs
11 and 22 . These keys are used to encrypt certain other patterns in datasetA .
Even though users U0, U1, U2 have access to read this dataset – same as above –

only U1 can decrypt the additional encrypted patterns.

When using the local key management system, encryption keys in Cribl LogStream

are encrypted with $CRIBL_HOME/local/cribl/auth/cribl.secret and stored in

$CRIBL_HOME/local/cribl/auth/keys.json . Cribl monitors the keys.json file for

changes every 60 seconds.

Keys are added and listed using the keys command:

$CRIBL_HOME/bin/cribl keys list

Key Classes

Example

keyclass: 0
Keys: keyId: 0, keyId: 1
Users: U0, U1

datasetA
Users: U0, U1, U2

keyclass: 1
Keys: keyId: 11, keyId: 22
Users: U1

datasetA
Users: U0, U1, U2

Configuring Keys with CLI

ℹ When installed as a Splunk app, $CRIBL_HOME is

$SPLUNK_HOME/etc/apps/cribl .

Listing Keys

Key Class Dataset

Key Class Dataset

Page 368 of 900

Sample Command Output

Displaying --help :

$CRIBL_HOME/bin/cribld keys add --help

Sample Command Output

Adding a key to keyclass 1 with no expiration date:

$CRIBL_HOME/bin/cribl keys add -c 1 -i

Sample Command Output

Listing keys to verify key generation:

$CRIBL_HOME/bin/cribl keys list

Sample Command Output

The key management interface can be accessed through Settings > Encryption Keys

. Here, you can list and add new keys. To protect against accidental changes, a key's

keyId algorithm keyclass kms created expires useIV

1 aes-256-cbc 0 local 1544906269.316 0 false
2 aes-256-cbc 1 local 1544906272.452 0 false
3 aes-256-cbc 2 local 1544906275.948 1545906275 true
4 aes-256-cbc 3 local 1544906278.026 0 false

Adding Keys

Add encryption keys
Usage: [options] [args]

Options:
-c <keyclass> - key class to set for the key
-k <kms> - KMS to use, must be configured, see cribl.yml
-e <expires> - expiration time, epoch time
-i - use an initialization vector

Adding key: success. Key count=1

keyId algorithm keyclass kms created expires useIV

1 aes-256-cbc 1 local 1545243364.342 0 true

Configuring Keys with the UI

Page 369 of 900

parameters, once saved, can be edited only through configuration files.

List or create keys through LogStream's UI

To successfully decrypt data, the decrypt command will need access to the same

keys that were used to encrypt. The cribl.secret and keys.json files in

$CRIBL_HOME/local/cribl/auth (in the Cribl instance where encryption

happened) should be synced/copied over to the ones on the Search Head/decrypting

side. When using the UI, these files can be downloaded through the Get Key Bundle

button.

Sync auth/(cribl.secret|keys.json)

Updated 2 months ago

Page 370 of 900

Decryption

Currently, Cribl LogStream supports decryption only when Splunk is the end system. In

Splunk, decryption is available to users of any role with permissions to run the

decrypt command that ships with Cribl App for Splunk. Further restrictions can be

applied with Splunk capabilities. This page provides details.

Decryption in Splunk is implemented via a custom command called decrypt . To use
the command, users must belong to a Splunk role that has permissions to execute it.

Capabilities, which are aligned to Cribl Key Classes, can be associated with a particular

role to further control the scope of decrypt .

In Splunk, capability names should follow the format cribl_keyclass_N , where N is

the Cribl Key Class. For example, a role with capability cribl_keyclass_1 has access

to all key IDs associated with key class 1 .

You set up decryption in Splunk according to this schematic:

Decryption of Data

Decrypting in Splunk

Decrypt Command Is Search Head ONLYℹ

To ensure that keys don't get distributed to all search peers – including

peers that your search head can search, but you don't have full control over

– decrypt is scoped to run locally on the installed search head.

Restricting Access with Splunk Capabilities

cribl_keyclass_1
cribl_keyclass_2
...

cribl_keyclass_N

1
2
...

N

Configuring Splunk Search Head to Decrypt Data

Capability Name Corresponding Cribl Key Class

Page 371 of 900

1. Install the Cribl App for Splunk on your Splunk search head.

As of LogStream v1.7, the app will run in search head mode by default. If the app

has previously been installed and later modified, you can convert it to search head

mode with the command: $CRIBL_HOME/bin/cribld mode-searchhead . (When
installed as a Splunk app, $CRIBL_HOME is $SPLUNK_HOME/etc/apps/cribl .)

2. Assign permissions to the decrypt command, per your requirements.

3. Assign capabilities to your roles, per your requirements. If you'd like to create

more capabilities, ensure that they follow the naming convention defined above.

4. Sync auth/(cribl.secret|keys.json) . To successfully decrypt data, the
decrypt command will need access to the same keys that were used to encrypt.

The cribl.secret and keys.json files in $CRIBL_HOME/local/cribl/auth –

which must be in the same Cribl instance where encryption happened – should be

synced/copied over to the files on the Search Head/decrypting side. When using

the UI, these files can be downloaded through the Get Key Bundle button.

Updated 2 months ago

Page 372 of 900

Scripts

Admins can run scripts (e.g., shell scripts) from within Cribl LogStream by configuring

and executing them thru Settings > Scripts. Scripts are typically used to call custom

automation jobs or, more generally, to trigger tasks on demand. For example, you can

use Scripts to run an Ansible job, or to place a call to another automation system, when

Cribl LogStream configs are updated.

Settings > Manage Scripts page

The Manage Scripts page provides the following tields:

ID: Unique ID for this script.

Command: Command to execute for this script.

Description: Brief description about this script. Optional.

Arguments: Arguments to pass when executing this script.

Env variables: Extra environment variables to set when executing script.

With Great Power Comes Great Responsibility!⚠

Scripts will allow you to execute almost anything on the system where Cribl

LogStream is running. Make sure you understand the impact of what you're

executing before you do so!

Scripts in Distributed Deploymentsℹ

Scripts can be deployed from Master Node, but can be run only locally

from each Worker Node.

If the Script command is referencing a file (e.g., 420.sh), that file must
exist on the Cribl LogStream instance. In other words, the Script

management interface cannot be used to upload or manage script files.

Page 373 of 900

Updated 2 months ago

Page 374 of 900

Using Datagens
Data generators for testing and troubleshooting

Cribl LogStream's Datagens feature enables you to generate sample data for the

purposes of troubleshooting Routes, Pipelines, Functions, and general connectivity.

Several Datagen template files ship with the product, out of the box. You can create

others from sample files or live captures.

Preview pane – add samples via file upload, paste, or live capture

As outlined in the following tutorial: Once you've created a template, you can configure

a Datagen Source to use the template to generate real-time data at a given EPS

(events per second) rate.

To see how Datagens work, start by enabling a pair of LogStream's out-of-the-box

generators:

Navigate to Sources > Datagens and click Add New.

Select a Data Generator File (e.g., apache_common.log) and set it at 4 EPS/worker
process. Select another Data Generator File (e.g., syslog.log) and set it at 8
EPS/worker process. Hit Save.

Enabling a Datagen

Page 375 of 900

Selecting Datagens files and event rates

On the Monitoring page, under Sources, search for datagen and confirm that the

Source is generating data.

To convert a sample into a template:

Go to Preview > Paste a Sample, and add a sample like the AWS VPC Flow logs

below:

Sample VPC Flow Logs

From the Event Breaker drop-down, select AWS VPC Flow to ensure that:

The pasted text gets broken properly into individual events (notice the Event

Breaker on newlines).

Timestamps are extracted correctly (text highlighted purple below).

Once you've verified these results, click Create a Datagen File.

Creating a Datagen Template from a Sample File

2 123456789010 eni-abc123de 172.31.16.139 172.31.16.21 20641 22 6 20 4249
2 123456789010 eni-abc123de 172.31.9.69 172.31.9.12 49761 3389 6 20 4249
2 123456789010 eni-1a2b3c4d - - - - - - - 1431280876 1431280934 - NODATA
2 123456789010 eni-4b118871 - - - - - - - 1431280876 1431280934 - SKIPDAT
2 123456789010 eni-1235b8ca 203.0.113.12 172.31.16.139 0 0 1 4 336 143291
2 123456789010 eni-1235b8ca 172.31.16.139 203.0.113.12 0 0 1 4 336 143291
2 123456789010 eni-f41c42bf 2001:db8:1234:a100:8d6e:3477:df66:f105 2001:d

Page 376 of 900

Creating a Datagen template

On the resulting Create Datagen File screen:

Enter a file name, e.g.: vpc-flow-datagen.log

Ensure that the timestamp template format is correct: ${timestamp: %s}

${timestamp: <format>} is a template that the datagen engine uses to insert

the current time – in each newly generated event – using the given format. In this

case, %s is the desired strftime format for the timestamp (i.e., the epoch).

Once you've verified these results, click Save as Datagen File.

Page 377 of 900

Saving a named Datagen template

To confirm that the Datagen file has been created, check Preview > Datagens.

Verifying Datagen file creation

Now, to start using your newly created Datagen file, go back to Sources > Datagens.

Add it using the drop-down shown below.

Page 378 of 900

Adding new template file to Datagens Source

Updated about 5 hours ago

Page 379 of 900

CLI Reference
Command line interface basics

In addition to starting and stopping the Cribl LogStream server, LogStream's command

line interface enables you to initiate many configuration and administrative tasks

directly from your terminal.

To execute CLI commands, the basic syntax is:

To see a list of available commands, enter ./cribl alone (or the equivalent ./cribl
help). To execute a command, or to see its required parameters, enter ./cribl
<command> .

Displays help (commands list).

Command Syntax

cd $CRIBL_HOME/bin
./cribl <command> <sub-command> <options> <arguments>

Commands Available

Immediate Execution⚠

As indicated in the sample output below, some commands take effect

immediately. Commands that require further input will echo the sub-

commands, options, and arguments they expect.

help

Cribl LogStream – N.n.n-<build no.>
Usage: [sub-command] [options] [args]

Commands:
help – Display help
reload – Reload Cribl LogStream
restart – Restart Cribl LogStream
start – Start Cribl LogStream
status – Status of Cribl LogStream
stop – Stop Cribl LogStream

Page 380 of 900

Reloads Cribl LogStream. Executes immediately.

Restarts Cribl LogStream. Executes immediately.

Starts Cribl LogStream. Executes immediately.

Displays status of Cribl LogStream. Executes immediately.

version – Print Cribl LogStream version and installation type

auth – Cribl LogStream Auth
boot-start – Enable/Disable Cribl LogStream boot-start
diag – Manage diagnostics bundles
groups – Manage worker groups
keys – Manage encryption keys
mode-searchhead – Configure Cribl LogStream to run on a Splunk Search Hea
nc – Listen on a port for traffic and output stats and data
node – Execute a JavaScript file
pipe – Feed stdin to a pipeline
scope – Grep your apps by the syscalls
splunk-decrypt – Splunk decrypt search command
task – Run Cribl LogStream task
vars – Manage global variables

reload

Reload request submitted to Cribl LogStream

restart

Stopping Cribl LogStream, process 56572
............
Cribl LogStream is not running
Starting Cribl LogStream...
..
Cribl LogStream started with pid 57233
API Server is available at http://192.168.0.100:9000

start

Starting Cribl LogStream...
..
Cribl LogStream started with pid 57279
API Server is available at http://192.168.0.100:9000

status

Page 381 of 900

Stops Cribl LogStream. Executes immediately.

Displays Cribl LogStream version and installation type. Executes immediately.

Log into or out of Cribl LogStream.

Launch interactive login:

$CRIBL_HOME/bin/cribl auth login

Append credentials as command arguments:

$CRIBL_HOME/bin/cribl auth login -h <url> -u <username> -p <password>

Provide credentials in environment variables:

Cribl LogStream is running with pid 57279
API Server is available at http://192.168.0.100:9000

stop

Stopping Cribl LogStream, process 57233
...........
Cribl LogStream is not running

version

Version: 2.2-0####x##
Installation type: standalone

auth

Commands:
login - Log in to Cribl LogStream, args:
 [-h <host>] - Host URL (e.g. http://localhost:9000)
 [-u <username>] - Username
 [-p <password>] - Password
 [-f <file>] - File with credentials
logout - Log out from Cribl LogStream

Login Examples

ℹ All -h and host arguments are optional, provided that the API host and

port are listed in the cribl.yml file's api: section

Page 382 of 900

CRIBL_HOST=<url> CRIBL_USERNAME=<username> CRIBL_PASSWORD=<password>
$CRIBL_HOME/bin/cribl auth login

Provide credentials in a file:

$CRIBL_HOME/bin/cribl auth login -f <path/to/file>

--

Corresponding file contents:

Enables or disables Cribl LogStream boot-start.

Manages diagnostic bundles.

Manages worker groups.

host=<url>
username=<username>
password=<password>

boot-start

Usage: [sub-command] [options] [args]

Commands:
disable - Disable Cribl LogStream boot-start, args:
 [-m <manager>] - Init manager (systemd|initd)
 [-c <configDir>] - Config directory for the init manager
enable - Enable Cribl LogStream boot-start, args:
 [-m <manager>] - Init manager (systemd|initd)
 [-u <user>] - User to run Cribl LogStream as
 [-c <configDir>] - Config directory for the init manager

diag

create - Creates diagnostic bundle for Cribl LogStream

list - List existing Cribl LogStream diagnostic bundles

send - Send LogStream diagnostics bundle to Cribl Support, args:
 -c <caseNumber> - Cribl Support Case Number
 [-p <path>] - Diagnostic bundle path (if empty then new bundle wil

groups

Usage: [sub-command] [options] [args]

Commands:

Page 383 of 900

Manages encryption keys.

Configures Cribl LogStream to run on a Splunk Search Head.

Listens on a port for traffic, and outputs stats and data. (Netcat-like utility.)

Executes a JavaScript file. Displays a command prompt for path/filename input, as

shown here:

commit - Commit, args:
 [-g <group>] - Group ID
 [-m <message>] - Commit message
commit-deploy - Commit & Deploy, args:
 -g <group> - Group ID
 [-m <message>] - Commit message
deploy - Deploy, args:
 -g <group> - Group ID
 [-v <version>] - Deploy version
list - List worker groups

keys

Usage: [sub-command] [options] [args]

Commands:
add - Add encryption keys, args:
 [-c <keyclass>] - key class to set for the key
 [-k <kms>] - KMS to use, must be configured, see cribl.yml
 [-e <expires>] - expiration time, epoch time
 [-i] - use an initialization vector
 [-g <group>] - Group ID
list - List encryption keys

mode-searchhead

nc

Usage: [options] [args]

Options:
 -p <port> - Port to listen on
[-s <statsInterval>] - Stats output interval (ms), use 0 to disable
[-u] - Listen on UDP port instead
[-o] - Output received data to stdout

node

>

Page 384 of 900

Feeds stdin to a pipeline. Examples:

Greps your apps by the syscalls. Executes immediately.

Splunk decrypt search command. Executes immediately.

Runs a Cribl LogStream task. Requires definitions for the dir , executor , and path
properties.

Manages LogStream Global Variables.

pipe

cat sample.log | ./cribl pipe -p <pipelineName>
cat sample.log | ./cribl pipe -p <pipelineName> 2>/dev/null

scope

splunk-decrypt

task

vars

Usage: [sub-command] [options] [args]

Commands:
add - Add global variable, args:
 -i <id> - Global variable ID
 -t <type> - Type
 -v <value> - Value
 [-a <args>] - Arguments
 [-d <description>] - Description
 [-c <tags>] - Custom Tags (comma separated list)
 [-g <group>] - Group ID
get - List encryption keys, args:
 [-i <id>] - Global variable ID
 [-g <group>] - Group ID
remove - Remove global variable, args:
 -i <id> - Global variable ID
 [-g <group>] - Group ID
update - Update global variable, args:
 -i <id> - Global variable ID
 -t <type> - Type
 -v <value> - Value
 [-a <args>] - Arguments
 [-d <description>] - Description
 [-c <tags>] - Custom Tags (comma separated list)
 [-g <group>] - Group ID

Page 385 of 900

Updated 7 days ago

Page 386 of 900

EXPRESSION
REFERENCE

Introduction to Expression Syntax

As data travels through a Cribl LogStream pipeline, it is operated on by a series of

functions. Functions are fundamentally JavaScript code.

Functions that ship with Cribl LogStream are configurable via a set of inputs. Some of

these configuration options are literals, such as field names, and others can be

JavaScript expressions.

Expressions are valid units of code that resolve to a value. Every syntactically valid

expression resolves to some value, but conceptually, there are two types of

expressions: those that assign value to a variable (a.k.a., with side effects), and those

that evaluate to a value.

Filters are used in Routes to select a stream of the data flow, and in Functions to scope

or narrow down the applicability of a function. Filters are expressions that must

evaluate to either true (or truthy) or false (or falsy). Keep this in mind when

creating routes or functions. For example:

sourcetype=='access_combined' && host.startsWith('web')

source.endsWith('.log') || sourcetype=='aws:cloudwatchlogs:vpcflow'

x = 42
newFoo = foo.slice(30)

(Math.random() * 42)
3 + 4
'foobar'
'42'

Filters and Value Expressions

Filters

true false

Assigning a value Evaluating to a value

Truthy Falsy

Page 387 of 900

Value expressions are typically used in Functions to assign a value – for example, to a

new field. For example:

Math.floor(_time/3600)

source.replace(/.{3}/, 'XXX')

In a value expression, ensure that the source variable is not null, undefined, or

empty. For example, assume you want to have a field called len , to be assigned
the length of a second field called employeeID . But you're not sure if
employeeID exists. Instead of employeeID.length you can use a safer

shorthand, such as: (employeeID || '').length .

If a field does not exist (undefined), and you're doing a comparison with its

properties, then the boolean expression will always evaluate to false. For example,

if employeeID is undefined, then both of these expressions will evaluate to false:

employeeID.length > 10 , and employeeID.length < 10 .

== means "equal to," while === means "equal value and equal type." For

example, 5 == 5 evaluates to true, while 5 === "5" evaluates to false.

A ternary operator is a very powerful way to create conditional values. For

example, if you wanted to assign either minor or adult to a field groupAge ,
based on the value of age , you could do: (age >= 18) ? 'adult' : 'minor' .

If there are fields with non-alphanumeric characters – e.g., @timestamp or user-
agent or kubernetes.namespace_name – you can access them using __e['<field-
name-here>'] . (Note the single quotes.) More details here. In any other place where
the field is referenced – e.g., in the Eval function's field names – you should use a

single-quoted literal, of the form: '<field-name-here>' .

42
-42
3.14
"foo"
Infinity
-Infinity

null
undefined
0
NaN
''
""

Value Expressions

Considerations and Best Practices for Creating Predictable
Expressions

Expressions Using Fields with Non-Alphanumeric Characters

Wildcard Lists

Page 388 of 900

Wildcard Lists are used throughout the product, especially in various Functions, such

as Eval, Mask, Publish Metrics, Parser, etc.

Wildcard Lists, as their name implies, accept strings with asterisks (*) to represent
one or more terms. They also accept strings that start with an exclamation mark (!)
to negate one or more terms.

Wildcard Lists are order-sensitive only when negated terms are used. This allows for

implementing any combination of whitelists and blacklists.

For example:

List 1
!foobar,
foo*

All terms that start with foo, except foobar.

List 2 !foo*, *
All terms, except for those that start with

foo.

Updated 22 days ago

Wildcard

List
Value Meaning

Page 389 of 900

Cribl Expressions

Native Cribl LogStream function methods can be found under C.* , and can be
invoked from any Function that allows for expression evaluations. For example, to

create a field that is the SHA1 of a another field's value, you can use the Eval function

with this Evaluate Fields pair:

C.Crypto.decrypt
(method) Crypto.decrypt(value: string): string
Decrypt all occurrences of ciphers in the given value. Instances that cannot be

decrypted (for any reason) are left intact.

@param – value – string in which to look for ciphers

@returns – value with ciphers decrypted

C.Crypto.encrypt
(method) Crypto.encrypt(value: any, keyclass: number, keyId?: string,
defaultVal?: string): string
Encrypt the given value with the keyId , or with a keyId picked up automatically

based on keyclass .

@param {string | Buffer} value - what to encrypt.

@param – keyclass – if keyId isn't specified, pick one at the given keyclass .
@param – keyId - encryption keyId, takes precedence over keyclass .
@param – defaultVal – what to return if encryption fails for any reason; if

unspecified, the original value is returned.

@returns – if encryption succeeds, the encrypted value; otherwise, defaultVal if

specified; otherwise, value .

C.Decode.base64
(method) Decode.base64(val: string, resultEnc?: string): any
Performs base64 decoding of the given string. Returns a string or Buffer, depending

on the resultEnc value, which defaults to 'utf8' .
@param – val – value to base64-decode

myNewField C.Mask.sha1(myOtherField)

C.Crypto – Data Encryption and Decryption Functions

C.Decode – Data Decoding Functions

Name Value Expression

Page 390 of 900

@param – resultEnc – encoding to use to convert the binary data to a string.

Defaults to 'utf8' . Use 'utf8‑valid' to validate that result is valid UTF8; use

'buffer' if you need the binary data in a Buffer.

C.Decode.gzip
(method) Decode.gzip(value: any, encoding?: string): string
Gunzip the supplied value.

@param – value – the value to gunzip.

@param – encoding – encoding of value , for example: 'base64' , 'hex' , 'utf-
8' , 'binary' . Default is 'base64' . If data is received as Buffer (from gzip with

encoding: 'none'), decoding is skipped.

C.Decode.hex
(method) Decode.hex(val: string): number
Performs hex to number conversion. (Returns NaN if value cannot be converted to a

number.)

@param – val – hex string to parse to a number (e.g., "0xcafe").

C.Decode.uri
(method) Decode.uri(val: string): string
Performs URI-decoding of the given string.

@param – val – value to URI-decode.

C.Encode.base64
(method) Encode.base64(val: any, trimTrailEq?: boolean): string
Returns a base64 representation of the given string or Buffer.

@param – val – value to base64-encode.

@param – trimTrailEq – whether to trim any trailing = .

C.Encode.gzip
(method) Encode.gzip(value: string, encoding?: string): any
Gzip, and optionally base64-encode, the supplied value.

@param – value – the value to gzip.

@param – encoding – encoding of value , for example: 'base64' , 'hex' , 'utf-
8' , 'binary' , 'none' . Default is 'base64' . If 'none' is specified, data will be

returned as a Buffer.

C.Encode.hex
(method) Encode.hex(val: string | number): string
Rounds the number to an integer and returns its hex representation (lowercase). If a

string is provided, it will be parsed into a number or NaN .
@param – val – value to convert to hex.

C.Encode.uri
(method) Encode.uri(val: string): string

C.Encode – Data Encoding Functions

Page 391 of 900

Returns the URI-encoded representation of the given string.

@param – val – value to uri encode.

C.env
(property) env: {[key: string]: string;}
An object containing the environment variables.

C.Lookup – Exact Lookup

(property) Lookup: (file: string, primaryKey?: string, otherFields?:
string[], ignoreCase?: boolean) => InlineLookup
Returns an instance of a lookup to use inline.

C.LookupCIDR - CIDR Lookup

(property) Lookup: (file: string, primaryKey?: string, otherFields?:
string[]) => InlineLookup
Returns an instance of a CIDR lookup to use inline.

C.LookupRegex - Regex Lookup

(property) Lookup: (file: string, primaryKey?: string, otherFields?:
string[]) => InlineLookup
Returns an instance of a Regex lookup to use inline.

(method) InlineLookup.match(value: string, fieldToReturn?: string): any
@param – value – the value to look up.

@param – fieldToReturn – name of the lookup file > field to return.

E.g., C.Lookup('lookup-exact.csv', 'foo').match('abc', 'bar')
Return the value of field bar in the lookup table if field foo matches abc .

Example 1: C.LookupCIDR('lookup-cidr.csv', 'foo').match('192.168.1.1',
'bar')
Return the value of field bar in the lookup table if the CIDR range in foo includes

192.168.1.1 .

Example 2: C.LookupCIDR('lookup-cidr.csv', 'cidr').match(hostIP,
'location')

Example 3: C.LookupRegex('lookup-regex.csv', 'foo').match('manchester',
'bar')
Return the value of field bar in the lookup table if the regex in foo matches the string

manchester .

C.env – Environment

C.Lookup – Inline Lookup Functions

Page 392 of 900

C.Mask.CC
(method) Mask.CC(value: string, unmasked?: number, maskChar?: string):
string
Check whether a value could be a valid credit card number, and mask a subset of the

value. By default, all digits except the last 4 will be replaced with X .
@param – value – a string whose digits to mask IFF it could be a valid credit card

number.

@param – unmasked – number of digits to leave unmasked: positive for left, negative

for right, 0 for none.

@param – maskChar – a string/char to replace a digit with.

C.Mask.IMEI
(method) Mask.IMEI(value: string, unmasked?: number, maskChar?: string):
string
Check whether a value could be a vlaid IMEI number, and mask a subset of the value.

By default, all digits except the last 4 will be replaced with X .
@param – value – a string whose digits to mask IFF it could be a valid IMEI number.

@param – unmasked – number of digits to leave unmasked: positive for left, negative

for right, 0 for none.

@param – maskChar – a string/char to replace a digit with.

C.Mask.isCC
(method) Mask.isCC(value: string): boolean
Checks whether the given value could be a valid credit card number, by computing the

string's Lunh's checksum modulo 10 == 0 .
@param – value – a string to check for being a valid credit card number.

C.Mask.isIMEI
(method) Mask.isIMEI(value: string): boolean
Checks whether the given value could be a valid IMEI number, by computing the

string's Lunh's checksum modulo 10 == 0 .
@param – value – a string to check for being a valid IMEI number

C.Mask.luhn
(method) Mask.luhn(value: string, unmasked?: number, maskChar?: string):
string
Check that value Lunh's checksum mod 10 is 0 , and mask a subset of the value. By
default, all digits except the last 4 will be replaced with X . If the value's Lunh's
checksum mod 10 is not 0 , then the value is returned unmodified.
@param – value – a string whose digits to mask IFF the value's Lunh's checksum

mod 10 is 0 .
@param – unmasked – number of digits to leave unmasked: positive for left, negative

for right, 0 for none.

@param – maskChar – a string/char to replace a digit with.

C.Mask – Data Masking Functions

Page 393 of 900

C.Mask.LUHN_SUB
(property) Mask.LUHN_SUB: any

C.Mask.luhnChecksum
(method) Mask.luhnChecksum(value: string, mod?: number): number
Generates the Luhn checksum (used to validate certain credit card numbers, IMEIs,

etc.). By default, the mod 10 of the checksum is returned. Pass mod = 0 to get the

actual checksum.

@param – value – a string whose digits you want to perform the Lunh checksum on.

@param – mod – return checksum modulo this number. If 0 , skip modulo. Default is
10 .

C.Mask.md5
(method) Mask.md5(value: string, len?: string | number): string
Generate MD5 hash of a given value.

@param – value – compute the hash of this.

@param – len – length of hash to return: 0 for full hash, a +number for left or a -

number for right substring. If a string is passed it's length will be used.

C.Mask.random
(method) Mask.random(len?: string | number): string
Generates a random alphanumeric string.

@param – len – a number indicating the length of the result; or, if a string, use its

length.

C.Mask.REDACTED
(property) Mask.REDACTED: string
The literal 'REDACTED' .

C.Mask.repeat
(method) Mask.repeat(len?: string | number, char?: string): string
Generates a repeating char/string pattern, e.g., XXXX .
@param – len – a number indicating the length of the result; or, if a string, use its

length.

@param – char – pattern to repeat len times.

C.Mask.sha1
(method) Mask.sha1(value: string, len?: string | number): string
Generate SHA1 hash of given value.

@param – value - compute the hash of this.

@param – len - length of hash to return: 0 for full hash, a +number for left, or a -

number for right.

substring. If a string is passed, its length will be used

C.Misc.zip()
(method) Misc.zip(keys: string[], values: any[], dest?: any): any

C.Misc – Miscellaneous Utility Functions

Page 394 of 900

Set the given keys to the corresponding values on the given dest object. If dest is

not provided, a new object will be constructed.

@param – keys – field names corresponding to values.

@param – values – values corresponding to keys.

@param – dest – object on which to set field values.

@returns – object on which the fields were set.

E.g., people = C.Misc.zip(titles, names)
Sample data: titles=['ceo', 'svp', 'vp'] , names=['foo', 'bar', 'baz']
Create an object called people , with key names from elements in titles , and with
corresponding values from elements in names .
Result: "people": {"ceo": "foo", "svp": "bar", "vp": "baz"}

C.Net.cidrMatch()
(method) Net.cidrMatch(cidrIpRange: string, ipAddress: string): boolean
Determines whether the supplied IPv4 ipAddress is inside the range of addresses

identified by cidrIpRange . For example: C.Net.cidrMatch ('10.0.0.0/24',
'10.0.0.100') returns true .
@param – cidrIpRange – IPv4 address range in CIDR format. E.g., 10.0.0.0/24 .
@param – ipAddress – The IPv4 IP address to test for inclusion in cidrIpRange .

C.Net.ipv6Normalize()
(method) Net.ipv6Normalize(address: string): string
Normalize an IPV6 address based on RFC draft-ietf-6man-text-addr-representation-

04.

@param – address – the IPV6 address to normalize.

C.Net.isPrivate()
(method) Net.isPrivate(address: string): string
Determine whether the supplied IPv4 address is in the range of private addresses per

RFC1819.

@param – address – address to test.

C.confVersion
Returns Cribl LogStream config version.

C.os.hostname()
Returns hostname of the system running this Cribl LogStream instance.

C.Net – Network Functions

C.os – System Functions

C.Schema – Schema Functions

Page 395 of 900

C.Schema()
(property) Schema: (id: string) => SchemaValidator
(method) SchemaValidator.validate(data: any): boolean
Validates the given object against the schema.

@param – data – object to be validated.

@returns – true when schema is valid; otherwise, false .

Example: C.Schema('schema1').validate(myField) will validate if myField object

conforms to schema1 .

See Schema Library for more details.

C.Text.entropy()
(method) Text.entropy(bytes: any): number
Computes the Shannon entropy of the given buffer or string.

@param – bytes – value to undergo Shannon entropy computation.

@returns – the entropy value; or -1 in case of an error.

C.Text.hashCode()
(method) Text.hashCode(val: string | Buffer | number): number
Computes hashcode (djb2) of the given value.

@param – val - value to be hashed.

@returns – hashcode value.

C.Text.isASCII()
(method) Text.isASCII(bytes: any): boolean
Checks whether all bytes or chars are in the ASCII printable range.

@param – bytes – value to check for character range.

@returns – true if all chars/bytes are within ASCII printable range; otherwise, false .

C.Text.isUTF8()
(method) Text.isUTF8(bytes: any): boolean
Checks whether the given Buffer contains valid UTF8.

@param – bytes – bytes to check.

@returns – true if bytes are UTF8; otherwise, false .

C.Text.relativeEntropy()
(method) Text.relativeEntropy(bytes: any, modelName?: string): number
Computes the relative entropy of the given buffer or string.

@param – bytes – value whose relative entropy to compute.

@param – modelName – Name of the model to test the string with.

@returns – the relative entropy value, or -1 in case of an error.

C.Text – Text Functions

C.Time – Time Functions

Page 396 of 900

C.Time.adjustTZ()
(method) Time.adjustTZ(epochTime: number, tzTo: string, tzFrom?: string):
number
Adjust a timestamp from one timezone to another.

@param – epochTime – UNIX epoch time.

@param – tzTo – timezone to adjust to.

@param – tzFrom – optional timezone of the timestamp.

C.Time.strftime()
(method) Time.strftime(date: number | Date, format: string, utc?:
boolean): string
Format a Date object or number as a time string, using strftime specifier.

@param – date – Date object or number (seconds since epoch) to format.

@param – format – specifier to use to format the date.

@param – utc – whether to output the time in UTC, rather than in local timezone.

@returns – representation of the given date.

C.Time.strptime()
(method) Time.strptime(str: string, format: string, utc?: boolean,
strict?: boolean): Date
Extract time from a string using strptime specifier.

@param – str – string to parse to a timestamp (see strict flag).

@param - format – strptime specifier.

@param – utc – whether to interpret times as UTC, rather than as local time.

@param – strict – whether to return null if there are any extra characters after

timestamp.

@returns – a parsed Date object, if successful; otherwise, null if the specifier did not

match.

C.Time.timestampFinder()
(method) Time.timestampFinder(utc?: boolean): AutoTimeParser

See Global Variables Library for more details.

(property) version: string
Cribl LogStream Version.

C.vars – Global Variables

C.version – Cribl LogStream Version

Updated 2 months ago

Page 397 of 900

KNOWLEDGE

Regex Library

Cribl LogStream ships with a Regex Library that contains a set of pre-built common

regex patterns. This library serves as an easily accessible repository of regular

expressions. The Library is searchable, and you can assign tags to each pattern for

further organization or categorization. The Library is located under Knowledge >

Regex Library .

Regular Expression Library

As of this version, the Library contains 25 patterns shipped by Cribl LogStream. To

insert a pattern into a Function's regex field, first click the pop-out or Edit icon beside

that field.

What Is the Regex Library

Using Library Patterns

Page 398 of 900

Opening a Regex modal

In the resulting Regex or Rules modal, Regex Library patterns will appear as typeahead

options. Click a pattern to paste it in. You can then use the pattern as-is, or modify it as

necessary.

Inserting a pattern from the Regex Library

You can also add new, custom patterns to the Library. In the same modal, once you've

built your pattern, click the Save to Library button.

Adding a custom pattern to the Regex Library from a Function's Regex modal

In the resulting modal, give your custom pattern a unique ID. Optionally, you can also

provide a Description (name) and groom the Sample data. Then click Save.

Adding Patterns to the Library

Page 399 of 900

Identifying the custom pattern

Your custom pattern will now reside in the Regex Library. It will be available to

Functions using the same typeahead assist as Cribl's pre-built patterns.

Within the Library, patterns shipped by Cribl will be listed under the Cribl tab, while

those built by users will be found under Custom. Over time, Cribl LogStream will ship

more patterns, and this distinction allows for both sets to grow independently.

In the case of an ID/Name conflict, the Custom pattern takes priority in listings and

search. For example, if a Cribl-provided pattern and a Custom one are both named

ipv4 , the one from Cribl will not be displayed or delivered as a search result.

Cribl vs. Custom and Priority

Updated 19 days ago

Page 400 of 900

Grok Patterns Library

Cribl LogStream ships with a Grok Patterns Library that contains a set of pre-built

common patterns, organized as files.

Grok Patterns Library

You can access the Grok Patterns Library in the UI by selecting Knowledge > Grok

Patterns. The library contains several pattern files that Cribl provides for basic Grok

scenarios, and is searchable.

To edit a pattern file, click Edit in its Actions column.

To create a new pattern file, click + Add New. In the resulting Create Grok Patterns

modal, assign a unique Filename/ID, populate the file with patterns, then click Save.

Adding Grok patterns

What Is the Grok Patterns Library

Managing Library Patterns

ℹ Pattern files reside in: $CRIBL_HOME/(default|local)/cribl/grok-
patterns/

Page 401 of 900

In the current LogStream version, you apply Grok patterns by inserting a Grok Function

into a Pipeline, then manually typing or pasting patterns into the Pattern field(s).

Using Grok Patterns

Updated a day ago

Page 402 of 900

Event Breakers

Event Breakers help break incoming streams of data into discrete events. You access

the Event Breakers management interface under Knowledge > Event Breakers. On

the resulting Event Breaker Rulesets page, you can edit, add, delete, search, and tag

Event Breaker rules and rulesets, as necessary.

Event Breaker Rulesets page

Rulesets are collections of Event Breaker rules that are associated with Sources.

Rules define configurations needed to break down a stream of data into events. Rules

within a ruleset are ordered and evaluated top->down. One or more rulesets can be

associated with a Source, and these rulesets are also evaluated top->down. For a

stream from a given Source, the first matching rule goes into effect.

Rulesets and Rules - Ordered

What Are Event Breakers

Event Breaker Rulesets

Ruleset A
 Rule 1
 Rule 2
 ...
 Rule n

Page 403 of 900

An example of multiple rulesets associated with a Source:

Three Event Breaker rulesets on a Source

This rule breaks on newlines and uses Manual timestamping after the sixth comma, as

indicated by this pattern: ^(?:[^,]*,){6} .

...

Ruleset B
 Rule Foo
 Rule Bar
 ...
 Rule FooBar

Rule Example

Page 404 of 900

An Event Breaker rule

The system default rule sits at the bottom of the ruleset/rule hierarchy, and goes into

effect if there are no matching rules:

Filter Condition defaults to true

Event Breaker to [\n\r]+(?!\s)

Timestamp anchor to ^

Timestamp format to Auto and a scan depth of 150 bytes

Max Event Bytes to 51200

Default Timezone to Local

On the Event Breaker Rulesets page (see screenshot above), click + Add New to

create a new Event Breaker ruleset. Click + Add Rule within a ruleset to add a new

Event Breaker.

Adding a new Event Breaker rule

Each Event Breaker includes the following components, which you configure from top

to bottom in the above Event Breaker Rule modal:

System Default Rule

How Do Event Breakers Work

Filter Condition

Page 405 of 900

As a stream of data moves into the engine, a rule's filter expression is applied. If the

expression evaluates to true , the rule configurations are engaged for the entire
duration of that stream. Else, the next rule down the line is evaluated.

After a breaker pattern has been selected, it will apply on the stream continuously.

See below for specific information on different Event Breaker Types.

After events are synthesized out of streams, LogStream will attempt timestamping.

First, a timestamp anchor will be located inside the event. Next, starting there, the

engine will try to do one of the following:

Scan up to a configurable depth into the event and autotimestamp, or

Timestamp using a manually supplied strptime format, or

Timestamp the event with the current time.

The closer an anchor is to the timestamp pattern, the better the performance and

accuracy – especially if multiple timestamps exist within an event. For the manually

supplied option, the anchor must lead the engine right before the timestamp pattern

begins.

Anchors preceding timestamps

After events have been timestamped, one or more fields can be added here as key-

value pairs. In each field's Value Expression, you can fully evaluate the field value

using JavaScript expressions.

Several types of Event Breaker can applied to incoming data streams:

1. Type Regex – uses regular expressions to find breaking points in data streams.

After a breaker regex pattern has been selected, it will apply on the stream

continuously. Breaking will occur at the beginning of the match, and the matched

content will be consumed/thrown away. If necessary, a positive lookahead regex

can be used – e.g., (?=pattern) – to keep the content.

Event Breaker Type

Timestamp Settings

Add Fields to Events

Event Breaker Types

Page 406 of 900

Capturing groups are not allowed to be used anywhere in the Event Breaker

pattern, as they will further break the stream – which is often undesirable.

Breaking will also occur if Max Event Bytes has been reached.

Example: Break after a newline or carriege return but only if followed by a

timestamp pattern:

Event Breaker: [\n\r]+(?=\d+-\d+-\d+\s\d+:\d+:\d+)

Sample Event - Multiline

2. Type File Header – can be used to break files with headers, such as IIS or Bro

logs. This type of breaker relies on a header section that lists field names. The

header section is typically present at the top of the file, and can be single-line or

greater.

After the file has been broken into events, fields will also be extracted, as follows:

Header Line: Regex matching a file header line. For example, ^# .

Field Delimiter: Field delimiter regex. For example, \s+ .

Field Regex: Regex with one capturing group, capturing all the fields to be

broken by field delimiter. For example, ^#[Ff]ields[:]?\s+(.*)

Null Values: Representation of a null value. Null fields are not added to

events.

Clean Fields: Whether to clean up field names by replacing non [a-zA-Z0-
9] characters with _ .

Example: Using the values above, let's see how this sample file breaks up:

S l E Fil H d

--- input ---
2020-05-19 16:32:12 moen3628 ipsum[5213]: Use the mobile TCP feed, then y
 Try to connect the FTP sensor, maybe it will connect the digital bus!
 Try to navigate the AGP panel, maybe it will quantify the mobile alarm
2020-05-19 16:32:12 moen3628 ipsum[5213]: Use the mobile TCP feed, then y
 Try to connect the FTP sensor, maybe it will connect the digital bus!
 Try to navigate the AGP panel, maybe it will quantify the mobile alarm

--- output event 1 ---
{
 "_raw": "2020-05-19 16:32:12 moen3628 ipsum[5213]: Use the mobile TCP f
 "_time": 1589920332
}

--- output event 2 ---
{
 "_raw": "2020-05-19 16:32:12 moen3628 ipsum[5213]: Use the mobile TCP f
 "_time": 1589920332
}

Page 407 of 900

Sample Event - File Header

3. Type JSON Array – can be used to extract events from an array in a JSON

document (e.g., an Amazon CloudTrail file).

Array Field: Path to array in a JSON event with records to extract. For

example, Records .

Timestamp Field: Optional path to timestamp field in extracted events. For

example, eventTime or level1.level2.eventTime .

JSON Extract Fields: Enable this slider to auto-extract fields from JSON

events. If disabled, only _raw and time will be defined on extracted events.

Timestamp Format: If JSON Extract Fields is set to No, you must set this to

Autotimestamp or Current Time. If JSON Extract Fields is set to Yes, you

can select any option here.

Example: Using the values above, let's see how this sample file breaks up:

Sample Event - JSON Document (Array)

--- input ---
#fields ts uid id.orig_h id.orig_p id.resp_h i
#types time string addr port addr port enum
1331904608.080000 - 192.168.204.59 137 192.168.204.255 137
1331904609.190000 - 192.168.202.83 48516 192.168.207.4 53

--- output event 1 ---
{
 "_raw": "1331904608.080000 - 192.168.204.59 137 192.168
 "ts": "1331904608.080000",
 "id_orig_h": "192.168.204.59",
 "id_orig_p": "137",
 "id_resp_h": "192.168.204.255",
 "id_resp_p": "137",
 "proto": "udp",
 "_time": 1331904608.08
}

--- output event 2 ---
{
 "_raw": "1331904609.190000 - 192.168.202.83 48516 192.168
 "ts": "1331904609.190000",
 "id_orig_h": "192.168.202.83",
 "id_orig_p": "48516",
 "id_resp_h": "192.168.207.4",
 "id_resp_p": "53",
 "proto": "udp",
 "_time": 1331904609.19
}

--- input ---
{"Records":[{"eventVersion":"1.05","eventTime":"2020-04-08T01:35:55Z","ev
{"eventVersion":"1.05","eventTime":"2020-04-08T01:35:56Z","eventSource":"

Page 408 of 900

4. Type JSON New Line Delimited – can be used to break and extract fields in

newline-delimited JSON streams.

Example: Using default values, let's see how this sample stream breaks up:

Sample Event - Newline Delimted JSON

--- output event 1 ---
{
 "_raw": "{\"eventVersion\":\"1.05\",\"eventTime\":\"2020-04-08T01:35:55
 "_time": 1586309755,
 "cribl_breaker": "j-array"
}

--- output event 2 ---
{
 "_raw": "{\"eventVersion\":\"1.05\",\"eventTime\":\"2020-04-08T01:35:56
 "_time": 1586309756,
 "cribl_breaker": "j-array"
}

--- input ---
{"time":"2020-05-25T18:00:54.201Z","cid":"w1","channel":"clustercomm","le
{"time":"2020-05-25T18:00:54.246Z","cid":"w0","channel":"clustercomm","le

--- output event 1 ---
{
 "_raw": "{\"time\":\"2020-05-25T18:00:54.201Z\",\"cid\":\"w1\",\"channe
 "time": "2020-05-25T18:00:54.201Z",
 "cid": "w1",
 "channel": "clustercomm",
 "level": "info",
 "message": "metric sender",
 "total": 720,
 "dropped": 0,
 "_time": 1590429654.201,
}

--- output event 21 ---
{
 "_raw": "{\"time\":\"2020-05-25T18:00:54.246Z\",\"cid\":\"w0\",\"channe
 "time": "2020-05-25T18:00:54.246Z",
 "cid": "w0",
 "channel": "clustercomm",
 "level": "info",
 "message": "metric sender",
 "total": 720,
 "dropped": 0,
 "_time": 1590429654.246,
}

Cribl versus Custom Rulesets

Page 409 of 900

Event Breaker rulesets shipped by Cribl will be listed under the Cribl tag, while user-

built rulesets will be found under Custom. Over time, Cribl will ship more patterns, so

this distinction allows for both sets to grow independently. In the case of an ID/Name

conflict, the Custom pattern takes priority in listings and search.

Updated 19 days ago

Page 410 of 900

Lookups Library

Lookups are data tables that can be used in Cribl LogStream to enrich events as

they're processed by the Lookup Function. You can access the Lookups library under

Knowledge > Lookups, and its purpose is to provide a management interface for all

lookups. The library is searchable, and each lookup can be tagged as necessary.

Compressed files are supported but must be in gzip format (gz extension).

Lookups Library

All files handled by the interface are stored in $CRIBL_HOME/data/lookups for

standalone instances. For the paths used in distributed environments, see Distributed

Deployments. You can use the Lookups Library interface to add, edit, and delete

lookups within files/tables. To get started, click the Edit button to the right of a file.

Editing a lookups file

You can edit files in table or text mode. However, text mode is disabled for files larger

than 1 MB.

What Are Lookups

How Does It Work

Page 411 of 900

Editing in table mode

Updated about a month ago

Page 412 of 900

Parsers Library

Parsers are definitions and configurations for the Parser Function. You can find the

library under Knowledge > Parsers, and its purpose is to provide an interface for

creating and editing Parsers. The library is searchable, and each parser can be tagged

as necessary.

Parsers Library

Parsers can be used to extract or reserialize events. See Parser Function page for

examples.

CSV – Parse and reserialize comma-separated values.

ELFF – Parse and reserialize events in Extended Log File Format.

CLF – Parse and reserialize events in Common Log Format.

To create a parser, follow these steps:

1. Go to Knowledge > Parsers and click Add New.

2. Enter a unique ID.

3. Optionally, enter a Description.

4. Select a Parser type (see the supported types above).

What Are Parsers

Supported Parser Types:

Creating a Parser

Page 413 of 900

5. Enter the List of fields expected to be extracted, in order.

Click this field's Maximize icon (far right) if you'd like to open a modal where you

can work with sample data and iterate on results.

6. Optionally, enter any desired Tags.

Adding a new parser

Updated 2 months ago

Page 414 of 900

Schema Library

Schemas are JSON definitions that are used to validate of JSON events. They're based

on the popular JSON Schema standard, and all schemas matching draft version 2019-

09 are supported. You can find the library under Knowledge > Schemas. Its purpose

is to provide an interface for creating, editing, and maintaining Schemas.

You validate a schema using the C.Schema('<schema name>').validate(<object
field>) built-in method. This function can be called anywhere in Cribl LogStream

that JavaScript expressions are supported.

Typical use cases for Schema validation:

Making a decision before sending an event down to a destination.

Making a decision before accepting an event. (E.g., drop an event if invalid.)

Making a decision to route an event based on the result of validation.

To add this example JSON Schema, go to Knowledge > Schemas and click Add New.

Enter the following:

ID: schema1 .

Description: (Enter your own description here.)

Schema: Paste the following schema.

JSON Schema - Sample

What Are Schemas

Example

{
 "$id": "https://example.com/person.schema.json",
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Person",
 "type": "object",
 "required": ["firstName", "lastName", "age"],
 "properties": {
 "firstName": {
 "type": "string",
 "description": "The person's first name."
 },
 "lastName": {
 "type": "string",
 "description": "The person's last name."
 },
 "age": {

Page 415 of 900

Assume that events look like this:

Events

To validate whether the employee field is valid per schema1 , we can use the
following:

C.Schema('schema1').validate(employee)

Results:

First event is valid.

Second event is not valid because age is greater than the maximum of 42 .

Third event is not valid because age is missing.

Schema validation results for the above events

 "description": "Age in years which must be equal to or greater than
 "type": "integer",
 "minimum": 0,
 "maximum": 42
 }
 }
}

{"employee":{"firstName": "John", "lastName": "Doe", "age": 21}}
{"employee":{"firstName": "John", "lastName": "Doe", "age": 43}}
{"employee":{"firstName": "John", "lastName": "Doe"}}

Updated 2 months ago

Page 416 of 900

Global Variables Library

Global Variables are reusable JavaScript expressions that can be accessed in

Functions in any Pipeline. You can access the library under Knowledge > Global

Variables.

Typical use cases for Global Variables include:

Storing a constant that you can reference from any Function in any Pipeline.

Storing a relatively long value expression, or one that uses one or more

arguments.

Global Variables can be of the following types:

Number

String

Boolean

Object

Array

Expression

Global Variables can be accessed via C.vars. – which can be called anywhere in

Cribl LogStream that JS expressions are supported. Typeahead is provided. More on

Cribl Expressions here.

Assign field foo the value in theAnswer Global Variable.

Global Variable Name: theAnswer <-- ships with Cribl LogStream by default.

Global Variable Value: 42

Sample Eval Function: foo = C.vars.theAnswer

Assign field nowEpoch the current time, in epoch format.

Global Variable Name: epoch <-- ships with Cribl LogStream by default.

What Are Global Variables

Examples

Scenario 1:

Scenario 2:

Page 417 of 900

Global Variable Value: Date.now()/1000

Sample Eval Function: nowEpoch = C.vars.epoch()

Create a new field called storage , by converting the value of event field size to

human-readable format.

Global Variable Name: convertBytes <-- ships with Cribl LogStream by default

Global Variable Value: `${Math.round(bytes / Math.pow(1024,
(Math.floor(Math.log(bytes) / Math.log(1024)))), 2)}${['Bytes',
'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB', 'ZiB', 'YiB']
[(Math.floor(Math.log(bytes) / Math.log(1024)))]}`

Global Variable Argument: bytes

Sample Eval Function: storage = C.vars.convertBytes(size)

Note the use of bytes here as an argument.

Scenario 3:

Updated 2 months ago

Page 418 of 900

USE CASES

Ingest-time Fields

To add new fields to any event, we use the out-of-the-box Eval Function. We can

either apply a Filter to select the events, or we can use the default true Filter

expression to apply the Function to all incoming events.

Let's see how we add dc::nyc-42 to all events with

sourcetype=='access_combined' :

First make sure you have a Route and Pipeline configured to match desired

events.

Next, let's add a Eval function to it:

Defining the Eval Function's filter expression

Next, let's click on + Add Field, add our dc field, and click Save.

Adding Fields to Data in Motion

Adding Fields Example

Page 419 of 900

Adding the dc field

To confirm, verify that this search returns results: sourcetype="access_combined"
dc::nyc-42

You can add more conditions to the filter, if you'd like. For example, to limit the

field to only events from hosts that start with web-01 , we can change the filter
input as below:

Refining the filter

This is a very powerful method to change incoming events in real time. In addition to

providing the right context at the right time, users can further benefit substantially by

Page 420 of 900

using tstats for faster analytics.

You can remove fields by listing and/or wildcarding field names. Let's see how we can

remove all fields that start with date_ .:

First, make sure you have a Route and Pipeline configured to match desired

events.

Next, let's add a Eval function to it (as above).

Next, in Remove Fields, add date_* and hit Save.

Goodbye date_ field

To confirm, verify that this search: sourcetype="access_combined" date_minute=*
will soon stop returning results. Enjoy a more efficient Splunk!

Removing Fields

Updated 2 months ago

Page 421 of 900

Ingest-time Lookups

To enrich events with new fields from external sources (say, .csv files), we use

LogStream's out-of-the-box Lookup Function. Ingestion-time lookups are not only

great for normalizing field names and values, but also ideal for use cases where:

Fast access via the looked-up value is required. For example, when you don't have

a datacenter field in your events, but you do have a host-to-datacenter map,

and you need to search by datacenter .

Looked-up information must be temporally correct. For example, assume that you

have a highly dynamic infrastructure, and you need to resolve a resource name

(e.g., a container name) to its address. You can't afford to defer this to search

time/runtime, as the resource and its records might no longer exist.

Let's assume we have the following lookup file. Given the field conn_state in an

event, we would like to add a corresponding ingestion-time field called action .

bro_conn_state.csv

First, make sure you have a Route and Pipeline configured to match desired events.

Next, let's add a Lookup function to the Pipeline, with these settings:

Enriching Data in Motion

ℹ External (non- .csv) lookups are coming soon.

Working with Lookups – Example 1

action,"conn_state","conn_state_meaning"
dropped,S0,"Connection attempt seen, no reply."
allowed,S1,"Connection established, not terminated."
allowed,SF,"Normal establishment and termination."
blocked,REJ,"Connection attempt rejected."
allowed,S2,"Connection established and close attempt by originator seen
allowed,S3,"Connection established and close attempt by responder seen (b
allowed,RSTO,"Connection established, originator aborted (sent a RST)."
allowed,RSTR,"Established, responder aborted."
dropped,RSTOS0,"Originator sent a SYN followed by a RST, we never saw a S
dropped,RSTRH,"Responder sent a SYN ACK followed by a RST, we never saw a
dropped,SH,"Originator sent a SYN followed by a FIN, we never saw a SYN A
dropped,SHR,"Responder sent a SYN ACK followed by a FIN, we never saw a S
allowed,OTH,"No SYN seen, just midstream traffic (a 'partial connection'

Page 422 of 900

Lookup file path:

$SPLUNK_HOME/etc/apps/Splunk_TA_bro/lookups/bro_conn_state.csv
(note that Environment variables are allowed in the path).

Lookup Field Name in Event set to conn_state .

Corresponding Field Name in Lookup set to conn_state .

Output Field Name from Lookup set to action .

Lookup Field Name in Event set to action .

Lookup Function to add action field

To confirm success, verify that this search returns expected results:

sourcetype="bro" action::allowed . Change the action value as necessary.

Let's assume we have the following lookup file, and given both the fields impact and

priority in an event, we would like to add a corresponding ingestion-time field

called severity .

cisco_sourcefire_severity.csv

Working with Lookups – Example 2

impact,priority,severity
1,high,critical
2,high,critical
3,high,high

Page 423 of 900

First, make sure you have a Route and Pipeline configured to match desired events.

Next, let's add a Lookup function to the Pipeline, with these settings:

Lookup file path:

$SPLUNK_HOME/etc/apps/Splunk_TA_sourcefire/lookups/cisco_sourcefire_s
everity.csv
(note that Environment variables are allowed in the path).

Lookup Field Name(s) in Event set to impact and priority .

Corresponding Field Name(s) in Lookup set to impact and priority .

Output Field Name from Lookup set to severity .

Lookup Field Name in Event set to severity .

4,high,high
0,high,high
"*",high,high
.....
"*",medium,medium
1,low,medium
2,low,medium
3,low,low
4,low,low
0,low,low
"*",low,low
1,none,low
2,none,low
3,none,informational
4,none,informational
0,none,informational
"*",none,informational

Page 424 of 900

Lookup Function to add severity field

To confirm success, verify that this search returns expected results:

sourcetype="cisco:sourcefire" severity::medium . Change the severity value

as necessary.

Updated 2 months ago

Page 425 of 900

Sampling

Let's say that you wanted to analyze and troubleshoot with highly

verbose/voluminous data – for example, CDN logs, ELB Access Logs, or VPC Flows –

but you were concerned about storage requirements and search performance. With

Sampling, you can bring in enough samples that your analysis remains statistically

significant, and also do all the necessary troubleshooting.

See the example below, or see more details in Access Logs and Firewall Logs.

Let's use the out-of-the-box Sampling function to sample all events from

sourcetype=='access_combined' where status is '200' . We'll sample these
at 5:1 (and all other events at 1:1). This should lower the volume of all
verbose successes (200 s), but still bring in **all** potentially
erroneous events (400 s, 500`s, etc.) that can be used for troubleshooting.

First, make sure you have a Route and Pipeline configured to match desired

events.

Next, let's add a Regex Extract Function to extract the status field from _raw ,
and let's call the resulting field __status . Remember, fields that start with __
are special fields in Cribl LogStream, and can be used anywhere in a Pipeline.

Extracting the __status field

Sampling at Ingest-Time

Sampling Example

Page 426 of 900

Next, let's add a Sampling function, and scope it to all events where

sourcetype=='access_combined' . Let's apply a filter condition of __status ==
200 , and a Sample Rate of 5 .

Sampling success responses

To confirm that sampling works, compare the event count of all 200 s before and after.

ℹ Each time an event goes through the Sampling function, an index-time

sampled::<rate> field is added to it. You can use this field in your

statistical functions, as necessary.

Updated about a month ago

Page 427 of 900

Access Logs: Apache, ELB, CDN, S3,
etc.

Access logs are extremely common. They're often emitted by web servers or

similar/related technologies (proxies, loadbalancers, etc.), and tend to be highly

voluminous. Typical examples include Apache access logs, and CDN logs such as

those from Amazon Cloudfront, Amazon S3 Server Access Logs, AWS ELB Access

Logs, etc.

For large installations, bringing everything into an analytics tool is often so cost-

prohibitive (storage, resources, license, etc.) that most users don't even bother.

However, some of the logs contain relevant information when looked at individually

(e.g., errors). The much larger majority contains relevant information when looked at in

the aggregate (e.g., successes to determine traffic patterns, etc.).

It would be great if we could find a middle ground. With the Sampling Function, you

can! Specifically, you can:

Ingest enough sample events from the majority category that your aggregate

analysis remains statistically significant.

Ingest all events from the minority categories, and perform troubleshooting and

introspection with full-fidelity data.

Most of the access logs (including the ones mentioned above) have very similar

formats. One quick way to sample is to look at the value of the status field. 2XX s
indicate success and tend to be, by far, the most common ones – with 200 being the

top. Therefore, 200 is the perfect candidate for sampling. All other statuses occur

much less frequently, indicate conditions that often need to be looked at, and can be

brought in with full fidelity.

1. Add a Regex Extract Function that looks at these sourcetypes:

sourcetype=='access_combined' || sourcetype=='aws:s3:accesslogs'

2. Configure that Function to extract a field called __status with this

regex: /HTTP\/\d\.\d"\s(?<__status>\d+)/

Recipe for Sampling Access Logs

Using status as the Sampling Condition

Sample Status 200 at 5�1

Page 428 of 900

Defining the Regex Extract Function

3. Add a Sampling Function to sample 5:1 when __status==200 .

4. Save.

Sampling success reponses

Each time an event goes through the Sampling Function, an index-time sampled::
<rate> field is added to it. Use this field in your statistical Functions, as necessary.

Examples of other sourcetypes that will benefit from sampling, but might need a

different __status extraction regex:

Note About Sampling

Other Sourcetypes

Sourcetype Filter Expression

Page 429 of 900

Amazon Cloudfront Access

Logs
sourcetype=='aws:cloudfront:accesslogs'

Amazon ELB Access Logs sourcetype=='aws:elb:accesslogs'

Updated 2 months ago

Page 430 of 900

Firewall Logs: VPC Flow Logs, Cisco
ASA, Etc.

Firewall logs are another source of important operational (and security) data. Typical

examples include Amazon VPC Flow Logs, Cisco ASA Logs, and other technologies

such as Juniper, Checkpoint, pfSense, etc.

As with Access Logs, bringing in everything for operational analysis might be cost-

prohibitive. But sampling with Cribl LogStream can help you:

Ingest enough sample events from the majority category that your aggregate

analysis remains statistically significant. E.g., sample all ACCEPT s at 5:1 .

Ingest all events from the minority categories, and perform troubleshooting and

introspection with full-fidelity data. E.g., bring in all REJECT s.

AWS' VPC Flow Logs feature enables you to capture information about the IP traffic

going to and from network interfaces in your VPC. Flow Log data can be published to

Amazon CloudWatch Logs and Amazon S3.

Typical VPC Flow Logs look like this:

Flow Log Records for Accepted and Rejected Traffic

Let's use a very simple Filter condition and only look for ACCEPT events:

1. Add a Regex Extract Function that looks at:

sourcetype=='aws:cloudwatchlogs:vpcflow'

2. Configure that Function to extract a field called __action with this regex: /(?
<__action>ACCEPT)/

Recipe for Sampling Firewall Logs

Sampling VPC Flow Logs

2 123456789010 eni-abc123de 172.31.16.139 172.31.16.21 20641 22 6 20 4249
2 123456789010 eni-abc123de 172.31.9.69 172.31.9.12 49761 3389 6 20 4249

Page 431 of 900

Extracting the __action field

3. Add a Sampling Function to sample 5:1 when __action=="ACCEPT" .

4. Save.

Sampling ACCEPT events

Each time an event goes through the Sampling Function, an index-time field is added

to it: sampled: <rate> . It's advisable that you use that in your statistical functions, as
necessary.

Other sourcetypes that will benefit from sampling, but might need a different

__action extraction regex:

Note About Sampling

Other Sourcetypes

Page 432 of 900

Cisco ASA Logs sourcetype=='cisco:asa'

Related sourcetypes to consider sampling:
sourcetype=='cisco:fwsm'
sourcetype=='cisco:pix'

Updated 2 months ago

Sourcetype Filter Expression

Page 433 of 900

Masking and Obfuscation

To mask patterns in real time, we use the out-of-the-box Mask Function. This is similar

to sed , but with much more powerful functionality.

The Masking Function accepts multiple replacement rules and multiple fields to apply

them to.

Match Regex is a JS regex pattern that describes the content to be replaced. It can

optionally contain matching groups. By default, it will stop after the first match, but

using /g will make the Function replace all matches.

Replace Expression is a JS expression or literal to replace matched content.

Matching groups can be referenced in the Replace Expression as g1 , g2 ... gN ,
and the entire match as g0 .

There are several masking methods that are available under C.Mask. :

C.Mask.random : Generates a random alphanumeric string

C.Mask.repeat : Generates a repeating char/string pattern, e.g., XXXX
C.Mask.REDACTED : The literal 'REDACTED'

C.Mask.md5 : Generates a MD5 hash of given value

C.Mask.sha1 : Generates a SHA1 hash of given value

C.Mask.sha256 : Generates a SHA256 hash of given value

Almost all methods have an optional len parameter which can be used to control the

length of the replacement. len can be either a number or string. If it's a string, its

length will be used. For example:

Masking and Anonymization of Data in Motion

Masking Capabilities

Page 434 of 900

Defining the replacement length

Let's look at the various ways that we can mask a string like this one:

cardNumber=214992458870391 . The Regex Match we'll use is: /(cardNumber=)
(\d+)/g . In this example:

g0 = cardNumber=214992458870391

g1 = cardNumber=

g2 = 214992458870391

Masking Examples

Replace Expression Evaluationℹ

Replace Expression accepts a full JS expression that evaluates to a value,

so you're not necessarily limited to what's under C.Mask . For example, you
can do conditional replacement: g1%2==1 ? `fieldA="odd"` :
`fieldA="even"`

Replace Expression can reference other event fields as event.
<fieldName> . For example, `${g1}${event.source}` . Note that this is
slightly different from other expression inputs, where event fields are

referenced without event. Here, we require the event. prefix for the

following reasons:

We don't expect this to be a common case.

Expanding the event in the replace context would have a high

performance hit on the common path.

There is a slight chance that there might be a gN field in the event.

Page 435 of 900

Replace Expression: `${g1}${C.Mask.random()}`

Result: cardNumber=HRhc

Replace Expression: `${g1}${C.Mask.random(7)}`

Result: cardNumber=neNSm8r

Replace Expression: `${g1}${C.Mask.random(g2)}`

Result: cardNumber=DroJ73qmyaro51u3

Replace Expression: `${g1}${C.Mask.repeat()}`

Result: Result: cardNumber=XXXX

Replace Expression: `${g1}${C.Mask.repeat(6, 'Y')}`

Result: cardNumber=YYYYYY

Replace Expression: `${g1}${C.Mask.repeat(g2)}`

Result: cardNumber=XXXXXXXXXXXXXXX

Replace Expression: `${g1}${C.Mask.REDACTED}`

Result: cardNumber=REDACTED

Replace Expression: `${g1}${C.Mask.md5(g2)}`

Result: cardNumber=f5952ec7e6da54579e6d76feb7b0d01f

Replace Expression: `${g1}${C.Mask.md5(g2, 12)}`

Result: cardNumber=d65a3ddb2749
*Replacement length will not exceed that of the hash algorithm output; MD5: 32

chars, SHA1: 40 chars, SHA256: 64 chars.

Random Masking with default character length (4):

Random Masking with defined character length:

Random Masking with length preserving replacement:

Repeat Masking with default character length (4):

Repeat Masking with defined character choice and length:

Repeat Masking with length preserving replacement:

Literal REDACTED masking:

Hash Masking (applies to: md5, sha1 and sha256):

Hash Masking with left N-length* substring (applies to: md5, sha1 and
sha256):

Page 436 of 900

Replace Expression: `${g1}${C.Mask.md5(g2, -12)}`

Result: cardNumber= 933bfcebf992
*Replacement length will not exceed that of the hash algorithm output; MD5: 32

chars, SHA1: 40 chars, SHA256: 64 chars.

Replace Expression: `${g1}${C.Mask.md5(g2, g2)}`

Result: cardNumber= d65a3ddb27493f5
*Replacement length will not exceed that of the hash algorithm output; MD5: 32

chars, SHA1: 40 chars, SHA256: 64 chars.

Hash Masking with right N-length* substring (applies to: md5, sha1 and
sha256):

Hash Masking with length* preserving replacement (applies to: md5, sha1
and sha256):

Updated 2 months ago

Page 437 of 900

Regex Filtering

To filter events in real time, we use the out-of-the-box Regex Filter Function. This is

similar to nullqueueing with TRANSFORMS in Splunk, but the matching condition is

way more flexible.

Let's see how we can filter out any sourcetype=='access_combined' events whose

_raw field contains the pattern Opera :

First, make sure you have a Route and Pipeline configured to match desired events.

Next, let's add a Regex Filter Function to it:

Defining the Regex Filter Function

Next, verify that this search does not return any results:

sourcetype="access_combined" Opera

You can add more conditions to the Filter input field. For example, to further limit the

filtering to only events from hosts with domain dnto.ca , change the filter input as
shown below:

Regex Filtering of Data in Motion

Regex Filtering Example

Page 438 of 900

Filtering by host

This is a very flexible method for filtering incoming events in real time, on virtually any

arbitrary conditions.

Updated about a month ago

Page 439 of 900

Encrypting Sensitive Data

With Cribl LogStream, you can encrypt your sensitive data in real time before it's

forwarded to and stored at a destination. Using the out-of-the-box Mask function, you

can define patterns to encrypt with specific key IDs or key classes. To decrypt in

Splunk, you will need to install Cribl App for Splunk on your search head. (The app will

default to mode-searchhead .)

Symmetric encryption keys can be configured through the CLI or the UI. They're used

to encrypt the patterns, and users are free to define as many keys as required.

Key classes are collections of keys that can be used to implement multiple levels of

access control. Users (or groups of users) that have access to data with encrypted

patterns can be associated with key classes. You can use these classes to provide

more-granular access rights, such as read versus decryption permissions on a

dataset.

1. Define one or more keys and key classes on Cribl LogStream.

2. Sync auth with the decryption side (Splunk Search Head)

3. Apply the Mask function to patterns of interest, using C.Crypto.encrypt().

4. Decrypt on the Splunk search head, using Role Based Access Control on the

decrypt command.

Encryption at Ingest-Time and Decryption in Splunk

Keys and Key Classes

Encrypting in Cribl LogStream and Decrypting in Splunk

Page 440 of 900

Generate one or more keys via the CLI, as follows:

$CRIBL_HOME/bin/cribl keys add -c 1 -i
...
$CRIBL_HOME/bin/cribl keys add -c <N> -i

Add -e <epoch> if you'd like to set expiration for your keys.

Or generate keys via the UI, in Settings > Encryption Keys:

Adding a new encryption key

Sync auth/(cribl.secret|keys.json) . To decrypt data, the decrypt
command will need access to these keys. The cribl.secret and keys.json

Example

Encryption Side

Page 441 of 900

files in $CRIBL_HOME/local/cribl/auth should be synced/copied over to the

search head (decryption side).

Install Cribl App for Splunk on your search head. It will default to mode-
searchhead .

Assign permissions to the decrypt command, per your requirements.

Assign capabilities to your Roles, per your requirements. Capability names should

follow the format cribl_keyclass_N , where N is the Cribl Key Class. For

example, a role with capability cribl_keyclass_1 has access to all key IDs

associated with key class 1 . You can use more capabilities, as long as they follow
this naming convention.

Selecting capabiities

Before Encryption: Sample un-encrypted events. Notice the values of fieldA and

fieldB .

Decryption Side

Usage

Page 442 of 900

Events before encryption

Next, encrypt fieldA values with key class 1 , and fieldB with key class 2 .

Encrypting two fields with separate key classes

After Encryption: again, notice the values of fieldA and fieldB .

Both fields encrypted

Here, we've decrypted fieldB but not fieldA . This is because the logged-in user
has been assigned the capability cribl_keyclass_2 , but not cribl_keyclass_1 .

One field decrypted

Page 443 of 900

Updated 27 days ago

Page 444 of 900

Syslog Data Reduction

When ingesting data from syslog senders, Cribl LogStream can readily trim data

volume by 30% or more, optimizing infrastructure for downstream services like Splunk

or Elasticsearch. Here, we outline some best practices for replacing your Syslog server

with LogStream.

By default, a LogStream Syslog Source will produce the following fields: _time ,
appname , facility and facilityName , host , message , and severity and

severityName .

Parsed syslog event

This output is much more readable, but we haven't saved any volume – we now have

redundant pairs of fields (numeric versus text) representing the facility and severity.

Below, we'll outline how to streamline syslog events to something more like this:

Parsed and redacted syslog event

This extracts the essentials, removes the redundancies, adds one new field that

identifies the LogStream Pipeline we're about to build, and shrinks the outbound _raw

Syslog Event Parsing

Page 445 of 900

payload to just its message component. For still further efficiencies, we'll look at how

to drop or downsample frequent events, and how to balance high-volume syslog

inputs across LogStream worker processes.

Even before setting up a Syslog Source, our first step is to create an input conditioning

Pipeline that will be available to normalize incoming events on all Syslog Sources,

reducing data volume as shown above.

The Pipeline starts with an Eval Function, whose Evaluate Fields section tags syslog

events with two new fields indicating their origin: sourcetype: 'syslog' and

source: __inputId . Because this Pipeline is designed only to condition all incoming
syslog data, we leave Filter set to its default true value, to process all events.

Eval function to tag syslog events' origin

A second Eval Function filters for the presence of a message field. If found, it

overwrites the _raw field with message , and then deletes message as redundant.

This function alone typically reduces syslog data volume by 15–20%.

Create Input Conditioning Pipeline

Page 446 of 900

Eval function to rewrite message as _raw

This third Eval Function deletes two redundant fields. Its Filter condition makes sure

both of these string fields exist and contain values: severity != null && facility
!= null . If so, it removes their corresponding numeric fields, severity and

facility .

Eval function to remove redundant numeric fields

To further shrink the output, this fourth Eval Function removes procid fields that

contain only a dash – meaning "no value extracted." We set Filter: procid=='-' and

⚠ Before using this Pipeline in production, preview sample data to verify that

you're not dropping any essential information.

Page 447 of 900

Remove Fields: procid .

Eval function to remove empty procid fields

With these four Functions enabled, the Preview pane's Basic Statistics confirm that

we've reduced the _raw field's length by more than 30%.

Data reduction example

With some syslog senders, like VMware ESX/ESXi, 80–90% of incoming events can be

of debug severity. To further reduce volume, you could use this final Drop Function to

drop all these events. Its Filter is simply severityName=='debug' .

Drop function to remove debug events

Dropping Noisy Data

Page 448 of 900

Enabling this Function could up our volume savings to about 40%. Depending on your

needs, you might prefer to:

Use a Function like this in your Route's processing Pipeline, rather than in this

upfront Pipeline.

Also drop info events.

Instead use a Sampling Function to sample debug events (at a ratio like 1�10), or

a Dynamic Sampling function.

Instead use a Suppress Function to clamp down the frequency of debug events.

Once we've built and saved the input conditioning Pipeline, our next step is to add a

Syslog Source.

Syslog Source configured for UDP and input conditioning Pipeline

Specify the UDP Port where you want this Source to listen for syslog data.

Then attach the input conditioning Pipeline that you created above, and save the

Source.

Create Syslog Source

ℹ Cribl generally recommends selecting UDP, rather than TCP, for high-

volume syslog senders. This facilitates efficient load balancing by not

continuously tying such senders to any one LogStream worker process.

See Sizing and Scaling for more details.

Fields/Metadata

Page 449 of 900

In the input conditioning Pipeline, we tagged all incoming syslog events with new

sourcetype and source fields to indicate their origin. Alternatively, you could use

the Source's Fields/Metadata section to define similar key-value pairs, specific to

each of your Syslog Sources.

Create Routes, as needed, for each of your Syslog Sources. Give each Route a

corresponding Filter expression, and set its Output to the Destination where you want

to send its processed syslog data.

Example syslog Route

For any or all syslog Routes, you can define and attach a processing Pipeline. These

can apply more-granular Filters and Functions to further reduce volume, using

techniques like Sampling, Dynamic Sampling, or (as shown below) Drop and

Suppression. Your most-verbose Syslog Sources are ideal targets for such further

processing.

Create Route(s)

Processing Pipelines, and Next Steps

Page 450 of 900

Example syslog processing Pipeline

Updated about a month ago

Page 451 of 900

KNOWN ISSUES

Known Issues

Problem: The Trim Timestamp Function is not working as expected, and its Index-

time field label should simply read Field name.

Fix: In LogStream 2.3.0.

Workaround: Use alternative Functions (such as Parser or Eval) to remove timestamp

patterns from events.

Problem: In a Distributed deployment, attempting to switch Distributed Settings from

Worker to Master Mode blocks with a spurious "Git not available...Please install and try

again" error message.

Fix: In progress.

Workaround: To initialize git , switch first from Worker to Single mode, and then from

Single to Master mode.

Problem: Entering valid credentials on the login page (e.g.,

http://localhost:9000/login) yields only a spinner.
Fix: In progress.

Workaround: Trim /login from the URL.

Problem: In a Distributed deployment, deleting resources in default/ causes them

to reappear on restart.

Workaround/Fix: In progress.

Problem: Using in-product upgrade feature in v1.7 (or earlier) fails to upgrade to v2.0,

due to package-name convention change.

Workaround/Fix: Download the new version and upgrade per steps laid out here.

Trim Timestamp Function is brittle (2020-09-15)

Can't switch from Worker to Master Mode (2020-06-11)

Login page blocks (2020-05-19)

Deleting resources in default/ (2020-02-22)

In-product upgrade issue on v2.0 (2019-10-22)

Page 452 of 900

Problem: Using in-product upgrade feature in v1.6 (or earlier) fails to upgrade to v1.7

due to package name convention change.

Workaround/Fix: Download the new package and upgrade per steps laid out here.

Problem: When upgrading from v1.2 with a S3 output configured stagePath was

allowed to be undefined. In v1.4+ it is a required field and may causing schema

violations on older configs when upgrading.

Workaround/Fix: Re-configure the output with a valid stagePath filesystem path.

In-product upgrade issue on v1.7 (2019-08-27)

S3 stagePath issue on upgrade (2019-03-21)

Updated about 18 hours ago

Page 453 of 900

THIRD-PARTY
SOFTWARE

Credits

Various components in Cribl LogStream are built and enhanced with software under

free or open source licenses. We thank those projects' contributors!

@azure-storage-blob-10.3.0

ag-grid-community-19.1.2

ag-grid-react-19.1.2

ajv-6.9.2

ajv-errors-1.0.1

antd-3.13.0

as-table-1.0.36

avsc-5.4.9

aws-sdk-2.323.0

cidr-matcher-1.0.5

classnames-2.2.6

color-hash-1.0.3

d3-time-format-2.1.3

date-fns-1.29.0

diff-3.5.0

diff2html-2.11.3

echarts-4.3.0

echarts-4.6.0

escodegen-1.11.1

esprima-4.0.1

express-4.16.3

fast-bitset-1.3.2

file-saver-1.3.8

http-proxy-agent-3.0.0

https-proxy-agent-4.0.0

jwt-simple-0.5.6

kafkajs-1.11.0

kafkajs-1.4.5

kafkajs-snappy-1.1.0

ldapts-1.10.0

limiter-1.1.4

lodash-4.17.15

Page 454 of 900

lz4js-0.2.0

maxmind-3.1.2

node-cache-4.2.0

node-uuid-1.4.8

numeral-2.0.6

pako-1.0.10

papaparse-5.0.0-beta.0

pbf-3.2.1

proxy-from-env-1.0.0

query-string-6.1.0

react-16.7.0

react-dom-16.7.0

react-grid-layout-0.16.6

react-router-dom-4.3.1

react-sortable-hoc-0.8.3

react-split-pane-0.1.82

regexpp-2.0.0

requirejs-2.3.6

resize-observer-polyfill-1.5.0

rxjs-6.2.2

saxen-8.1.0

simple-git-1.126.0

snappyjs-0.6.0

snmp-native-1.2.0

streamcount-1.0.1

tar-stream-1.6.1

url-0.11.0

winston-3.0.0

xmlbuilder-10.0.0

yaml-1.3.2

Updated 2 months ago

Page 455 of 900

Introduction

About Cribl LogStream
Getting started with Cribl LogStream

Cribl LogStream helps you process machine data – logs, instrumentation data,

application data, metrics, etc. – in real time, and deliver them to your analysis platform

of choice. It allows you to:

Add context to your data, by enriching it with information from external data

sources.

Help secure your data, by redacting, obfuscating, or encrypting sensitive fields.

Optimize your data, per your performance and cost requirements.

Cribl LogStream ships in a single, no-dependencies package. It provides a refreshing

and modern interface for working with and transforming your data. It scales with – and

works inline with – your existing infrastructure, and is transparent to your applications.

Cribl LogStream is built for administrators, managers, and users of operational and

security intelligence products and services.

What Is Cribl LogStream?

Who Is Cribl LogStream For?

Updated 3 months ago

Page 456 of 900

Basic Concepts
Notable features and concepts to get a fundamental understanding of Cribl
LogStream

As we describe features and concepts, it helps to have a mental model of Cribl

LogStream as a system that receives events from various sources, processes them,

and then sends them to one or more destinations.

Let's zoom in on the center of the above diagram, to take a closer look at the

processing and transformation options that LogStream provides internally. The basic

interface concepts to work with are Routes, which manage data flowing from and to

Pipelines, which consist of Functions.

Routes evaluate incoming events against filter expressions to find the appropriate

Pipeline to send them to. Routes are evaluated in order. A Route can be associated

Routes

Page 457 of 900

with only one Pipeline and one output. By default, a Route-Pipeline-Output tuple will

consume matching events.

If the Route's Final flag is disabled, one or more event clones are sent down the

associated Pipeline, while the original event continues down the rest of the Routes.

This is very useful in cases where the same set of events needs to be processed in

multiple ways and delivered to different destinations. For more details, see Routes.

A series of Functions is called a Pipeline, and the order in which the Functions are

executed matters. Events are delivered to the beginning of a pipeline by a Route, and

as they're processed by a Function, the events are passed to the next Function down

the line.

Events only move forward – toward the end of the Pipeline, and eventually out of the

system. For more details, see Pipelines.

At its core, a Function is a piece of code that executes on an event, and that

encapsulates the smallest amount of processing that can happen to that event. For

instance, a very simple Function can be one that replaces the term foo with bar on

each event. Another one can hash or encrypt bar . Yet another function can add a
field – say, dc=jfk-42 – to any event with source=*us-nyc-application.log .

Functions process each event that passes through them. To help improve

performance, functions can optionally be configured with filters, to limit their

processing scope to matching events only. For more details, see Functions.

Pipelines

Functions

Updated 26 days ago

Page 458 of 900

Deployment

Deployment Types
Deployment guide to get you started with Cribl

There are at least two key factors that will determine the type of Cribl LogStream

deployment in your environment:

Amount of Incoming Data: This is defined as the amount of data planned to be

ingested per unit of time. E.g. How many MB/s or GB/day?

Amount of Data Processing: This is defined as the amount of processing that will

happen on incoming data. E.g., is most data passing through and just being

routed? Or are there a lot of transformations, regex extractions, field encryptions?

Is there a need for heavy re-serialization?

When volume is low and/or amount of processing is light, you can get started with a

single instance deployment.

To accommodate increased load, we recommend scaling up and perhaps out with

multiple instances.

If you have an existing Splunk Heavy Forwarder infrastructure that you want to use,

you can deploy Cribl App for Splunk. See the note below before you plan.

Single Instance Deployment

Distributed Deployment

Splunk App Deployment

Cribl App for Splunk Deprecation Notice⚠

Click here.

Page 459 of 900

Updated 2 months ago

Page 460 of 900

Single-Instance Deployment
Getting started with Cribl LogStream on a single instance

For small-volume or light processing environments – or for test and evaluation use

cases – a single instance of Cribl LogStream might be sufficient to serve all inputs,

processing of events, and sending to outputs. This page outlines how to implement a

single-instance deployment.

OS:

Linux: RedHat, CentOS, Ubuntu, AWS Linux, Suse (64bit)

System:

+4 physical cores, +8GB RAM

5GB free disk space (more if persistent queuing is enabled)

Browser Support: Firefox 65+, Chrome 70+, Safari 12+, Microsoft Edge

Architecture

Requirements

ℹ We assume that 1 physical core is equivalent to 2 virtual/hyperthreaded

CPUs (vCPUs). All quantities listed above are minimum requirements. To

fulfill the above requirements using cloud-based virtual machines, see

Recommended AWS, Azure, and GCP Instance Types.

Page 461 of 900

By default, LogStream listens on the following ports:

The above ports can be overridden in the following configuration files:

Cribl UI port (9000): Default definitions for host , port , and other settings are
set in $CRIBL_HOME/default/cribl/cribl.yml , and can be overridden by
defining alternatives in $CRIBL_HOME/local/cribl/cribl.yml .

Data Ports: HTTP In (10080), TCPJSON in (10420) Splunk to Cribl (10000) :
Default definitions for host , port and other settings are set in

$CRIBL_HOME/default/cribl/inputs.yml , and can be overridden by defining
alternatives in $CRIBL_HOME/local/cribl/inputs.yml .

Install the package on your instance of choice. Download it here.

Ensure that the above ports are available.

Un-tar in a directory of choice, e.g., /opt/ :
tar xvzf cribl-<version>-<build>-<arch>.tgz

Go to the $CRIBL_HOME/bin directory, where the package was extracted (e.g.:

/opt/cribl/bin). Here, you can use ./cribl to:

⚠ Mac OS is no longer supported as of v. 2.3, due to LogStream's

incorporation of Linux-native features.

Network Ports

UI 9000

HTTP In 10080

Splunk to Cribl LogStream data port
localhost:10000 (Cribl App

for Splunk)

| criblstream Splunk search command to

Cribl LogStream

localhost:10420 (Cribl App

for Splunk)

User options + Other data ports as required.

Overriding Default Ports

Installing on Linux

Running

Component Default Port

Page 462 of 900

Start: ./cribl start

Stop: ./cribl stop

Reload: ./cribl reload

Restart: ./cribl restart

Get status: ./cribl status

Next, go to http://<hostname>:9000 and log in with default credentials

(admin:admin). You can now start configuring Cribl LogStream with Sources and

Destinations, or start creating Routes and Pipelines.

Cribl LogStream ships with a CLI utility that can update your system's configuration so

that LogStream can start at system boot time. Boot-start is currently supported only

on Linux. Newer systems use systemd to start processes at boot, while older ones

use initd .

To enable Cribl LogStream to start at boot time with systemd, you need to run the

boot-start command. If the user that you want to run LogStreams does not exist,

create it prior to executing. E.g., running LogStream as user charlize on boot:

sudo $CRIBL_HOME/bin/cribl boot-start enable -m systemd -u charlize

This will install a unit file (as below) and start Cribl LogStream at boot time as user

charlize . A ‑configDir option can be used to specify where to install the unit file.

If not specified, this location defaults to /etc/systemd/system .

If necessary, change ownership for the Cribl LogStream installation:

[sudo] chown -R charlize $CRIBL_HOME

Next, use the enable command to ensure that the service starts on system boot:

[sudo] systemctl enable cribl

To disable starting at boot time, run the following command:

ℹ For other available commands, see CLI Reference.

ℹ In the case of an API port conflict, the process will retry binding for 10

minutes before exiting.

Enabling Start on Boot

Using systemd

Page 463 of 900

sudo $CRIBL_HOME/bin/cribl boot-start disable

Installed systemd File

To enable Cribl LogStream to start at boot time with initd, you need to run the boot-
start command. If the user that you want to run LogStreams does not exist, create it

prior to executing. E.g., running LogStream as user charlize on boot:

sudo $CRIBL_HOME/bin/cribl boot-start enable -m initd -u charlize

This will install an init.d script in /etc/init.d/cribl.init.d , and start Cribl
LogStream at boot time as user charlize . A ‑configDir option can be used to

specify where to install the script. If not specified, this location defaults to

/etc/init.d .

If necessary, change ownership for the Cribl LogStream installation:

[sudo] chown -R charlize $CRIBL_HOME

To disable starting at boot time, run the following command:

sudo $CRIBL_HOME/bin/cribl boot-start disable

[Unit]
Description=Systemd service file for Cribl LogStream.
After=network.target

[Service]
Type=forking
User=charlize
Restart=on-failure
RestartSec=5
LimitNOFILE=65536
PIDFile=/install/path/to/cribl/pid/cribl.pid
ExecStart=/install/path/to/cribl/bin/cribl start
ExecStop=/install/path/to/cribl/bin/cribl stop
ExecStopPost='/bin/rm -f /install/path/to/cribl/pid/cribl.pid'
ExecReload=/install/path/to/cribl/bin/cribl reload
TimeoutSec=60

[Install]
WantedBy=multi-user.target

Using initd

Do NOT Run LogStream as Root!⚠

If LogStream is required to listen on ports 1–1024, it will need privileged

access. On a Linux system with POSIX capabilities, you can achieve this by

adding the CAP_NET_BIND_SERVICE capability. For example: # setcap
cap_net_bind_service=+ep $CRIBL_HOME/bin/cribl

Page 464 of 900

You can direct all outbound HTTP/S requests to go through proxy servers. You do so

by setting a few environment variables before starting LogStream, as follows:

Configure the HTTP_PROXY and HTTPS_PROXY environment variables either with your

proxy's IP address, or with a DNS name that resolves to that IP address. Optionally,

follow either convention with a colon and the port number to which you want to send

queries.

HTTP_PROXY examples:

HTTPS_PROXY examples:

You can use HTTP Basic authentication on HTTP or HTTPS proxies. Specify the user

name and password in the proxy URL. For example:

On some OS versions (such as CentOS), you must add an -i switch to the

setcap command. For example: # setcap -i
cap_net_bind_service=+ep $CRIBL_HOME/bin/cribl

Upon starting the LogStream server, a Port xxx is already in use
error might indicate that setcap did not successfully execute.

System Proxy Configuration

$ export HTTP_PROXY=http://10.15.20.25:1234
$ export HTTP_PROXY=http://proxy.example.com:1234

$ export HTTPS_PROXY=http://10.15.20.25:5678
$ export HTTPS_PROXY=http://proxy.example.com:5678

Case Conflictsℹ

The environment variables' names can be either uppercase or lowercase.

However, if you set duplicate versions of the same name, the lowercase

version takes precedence. E.g., if you've set both HTTPS_PROXY and

https_proxy , the IP address specified in https_proxy will take effect.

Authenticating on Proxies

$ export HTTP_PROXY=http://username:password@proxy.example.com:1234
$ export HTTPS_PROXY=http://username:password@proxy.example.com:5678

Bypassing Proxies with NO_PROXY

Page 465 of 900

If you've set the above environment variables, you can negate them for specified (or

all) hosts. Set the NO_PROXY environment variable to identify URLs that should bypass

the proxy server, and instead be sent as direct requests. Use the following format:

$ export NO_PROXY="<list of hosts/domains>"

Usage notes:

Within the list, separate the host/domain names with commas or spaces.

Optionally, each host/domain entry can be followed by a port. If specified, the port

must match. If not specified, the protocol's default port is assumed.

If specified, subdomain names must match. E.g., NO_PROXY=foo.example.com
will send requests directly to https://foo.example.com, but

https://bar.example.com requests will go through the proxy.

You can use leading wildcards like NO_PROXY="*.us, .org" .

NO_PROXY="*" disables all proxies.

NO_PROXY with an empty list disables no proxies.

Proxy configuration is relevant to the following LogStream components that make

outbound HTTP/S requests:

S3 Compatible Stores

AWS Kinesis Streams

AWS CloudWatch Logs

AWS SQS

Azure Blob Storage

Azure Event Hubs

Azure Monitor Logs

Elasticsearch

Honeycomb

Splunk HEC

AWS Kinesis Streams

AWS SQS

AWS S3

Azure Event Hubs

Where Proxies Apply

Destinations

Sources

Page 466 of 900

S3 Collector

A single-instance installation can be configured to scale up and utilize as many

resources on the host as required. See Sizing and Scaling for details.

Collectors

Scaling Up

Updated a day ago

Page 467 of 900

Distributed Deployment
Getting started with Cribl LogStream on a distributed deployment

To sustain higher incoming data volumes, and/or increased processing, you can scale

from a single instance up to a multi-instance, distributed deployment. Instances in the

deployment serve all inputs, process events, and send to outputs independently. The

instances are managed centrally by a single Master Node, which is responsible for

keeping configurations in sync, and for tracking and monitoring their activity metrics.

Single Instance – a normal Cribl LogStream instance, running by itself.

Master Node – a Cribl LogStream instance running in master mode, used to centrally

author configurations and monitor a distributed deployment.

Worker Node – a Cribl LogStream instance running as a managed worker, whose

configuration is fully managed by a Master Node.

Worker Group – a collection of Worker Nodes that share the same configuration.

Worker Process – a process within a Single Instance or Worker Nodes that handles

data inputs, processing, and output

Mapping Ruleset – an ordered list of Filters, used to map Workers to Worker Groups.

This is an overview of distributed LogStream deployment's components.

Distributed Deployment

Concepts

ℹ A Worker Node's local running config can be manually overridden/changed,

but changes won't persist on the filesystem.

Architecture

Page 468 of 900

Distributed deployment architecture

OS:

Linux: RedHat, CentOS, Ubuntu, AWS Linux, Suse (64bit)

System:

+4 physical cores, +8GB RAM

5GB free disk space

Git: git must be available on the Master Node. See details below.

Browser Support: Firefox 65+, Chrome 70+, Safari 12+, Microsoft Edge

See Single-Instance Deployment for requirements and Sizing and Scaling for capacity

planning details.

Master Node Requirements

ℹ We assume that 1 physical core is equivalent to 2 virtual/hyperthreaded

CPUs (vCPUs). All quantities listed above are minimum requirements.

⚠ Mac OS is no longer supported as of v. 2.3, due to LogStream's

incorporation of Linux-native features.

Worker Node Requirements

Network Ports – Master Node

Page 469 of 900

In a distributed deployment, Workers communicate with the Master Node these ports.

Ensure that the Master is reachable on those ports from all Workers.

By default, all LogStream Worker instances listen on the following ports:

See Single-Instance Deployment, as the installation procedures are identical.

LogStream requires git (version 1.8.3.1 or higher) to be available locally on the host

where the Master Node will run. Configuration changes must be committed to git

before they're deployed.

If you don't have git installed, check here for details on how to get started.

The Master node uses git to:

Manage configuration versions across worker groups.

Provide users with an audit trail of all configuration changes.

Allow users to display diffs between current and previous config versions.

Using the UI:

API 9000

Heartbeat 4200

Network Ports – Worker Nodes

UI 9000

HTTP In 10080

User options + Other data ports as required.

Installing on Linux

Version Control with git

Setting up Master and Worker Nodes

1. Configuring a Master Node

Component Default Port

Component Default Port

Page 470 of 900

In Settings > Distributed Management, select Mode Master. Supply the required

Master settings (Address and Port). Customize the optional settings if desired. Then

click Save to restart.

Or, through instance.yml :

In $CRIBL_HOME/local/_system/instance.yml , under the distributed section, set

mode to master :

$CRIBL_HOME/local/_system/instance.yml

Using the UI:

In Settings > Distributed Management, select Mode Worker. Supply the required

Master settings (Address and Port). Customize the optional settings if desired. Then

click Save to restart.

Or, through instance.yml :

In $CRIBL_HOME/local/_system/instance.yml , under the distributed section, set

mode to worker :

$CRIBL_HOME/local/_system/instance.yml

distributed:
 mode: master
 master:
 host: <IP or 0.0.0.0>
 port: 4200
 tls:
 disabled: true
 ipWhitelistRegex: /.*/
 authToken: <auth token>
 enabledWorkerRemoteAccess: false
 compression: none
 connectionTimeout: 5000
 writeTimeout: 10000

Worker UI Accessℹ

If you enable the Worker UI access option (enabledWorkerRemoteAccess
key), you will be able to click through from the Master's Manage Worker

Nodes screen to an authenticated view of each Worker's UI. An orange

header labeled Viewing Worker: <host/GUID> will appear to confirm that

you are remotely viewing a Worker's UI.

2. Configuring a Worker Node

distributed:
 mode: worker

Page 471 of 900

Alternatively, you can start Worker Nodes with environment variables. For example:

CRIBL_DIST_MASTER_URL=tcp://criblmaster@masterHostname:4203 ./cribl
start

See the Environment Variables section for more details.

The Master Node has two primary roles:

1. Serves as a central location for Workers' operational metrics. The Master ships

with a monitoring console that has a number of dashboards, covering almost

every operational aspect of the deployment.

2. Serves as a central location for authoring, validating, deploying, and synchronizing

configurations across Worker Groups.

 envRegex: /^CRIBL_/
 master:
 host: <master address>
 port: 4200
 authToken: <token here>
 compression: none
 tls:
 disabled: true
 connectionTimeout: 5000
 writeTimeout: 10000
 tags:
 - tag1
 - tag2
 - tag42
 group: teamsters

How Do Workers and Master Work Together

Page 472 of 900

Master Node/Worker Nodes relationship

UI access to Master Node: TCP 9000.

Worker Node to Master Node: TCP 9000 (API access).

Worker Node to Master Node: TCP 4200 (Heartbeat/Metrics).

Workers will periodically (every 10 seconds) send a heartbeat to the Master. This

heartbeat includes information about themselves, and a set of current system metrics.

The heartbeat payload includes facts – such as hostname, IP address, GUID, tags,

environment variables, current software/configuration version, etc. – that the Master

tracks with the connection.

The failure of a Worker Node to successfully send two consecutive heartbeat

messages to the Master will cause the respective Worker to be removed from the

Workers page in the Master's UI until the Master receives a heartbeat message from

the affected Worker.

When a Worker Node checks in with the Master:

The Worker sends heartbeat to Master.

The Master uses the Worker s̓ facts and Mapping Rules to map it to a Worker

Group.

The Worker Node pulls its Group's updated configuration bundle, if necessary.

Network Port Requirements (Defaults)

Master/Worker Node Communication

Config Bundle Management

Page 473 of 900

Config bundles are compressed archives of all config files and associated data that a

Worker needs to operate. The Master creates bundles upon Deploy, and manages

them as follows:

Bundles are wiped clean on startup.

While running, at most 5 bundles per group are kept.

Bundle cleanup is invoked when a new bundle is created.

The Worker pulls bundles from the Master and manages them as follows:

Last 5 bundles and backup files are kept.

At any point in time, all files created in the last 10 minutes are kept.

Bundle cleanup is invoked after a reconfigure.

Worker Groups facilitate authoring and management of configuration settings for a

particular set of Workers. To create a new Worker Group, go to the Worker Groups

top-level menu and click + Add New.

Clicking on the newly created group will present you with an interface for authoring

and validating its configuration. You can configure everything for this Group as if it

were a single Cribl LogStream instance – using exactly the same visual interface for

Routes, Pipelines, Sources, Destinations and System Settings.

Mapping Rulesets are used to map Workers to Worker Groups. Only one Mapping

Ruleset can be active at any one time. A ruleset is a list of rules that evaluate Filter

expressions on the information that Workers send to the Master.

The ruleset behavior is similar to Routes, where the order matters and the Filter section

supports full JS expressions. The ruleset matching strategy is first-match, and one

Worker can belong to only one Worker Group. At least one Worker Group should be

defined and present in the system.

Worker Groups

Configuring a Worker Group

ℹ To explicitly set passwords for Worker Groups, see User Authentication.

Mapping Workers to Worker Groups

Example

Page 474 of 900

Define a rule for all hosts that satisfy this condition:

IP address starts with 10.10.42 , AND

More than 6 CPUs, OR CRIBL_HOME environment variable contains w0 , AND

Belongs to Group420 .

Rule Name: myFirstRule

Filter: (conn_ip.startsWith('10.10.42.') && cpus > 6) ||
env.CRIBL_HOME.match('w0')

Group: Group420

To create a Mapping Ruleset, start on the Mappings top-level menu, then click + Add

New.

Click on the newly created item, and start adding rules by clicking on + Add Rule.

While working with or tuning rules, the Preview in the right pane will show which

currently reporting and tracked workers map to which Worker Groups.

A ruleset must be activated before it can be used by the Master. To activate it, go to

Mappings and click Activate on the required ruleset. You can also Clone a ruleset if

you'd like to work on it offline, test different filters, etc.

Although not required, Workers can be configured to send a group with their payload.

See below how this ranks in mapping priority.

When an instance runs as Master, the following are created automatically:

A default Worker Group.

A default Mapping Ruleset,

with a default Rule matching all (true).

Priority for mapping to a group is as follows: Mapping Rules > Group sent by Worker >

default Group.

If a Filter matches, use that Group.

Else, if a Worker has a Group defined, use that.

Else, map to the default Group.

Rule Configuration

Creating a Mapping Ruleset

ℹ The Mappings top-level menu appears only when you have started

LogStream with the DISTRIBUTED MANAGEMENT > Mode set to Master.

Mapping Order of Priority

Page 475 of 900

The typical workflow for deploying configurations is the following:

1. Work on configs.

2. Commit (and optionally push).

3. Deploy.

Deployment is the last step after configuration changes have been saved and

committed. Deploying here means propagating updated configs to Workers. Deploying

new configurations is done at the Group level. To deploy, locate your desired Group

and click on Deploy. Workers that belong to the group will start pulling updated

configurations on their next check-in.

On the Master, a group's configuration lives under:

$CRIBL_HOME/groups/<groupName>/local/cribl/ .
On the managed Worker, after configs have been pulled, they're extracted under:

$CRIBL_HOME/local/cribl/ .

On the Master, a group's lookup files live under:

$CRIBL_HOME/groups/<groupName>/data/lookups .

On the managed Worker, after configs have been pulled, lookups are extracted under:

$CRIBL_HOME/data/lookups . When deployed via the Master, lookup files are
distributed to Workers as part of a configuration deployment.

If you want your lookup files to be part of the LogStream configuration's version

control process, we recommended deploying using the Master Node. Otherwise, you

can update your lookup file out-of-band on the individual workers. The latter is

especially useful for larger lookup files (> 10 MB, for example), or for lookup files

maintained using some other mechanism, or for lookup files that are updated

frequently.

Deploying Configurations

⚠ When a Worker Node pulls its first configs, the admin password will be

randomized, unless specifically changed. I.e., users won't be able to log in

on the Worker Node with default credentials.

Configuration Files

Lookup Files

ℹ Some configuration changes will require restarts, while many others require

only reloads. See here for details. Restarts/reloads of each worker process

are handled automatically by the Worker.

Page 476 of 900

During a restart, to minimize ingestion disruption and increase availability of network

ports, worker processes on a Worker Node are restarted in a rolling fashion. 20% of

running processes – with a minimum of one process – are restarted at a time. A

worker process must come up and report as started before the next one is restarted.

This rolling restart continues until all processes have restarted. If a worker process fails

to restart, configurations will be rolled back.

If data flows in via Load Balancers, make sure to register all instances. Each Cribl

LogStream node exposes a health endpoint that your Load Balancer can check to

make a data/connection routing decision.

CRIBL_DIST_MASTER_URL – URL of the Master Node. Format:

<tls|tcp>://<authToken>@host:port?
group=defaultGroup&tag=tag1&tag=tag2&tls.<tls-settings below> .

tls.privKeyPath – Private Key Path.

tls.passphrase – Key Passphrase.

tls.caPath – CA Certificate Path.

tls.certPath – Certificate Path.

tls.rejectUnauthorized – Validate Client Certs. Boolean, defaults to

false .

tls.requestCert – Authenticate Client (mutual auth). Boolean, defaults to

false .

tls.commonNameRegex – Regex matching peer certificate > subject >

common names allowed to connect. Used only if tls.requestCert is set to

true .

CRIBL_DIST_MODE – worker | master . Defaults to worker iff

CRIBL_DIST_MASTER_URL is present.

CRIBL_HOME – Auto setup on startup. Defaults to parent of bin directory.

CRIBL_CONF_DIR – Auto setup on startup. Defaults to parent of bin directory.

Worker Process Rolling Restart

Auto-Scaling Workers and Load-Balancing Incoming
Data

curl http://<host>:<port>/api/v1/health {"status":"healthy"}

Environment Variables

Health Check Endpoint Healthy Response

Page 477 of 900

CRIBL_NOAUTH – Disables authentication. Careful here!!

Deprecated variables: CRIBL_CONFIG_LOCATION , CRIBL_SCRIPTS_LOCATION

When you install and first run the software, a GUID is generated and stored in a .dat
file located in CRIBL_HOME/bin/ , e.g.:

cat CRIBL_HOME/bin/676f6174733432.dat
{"it":1570724418,"phf":0,"guid":"48f7b21a-0c03-45e0-a699-01e0b7a1e061"}

When deploying Cribl LogStream as part of a host image or VM, be sure to remove this

file, so that you don't end up with duplicate GUIDs. The file will be regenerated on next

run.

Workers GUID

Updated a day ago

Page 478 of 900

Bootstrap Workers from Master
Boot fully provisioned workers

This feature of LogStream allows workers to completely provision themselves on initial

boot, directly from the master. It allows a fleet of any number of nodes to launch. and

be fully functional within the cluster, in seconds.

A LogStream Master Node (v2.2 or higher) provides a bootstrap API endpoint, at

/init/install-worker.sh , which returns a shell script. You can run this shell script
on any supported machine (see Restrictions below) without LogStream installed, fully

provisioning the machine as a Worker Node.

Although you can specify the download URL when you execute the initial curl

command, the LogStream package is not downloaded until the script is generated by

the API, and then later executed.

GET http://<master hostname or IP>:9000/init/install-worker.sh

How Does It Work?

Root Access or sudo⚠

Note that the script will install LogStream into /opt/cribl , and will make
system-level changes. For systems like Ubuntu, which don't allow direct

root access, you'll need to use the sudo command when executing the

script.

API Spec

Request Format

Query Strings

token required

Master Node s̓ shared secret (authToken). By
default, this is set to criblmaster . You can
find this secret in the the Master Node's

Distributed Settings section.

group optional
Name of the cluster s̓ work group. If not

specified, falls back to default .

String Required? Description

Page 479 of 900

HTTP

Shell

download_url optional Provide the complete URL to a Cribl

LogStream installation binary. This is especially

useful if the Worker Nodes donʼt have access

to the Internet to download from cribl.io.

Example HTTP Request

GET http://<master hostname or IP>:9000/init/install-worker.sh?token=7936

Response

#!/bin/sh

START CRIBL MASTER TEMPLATE SETTINGS ###

CRIBL_MASTER_HOST="<Master FQDN/IP>"
CRIBL_AUTH_TOKEN="<Auth token string>"
CRIBL_VERSION="<Version>"
CRIBL_GROUP="<Default group preference>"
CRIBL_MASTER_PORT="<Master heartbeat port>"
CRIBL_DOWNLOAD_URL="<download url>"

END CRIBL MASTER TEMPLATE SETTINGS ###

Set defaults
checkrun() { $1 --help >/dev/null 2>/dev/null; }
faildep() { [$? -eq 127] && echo "$1 not found" && exit 1; }
[-z "${CRIBL_MASTER_HOST}"] && echo "CRIBL_MASTER_HOST not set" && exit
CRIBL_INSTALL_DIR="${CRIBL_INSTALL_DIR:-/opt/cribl}"
CRIBL_MASTER_PORT="${CRIBL_MASTER_PORT:-4200}"
CRIBL_AUTH_TOKEN="${CRIBL_AUTH_TOKEN:-criblmaster}"
CRIBL_GROUP="${CRIBL_GROUP:-default}"
if [-z "${CRIBL_DOWNLOAD_URL}"]; then
 FILE="cribl-${CRIBL_VERSION}-linux-x64.tgz"
 CRIBL_DOWNLOAD_URL="https://cdn.cribl.io/dl/$(echo ${CRIBL_VERSION}
fi
UBUNTU=0
CENTOS=0
AMAZON=0

echo "Checking dependencies"
checkrun curl && faildep curl
checkrun adduser && faildep adduser
checkrun usermod && faildep usermod
BOOTSTART=1
SYSTEMCTL=1
checkrun systemctl && [$? -eq 127] && BOOTSTART=0
checkrun update-rc.d && [$? -eq 127] && BOOTSTART=0

Page 480 of 900

An easy way of wrapping HTTP methods is to use the curl command. Here is an

example, which uses a GET operation by default, with the same URL used in the

above HTTP example:

Shell

The GET and curl procedures above will only output the contents of the script that

needs executing – the script will still need to be manually executed. However, you can

automate that part, too, using the command below. This passes the script's contents

to the sh shell to immediately execute. As noted above, on Ubuntu and similar

systems, you might need to insert sudo before the sh .

Shell

We'll now graduate to the next level by adding more to the above commands. All the

preceding commands excluded the download_url parameter so, by default, the

script gets configured to download the LogStream package from the public Cribl

repository.

To successfully execute the curl command while also specifying the

download_url , you must enclose the URL in double quotes. The reason for this is

that the & character that joins multiple HTTP parameters is interpreted by the shell as

the operator to run commands in the background. Quoting the URL, as shown in this

example, prevents this.

echo "Checking OS version"
lsb_release -d 2>/dev/null | grep -i ubuntu && [$? -eq 0] && UBUNTU=1
cat /etc/system-release 2>/dev/null | grep -i amazon && [$? -eq 0] && A

echo "Creating cribl user"
if [$UBUNTU -eq 1]; then
 adduser cribl --home /home/cribl --gecos "Cribl LogStream User" --dis
fi
if [$CENTOS -eq 1] || [$AMAZON -eq 1]; then
 adduser cribl -d /home/cribl -c "Cribl LogStream User" -m
 usermod -aG wheel cribl
fi

curl Option

curl http://<master hostname or IP>:9000/init/install-worker.sh?token=793

Chaining Script Execution

curl http://<master hostname or IP>:9000/init/install-worker.sh?token=793

Adding Download URL

Page 481 of 900

Shell

Keep the following in mind when using this feature:

Each Worker must normally have access to the internet in order to download the

Cribl LogStream installation binary from cribl.io. Where this isnʼt feasible, you can

use the download_url switch to point to a binary in a restricted location.

By default, Worker Nodes communicate with the Master on port 4200. Ensure

that access between all Workers and the Master is open on this port.

TLS is not enabled by default. If enabled and configured, access to this feature

will be over https instead of http .

Ubuntu, CentOS, and Amazon Linux are the only supported Worker platforms.

For public-cloud customers, an easy way to use this feature is in an instance s̓ user

data. Simply use the following script (changing the command as needed. based on the

information above). Upon launch, the Worker Node will reach out to the Master,

download the script, download the LogStream package from the specified location,

and then install and configure LogStream:

Shell

curl "http://<master hostname or IP>:9000/init/install-worker.sh?token=79

Status Codes

200 – OK All is well. You should have received the script as a response.

403 –

Forbidden

Either the node is not configured as a Master, or the token

provided is invalid.

Restrictions

User Data

#!/bin/bash
curl http://<master-node-ip/host-address>:9000/init/install-worker.sh?tok

Updated 2 months ago

Status Code Reason

Page 482 of 900

Splunk App Deployment *
Getting started with Cribl App for Splunk

In a Splunk environment, Cribl LogStream can be installed and configured as a Splunk

app (Cribl App for Splunk). Depending on your requirements and architecture, it can

run either on a Search Head or on a Heavy Forwarder. Cribl App for Splunk cannot be

used in a Cribl LogStream Distributed Deployment, and cannot be managed by a Cribl

Master Node.

When running on a SH, Cribl LogStream is set to mode-searchhead, the default mode

for the app. It listens for localhost traffic generated by a custom command: |
criblstream . The command is used to forward search results to the LogStream
instance's TCP JSON input on port 10420 , but it's also capable of sending to any
other LogStream instance listening for TCP JSON.

Once received, data can be processed and forwarded to any of the supported

Destinations. In addition, several out-of-the box saved searches are ready to run and

send their results to Cribl with a single click.

Select an instance on which to install.

Ensure that ports 10000 , 10420 , and 9000 are available. See the Requirements

section for more info.

Get the bits here, and install as a regular Splunk app.

Restart the Splunk instance.

Go to https://<instance>/en-US/app/cribl or https://<instance>:9000 ,
and log in with Splunk admin role credentials.

Cribl App for Splunk for HFs Is Deprecated as of Cribl LogStream v.2.1⚠

Cribl will continue to support this package, but customers are advised to

begin planning now for the eventual removal of support.

See Single-Instance Deployment and Distributed Deployment for

alternatives.

Deploying Cribl App for Splunk

Running on a Search Head (SH)

Installing the Cribl App for Splunk on a SH

Page 483 of 900

Working with search results in a Cribl LogStream pipeline.

Sending search results to any Destination supported by Cribl LogStream.

When running on an HF, Cribl LogStream is set to mode-hwf. It receives events from

the local Splunk process per routing configurations in props.conf and

transforms.conf . Data is parsed and processed first by Splunk pipelines, and then
by LogStream. By default, all data except internal indexes is routed out right after the

Typing pipeline.

Cribl LogStream is capable of accepting data streams (unbroken events) or events

from other sources. In this case, the HF will deliver events locally to LogStream, which

processes them and sends them to one or more destinations downstream. When

receivers are Splunk indexers, LogStream can also load-balance across them.

Select an instance on which to install.

Typical Use Cases for Search Head Mode

Running on a Heavy Forwarder (HF)

Installing the Cribl App for Splunk on a HF

Page 484 of 900

Ensure that ports 10000 , 10420 , and 9000 are available. See here.

Get the bits here, and install as a regular Splunk app.

Set Cribl to mode-hwf: $SPLUNK_HOME/etc/apps/cribl/bin/cribl mode-hwf .

Restart the Splunk instance.

Go to https://<instance>:9000 and log in with Splunk admin role credentials.

When Cribl App for Splunk is installed on a HF (in mode-hwf), below are the relevant

sections in configuration files that enable Splunk to send data to Cribl LogStream:

apps/cribl/default/outputs.conf

apps/cribl/default/inputs.conf

apps/cribl/default/transforms.conf

⚠ The SPLUNK_HOME environment variable must be defined.

Note About Splunk Warnings✅

If you come across messages similar to the following example, on

startup or in logs, please ignore them. They are benign warnings.

Invalid value in stanza [route2criblQueue]/[hecCriblQueue]
in /opt/splunk/etc/apps/cribl/default/transforms.conf, line
11: (key: DEST_KEY, value: criblQueue) / line 24: (key:
DEST_KEY, value: $1)

Relevant configurations in Cribl App for Splunk on a HF

[tcpout]
disabled = false
defaultGroup = cribl

[tcpout:cribl]
server=127.0.0.1:10000
sendCookedData=true
useACK = false
negotiateNewProtocol = false
negotiateProtocolLevel = 0

[splunktcp]
route=has_key:_replicationBucketUUID:replicationQueue;has_key:_dstrx:typi

[route2cribl]
SOURCE_KEY = _MetaData:Index

Page 485 of 900

apps/cribl/default/props.conf

The props.conf stanza above will apply the above transforms to everything.

Depending on your requirements, you might want to target only a subset of your

sources, sourcetypes, or hosts. For example, the diagram below shows the effective

configurations of outputs.conf , props.conf , and transforms.conf to send

<bluedata> events through Cribl LogStream.

To send data from Cribl LogStream to a set of Splunk indexers, use the LogStream UI

to go to Destinations > Splunk Load Balanced, then enter the required information.

REGEX = ^[^_]
DEST_KEY = _TCP_ROUTING
FORMAT = cribl

[route2criblQueue]
SOURCE_KEY = _MetaData:Index
REGEX = ^[^_]
DEST_KEY = queue
FORMAT = criblQueue

[default]
TRANSFORMS-cribl = route2criblQueue, route2cribl

Configuring Cribl LogStream with a Subset of Your Data

Configure Cribl LogStream to Send Data to Splunk Indexers

Updated 19 days ago

Page 486 of 900

Sizing and Scaling

A Cribl LogStream installation can be scaled up within a single instance and/or scaled

out across multiple instances. Scaling allows for:

Increased data volumes of any size.

Increased processing complexity.

Increased deployment availability.

Increased number of destinations.

A single-instance Cribl LogStream installation can be configured to scale up and utilize

as many resources on the host as required. Allocation of resources is governed

through the General Settings > Worker Processes Settings section.

Memory (MB): Amount of memory available to each worker process, in MB. Defaults

to 2048 .

Process count: Indicates the number of worker processes to spawn. Negative

numbers can be used to tie the number of workers relative to the number of CPUs in

the system. Any setting less than 1 is interpreted as { number of CPUs available
minus this setting }.

For example, assuming a Cribl LogStream system with 6 physical cores (12 vCPUs):

If Process count is set to 4 , then the system will spawn 4 processes, using up to

4 vCPUs, leaving 8 free.

If Process count is set to -2 , then the system will spawn 10 processes (12-2),

using up to 10 vCPUs. This will leave 2 vCPUs free.

It's important to understand that worker processes operate in parallel, i.e.,

independently of each other. This means that:

Scale Up

ℹ Throughout these guidelines, we assume that 1 physical core is equivalent

to 2 virtual/hyperthreaded CPUs (vCPUs).

ℹ LogStream incorporates guardrails that prevent spawning more processes

than available vCPUs.

Page 487 of 900

1. Data coming in on a single connection will be handled by a single worker process.

To get the full benefits of multiple worker processes, data should come over

multiple connections..

E.g., it's better to have 5 connections to TCP 514, each bringing in 200GB/day,

than one at 1TB/day.

2. Each worker process will maintain and manage its own outputs. E.g., if an instance

with 2 worker processes is configured with a Splunk output, then the Splunk

destination will see 2 inbound connections.

As with most data processing applications, Cribl LogStream's expected resource

utilization will be commensurate with the type of processing that is occurring. For

instance, a function that adds a static field on an event will likely perform faster than

one that applies a regex to finding and replacing a string. At the time of this writing:

A worker process will use up to 1 physical core, or 2 vCPUs.

Processing performance is proportional to CPU clock speed.

All processing happens in-memory.

Processing does not require significant disk allocation.

Current guidance for capacity planning is: Allocate 1 physical core for each

400GB/day of IN+OUT throughput. So, to estimate the number of cores needed:

Sum your expected input and output volume, then divide by 400GB.

Example 1: 100GB IN -> 100GB out to each of 3 destinations = 400GB total = 1

physical core.

Example 2: 3TB IN -> 1TB out = 4TB total = 10 physical cores.

Example 3: 4 TB IN -> full 4TB to Destination A, plus 2 TB to Destination B = 10TB

total = 25 physical cores.

You could meet the requirement above with multiples of the following instances:

AWS – Compute Optimized Instances. For other options, see here.

Capacity and Performance Considerations

Estimating Requirements

Recommended AWS, Azure, and GCP Instance Types

c5d.2xlarge (4 physical cores,

8vCPUs)

c5.2xlarge (4 physical cores,

8vCPUs)

c5d.4xlarge or higher (8 physical cores,

16vCPUs)

c5.4xlarge or higher (8 physical cores,

16vCPUs)

Minimum Recommended

Page 488 of 900

Azure – Compute Optimized Instances

GCP – Compute Optimized Instances

When data volume, processing needs, or other requirements exceed what a single

instance can sustain, a Cribl LogStream deployment can span multiple nodes. This is

known as a Distributed Deployment, and it can be configured and managed centrally

by a single master instance. See Distributed Deployment for more details.

Standard_F8s_v2 (4 physical

cores, 8vCPUs)

Standard_F16s_v2 or higher (8 physical

cores, 16vCPUs)

c2-standard-8 (4 physical cores,

8vCPUs)

n2-standard-8 (4 physical cores,

8vCPUs)

c2-standard-16 or higher (8 physical cores,

16vCPUs)

n2-standard-16 or higher (8 physical cores,

16vCPUs)

Scale Out

Updated about a month ago

Minimum Recommended

Minimum Recommended

Page 489 of 900

Config Files

Even though all the Routes, Pipelines, and Functions can be managed from the UI, it's

important to understand how the configuration works under the hood. At the time of

this writing this is how configuration paths and files are laid on the filesystem.

All paths below are relative to $CRIBL_HOME .

Understanding Configuration Paths and Files

Local

Configurations
local/cribl

System

Configuration

(default|local)/cribl/cribl.yml
See cribl.yml

API

Configuration
(default|local)/cribl/api.yml

Source

Configuration

(default|local)/cribl/inputs.yml
See inputs.yml

Destination

Configuration

(default|local)/cribl/outputs.yml
See outputs.yml

License

Configuration
(default|local)/cribl/licenses.yml

Regexes

Configuration
(default|local)/cribl/regexes.yml

Breakers

Configuration
(default|local)/cribl/breakers.yml

Limits

Configuration
(default|local)/cribl/limits.yml

$CRIBL_HOME

Standalone Install:

/path/to/install/cribl/

Splunk App Install:

$SPLUNK_HOME/etc/apps/cribl/

Default

Configurations
default/cribl

Page 490 of 900

Any configuration changes resulting from UI interactions, for instance, changing

the order of functions in a pipeline, or changing the order of routes, do not

require restarts.

All Cribl LogStream configuration file changes resulting from direct file

manipulations in

(bin|local|default)/cribl/... will require restarts.

In the case of a Cribl App for Splunk, Splunk configurations file changes may or

may not require restarts. Please check with recent Splunk docs.

Similar to most *nix systems, Cribl configurations in local take precedence over

those in default . There is no layering of configuration files.

Pipelines

Configuration

(default|local)/cribl/pipelines/<pname>
Each pipeline's conf is contained therein

Routes

Configuration
(default|local)/cribl/pipelines/routes.yml

Functions
(default|local)/cribl/functions/<function_name>
Each function's code, conf is contained therein

Functions Conf
(default|local)/cribl/functions/<function_name>/...
Each function's conf contained therein.

Configurations and Restart

Configuration Layering and Precedence

Editing Configuration Files Manually⚠

When config files must be edited manually, all changes should be done in

local .

Updated 2 months ago

Page 491 of 900

cribl.yml

cribl.yml contains settings for configuring API and other system properties.

$CRIBL_HOME/default/cribl/cribl.yml

api:
 # Address to bind to. Default: 0.0.0.0
 host: 0.0.0.0
 # Port to listen to. Default: 9000
 port: 9000
 # Flag to enable/disable UI. Default: false
 disabled : false
 # SSL Settings
 ssl:
 # SSL is enabled by default
 disabled: false
 # Path to private key
 privKeyPath: /path/to/privkey.pem
 # Path to certificate
 certPath: /path/to/cert.pem
auth:
 # Type of authentication.
 type: splunk
 host: localhost
 port: 8089
 ssl: true
workers: # worker processes, memory in MB
 count: 2
 memory: 2048
kms.local:
 # Encryption key management system settings. Default type: local.
 type: local
crypto:
 # Crypto settings.
 keyPath: $CRIBL_HOME/local/cribl/auth/keys.json
system:
 # Upgradability options: api, auto, false
 upgrade: api
 # Restart options: api, false
 restart: api
 # installType options: standalone, splunk-app
 installType: standalone
 # Flag to enable/disable intercom. Default: true
 intercom: true
license:
 accepted: true
distributed mode: master | worker | single
distributed:
 mode: master

Page 492 of 900

Updated 9 months ago

Page 493 of 900

inputs.yml

inputs.yml contains settings for configuring inputs into Cribl.

$CRIBL_HOME/default/cribl/inputs.yml

inputs:
 # Input name
 local-splunk:
 # Input type
 type: splunk
 # Address to listen to for incoming events
 host: localhost
 # Port to listen to for incoming events
 port: 10000
...

 secureTCPJSON:
 type: tcpjson
 disabled: false
 host: 0.0.0.0
 port: 10002
 tls:
 disabled: false
 privKeyPath: /opt/privkey.pem
 certPath: /opt/cert.pem
 requestCert: false
 rejectUnauthorized: false
 ipWhitelistRegex: /.*/
 authToken: ""

Updated 11 months ago

Page 494 of 900

outputs.yml

outputs.yml contains settings for configuring outputs from Cribl. Also see

Destinations for more info.

$CRIBL_HOME/default/cribl/outputs.yml

outputs:
 # Default output setting
 default:
 type: default
 defaultId: local-splunk
 # Output Name
 local-splunk:
 # Output type
 type: splunk
 # Output host address to send data from
 host: localhost
 # Output port to send data from
 port: 9999
 # Output name
 myFilesystemDestination:
 # Output type
 type: filesystem
 # Final destination path. Writable by Cribl.
 destPath: /path/to/destiation
 # Staging destination path. Writable by Cribl.
 stagePath: /tmp/foo
 # Partition schema for outputted files
 partitionExpr: >-
 `${host}/${sourcetype}`
 # Format of the output data
 format: json
 # The output filename prefix
 baseFileName: CriblOut
 # Compression options. None | Gzip
 compress: none
 # Maximum uncompressed output file size
 maxFileSizeMB: 32
 # Maximum amount of time to keep inactive files open.
 maxFileOpenTimeSec: 300
 # Maximum amount of time to keep inactive files open.
 maxFileIdleTimeSec: 30
 # Maximum number of files to keep open concurrently.
 maxOpenFiles: 100
 myS3Destination:
 # Output type
 type: s3
 # S3 bucket address
 bucket: s2.bucket.address.here
 # Prefix to append to files before uploading
 destPath: keyprefix

Page 495 of 900

 # AWS API key, if not present will fallback on env.AWS_ACCESS_KEY_ID
 awsApiKey: key
 # AWS Secret Key. If left blank, Cribl will fallback on env.AWS_SECR
 awsSecretKey: secretkey
 # Staging destination path. Writable by Cribl.
 stagePath: /tmp/foo

Partition schema for outputted files

Updated 11 months ago

Page 496 of 900

licenses.yml

licenses.yml maintains a list of licenses for Cribl.

$CRIBL_HOME/default/cribl/licenses.yml

licenses:
 # List of license keys
 - eyJ0eXAiOiJKV1QiLCJhasdfasfasdfdasfasdfa-Abo2_ogVbR_5VKeAelZlTc5b-TKQ

Updated 11 months ago

Page 497 of 900

regexes.yml

regexes.yml maintains a list of regexes. Cribl's Regex Library ships under default .

$CRIBL_HOME/default/cribl/regexes.yml

...
"uuid":
 lib: cribl
 description: UUID/GUID
 regex: /[0-9a-f]{8}-[0-9a-f]{4}-[1-5][0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9
 sampleData: 9a50fa34-58b1-4a67-8b8d-ea9c0ae48c8f

 eb671525-2b9e-4140-ae21-a0a8a81b506e
 tags: uuid,guid
"aws_secret_key":
 description: AWS Secret Access Key
 regex: /(?<![A-Za-z0-9\/+=])[A-Za-z0-9\/+=]{40}(?![A-Za-z0-9\/+=])/gm
 lib: cribl
 sampleData: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
 tags: aws,access,key,secret
"aws_access_key":
 lib: cribl
 description: AWS Access Key ID
 regex: /(A3T[A-Z0-9]|AKIA|AGPA|AIDA|AROA|AIPA|ANPA|ANVA|ASIA)[A-Z0-9]{1
 sampleData: >-2
 AKIAIOSFODNN7EXAMPLE
 tags: aws,access,key
"private_key":
 description: Private key block
 regex: /-----BEGIN (DSA|RSA|EC|PGP|OPENSSH) PRIVATE KEY(\sBLOCK)?-----
 lib: cribl
 tags: ssh,openssh,dsa,ec,rsa,private key
"slack_token":
 lib: cribl
 description: Slack Token
 regex: /xox[p|b|o|a][\s\S]*/g
 sampleData: xoxp-23984754863-2348975623103

 xoxa-23984754863-2348975623103

 xoxb-23984754863-2348975623103

 xoxo-23984754863-2348975623103
 tags: slack,token
...

Updated 2 months ago

Page 498 of 900

breakers.yml

Cribl's default Event Breaker Library is located under

$CRIBL_HOME/default/cribl/breakers.yml .

$CRIBL_HOME/default/cribl/breakers.yml

...
AWS Ruleset:
 lib: cribl
 description: Event breaking rules for common AWS data sources
 tags: flowlogs,elb,alb,loadbalancer,cdn
 rules:
 - name: AWS VPC Flow
 condition: /^\d+\s+\d+\s+eni-\w+.*(OK|NODATA|SKIPDATA)?$/.test(_raw
 eventBreakerRegex: /[\n\r]+/
 timestampAnchorRegex: /(?=\d{10}\s\d{10})/
 timestamp:
 type: format
 length: 150
 format: "%s"
 timestampTimezone: utc
 maxEventBytes: 1024
 - name: AWS ALB
 condition: /^(?:https?|h2|wss?)\s\d+-\d+-\d+.*?arn:aws:elasticloadb
 eventBreakerRegex: /[\n\r]+/
 timestampAnchorRegex: /\w+\s/
 timestamp:
 type: format
 length: 150
 format: "%Y-%m-%dT%H:%M:%S.%f%Z"
 timestampTimezone: local
 maxEventBytes: 4096
 - name: AWS ELB
 condition: /^\d+-\d+-\d+.*?(?:\d+\.\d+\s){3}/.test(_raw) || sourcet
 eventBreakerRegex: /[\n\r]+/
 timestampAnchorRegex: /^/
 timestamp:
 type: format
 length: 150
 format: "%Y-%m-%dT%H:%M:%S.%f%Z"
 timestampTimezone: local
 maxEventBytes: 4096
...

Updated 2 months ago

Page 499 of 900

mappings.yml

Mapping ruleset configurations are located under

$CRIBL_HOME/local/cribl/mappings.yml .

$CRIBL_HOME/default/cribl/mappings.yml

...
rulesets:
 default: # ruleset name
 conf:
 functions:
 - filter: env.CRIBL_HOME.match('w0') # filter to match
 id: eval
 description: w0 # rule name/id
 final: true
 conf:
 add:
 - name: groupId
 value: "'myGroup42'" # group to map to
 - filter: env.CRIBL_HOME.match('w1')
 id: eval
 description: w1
 final: true
 conf:
 add:
 - name: groupId
 value: "'NewGroup22'"
 newruleset: # another ruleset
 conf:
 functions:
 - filter: (cpus>12 && env.CRIBL_HOME.match('w0')) || release.sta
 id: eval
 description: catch all
 final: true
 conf:
 add:
 - name: groupId
 value: "'NewGroup2'"
...

Updated 2 months ago

Page 500 of 900

instance.yml

Instance configuration is located under $CRIBL_HOME/local/_system/instance.yml .

$CRIBL_HOME/local/_system/instance.yml

distributed:
 # mode master | worker | single
 mode: master
 master:
 host: 0.0.0.0
 port: 4203
 tls:
 disabled: true
 ipWhitelistRegex: /.*/
 authToken: criblmaster
 compression: none
 connectionTimeout: 5000
 writeTimeout: 10000
 group: default
 envRegex: /^CRIBL_/
 tags:
 - tag1
 - tag2
 - tag42

Updated 2 months ago

Page 501 of 900

Licensing

Every Cribl LogStream version ships with a Free license that allows for processing of

up to 1 TB/day. Free and One licenses require sending anonymized telemetry

metadata to Cribl. (For details, see Telemetry Data below).

Enterprise, Standard, and Sales Trial licenses do not require sending telemetry

metadata, and are entitled to a defined, per-license daily ingestion volume.

You can add and manage licenses in Settings > Licensing.

Cribl offers five LogStream license types, summarized below.

This is a license available for purchase.

Up to unlimited data ingestion.

All other LogStream features included.

Contact Cribl Sales at sales@cribl.io for more information.

This is a license available for purchase. Compared to an Enterprise license, it offers a

cost discount, in exchange for some limitations:

Daily ingestion up to 5 TB/day.

Maximum 1 Worker Group.

Free/One License Expiration (v. 2.2.x or Lower)✅

For these versions, the latest Free or One license expires on: 2020-12-

15T00�00�00+00�00

For LogStream v. 2.3 and above, Free and One licenses do not expire.

License Types

ℹ For a detailed comparison of what's included in each license type, please

see Cribl Pricing.

Enterprise License

Standard License

Page 502 of 900

Contact Cribl Sales at sales@cribl.io for more information.

Free licenses ship in the download package, and are permanent. They impose some

limitations:

Daily ingestion up to 1 TB/day.

Maximum 10 Worker Processes.

Maximum 1 Worker Group.

LogStream One is a type of free license that allows for higher processing volume, but

only to Splunk or Elasticsearch Destinations. This combination is designed to help

users explore LogStream's value in routing large data volumes to these common

services. Contact Cribl Sales at sales@cribl.io to convert a Free license to LogStream

One.

Daily ingestion up to 5 TB/day, only to Splunk and Elasticsearch outputs.

Maximum 50 Worker Processes

Maximum 1 Worker Group

A license type used when preparing a POC (proof of concept), or a pilot, with

requirements that go beyond those afforded by the Free or One license. Contact Cribl

Sales at sales@cribl.io for more information.

Multiple license types can coexist on an instance. However, only a single type of

license can be effective at any one time. When multiple types coexist, the following

method of resolution is used:

If there are any unexpired Enterprise or Standard licenses – use only these

licenses to compute the effective license.

Else, if there are any Sales Trial licenses – use only Sales Trial licenses to compute

the effective license.

Free License

"One" License

Sales Trial License

ℹ LogStream Free and LogStream One licenses require sending of

anonymized telemetry metadata to Cribl. These licenses will block inputs if

sending fails after a grace period of 24 hours.

Combining License Types

Page 503 of 900

Else, if there exists a Free or One license – use only the Free or One license to

compute the effective license.

When an Enterprise or Standard license expires, Cribl LogStream will fall back to the

Sales Trial or Free/One types. However, an expired Sales Trial license cannot fall back

to a Free/One license.

In distributed deployments of LogStream versions through 2.2.x, licenses should be

configured both on the Master Node and on each of the Worker Groups. This allows

for different Worker Groups to have different licensing capacities.

To configure the Master: Settings > Licensing.

To configure Worker Groups: Worker Groups > [Select a Group] > System

Settings > Licensing.

LogStream will attempt to balance (or rebalance) Worker Processes/threads as evenly

as possible across all licensed Worker Nodes.

A Free or One license requires sharing of telemetry metadata with Cribl. Cribl uses

this metadata to help us understand how to improve the product and prioritize new

License Expiration Behavior⚠

Upon expiration of a paid license, if there is no fallback license, Cribl

LogStream will backpressure and block all incoming data.

Licensing in Distributed Deployments

LogStream 2.2.x or Earlier

LogStream 2.3.x or Higher

✅ As of LogStream 2.3, licenses are no longer required on Worker Groups.

The Master will push license information down to Worker Groups as part of

the heartbeat.

⚠ LogStream 2.3 changes licensing in other ways that might require you to

update an existing LogStream configuration. Please see Upgrading to

LogStream 2.3.

Telemetry Data

Page 504 of 900

features. Telemetry payloads are sent to an endpoint located on

https://cdn.cribl.io/telemetry/ . (For versions prior to 2.2, this endpoint is
34.220.85.61:8000 .)

If you would like this feature disabled in order to deploy on your environment, please

reach out to Cribl Sales at sales@cribl.io, and we will work with you to issue licenses on

a case-by-case basis.

Data Shared Per Interval (roughly every minute):

Version

Instance's GUID

Earliest, Latest Time

Number of Events In, Out

Number of Bytes In, Out

Number of Open, Closed, Active Connections

Number of Routes

Number of Pipelines

How do I check my license type, restrictions, and/or expiration date?

Open LogStream's Settings > Licensing page to see these details.

How can I track my actual data ingestion volume over the last 30 days?

Forward Cribl Internal metrics to your Metrics Destination of choice, and run a report

on cribl.total.in_bytes .

How does LogStream enforce license limits?

If your data throughput exceeds your license quota, Chuck Norris will track you down

and make your life a living hell.

However, that will happen only in your nightmares. In the product itself:

Free, One, and Standard licenses enforce data ingestion quotas through limits on

the number of Worker Groups and Worker Processes.

Enterprise license keys turn off all enforcement, between annual true-ups.

When an Enterprise or Standard license expires, LogStream will attempt to fall

back to a trial or free license, or – only if that fails – will block incoming data. For

details, see Combining License Types.

If I pull data from compressed S3 buckets, is my license quota applied to the

compressed or the uncompressed size of the file objects?

Licensing FAQ

Page 505 of 900

To measure license consumption, Cribl uses the uncompressed size.

Updated 6 days ago

Page 506 of 900

User Authentication

Cribl LogStream supports local, Splunk, LDAP, and SSO/OpenID Connect

authentication methods.

To set up local authentication, navigate to Settings > General Settings >

Authentication Settings and select Local.

You can then manage users through the Settings > Local Users UI. All changes made

to users are persisted in a file located at

$CRIBL_HOME/local/cribl/auth/users.json .

Line format:

{"username":"user","first":"Elvis","last":"Bath","disabled":"false",
"passwd":"Yrt0MOD1w8OzyMYB8WMcEleOtYESMwZw2qIZyTvueOE"}

The file is monitored for modifications every 60s, and will be reloaded if changes are

detected.

Adding users through direct modification of the file is also supported, but not

recommended.

To manually add, change, or restore a password, replace the affected user's passwd
key-value pair with a password key, in this format: "password":"<newPlaintext>" .
LogStream will hash all plaintext password(s), identified by the password key, during

the next file reload, and will rename the plaintext password key.

Starting with the same users.json line above:

{"username":"user","first":"Elvis","last":"Bath","disabled":"false",
"passwd":"Yrt0MOD1w8OzyMYB8WMcEleOtYESMwZw2qIZyTvueOE"}

...you'd modify the final key-value pair to something like:

{"username":"user","first":"Elvis","last":"Bath","disabled":"false",
"password":"V3ry53CuR&pW9"}

Within at most one minute after you save the file, LogStream will rename the

password key back to passwd , and will hash its value, re-creating something
resembling the original example.

Local Authentication

Manual Password Replacement

Page 507 of 900

In a distributed deployment, LogStream always resets each Worker node's admin

password with a randomized password and different from the admin user's password

on the Master Node. This enhances security, but will lead to situations where you

cannot log into a Worker Node directly and must rely on accessing them via the

Master.

To remedy these lockouts, you can explicitly push a new password to your Worker

Groups. In the Master Node's UI:

1. From the top menu, select Worker Groups.

2. Select the Worker Group whose credentials you want to change.

3. From the Worker Groups submenu, select System Settings.

4. Select Local Users, then expand the user you want to update.

5. Update the Password field and select Save.

When Cribl LogStream first starts, it creates a

$CRIBL_HOME/local/cribl/auth/cribl.secret file. This file contains a key that is

used to generate auth tokens for users, encrypt their passwords, and encrypt

encryption keys.

Default local credentials are: admin/admin

Splunk authentication is very helpful when deploying in the same environment as

Splunk, and requires the user to have Splunk admin role permissions. To set up

Splunk authentication:

Navigate to Settings > General Settings > Authentication Settings and select

Splunk.

Host: Splunk hostname (typically a search head).

Port: Splunk management port (defaults to 8089).

SSL: Set to Yes if enabled.

Fallback to local: Attempt local authentication if Splunk authentication is

unsuccessful. Defaults to false.

Explicitly Setting Worker Passwords

The cribl.secret File

❗ Back up and secure access to this file by applying strict permissions – e.g.,

600 .

Splunk Authentication

Page 508 of 900

Note: the Splunk searchhead does not need to be locally installed on the Cribl

LogStream instance.

LDAP authentication is supported, and can be set up as follows:

Navigate to Settings > General Settings > Authentication Settings, and select LDAP.

Secure: Enable to use a secure LDAP connections (ldaps://). Disable for an
insecure (ldap://) connection.

LDAP servers: List of LDAP servers. Each entry should contain host:port (e.g.,

localhost:389).

Bind DN: Distinguished name of entity to authenticate with LDAP server. E.g.,

'cn=admin,dc=example,dc=org' .

Password: Distinguished Name password used to authenticate with LDAP server.

Search base: Starting point to search LDAP for users, e.g.,

'dc=example,dc=org' .

Username field: LDAP user search field, e.g., cn or (cn (or uid) .

Search filter: LDAP search filter to apply when finding user, e.g., (&
(group=admin)(!(department=123*))) . Optional.

Fallback to local: Attempt local authentication if LDAP authentication is down or is

mis-configured. Defaults to No .

Connection timeout (ms): Defaults to 5000 .

Reject unauthorized: Valid for secure LDAP connections. Set to Yes to reject

unauthorized server certificates.

SSO/OpenID authentication is supported, and can be set up as follows:

Navigate to Settings > General Settings > Authentication Settings and select

OpenID Connect.

Provider name: The name of the identity provider service. You can select Google

or Okta, both supported natively. Manual entries are also allowed.

Audience: The Audience from provider configuration. This will be the base URL,

e.g.: https://yourDomain.com:9000 .

Client ID: The client_id from provider configuration.

Client secret: The client_secret from provider configuration.

Email whitelist: Wildcard list of emails that are allowed access.

Authentication URL: The full path to the provider's authentication endpoint. Be

sure to configure the callback URL at the provider as

LDAP Authentication

SSO/OpenID Connect Authentication

Page 509 of 900

<yourDomainUrl>/api/v1/auth/authorization-code/callback , e.g.:
https://yourDomain.com:9000/api/v1/auth/authorization-code/callback .

Token URL: The full path to the provider's access token URL.

Logout URL: The full path to the provider's logout URL. Leave blank if the provider

does not support logout or token revocation.

Validate certs: Validate certificates. Set to No to allow insecure self-signed

certificates. Defaults to Yes .

Note the following details when filling in the form – for example, when using Okta:

<Issuer URI> is the account at the identity provider.

Audience is the URL of the host that will be connecting to the Issuer (e.g.,

https://localhost:9000). The issuer (Okta, in this example) will redirect back
to this site upon authentication success or failure.

Updated 15 days ago

Page 510 of 900

Version Control
Tracking, backing up, and restoring configuration changes for single-instance and
distributed deployments

Cribl LogStream can be integrated with remote Git repositories to provide version

control of configuration settings for standalone deployments as well as distributed

deployments. (Do not confuse these options with a Git repository responsible for

version control of Worker configurations, located on the Master Node in distributed

deployments.)

For distributed deployments, git must be installed and available locally on the host

running the Master Node.

To verify that git is available, run:

git --version

The minimum required version is: 1.8.3.1.

All configuration changes must be committed before they are deployed. The

Master notifies Workers that a new configuration is available, and Workers pull the new

configuration from the Master Node.

You can revert to a previous commit using the git CLI. You can also restore a Worker

Group's previous commit using LogStream's UI: Select the commit from the Config

Version drop-down, as shown below. Then, in the resulting modal, verify the diff'ed

configuration change and click OK.

Git Installation (Local or Standalone)

Reverting Commits

Page 511 of 900

Git remote repositories are supported – but not required – for version control of all

configuration changes. You can configure a Standalone/Master Node with Git remote

push capabilities either from the CLI, or through the UI via Settings > Distributed

Settings > Git Settings.

Remote URI schema patterns should match this regex:

(?:git|ssh|ftps?|file|https?|git@[-\w.]+):(\/\/)?(.*?)(\.git\/?)?$.

A list of supported formats can be found here.

For example:

GitHub or other providers:

<protocol>://git@example.com/<username>/<reponame>.git

Local Git servers: git://<host.xyz>:<port>/<user>/path/to/repo.git

You can set up SSH keys from the CLI, or upload keys via the UI. If you have a

passphrase set, this functionality is available only through the CLI – see Encryption:

Configuring Keys with CLI. The example below outlines the UI steps.

Support For Remote Repositories

Remote Formats Supported

ℹ Several examples and tutorial links on this page point to GitHub, based on

its wide adoption. The basic principles are the same for other Git repo

providers, including private Git servers. GitHub's own UI and documentation

periodically change, and linked tutorials' screenshots might differ from

GitHub's current UI.

Connecting to a Remote with SSH

Page 512 of 900

1. Create a new GitHub repository.

2. Add an SSH public key to your GitHub account.

3. In Cribl LogStream, go to Settings > Distributed Settings > Git Settings.

4. Fill in the remote repo URL and the SSH private key. In the example format below,

replace <username> with your user name on the repo's provider:

Remote URL: <protocol>://git@github.com:<username>/<reponame>.git
SSH private key: <ssh-private-key>

For additional details, see GitHub's Connecting to GitHub with SSH tutorial.

LogStream's Git settings

Cribl recommends connecting to a remote repo over HTTPS. The example below

shows a token-based HTTPS connection to GitHub.

1. Create a new GitHub repository.

2. Create a personal access token with repo privileges.

3. Copy the token to your clipboard.

4. In Cribl LogStream, go to Settings > Distributed Settings > Git Settings.

5. Fill in the Remote URL field with your repo name, user name, and token (in place

of a password). Use the format below, replacing both <username> placeholders

with your user name on the repo's provider:

https://<username>:<token>@github.com/<username>/<reponame>.git

For additional details, see GitHub's Creating a Personal Access Token tutorial.

Example: Connecting to GitHub with SSH

Connecting to a Remote with a Personal Access Token over
HTTPS (Recommended)

Example: Connecting to GitHub over HTTPS

Pushing to a Remote Repo

Page 513 of 900

Once you've configured a remote, a Git Push button appears in the Version Control

overlay.

Git Push button

If you enabled the Git Settings > Collapse Actions option, you will instead see a

combined Commit & Push button in the overlay.

Git combined actions button

Your first push to a remote repo might fail with one of several failed to push some
refs errors.

As a first step in debugging these errors, edit the $CRIBL_HOME/.git/config file to

make sure that its name and email key values match the credentials you've set on

your repo provider or git server.

Also make sure that the remote "origin" key value matches the remote you set

when you connected to the remote repo. This example shows all three keys, with

placeholder values:

Next, verify the remote repo from the command line, as follows:

Troubleshooting Push Errors

[user]
 name = <your-login-name>
 email = <email@example.com>
[remote "origin"]
 url = https://<user-name>:<token>@github.com/<username>/<repo-name>

cd $CRIBL_HOME/.git
git remote -v

Page 514 of 900

In response, git should echo your configured remote twice, respectively for fetch
and push operations.

If all of the above settings are correct, next see GitHub's Dealing with Non-Fast-

Forward Errors topic for command-line instructions on syncing your local repo to its

remote.

If a remote repo is configured and has the latest known good Master configuration,

this section outlines the general steps to follow for restoring the config from that repo.

Let's assume that the entire $CRIBL_HOME directory of the Master is corrupted, or

you're starting from scratch. Let's also assume that the remote is: git@github.com:
<username>/<reponame>.git .

Restoring from remote repo

1. Important: In a directory of choice, untar the same Cribl LogStream version that

you're trying to restore, but do not start it.

2. Ensure that you have proper access to the remote repo:

Use ls-remote to check access

3. Change directory into $CRIBL_HOME and initialize git :
git init

4. Next, add/configure the remote:

git remote add origin git@github.com:<username>/<reponame>.git

Restoring Master from Remote Repo

git ls-remote git@github.com:<username>/<reponame>.git
56331fabb4822eaec4ca0ffd008d6e9974c1e419f HEAD
5631fabb4822eaec4ca0ffd008d6e9974c1e419f refs/heads/master

Page 515 of 900

5. Lastly, set up local to exactly match the remote branch:

git fetch origin
git reset --hard origin/master

To confirm that the commits match, run this command while in $CRIBL_HOME . Note
the commit hash:

Confirm with git show

That last step above pulls in all the latest configs from the remote repo, and you should

be able to start the Master as normal. Once up and running, Workers should start

checking in after about 60s.

A .gitignore file specifies files that git should ignore when tracking changes.

Each line specifies a pattern, which should match a file path to be ignored. Cribl

LogStream ships with a .gitgnore file containing a number of patterns/rules, under a

section of the file labeled CRIBL SECTION .

.gitignore

git show --abbrev-commit
commit 5631fab (HEAD -> master, origin/master)
Author: First Last <email@example.com>
Date: Fri Jan 31 10:16:07 2020 -0500

 admin: Last commit before failure/crash

......

Verify cribl.secret⚠

The cribl.secret file – located at

$CRIBL_HOME/local/cribl/auth/cribl.secret – contains the secret key

that is used to encrypt sensitive settings on configuration files (e.g., AWS

Secret Access Key, etc.). Make sure this file is properly restored on the new

Master, because it is required for encrypted conf file settings to become

usable again.

.gitignore File

Do NOT REMOVE CRIBL and CUSTOM header lines!
DO NOT REMOVE rules under the CRIBL section as they may be reintroduced
You can ONLY comment out rules in the CRIBL section.
You can add new rules in the CUSTOM section.
CRIBL SECTION -- DO NOT REMOVE ###
default/ui/**
default/data/ui/**
bin/**

Page 516 of 900

User-defined, custom patterns/rules can be safely defined under the CUSTOM
SECTION .
Cribl LogStream will not modify the contents of CUSTOM SECTION .

If you have files that are skipped with .gitgnore , you will need to back them up and

restore them via other means. E.g., you can periodically copy/rsync them to a backup

destination, and then restore them to their original locations after you complete the

steps above.

log/**
pid/**
data/uploads/**
diag/**
/state/
CUSTOM SECTION -- DO NOT REMOVE ###

<User defined patterns/rules go here>

CRIBL Section

Do Not Remove CRIBL SECTION or CUSTOM SECTION Headers❗

The CRIBL SECTION is used by Cribl LogStream to define default

patterns/rules that ship with every version. Do not add or remove any of the

lines here, because Chuck Norris will easily find you!

Maslow's theory of higher needs does not apply to Chuck Norris. He has

only two needs: killing people and finding people to kill. Seriously, do not

remove them, as they will be overwritten on the next update. The only

modifications that will survive updates are commented lines.

CUSTOM Section

Files skipped with .gitignore

Updated 17 days ago

Page 517 of 900

Persistent Queues

Persistent queuing (PQ) is a feature that helps minimize data loss if a downstream

receiver is unreachable. Durability is provided by writing data to disk for the duration of

the outage, and forwarding it upon recovery.

PQs are implemented on the outbound side, meaning that each Source can take

advantage of a Destination's queue.

Each LogStream output has an in-memory queue that helps it absorb temporary

imbalances between inbound and outbound data rates. E.g., if there is an inbound

burst of data, the output will store events in the queue, and output them at the rate

that the receiver can sync (as opposed to blocking or dropping them). Only when this

queue is full will the output impose backpressure upstream.

Backpressure behavior can be configured to either block or drop. In block mode, the

output will refuse to accept new data until the receiver is ready. The system will back

propagate block "signals" all the way back to the sender (assuming it supports

backpressure, too). In drop behavior, the output will discard new events until the

receiver is ready.

In some environments, the in-memory queues and their block/drop behavior are

acceptable. Persistent queues serve environments where more durability is required

(e.g., outages last longer than memory queues can sustain), or where upstream

senders do not support backpressure (e.g., ephemeral/network senders),

Engaging persistent queues in these scenarios can help minimize data loss. Once the

in-memory queue is full, the LogStream output will write its data to disk. Then, when

the receiver is ready, the output will start draining the queues in FIFO (first in, first out)

fashion.

Persistent queues are:

Available at the output side (i.e., after processing).

Engaged only when all of the receivers of that output exert blocking.

Drained when at least one receiver can accept data.

Not infinite in size. I.e., if data cannot be delivered out, you might run out of disk

space.

How Does Persistent Queueing Work

Persistent Queue Details and Constraints

Page 518 of 900

Not able to fully protect in cases of application failure. E.g., in-memory data might

get lost if a crash occurs.

Not able to protect in cases of hardware failure. E.g., disk failure, corruption, or

machine/host loss.

The following LogStream Destinations support Persistent Queuing:

Splunk Single Instance

Splunk Load Balanced

Splunk HEC

Kinesis

Cloudwatch Logs

SQS

Azure Monitor Logs

Azure Event Hubs

StatsD

StatsD Extended

Graphite

TCP JSON

Syslog

Elasticsearch

Honeycomb

InfluxDB

Wavefront

SignalFx

Persistent Queueing is configured individually for each output that supports it. To

enable persistent queueing, go to the output's (Destination's) configuration page and

set the Backpressure Behavior control to Persistent Queueing. This exposes the

following additional controls:

Max file size: The maximum size to store in each queue file before closing it. Enter

a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is

applied. Enter a numeral with units of KB, MB, etc.

Persistent Queue Support

Configuring Persistent Queueing

Page 519 of 900

Queue file path: The location for the persistent queue files. This will be of the

form: your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Minimum Free Disk Space⚠

Sufficient disk space is required for queuing to operate properly. You

configure the minimum disk space in Settings > General Settings > Limits

> Min Free Disk Space. If available disk space falls below this threshold,

LogStream will stop maintaining persistent queues, and data loss will begin.

The default is 5GB. Be sure to set this on your worker nodes rather than on

the master node when in distributed mode.

Updated a day ago

Page 520 of 900

Securing

You can secure Cribl LogStream's API and UI access by configuring SSL. To do so, you

can use your own private keys and certs, or you can generate a pair with OpenSSL, as

shown here:

openssl req -nodes -new -x509 -newkey rsa:2048 -keyout myKey.pem -out
myCert.pem -days 420

This command will generate both a self-signed cert (certified for 420 days), and an

unencrypted, 2048-bit RSA private key.

In the LogStream UI, you can configure the key and cert via Settings > Encryption

Keys and Settings > Certificates. Alternatively, you can edit the local/cribl.yml
file's api section to directly set the privKeyPath and certPath attributes. For

example:

cribl.yml

This table shows TLS client/server pairs, and encryption defaults, per traffic type.

api:
 host: 0.0.0.0
 port: 9000
 disabled : false
 ssl:
 disabled: false
 privKeyPath: /path/to/myKey.pem
 certPath: /path/to/myCert.pem
...

TLS Settings and Traffic Types

UI Browser
Cribl

LogStream

Default

disabled

Default

disabled

Defa

disa

API Worker Master
Default

disabled

Default

disabled

Defa

disa

Worker-to-

Master
Worker Master

Default

disabled

Default

disabled

Defa

disa

Data Any data Cribl Default Default Defa

Traffic Type TLS Client
TLS

Server
Encryption

Cert

Auth

CN

Che

Page 521 of 900

You can configure advanced, system-wide TLS settings for versions, cipher lists, and

ECDH Curve names via Settings > System > General Settings > Default TLS

Settings.

Where LogStream Sources and Destinations support TLS, each Source's or

Destination's configuration provides a CA Certificate Path field where you can point to

corresponding Certificate Authority (CA) .pem file(s). However, you can also use

environment variables to manage CAs globally. Here are some common scenarios:

1. How do I add a set of trusted root CAs to the list of trusted CAs that

LogStream trusts?

Set this environment variable:

NODE_EXTRA_CA_CERTS=/path/to/file_with_certs.pem – for details, see nodejs

docs.

2. How do I make LogStream trust all TLS certificates presented by any server it

connects to?

Set this environment variable: NODE_TLS_REJECT_UNAUTHORIZED=0 – for details,

see nodejs docs.

sender LogStream

(Source)

disabled disabled disa

Data

Cribl

LogStream

(Destination)

Any data

receiver

Default

disabled

Default

disabled

Defa

disa

Authentication

Local

LDAP

Splunk

Okta

* Google

--

Browser

Cribl

LogStream

Cribl

LogStream

Cribl

LogStream

Cribl

LogStream

--

Cribl

LogStream

Cribl

LogStream

Splunk

Search

Head

Okta

Google

--

Default

Disabled

Custom

Default

Enabled

Default

Enabled

Default

Enabled

CA Certificates and Environment Variables

Updated 10 days ago

Page 522 of 900

Monitoring

To get an operational view of a Cribl LogStream deployment, you can consult these

resources:

Monitoring page: Select Monitoring from the top menu. This exposes information

about traffic in and out of the system. It tracks events, bytes, splits by data fields

over time, and a wider range of system metrics. Coverage is limited to the

previous 24 hours.

Monitoring page

Internal logs and metrics: Select Logs from the Monitoring submenu.

LogStream's internal logs and metrics provide comprehensive information about

the status of an instance, its inputs, outputs, pipelines, routes, functions, and

traffic metrics.

Health endpoint: Query this endpoint on any instance to check the instance's

health. (Details below.)

LogStream provides the following log types, by originating process:

API Server Logs – These logs are emitted primarily by the API/main process.

They correspond to the top-level cribl.log that shows up on the Diag page.

Types of Logs

Page 523 of 900

Filesystem location: $CRIBL_HOME/log/cribl.log

Worker Process(es) Logs – These logs are emitted by all the worker processes,

and are very common in standalone instances or Worker Nodes. Filesystem

location: $CRIBL_HOME/log/worker/N/cribl.log

Worker Group Logs – These logs are emitted by all processes that help a Master

Node configure Worker Groups. Filesystem location:

$CRIBL_HOME/log/group/GROUPNAME/cribl.log

LogStream rotates logs every 5 MB, keeping the most recent 5 logs. In a distributed

deployment, all Workers forward their metrics to the Master Node, which then

consolidates them to provide a deployment-wide view.

LogStream supports forwarding internal logs and metrics to your preferred external

monitoring solution. To send out internal data, go to Data > Sources and enable the

Cribl Internal Source.

This will send all cribl.log logs and internal metrics down through Routes and

Pipelines, just like another data source. Both logs and metrics will have a field called

source , set to the value cribl , which you can use in Route filters.

LogStream exists because logs are great and wonderful things! Using its Monitoring >

Logs page, you can search all LogStream's internal logs at once – from a single

location, for both Master and Worker Nodes. This enables you to query across all

internal logs for strings of interest.

The labels on this screenshot highlight the key controls you can use (see the

descriptions below):

Forward Logs and Metrics Externally

ℹ CriblMetrics Override

The Disable field metrics setting (in Settings > System > General

Settings > Limits) applies only to metrics sent to the Master Node. When

the Cribl Internal Source is enabled, LogStream ignores this Disable field

metrics setting, and full-fidelity data will flow down the Routes.

Search Internal Logs

Page 524 of 900

Logs page (controls highlighted)

1. Log file selector: Choose the Node to view. In a Distributed Deployment, this list

will be hierarchical, with Workers displayed inside their Master.

2. Fields selector: Click the Main | All | None toggles to quickly select or deselect

multiple check boxes below.

3. Fields: Select or deselect these check boxes to determine which columns are

displayed in the Results pane at right. (The upper Main Fields group will contain

data for every event; other fields might not display data for all events.)

4. Time range selector: Select a standard or custom range of log data to display.

5. Search box: To limit the displayed results, enter a JavaScript expression here. An

expression must evaluate to truthy to return results. You can press Shift+Enter

to insert a newline.

Typeahead assist is available for expression completion:

Click a field in any event to add it to a query:

Click other fields to append them to a query:

Page 525 of 900

Shift+click to negate a field:

6. Click the Search box's history arrow (right side) to retrieve recent queries:

7. The Results pane displays most-recent events first. Each event's icon is color-

coded to match the event's severity level.

Click individual log events to unwrap an expanded view of their fields:

Through LogStream's System Settings, you can adjust the level (verbosity) of internal

logging data processed, per logging channel. You can also redact fields in customized

ways.

Select Settings > System > Logging > Levels to open the Manage Logging Levels

page. Here, you can:

Modify one channel by clicking its Level column. In the resulting drop-down, you

can set a verbosity level ranging from error up to debug. (Top of composite

ℹ To modify the depth of information that is originally input to the Logs

page, see Logging Settings.

Logging Settings

Change Logging Levels

Page 526 of 900

screenshot below.)

Modify multiple channels by selecting their check boxes, then clicking the

Change log level drop-down at the bottom of the page. (Bottom of composite

screenshot below.) You can select all channels at once by clicking the top check

box. You can search for channels at top right.

Manage Logging Levels screen

Select Settings > System > Logging > Redactions: to open the Redact Internal Log

Fields page. Here, you can customize the redaction of sensitive, verbose, or just ugly

data within LogStream's internal logs.

Redact Internal Log Fields page

It's easiest to understand this page's fields from bottom to top:

Default fields: LogStream always redacts these fields. You can't modify this list.

Additonal fields: Type or paste in the names of other fields you want to redact.

Use a tab or hard return to confirm each entry.

Change Logging Redactions

Page 527 of 900

Custom redact string: Unless this field is empty, it defines a literal string that will

override LogStream's default redaction pattern, explained below.

By default, LogStream transforms this page's selected fields by applying the following

redaction pattern:

Echo the field value's first two characters.

Replace all intermediate characters with a literal ... ellipsis.

Echo the value's last two characters.

Anything you enter in the Custom redact string field will override this default

??...?? pattern.

Each LogStream instance exposes a health endpoint – typically used in conjunction

with a Load Balancer – that you can use to make operational decisions.

Default Redact String

Health Endpoint

curl http(s)://<host>:<port>/api/v1/health {"status":"healthy"}

Updated about 7 hours ago

Health Check Endpoint Healthy Response

Page 528 of 900

Upgrading

This page outlines how to upgrade Cribl LogStream's Single-Instance or Distributed

Deployment packages along one of the following supported upgrade paths:

v2.x ==> v2.x

v1.7.x/v2.0.x ==> v2.x.x

v1.6.x or below ==> v1.7.x ==> v2.x.x

This path requires upgrading only the single/standalone node:

1. Stop Cribl LogStream.

2. Uncompress the new version on top of the old one.

On some Linux systems, tar might complain with: cribl/bin/cribl: Cannot
open: File exists . In this case, please remove the cribl/bin/cribl directory

if it's empty, and untar again. If you have custom functions in cribl/bin/cribl ,
please move them under $CRIBL_HOME/local/cribl/functions/ before

untarring again.

3. Restart LogStream.

For a distributed deployment, the order of upgrade is: Upgrade first the Master Node,

then upgrade the Worker Nodes, then commit and deploy the changes on the Master.

1. Commit and deploy your desired last version. (This will be your most recent

checkpoint.)

Optionally, git push to your configured remote repo.

⚠ See notes on Upgrading to LogStream 2.3 below.

LogStream does not support direct upgrades from a Beta to a GA version.

To get the GA version running, you must perform a new install.

Standalone/Single-Instance

Distributed Deployment

Upgrade the Master Node

Page 529 of 900

2. Stop Cribl LogStream.

Optional but recommended: Back up the entire $CRIBL_HOME directory.

Optional: Check that the Worker Nodes are still functioning as expected. In

absence of the Master Node, they should continue to work with their last

deployed configurations.

3. Uncompress the new LogStream version on top of the old one.

4. Restart LogStream and log back in.

5. Wait for all the Worker Nodes to report to the Master, and ensure that they are

correctly reporting the last committed configuration version.

Worker Node version mismatch

These are the same basic steps as when upgrading a Standalone Instance, above:

1. Stop Cribl LogStream on each Worker Node.

2. Uncompress the new version on top of the old one.

3. Restart LogStream.

ℹ Workers' UI will not be available until the Worker version has been upgraded

to match the version on the Master. Errors like those below will appear until

the Worker nodes are upgraded.

Upgrade the Worker Nodes

Commit and Deploy Changes on the Master Node

Page 530 of 900

1. Ensure that newly upgraded Worker Nodes report to the Master with their new

software version.

2. Commit and deploy the newly updated configuration only after all Workers have

upgraded.

Post-2.1.4 upgrade to 2.2

As of version 2.3, LogStream Free and One licenses are permanent, but they enforce

certain restrictions that especially affect distributed deployments:

Even if you have more than one Worker Group defined, only one Worker Group will

be visible and usable.

This will be the first Group listed in $CRIBL_HOME/local/cribl/groups.yml
– typically, the default Group. You can edit groups.yml to move the

desired Group to the top.

Your cluster will be limited to 10 Worker Processes across all Worker Nodes.

LogStream will balance (or rebalance) these Processes as evenly as possible

across the Worker Nodes.

Authentication will fall back to local authorization. You will not be able to

authenticate via Splunk, LDAP, or SSO/OpenID.

Git Push to remote repos will not be supported through the product.

Upgrading to LogStream 2.3

Page 531 of 900

As of LogStream 2.3, licenses no longer need to be deployed directly to Worker

Groups. The Master will push license information down to Worker Groups as part of

the heartbeat.

Follow these steps to upgrade from v.1.7, or higher, of the Cribl App for Splunk:

1. Stop Splunk.

2. Untar/unzip the new app version on top of the old one.

On some Linux systems, tar might complain with: cribl/bin/cribl: Cannot
open: File exists . In this case, please remove the cribl/bin/cribl directory

if it's empty, and untar again. If you have custom functions in cribl/bin/cribl ,
please move them under $CRIBL_HOME/local/cribl/functions/ before

untarring again.

3. Restart Splunk.

As of v.1.7, contrary to prior versions, Cribl's Splunk App package defaults to

Search Head Mode. If you have v.1.6 or earlier deployed as a Heavy Forwarder app,

upgrading requires an extra step to restore this setting:

1. Stop Splunk.

2. Untar/unzip the new app version on top of the old one.

3. Convert to HF mode by running: $SPLUNK_HOME/etc/apps/cribl/bin/cribld
mode-hwf

4. Restart Splunk.

⚠ If you are upgrading LogStream Free or LogStream One from version 2.2.x

or lower, these changes might require you to adjust your existing

configuration and/or workflows.

See Licensing for details on all current license options.

Splunk App Package Upgrade Steps

⚠ See Deprecation note for v.2.1.

Upgrading from Splunk App v.1.6 (or Lower)

Page 532 of 900

Updated 6 days ago

Page 533 of 900

Diagnosing Issues

To help diagnose LogStream problems, you can share a diagnostic bundle with Cribl

Support. The bundle contains a snapshot of configuration files and logs at the time the

bundle was created, and gives troubleshooters insights into how LogStream was

configured and operating at that time.

The following directories (and their contents) off of $CRIBL_HOME are included:

/default/*

/local/*

/log/*

/groups/*

/groups/*

state/jobs - includes only latest 10 task of latest 10 jobs.

Users can create and share bundles either from the UI or from the CLI. In either case,

you'll need outbound internet access to https://diag-upload.cribl.io and a valid Case

number to share the bundle with Cribl Support.

To create a bundle, go to Settings > Diagnostics > Diagnostic Bundle and click

Create diagnostic bundle.

To download the bundle locally to your machine, click Export.

To share the bundle with Cribl Support, toggle Send to Cribl Support to Yes,

enter your case number, and then click Export.

Previously created bundles are stored in $CRIBL_HOME/diag . They're also listed in the
UI, where you can re-download them or share them with Cribl Support.

To create a bundle using the CLI, use the diag command.

diag command CLI

What's in the Diagnostic Bundle

Creating and Exporting a Diagnostic Bundle

Using the UI

Using the CLI

Page 534 of 900

$CRIBL_HOME/bin/cribl diag
Usage: [sub-command] [options] [args]

Commands:
get - List existing Cribl LogStream diagnostic bundles
create - Creates diagnostic bundle for Cribl LogStream
send - Send LogStream diagnostic bundle to Cribl Support, args:
 -c <caseNumber> - Cribl Case Number
 [-p <path>] - Diagnostic bundle path (if empty, then new bundle wi

Creating a diagnostic bundle
$CRIBL_HOME/bin/cribl diag create
Created Cribl LogStream diagnostic bundle at /opt/cribl/diag/cribl-logst

Creating and sending a diagnostic bundle
$CRIBL_HOME/bin/cribl diag send -c 420420
Sent LogStream diagnostic bundle to Cribl Support

Sending a previously created diagnostic bundle
$CRIBL_HOME/bin/cribl diag send -p /opt/cribl/diag/cribl-logstream-<hos
Sent LogStream diagnostic bundle to Cribl Support

Updated 2 months ago

Page 535 of 900

Uninstalling

Stop Cribl LogStream (stopping the main process).

Back up necessary configurations/data.

Remove the directory where Cribl LogStream is installed.

Stop Splunk.

Back up necessary configurations/data.

Remove the Cribl App in $SPLUNK_HOME/etc/apps .

Remove the Cribl module in $SPLUNK_HOME/etc/modules/cribl (some versions).

Uninstalling the Standalone Version

Uninstalling the Splunk App Version

Updated 2 months ago

Page 536 of 900

Working With Data

Routes

Before incoming events are transformed by a processing Pipeline, Cribl LogStream

uses a set of filters to first select a subset to deliver to the correct Pipeline. This

process is done via Routes.

Routes apply filter expressions on incoming events to send matching results to the

appropriate Pipeline. Filters are JavaScript-syntax–compatible expressions (e.g.,

source=='foo.log' && fieldA=='bar' , true , etc.) that are configured with each
Route.

Routes are evaluated in their display order, top->down. The stats in the Events column

shown below are for the most-recent 15 minutes.

Routes and events

What Are Routes

How Do Routes Work

ℹ There can be multiple Routes in the system, but each Route can be

associated with only one Pipeline.

Page 537 of 900

In this example, incoming events will be evaluated first against the Route named

Collection Processing Route, then against Palo Alto Firewall Traffic, then against

Archival, and so on. At the end, the Main Route serves as a catch-all for any event

that does not match any of the other Routes.

To apply a Route before another, simply drag it vertically. In addition, you can turn

Routes On/Off inline as necessary.

Routes can be configured with an output Destination that denotes where to send

events after they're processed by the Pipeline.

When an event that enters the system and matches a route-pipeline pair, usually it will

either be:

Dropped by a function, or

Transformed (optionally) and exit the system.

This behavior is ensured by the Final toggle in Route settings. It defaults to Yes ,
meaning that matched events will be consumed by that Route, and will not be

evaluated against any other Routes that sit below it.

If the Final toggle is set to No , clone(s) of the matching events will be processed by
the configured Pipeline, and the original events will be allowed to continue their trip to

be evaluated and/or processed by other Route-Pipeline pairs.

Output Destination

The Final Toggle

Page 538 of 900

This is very useful in cases where the same set of events needs to be processed

differently and delivered to different Destinations. Each clone can be decorated with

key-value pairs as necessary.

Depending on your cloning needs, you might want to follow a most specific first or

most general first processing strategy. The general goal is to minimize the number of

filters/Routes an event gets evaluated against. For example:

If cloning is not needed at all (i.e., all Final toggles stay at default), then it makes

sense to start with the broadest expression at the top, so as to consume as many

events as early as possible.

If cloning is needed on a narrow set of events, then it might make sense to do that

upfront, and follow it with a Route that consumes those clones immediately after.

A Route group is a collection of consecutive Routes that can be moved up and down

the Route stack together. Groups help with managing long lists of Routes. They are a

UI visualization only: While Routes are in a group, those Routes maintain their global

position order.

Output Routers are another way to route data. They are meta-destinations, in that they

allow actual Destination selection based on rules. Rules are evaluated in order,

top->down, with the first match being the winner.

Final Flag and Cloning Considerations

Route Groups

ℹ Route groups work much like Function groups.

Routing with Output Router

Updated 26 days ago

Page 539 of 900

Page 540 of 900

Pipelines

After your data has been matched by a Route, it gets delivered to a Pipeline. A Pipeline

is a list of Functions that work on the data. As with Routes, the order in which the

Functions are listed matters.

Events are always delivered to the beginning of a Pipeline via a Route. The data in the

Stats column shown below are for the last 15 minutes.

Pipelines and Route inputs

Within the Pipeline, events are processed by each Function, in order. A Pipeline will

always move events in the direction that points outside of the system. This is on

purpose, so as to keep the design simple and avoid potential loops.

Pipeline Functions

What Are Pipelines

ℹ Functions in a Pipeline are evaluated in order, top->down.

How Do Pipelines Work

Page 541 of 900

Clicking the gear icon as displayed in the screenshot above will take you to the

pipeline's settings as shown below. In Pipeline Settings you can adjust the Async

Function Timeout which helps to adjust for functions that can take much longer to

execute than normal such as a Lookup function on a large lookup file.

Pipeline Settings

Clicking the Advanced Mode button in the screenshot above will take you to the raw

editing mode of the function as shown in the screenshot below. This is JSON

formatted text. In this mode you can copy the function definition and also utilize

import/export capabilities.

Advanced Pipeline Editing

ℹ You can streamline the above display by organizing related Functions into

Function groups.

Types of Pipelines

Page 542 of 900

You can apply various Pipeline types at different stages of data flow. All Pipelines have

the same basic internal structure (a series of Functions) – the types below differ only in

their position in the system.

Input conditioning, processing, and output conditioning Pipelines

These are Pipelines that are attached to a Source to condition (normalize) the events

before they're delivered to a processing Pipeline. They are optional.

Typical use cases are event formatting, or applying Functions to all events of an input.

(E.g., extract a message field before pushing events to various processing Pipelines.)

You configure these pre-processing Pipelines on individual Sources. Fields extracted

using pre-processing Pipelines are made available to Routes.

These are "normal" event processing Pipelines.

These Pipelines are attached to a Destination to normalize the events before they're

sent out. Typical use cases are applying Functions that transform or shape events per

receiver requirements. (E.g., to ensure that a _time field exists for all events bound to

a Splunk receiver.) You configure these post-processing Pipelines on individual

Destinations.

Functions in a Pipeline are equipped with their own filters. Even though filters are not

required, we recommend using them as often as possible.

Pre-Processing Pipelines

Processing Pipelines

Post-Processing Pipelines

Considerations

Page 543 of 900

As with Routes, the general goal is to minimize extra work that a Function will do. The

fewer events a Function has to operate on, the better the overall performance. For

example, if a Pipeline has two Functions, f1 and f2, and if f1 operates on source
'foo' and f2 operates on source 'bar' , it might make sense to apply
source=='foo' versus source=='bar' filters on these two Functions, respectively.

Updated 21 days ago

Page 544 of 900

Event Model

All data processing in Cribl LogStream is based on discrete data entities commonly

known as events. An event is defined as a collection of key-value pairs (fields). Some

Sources deliver events directly, while others might deliver bytestreams that need to be

broken up by Event Breakers. Events travel from a Source through Pipelines'

Functions, and on to Destinations.

The internal representation of a Cribl LogStream event is as follows:

Cribl LogStream Event Model

Some notes about these representative fields:

Fields that start with a double-underscore are known as internal fields, and each

Source can add one or many to each event. For example, Syslog adds both a

__inputId and a __srcIpPort field. Internal fields are used only within Cribl

LogStream, and are not passed down to Destinations.

Upon arrival from a Source, if an event cannot be JSON-parsed, all of its content

will be assigned to _raw .

If a timestamp is not configured to be extracted, the current time (in UNIX epoch

format) will be assigned to _time .

One way to see what an event looks like as it travels through the system is to use the

Capture feature. While in Preview (right pane):

1. Click Start a Capture.

{
 "_raw": "<body of non-JSON parse-able event>",
 "_time": "<timestamp in UNIX epoch format>",
 "__inputId": "<Id/Name of Source that delivered the event>",
 "__other1": "<Internal field1>",
 "__other2": "<Internal field2>",
 "__otherN": "<Internal fieldN>",
 "key1": "<value1>",
 "key2": "<value2>",
 "keyN": "<valueN>",
 "...": "..."
}

Using Capture

Page 545 of 900

2. In the resulting modal, enter a Filter expression to narrow down the events of

interest.

3. Click Capture... and (optionally) change the default Time and/or Event limits.

4. Select the desired Where to capture option. There are four options:

1. Before the pre-processing Pipeline – Capture events right after they're

delivered by the respective Input.

2. Before the Routes – Capture events right after the pre-processing Pipeline,

before they go down the Routes.

3. Before the post-processing Pipeline – Capture events right after the

Processing Pipeline that actually handled them, before any post-processing

Pipeline.

4. Before the Destination – Capture events right after the post-processing

Pipeline, before they go out to the configured Destination.

Updated 3 days ago

Page 546 of 900

Event Processing Order

The expanded schematic below shows how all events in the Cribl LogStream

ecosystem are processed linearly, from left to right.

LogStream in great detail

Here are the stages of event processing:

1. Sources: Data arrives from your choice of external providers. (LogStream

supports Splunk, HTTP/S, Elastic Beats, Amazon Kinesis/S3/SQS, Kafka, TCP raw

or JSON, and many others.)

2. Custom command: Optionally, you can pass this input's data to an external

command before the data continues downstream. This external command will

consume the data via stdin , will process it and send its output via stdout .

3. Event Breakers can, optionally, break up incoming bytestreams into discrete

events.

4. Fields/Metadata: Optionally, you can add these enrichments to each incoming

event. You add fields by specifying key/value pairs, per Source, in a format similar

to LogStream's Eval function. Each key defines a field name, and each value is a

JavaScript expression (or constant) used to compute the field's value.

5. Pre-processing Pipeline: Optionally, you can use a single Pipeline to condition

(normalize) data from this input before the data reaches the Routes.

6. Routes map incoming events to Processing Pipelines and Destinations. A Route

can accept data from multiple Sources, but each Route can be associated with

Page 547 of 900

only one Pipeline and one Destination.

7. Processing Pipelines perform all event transformations. Within a Pipeline, you

define these transformations as a linear series of Functions. A Function is an

atomic piece of JavaScript code invoked on each event.

8. Post-processing Pipeline: Optionally, you can append a Pipeline a to condition

(normalize) data from each Processing Pipeline before the data reaches its

Destination.

9. Destinations: Each Route/Pipeline combination forwards processed data to your

choice of streaming or storage Destination. (LogStream supports Splunk, Syslog,

Elastic, Kafka/Confluent, Amazon S3, Filesystem/NFS, and many other options.)

Pipelines Everywhereℹ

All pipelines have the same basic internal structure – they're a series of

functions. The three pipeline types identified above differ only in their

position in the system.

Updated 14 days ago

Page 548 of 900

Data Onboarding

Onboarding data into Cribl LogStream can vary in complexity, depending on your

organization's needs, requirements, and constraints. Proper onboarding from all

Sources is key to system performance, troubleshooting, and ultimately the quality of

data and decisions both in LogStream and in downstream Destinations.

Typically, a data onboarding process revolves around these steps, both before and

after turning on the Source:

Create configuration settings.

Verify that settings do the right thing.

Iterate.

Below, we break down individual steps.

Cribl recommends that you take the following steps to verify and tune incoming data,

before it starts flowing.

Use a sample of your real data in Data Preview. Sample data can come from a sample

Source file that you upload or paste into LogStream.

You can also obtain sample data in a live data capture from a Source. One way to do

this before going to production is to configure your Source with a devnull Pipeline

(which just drops all events) as a pre-processing Pipeline. Then, let data flow in for just

long enough to capture a sufficient sample.

While events can be processed almost arbitrarily by functions in LogStream Pipelines,

make sure you understand the event processing order. This is very important, as it tells

you exactly where certain processing steps occur. For instance, as we'll see just below,

quite a few steps can be accomplished at the Source level, before data even hits

LogStream Routes.

General Onboarding Steps

Before Turning On the Source

Preview Sample Data

Check the Processing Order

Page 549 of 900

Source-level processing options

Where supported, data streams will be handled by custom commands. These are

external system commands that can (optionally) be used to pre-process the data.

Verify that such commands are doing what's expected, as they are the very first in a

series of processing steps.

Next, data streams are handled by Event Breakers, which:

Convert data streams into discrete events.

Extract and assign timestamps to each event.

If the resulting events do not look correct, feel free to use non-default breaking rules

and timestamp recognition patterns. Downstream, you can use the Auto Timestamp

function to modify _time as needed, if timestamps were not recognized properly.

Examples of such errors are:

Timestamps too far out in the future or past

Wrong timezone.

Incorrect timestamp is selected from multiple timestamps present in the event.

Next, events can be enriched with Fields (Metadata). This is where you'd add static or

dynamic fields to all events delivered by a particular Source.

Custom Command

Event Breakers

Fields (Metadata)

Pre-Processing Pipeline

Page 550 of 900

Next, you can optionally configure a pre-processing Pipeline on a particular Source.

This is extremely useful in these cases:

Drop non-useful events as early as possible (so as to save on CPU processing).

Normalize events from this Source to conform a certain shape or structure.

Fix/touch up events accordingly. E.g., if event breakers assigned the wrong

timestamp, this is the best place to use the Auto Timestamp function to adjust

_time .

Verify, verify, verify your data's integrity before turning on the Source.

Use data Destinations to verify that certain metrics of interest are accurate. This will

depend significantly on the capabilities of each Destination, but here's a basic

checklist list of things to ensure:

Timestamps are correct.

All necessary fields are assigned to events.

All expected events show up correctly. (E.g., if a Drop or Suppress Function was

configured, ensure that it's not dropping unintended events.)

Throughput – both in bytes and in events per second (EPS) – is what's expected,

or is within a certain tolerance.

Iterate on the steps above as necessary. E.g., adjust fields values and timestamps as

needed.

We Can't Say This Enough

After Turning On the Source

Iterate

✅ Remember that there is almost always a workaround. Any arbitrary event

transformation that you need is likely just a Function or two away.

Updated 22 days ago

Page 551 of 900

Functions

When events enter a Pipeline, they're processed by a series of Functions. At its core, a

Function is code that executes on an event, and it encapsulates the smallest amount

of processing that can happen to that event.

The term "processing" means a variety of possible options: string replacement,

obfuscation, encryption, event-to-metrics conversions, etc. For example, a Pipeline

can be composed of several Functions – one that replaces the term foo with bar ,
another one that hashes bar , and a final one that adds a field (say, dc=jfk-42) to
any event that matches source=='us-nyc-application.log' .

Functions are atomic pieces of JavaScript code that are invoked on each event that

passes through them. To help improve performance, Functions can be configured with

filters to further scope their invocation to matching events only.

You can add as many functions in a Pipeline as necessary, though the more you have,

the longer it will take each event to pass through. Also, you can turn Functions On/Off

within a Pipeline as necessary. This enables you to preserve structure as you optimize

or debug.

What Are Functions

How Do They Work

Page 552 of 900

Functions stack in a Pipeline

Similar to the Final toggle in Routes, the Final toggle here controls the flow of

events at the Function level. Its states are:

No (default): means that matching events processed by this Function will be

passed down to the next Function.

Yes : means that this Function is the last one that will be applied to matching
events. All Functions further down the Pipeline will be skipped.

Cribl LogStream ships with several Functions out-of-the-box, and you can chain them

together to meet your requirements. For more details, see individual Functions, and

the Use Cases section, within this documentation.

For an overview of adding custom Functions to Cribl LogStream, see our blog post,

Extending Cribl: Building Custom Functions.

Add, remove, update fields:

Eval, Lookup, Regex Extract

Find & Replace, including basic sed -like, obfuscate, redact, hash, etc.:
Mask, Eval

Add GeoIP information to events:

GeoIP

Extract fields:

Regex Extract, Parser

Extract timestamps:

Auto Timestamp

Drop events:

Drop, Regex Filter, Sampling, Suppress, Dynamic Sampling

Sample events (e.g, high-volume, low-value data):

Sampling, Dynamic Sampling

The Final Toggle

Out-of-the-Box Functions

Custom Functions

What Functions to Use When

Page 553 of 900

Suppress events (e.g, duplicates, etc.):

Suppress

Serialize events to CEF format (send to various SIEMs):

CEF Serializer

Serialize / change format (e.g., convert JSON to CSV):

Serialize

Convert JSON arrays into their own events:

JSON Unroll, XML Unroll

Flatten nested structures (e.g., nested JSON):

Flatten

Aggregate events in real-time (i.e. statistical aggregations):

Aggregations

Convert events to metrics format:

Publish Metrics, Prometheus Publisher (beta)

Resolve hostname from IP address:

Reverse DNS (beta)

Extract numeric values from event fields, converting them to type number :
Numerify

Send events out to a command or a local file, via stdin , from any point in a

Pipeline:

Tee

Convert an XML event's elements into individual events:

XML Unroll

Duplicate events in the same Pipeline, with optional added fields:

Clone

Add a text comment within a Pipeline's UI, to label steps without changing event

data:

Comment

A Function group is a collection of consecutive Functions that can be moved up and

down a Pipeline's Functions stack together. Groups help you manage long stacks of

Functions by streamlining their display. They are a UI visualization only: While

Functions are in a group, those Functions maintain their global position order in the

Pipelie

Function Groups

Page 554 of 900

To build a group from any Function, click the Function's ••• (Options) menu, then

select Group Actions > Create Group.

Creating a group

You'll need to enter a Group Name before you can save or resave the Pipeline.

Optionally, enter a Description.

Naming a group

Once you've saved at least one group to a Pipeline, other Functions' ••• (Options) >

Group Actions submenus will add options to Move to Group or Ungroup/Ungroup All.

Expanded Group Actions submenu

A saved group that's empty displays a dashed target into which you can drag and drop

Functions.

ℹ Function groups work much like Route groups.

Page 555 of 900

Drag-and-drop target

Updated 26 days ago

Page 556 of 900

Auto Timestamp

The Auto Timestamp Function extracts time to a destination field, given a source field

in the event. By default, Auto Timestamp makes a first best effort and populates

_time . When you add a sample (via paste or a local file), you should accomplish time
and event breaking at the same time you add the data.

This Function allows fine-grained and powerful transformations to populate new time

fields, or to edit existing time fields. You can use the Function's Additional timestamps

section to create custom time fields using regex and custom JavaScript strptime
functions.

Filter: Filter expression (JS) that selects data to be fed through the Function. The

default true setting passes all events through the Function.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Source field: Field to search for a timestamp. Defaults to _raw .

Destination field: Field to place extracted timestamp in. Defaults to _time . Supports
nested addressing.

Default timezone: Select a timezone to assign to timestamps that lack timezone info.

Defaults to Local . (This drop-down includes support for legacy names: EST5EDT ,
CST6CDT , MST7MDT , and PST8PDT .)

Time expression: Expression with which to format extracted time. Current time, as a

JavaScript Date object, is in global time . Defaults to time.getTime() / 1000 .

Description

Usage

Advanced Settings

ℹ For details about Cribl LogStream's Library (native) time methods, see:

C.Time – Time Functions.

Page 557 of 900

Start scan offset: How far into the string to look for a time string.

Max timestamp scan depth: Maximum string length at which to look for a timestamp.

Default time: How to set the time field if no timestamp is found. Defaults to Current

time.

Additional timestamps: Add Regex/Strptime pairs to extract additional timestamp

formats.

Regex: Regex, with first capturing group matching the timestamp.

Strptime format: Timestamp in strptime format.

Referencing https://github.com/d3/d3-time-format#locale_format:

Directives marked with an asterisk (*) might be affected by the locale definition.

Format Reference

%a - abbreviated weekday name.*
%A - full weekday name.*
%b - abbreviated month name.*
%B - full month name.*
%c - the locale’s date and time, such as %x, %X.*
%d - zero-padded day of the month as a decimal number [01,31].
%e - space-padded day of the month as a decimal number [1,31]; equivalen
%f - microseconds as a decimal number [000000, 999999].
%H - hour (24-hour clock) as a decimal number [00,23].
%I - hour (12-hour clock) as a decimal number [01,12].
%j - day of the year as a decimal number [001,366].
%m - month as a decimal number [01,12].
%M - minute as a decimal number [00,59].
%L - milliseconds as a decimal number [000, 999].
%p - either AM or PM.*
%Q - milliseconds since UNIX epoch.
%s - seconds since UNIX epoch.
%S - second as a decimal number [00,61].
%u - Monday-based (ISO 8601) weekday as a decimal number [1,7].
%U - Sunday-based week of the year as a decimal number [00,53].
%V - ISO 8601 week of the year as a decimal number [01, 53].
%w - Sunday-based weekday as a decimal number [0,6].
%W - Monday-based week of the year as a decimal number [00,53].
%x - the locale’s date, such as %-m/%-d/%Y.*
%X - the locale’s time, such as %-I:%M:%S %p.*
%y - year without century as a decimal number [00,99].
%Y - year with century as a decimal number.
%Z - time zone offset, such as -0700, -07:00, -07, or Z.
%% - a literal percent sign (%).

Complying with the Format

Page 558 of 900

In order to use auto timestamping upon ingestion, the formatting used must match the

%Z parameters above. So:

2020/06/10T17:17:35.004-0700 , 2020/06/10T17:17:35.004-07:00 ,
2020/06/10T17:17:35.004-07 , or 2020/06/10T10:17:35.004Z will all be

parsed. However:

Auto Timestamp will not parse 2020/06/10T11:17:35.004 EST correctly, unless

you use the Additional Timestamps section s̓ internal Regex or Strptime Format

operators.

Filter: name.startsWith('kumquats') && value=='specific string here'

This will allow the Auto Timestamp Function to act only on events matching the

specified parameters.

To add this sample (after creating an Auto Timestamp Function with the above Filter

expression): Go to Preview > Add a Sample > Paste a Sample, and add the data

snippet above. Do not make any changes to timestamping or line breaking, and select

Save as Sample File.

By default, LogSteram will inspect the first 150 characters, and extract the first valid

timestamp it sees. You can modify this character limit under Advanced Settings >

Max Timestamp Scan Depth.

LogStream grabs the first part of the event, and settles on the first matching value to

display for time :

_time 1569006235
GMT: Friday, 20 September 2019, 7�03�55 PM GMT

Your Local Time: Friday, 20 September 2019 PDT, 12�03�55 AM GMT -07�00

Because no explicit timezone has been set (under Default Timezone), _time inherits

the Local timezone, which in this example is GMT -07:00 .

Basic Example

Sample:

Sep 20 12:03:55 PA-VM 1,2019/09/20 13:03:58,CRIBL,TRAFFIC,end,2049,2019/0

Page 559 of 900

The datetime.strptime() method creates a datetime object from the string passed

in by the Regex field.

Here, we'll use datetime.strptime() to match a timestamp in AM/PM format at the

end of a line.

Sample:

This is a sample event that will push the datetime values further on
inside the event. This is still a sample event and finally here is the
datetime information!: Server_UTC_Timestamp="04/27/2020 2:30:15 PM"

Max timestamp scan depth: 200

Click to add Additional timestamps:

Regex: (\d{1,2})\/(\d{2})\/(\d{4})\s(\d{1,2}):(\d{2}):(\d{2})\s(\w{2})

Strptime format: '%m/%d/%Y %H:%M:%S %p'

Timezone Dependencies and Detailsℹ

LogStream uses ICU for timezone information. It does not query external

files or the operating system. The bundled ICU is updated periodically.

For additional timezone details, see: https://www.iana.org/time-zones.

Advanced Settings Example

Gnarly Detailsℹ

This Function supports the %f (microseconds) directive, but LogStream

will truncate it to millisecond resolution.

For further examples, see Extracting Timestamps from Messy Logs.

Updated about a month ago

Page 560 of 900

Aggregations

The Aggregations Function performs aggregate statistics on event data.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Time window: The time span of the tumbling window for aggregating events. Must be

a valid time string (e.g., 10s). Must match pattern \d+[sm]$.

Aggregates: Aggregate function(s) to perform on events. E.g.,

sum(bytes).where(action=='REJECT').as(TotalBytes) . Expression format:
aggFunction(<FieldExpression>).where(<FilterExpression>).as(<outputField
>) . See more examples below.

Note: When used without as() , the aggregate's output will be placed in a field
labeled <aggFunction>_<fieldName> . If there are conflicts, the last aggregate
wins. For example, given two aggregates –

sum(bytes).where(action=='REJECT') and sum(bytes) – the latter one

(sum_bytes) is the winner.

Group by Fields: Fields to group aggregates by.

Evaluate fields: Set of key/value pairs to evaluate and add/set. Fields are added in the

context of an aggregated event, before theyʼre sent out. Does not apply to

passthrough events.

Cumulative aggregations: Determines if the aggregations should be retained for

cumulative aggregations, or reset to 0, when flushing out an aggregation table event.

Defaults to No .

Lag tolerance: The lag tolerance represents the tumbling window tolerance to late

events. Must be a valid time string (e.g., 10s). Must match pattern \d+[sm]$.

Description

Usage

Time Window Settings

Page 561 of 900

Idle bucket time limit: The amount of time to wait before flushing a bucket that has

not received events. Must be a valid time string (e.g., 10s). Must match pattern \d+
[sm]$.

Passthrough mode : Determines whether to pass through the original events along

with the aggregation events. Defaults to No .

Metrics mode: Determines whether to output aggregates as metrics. Defaults to No ,
causing aggregates to be output as events.

Sufficient stats mode: Determines whether to output only statistics sufficient for the

supplied aggregations. Defaults to No , meaning output richer statistics.

Output prefix: A prefix that is prepended to all of the fields output by this

Aggregations Function.

Aggregation event limit: The maximum number events to include in any given

aggregation event. Defaults to unlimited.

Aggregation memory limit: The memory usage limit to impose upon aggregations.

Defaults to unlimited (i.e., the amount of memory available in the system).

avg(expr:FieldExpression) : Returns the average of the values of the parameter.
count(expr:FieldExpression) : Returns the number of occurrences of the values of
the parameter.

dc(expr: FieldExpression, errorRate: number = 0.01) : Returns the estimated
number of distinct values of the <expr> parameter, within a relative error rate.

distinct_count(expr: FieldExpression, errorRate: number = 0.01) : Returns
the estimated number of distinct values of the <expr> parameter, within a relative

error rate.

earliest(expr:FieldExpression) : Returns the earliest (based on _time)
observed value of the parameter.

first(expr:FieldExpression) : Returns the first observed value of the parameter.
last(expr:FieldExpression) : Returns the last observed value of the parameter.
latest(expr:FieldExpression) : Returns the latest (based on _time) observed
value of the parameter.

max(expr:FieldExpression) : Returns the maximum value of the parameter.

min(expr:FieldExpression) : Returns the minimum value of the parameter.

per_second(expr:FieldExpression) : Returns the per second rate (based on
_time) observed value of the parameter.
perc(level: number, expr: FieldExpression) : Returns <level> percentile value

Output Settings

Advanced Settings

List of Aggregate Functions

Page 562 of 900

of the numeric values of the <expr> parameter.

rate(expr:FieldExpression, timeString: string = '1s') : Returns the rate
(based on _time) observed value of the parameter.
stddev(expr:FieldExpression) : Returns the sample standard deviation of the
values of the parameter.

stddevp(expr:FieldExpression) : Returns the population standard deviation of the
values of the parameter.

sum(expr:FieldExpression) : Returns the sum of the values of the parameter.

sumsq(expr:FieldExpression) : Returns the sum of squares of the values of the

parameter.

variance(expr:FieldExpression) : Returns the sample variance of the values of the
parameter.

variancep(expr:FieldExpression) : Returns the population variance of the values
of the parameter.

As events are aggregated into windows, there is a good chance that most will arrive

later than their event time. For instance, given a 10s window (10:42:00 -
10:42:10), an event with timestamp 10:42:03 might come in 2 seconds later at

10:42:05 .

In several cases, there will also be late, or lagging, events that will arrive after the

latest time window boundary. For example, an event with timestamp 10:42:04 might

arrive at 10:42:12 . Lag Tolerance is the setting that governs how long to wait – after

the latest window boundary – and still accept late events.

How Do Time Window Settings Work?

Lag Tolerance

Page 563 of 900

The "bucket" of events is said to be in Stage 1, where it's still accepting new events,

but it's not yet finalized. Notice how in the third case, an event with event time

10:42:09 arrives 1 second past the window boundary at 10:42:11 , but it's still
accepted because it happens before the lag time expires.

After Lag time expires, the bucket moves to Stage 2.

If the bucket is created from a historic stream, then the bucket is initiated in Stage 2.

Lag time is not considered. A "historic" stream is one where the latest time of a bucket

is before now() . E.g., if the window size is 10s, and now()=10:42:42 , an event with

Page 564 of 900

event_time=10 will be placed in a Stage 2 bucket with range 10:42:10 -
10:42:20 .

While Lag Tolerance works with event time, Idle Bucket Time Limit works on arrival

time (i.e., real time). It is defined as the amount of time to wait before flushing a bucket

that has not received events.

After the Idle Time limit is reached, the bucket is "flushed" and sent out of the system.

Assume we're working with VPC Flowlog events that have the following structure:

version account_id interface_id srcaddr dstaddr srcport dstport protocol
packets bytes start end action log_status

For example:

2 99999XXXXX eni-02f03c2880e4aaa3 10.0.1.70 10.0.1.11 9999 63030 6 6556
262256 1554562460 1554562475 ACCEPT OK
2 496698360409 eni-08e66c4525538d10b 37.23.15.38 10.0.2.232 4373 8108 6 1
52 1554562456 1554562466 REJECT OK

Every 10s, compute sum of bytes and output it in a field called TotalBytes .

Time Window: 10s
Aggregations: sum(bytes).as(TotalBytes)

Every 10s, compute sum of bytes , output it in a field called TotalBytes , group by
srcaddr .

Idle Bucket Time Limit

Examples

Scenario A:

Scenario B:

Page 565 of 900

Time Window: 10s
Aggregations: sum(bytes).as(TotalBytes)
Group by Fields: srcaddr

Every 10s, compute sum of bytes but only where action is REJECT , output it in a
field called TotalBytes , group by srcaddr .

Time Window: 10s
Aggregations: sum(bytes).where(action=='REJECT').as(TotalBytes)
Group by Fields: srcaddr

Every 10s, compute sum of bytes but only where action is REJECT , output it in a
field called TotalBytes . Also, compute distinct count of srcaddr .

Time Window: 10s
Aggregations:

sum(bytes).where(action=='REJECT').as(TotalBytes)
distinct_count(srcaddr).where(action=='REJECT')

Scenario C:

Scenario D:

ℹ For further examples, see Engineering Deep Dive: Streaming Aggregations

Part 2 – Memory Optimization

Updated about a month ago

Page 566 of 900

CEF Serializer

The CEF Serializer takes a list of fields and/or values, and formats them in the Common

Event Format (CEF) standard. CEF defines a syntax for log records. It is composed of a

standard prefix, and a variable extension formatted as a series of key-value pairs.

CEF:Version|Device Vendor|Device Product|Device Version|Device Event
Class ID|Name|Severity|[Extension]

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Output field: The field to which the CEF formatted event will be output. Nested

addressing supported. Defaults to _raw .

CEF Header field definitions. The field values below will be written pipe (|)–delimited
in the Output Field. Names cannot be changed. Values can be computed with JS

expression, or can be constants.

cef_version: Defaults to CEF:0 .

device_vendor: Defaults to Cribl .

device_product: Defaults to Cribl .

device_version: Defaults to C.version .

device_event_class_id: Defaults to 420 .

name: Defaults to Cribl Event .

severity: Defaults to 6 .

Description

Format

Usage

Header Fields

Extension Fields

Page 567 of 900

CEF Extension field definitions. Field names and values will be written in key=value
format. Select each field's Name from the drop-down list. Values can be computed

with JS expressions, or can be constants.

For each CEF field, allowed values include strings, plus any custom Cribl function. For

example, if using a lookup:

Name: Name
Value expression: C.Lookup('lookup-exact.csv', 'foo').match('abc', 'bar')

This can be used for any of the CEF Header Fields.

The resulting event has the following structure for an Output Field set to _CEF_out :

_CEF_out:CEF:0|Cribl|Cribl|42.0-61c12259|420|Business Group
6|6|c6a1Label=Colorado_Ext_Bldg7

Example

Updated about a month ago

Page 568 of 900

Clone

The Clone Function clones events, with optional added fields. Cloned events will be

sent to the same Destination as the original event, because they are in the same

Pipeline.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Clones: Create clones with the specified fields added and set.

Fields: Set of key-value pairs to add. Nested addressing is supported.

In this example, the Destination will receive a clone with an env field set to staging .

Field: env
Value: staging

Description

Usage

Examples

Updated about a month ago

Page 569 of 900

Comment

The Comment Function adds a text comment in a Pipeline. It makes no changes to

event data. The added comment is visible only within the Pipeline UI, where it is useful

for labeling Pipeline steps.

Comment: Add your comment as plain text in this field.

This comment labels the Pipeline's next function:

Description

Usage

Examples

Page 570 of 900

Updated 2 months ago

Page 571 of 900

Drop

The Drop Function will drop/delete any events that meet the Filter expression.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Assume that we care only about errors, so we want to filter out any events that contain

the word “success,” regardless of case: “success,” “SUCCESS,” etc.

In our Drop Function, we l̓l use the JavaScript search() method to search the _raw
field s̓ contents for our target pattern. We know that search() returns a non-negative

integer to indicate the starting position of the first match in the string, or -1 if no

match. So we can evaluate the Function as true when the return value is >= 0 .

Filter: _raw.search(/success/i)>=0

Description

Usage

Example

Updated 2 months ago

Page 572 of 900

Dynamic Sampling

The Dynamic Sampling Function filters out events based on an expression, a sample

mode, and events' volume. Your sample mode s̓ configuration determines what

percentage of incoming events will be passed along to the next step.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events passed into the Function will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Sample mode: Defines how sample rate will be derived. For formulas and usage

details, see Sample Modes below. Supported methods:

Logarithmic (the default): log(previousPeriodCount) .

Square root: sqrt(previousPeriodCount) .

Sample group key: Expression used to derive sample group key. For example:

${domain}:${httpCode} . Each sample group will have its own derived sampling rate,
based on volume. Defaults to `${host}` .

All events without a host field passing through the Function will be associated with the

same group and sampled the same.

Sample period Sec: How often (in seconds) sample rates will be adjusted.

Defaults to 30 .

Minimum events: Minimum number of events that must be received, in previous

sample period, for sampling mode to be applied to current period. If the number

of events received for a sample group is less than this minimum, a sample rate of

1�1 is used. Defaults to 30 .

Max sampling rate. Maximum sampling rate. If the computed sampling rate is

above this value, the rate will be limited to this value.

Description

Usage

Advanced Settings

Page 573 of 900

Compared to static sampling, where users must select a sample rate a priori, Dynamic

Sampling allows for automatically adjusting sampling rates, based on incoming data

volume per sample group. This Function allows users to set only the

aggressiveness/coarseness of this adjustment. Square Root is more aggressive than

Logarithmic mode.

As an event passes through the Function, it's evaluated against the Sample Group Key

expression to determine the sample group it will be associated with. For example,

given an event with these fields: ...ip=1.2.3.42, port=1234... , and a Sample
Group Key of `${ip}:${port}` , the event will be associated with the
1.2.3.42:1234 sample group.

When a sample group is new, it will initially have a sample rate of 1:1 for Sample
Period seconds (this value defaults to 30 seconds). Once Sample Period seconds

have elapsed, a sample rate will be derived based on the configured Sample Mode ,
using the sample group's event volume during the previous sample period.

For example, assuming a Logarithmic Sample Mode:

Period 0 (first 30s): Number of events in sample group: 1000 , Sample Rate: 1:1 ,
Events allowed: ALL
Sample Rate calculation for next period: Math.ceil(Math.log(1000)) = 7

Period 1 (next 30s) -- Number of events in sample group: 4000 , Sample Rate: 7:1 :
Events allowed: 572
Sample Rate calculation for next period: Math.ceil(Math.log(4000)) = 9

Period 2 (next 30s) -- Number of events in sample group: 12000 , Sample Rate:
9:1 : Events allowed: 1334
Sample Rate calculation for next period: Math.ceil(Math.log(12000)) = 10

Period 3 (next 30s) -- Number of events in sample group: 2000 , Sample Rate:
10:1 : Events allowed: 200
Sample Rate calculation for next period: Math.ceil(Math.log(2000)) = 8
...

1. Logarithmic – The sample rate is derived, for each sample group, using a natural

log: Math.ceil(Math.log(lastPeriodVolume)) . This mode is less aggressive,
and drops fewer events.

How Does Dynamic Sampling Work

⚠ If the Sample Group Key is left at its `${host}` default, all events without

a host will be associated with the same group and sampled the same.

Sample Modes

Page 574 of 900

2. Square Root – The sample rate is derived, for each sample group, using:

Math.ceil(Math.sqrt(lastPeriodVolume)) . This mode is more aggressive,
and drops more events.

Here s̓ an example that illustrates the effectiveness of using the Square Root sample

mode.

Sample Mode: Square Root
Sample Period (sec): 20
Minimum Events: 3
Max. Sampling Rate: 3

Events In: 4.23K

Events Out: 1.41K

In this generic example, we reduced the incoming event volume from 4.23K to 1.41K.

Your own results will vary depending on multiple parameters – the Sample Group Key,

Sample Period, Minimum Events, Max Sampling Rate, and rate of incoming events.

Example

Settings:

Results:

ℹ For further examples, see Getting Smart and Practical With Dynamic

Sampling.

Updated about a month ago

Page 575 of 900

Eval

The Eval Function adds or removes fields from events. (In Splunk, these are index-time

fields.)

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Evaluate fields: Set of key/value pairs to add. The left-hand side input (Name) is the

key name. The right-hand side input (Value Expression) is a JS expression to compute

the value – this can be a constant. Nested addressing is supported. Strings intended to

be used as values must be single- or double-quoted.

Keep fields: List of fields to keep. Wildcards (*) and nested addressing are supported.

Takes precedence over Remove fields (below).

Remove fields: List of fields to remove. Wildcards (*) and nested addressing are

supported. Cannot remove fields matching Keep fields. Cribl LogStream internal fields

that start with __ (double underscore) cannot be removed via wildcard. Instead, they

need to be specified individually. For example, __myField cannot be removed by

specifying __myF* .

A field matching an entry in both Keep (wildcard or not) and Remove will not be

removed. This is useful for implementing “remove all but” functionality. For example, to

keep only _time, _raw, source, sourcetype, host , we can specify them all in

Keep, while specifying * in Remove.

Negated terms are supported in both Keep fields and Remove fields. The list is order-

sensitive when negated terms are used. Examples:

!foobar, foo* means "All fields that start with 'foo' except foobar ."

!foo*, * means "All fields except for those that start with 'foo'."

Description

Usage

Using Keep and Remove

Page 576 of 900

Scenario A: Create field myField with static value of value1 :

Name: myField

Value Expression: 'value1'

Scenario B: Set field action to blocked if login==error :

Name: action

Value Expression: login=='fail' ? 'blocked' : action

Scenario C: Create a multivalued field called myTags . (i.e., array):

Name: myTags

Value Expression: ['failed', 'blocked']

Scenario D: Add value error to a multivalued field myTags :

Name: myTags

Value Expression: login=='error' ? [...myTags, 'error'] : myTags

Scenario E: Rename an identification field to the shorter ID – copying over the

original field s̓ value, and removing the old field:

Name: ID

Value Expression: identification

Remove Field: identification

The Eval Function has the ability to execute expressions without assigning their value

to the field of an event. You can do this by simply leaving the left-hand side input

empty, and having the right-hand side do the assignment.

Simple Example: Object.assign(foo, JSON.parse(bar), JSON.parse(baz))
on the right-hand side (and left-hand side empty) will JSON-parse the strings in

bar and baz , merge them, and assign their value to foo , an already existing
field.

Another Example: To parse JSON, enter Object.assign(__e,
JSON.parse(_raw)) on the right-hand side (and left-hand side empty). __e is a

Examples

ℹ See Ingest-time Fields for more examples.

Advanced Usage Notes

Note 1

Page 577 of 900

special variable that refers to the (context) event within a JS expression. In this

case, content parsed from _raw is added at the top level of the event.

You can also use the Eval Function to set and unset control fields (e.g., _TCP_ROUTING
in Splunk), via this syntax: _ctrl.<name> . Control fields can be referenced only on
the left-hand side of Add. (I.e., they cannot be read or used on the right-hand side,

and cannot be referenced in Remove.)

To unset/delete a control field, set its value to undefined . These fields are normally
not needed for event computations, and modifying them is suggested to be done

only by experts. Please reach out to Cribl if you need help with this topic.

Note 2

Updated about a month ago

Page 578 of 900

Flatten

The Flatten Function is used to flatten fields out of a nested structure.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Fields: List of top-level fields to include for flattening. Supports * wildcards. Defaults

to empty array, which means all fields.

Prefix: Prefix string for flattened field names. Defaults to empty.

Depth: Number representing the nested levels to consider for flattening. Minimum 1 .
Defaults to 5 .

Delimiter: Delimiter to be used for flattening. Defaults to _ (underscore).

Add the following test sample in Preview > Paste a Sample:

input

Under Select Event Breaker, choose ndjson (newline-delimited JSON), and click Save

as a Sample File.

Here's sample output with all settings at default:

output

Description

Usage

Example

{ "accounting" : [{ "firstName" : "John", "lastName" : "Doe", "age" : 23

{
 "accounting_0_firstName": "John",
 "accounting_0_lastName": "Doe",

Page 579 of 900

Using the Flatten Function s̓ default settings, we successfully create top-level fields

from the nested JSON structure, as expected.

 "accounting_0_age": 23,
 "accounting_1_firstName": "Mary",
 "accounting_1_lastName": "Smith",
 "accounting_1_age": 32,
 "sales_0_firstName": "Sally",
 "sales_0_lastName": "Green",
 "sales_0_age": 27,
 "sales_1_firstName": "Jim",
 "sales_1_lastName": "Galley",
 "sales_1_age": 41,
}

Updated about a month ago

Page 580 of 900

GeoIP

The GeoIP Function enriches events with geo fields, given an IP address. It is

optimized for binary databases such as Maxmind's GeoIP.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

GeoIP file (.mmdb): Path to a Maxmind database, in binary format, with .mmdb
extension.

IP field: Field name in which to find an IP to look up. Can be nested. Defaults to ip .

Result field : Field name in which to store the GeoIP lookup results. Defaults to

geoip .

Assume that you are receiving SMTP logs, and need to see geolocation information

associated with IPs using the SMTP service.

Here s̓ a sample of our data, from IPSwitch IMail Server logs:

03:19 03:22 SMTPD(00180250) [192.168.1.131] connect 74.136.132.88 port
2539 03:19 03:22 SMTPD(00180250) [74.136.132.88] EHLO msnbc.com 03:19

Description

Usage

ℹ If the database file is located within the lookup directory

($CRIBL_HOME/data/lookups/), the GeoIP fIle does not need to be an

absolute path.

In distributed deployments, ensure that the Maxmind database file is in the

same location on both the Master and Worker Nodes.

Example

Page 581 of 900

03:22 SMTPD(00180250) [74.136.132.88] MAIL FROM:<info-jjgcdshx@test.us>
03:19 03:22 SMTPD(00180250) [74.136.132.88] RCPT To:<user@domain.com>

In this example, we l̓l chain together three Functions. First, we l̓l use a Regex Extract

Function to isolate the host s̓ IP. Next, we l̓l use the GeoIP Function to look up the

extracted IP against our geoIP database, placing the returned info into a new __geoip
field. Finally we l̓l use an Eval Function to parse that field s̓ city, state, country, ZIP,

latitude, and longitude.

Regex: \[(?<ip>\S+)\]
Source field: _raw
Result: 74.136.132.88

Event s̓ IP field: ip
Result field: __geoip

In the Eval Function s̓ Remove fields setting, you could specify the __geoip field for

removal, if desired. However, its __ prefix makes it an internal field anyway.

Function 1 – Regex Extract

Function 2 – GeoIP

Function 3 – Eval

City __geoip.city.names.en

Country __geoip.country.names.en

Zip __geoip.postal.code

Lat __geoip.location.latitude

Long __geoip.location.longitude

Updated 22 days ago

Name Value Expression

Page 582 of 900

Grok

The Grok Function extracts structured fields from unstructured log data, using

modular regex patterns.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Optional description of this Function's purpose in this Pipeline. Defaults

to empty.

Final: If toggled to Yes , stops data from being fed to downstream Functions. Defaults

to No .

Pattern: Grok pattern to extract fields. Syntax supported: %
{PATTERN_NAME:FIELD_NAME} .

Click + Add pattern to chain more patterns.

Source field: Field on which to perform Grok extractions. Defaults to _raw .

You can add and edit Grok patterns via LogStream's UI by selecting Knowledge >

Grok Patterns. Pattern files are located at:

$CRIBL_HOME/(default|local)/cribl/grok-patterns/

Example event:

Pattern: %{TIMESTAMP_ISO8601:event_time} %{LOGLEVEL:log_level} %
{GREEDYDATA:log_message}
Source Field: _raw

Description

Usage

Management

Example

{"_raw": "2020-09-16T04:20:42.45+01:00 DEBUG This is a sample debug log m

Page 583 of 900

Event after extraction:

Note the new fields added to the event: event_time , log_level , and
log_message .

Syntax for a Grok pattern is %{PATTERN_NAME:FIELD_NAME} . E.g.: %{IP:client}
%{WORD:method} .

Useful links for creating and testing Grok patterns:

http://grokdebug.herokuapp.com and

http://grokconstructor.appspot.com/.

Additional patterns are available here:

https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns.

{"_raw": "2020-09-16T04:20:42.45+01:00 DEBUG This is a sample debug log m
 "_time": 1600226442.045,
 "event_time": "2020-09-16T04:20:42.45+01:00",
 "log_level": "DEBUG",
 "log_message": "This is a sample debug log message",
}

References

Updated a day ago

Page 584 of 900

JSON Unroll

The JSON Unroll Function accepts a _raw field as a JSON string, and

unrolls/explodes an array of objects from the field into individual events.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Path: Path to array to unroll, e.g., foo.0.bar .

New name: The name that the exploded array element will receive in each new event.

Leave empty to expand the array element with its original name.

Assume you have an incoming event that has a _raw field as a JSON string like this:

Sample _raw field

Path: allCars
New Name: cars

Description

Usage

Examples

{"date":"9/25/18 9:10:13.000 PM",
 "name":"Amrit",
 "age":42,
 "allCars": [
 { "name":"Ford", "models":["Fiesta", "Focus", "Mustang"] },
 { "name":"GM", "models":["Trans AM", "Oldsmobile", "Cadillac"]
 { "name":"Fiat", "models":["500", "Panda"] },
 { "name":"Blackberry", "models":["KEY2", "Bold Touch 9900"] }
]
 }

Settings:

Page 585 of 900

Resulting Events

Output Events:

Event 1:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"cars"

Event 2:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"cars"

Event 3:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"cars"

Event 4:
{"_raw":"{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"cars"

Updated about a month ago

Page 586 of 900

Lookup

The Lookup Function enriches events with external fields. CSV lookup table files are

supported.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Lookup file path (.csv, .csv.gz): Path to the location of the lookup file. Environment

variables can be referenced via $, e.g.: $HOME/file.csv .

Match mode: Defines the format of the lookup file, and indicates the matching logic

that will be performed. Defaults to Exact .

Match type: For CIDR and Regex Match modes, this attribute refines how to resolve

multiple matches. First match will return the first matching entry. Most specific
will scan all entries, finding the most specific match. All will return all matches in the

output, as arrays. Defaults to First match .

Lookup fields (.csv): Field(s) that should be used to key into the lookup table.

Lookup field name in event: Exact field name as it appears in events. Nested

addressing supported.

Corresponding field name in lookup: The field name as it appears in the lookup

file. Defaults to the Lookup field name in event value. This input is optional.

Description

Usage

Case-Sensitive / Multiple Matches⚠

Lookups are case-sensitive by default. (See the Ignore case option below.)

If the lookup file contains duplicate key names with different values, all

Match modes of this Function will use only the value in the key's final

instance, ignoring all preceding instances.

Page 587 of 900

Output field(s): Field(s) to add to events after matching the lookup table. Defaults to

all if not specified.

Output field name from lookup: Field name, as it appears in the lookup file.

Lookup field name in event: Field name to add to event. Defaults to the lookup

field name. This input is optional. Nested addressing is supported.

Reload period (sec): Periodically check the underlying file for modtime changes, and

reload if necessary. Use -1 to disable. Defaults to 60 .

Ignore case: Ignore case when performing Match mode: Exact lookups. Defaults to

No .

Add to raw event: Whether to append the looked-up values to the _raw field, as

key=value pairs. Defaults to No .

Assign a sourcetype field to events if their _raw field matches a particular regex.

paloalto.csv

Match mode: Regex

Match type: First match

Lookup field name in event: _raw

Corresponding field name in lookup: regex

Events before and after

Advanced Settings

Examples

Example 1: Regex Lookups

regex,sourcetype
"^[^,]+,[^,]+,[^,]+,THREAT",pan:threat
"^[^,]+,[^,]+,[^,]+,TRAFFIC",pan:traffic
"^[^,]+,[^,]+,[^,]+,SYSTEM",pan:system

BEFORE:

{"_raw": "Sep 20 13:03:55 PA-VM 1,2018/09/20 13:03:58,FOOBAR,TRAFFIC,end
{"_raw": "Sep 20 13:03:55 PA-VM 1,2018/09/20 13:03:58,FOOBAR,THREAT,end,2

AFTER:

Page 588 of 900

Assign a location field to events if their destination_ip field matches a particular

CIDR range.

paloaltoips.csv

Match mode: CIDR

Match type: See options below

Lookup field name in event: destination_ip

Corresponding field name in lookup: range

Events before and after

{"_raw": "Sep 20 13:03:55 PA-VM 1,2018/09/20 13:03:58,FOOBAR,TRAFFIC,end
 "sourcetype": "pan:traffic"
 }
{"_raw": "Sep 20 13:03:55 PA-VM 1,2018/09/20 13:03:58,FOOBAR,THREAT,end,2
 "sourcetype": "pan:threat"
 }

Example 2: CIDR Lookups

range,location
10.0.0.0/24,San Francisco
10.0.0.0/16,California
10.0.0.0/8,US

ℹ In Match mode: CIDR with Match type: Most specific, the lookup will

implicitly search for matches from most specific to least specific. There is

no need to pre-sort data.

Note that Match mode: CIDR with Match type: First Match is likely the

most performant with large lookups. This can be used as an alternative to

Most specific, if the file is sorted with the most specific/relevant entries

first. This mode still performs a table scan, top to bottom.

BEFORE:

{"_raw": "Sep 20 13:03:55 PA-VM 1, 2018/09/20 13:03:58,FOOBAR,TRAFFIC,end
 "destination_ip": "10.0.0.102"
 }

AFTER with Match Type: First Match

{"_raw": "Sep 20 13:03:55 PA-VM 1, 2018/09/20 13:03:58,FOOBAR,TRAFFIC,end
 "destination_ip": "10.0.0.102",

Page 589 of 900

See Ingest-time Lookups for other examples.

 "location": "San Francisco"
 }

AFTER with Match Type: Most Specific

{"_raw": "Sep 20 13:03:55 PA-VM 1, 2018/09/20 13:03:58,FOOBAR,TRAFFIC,end
 "destination_ip": "10.0.0.102",
 "location": "San Francisco"
 }

AFTER with Match Type: All

{"_raw": "Sep 20 13:03:55 PA-VM 1, 2018/09/20 13:03:58,FOOBAR,TRAFFIC,end
 "destination_ip": "10.0.0.102",
 "location": [
 "San Francisco",
 "California",
 "US",
]}

Updated about a month ago

Page 590 of 900

Mask

The Mask function masks, or replaces, patterns in events.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Masking rules: Match Regex and Replace Expression pairs. Defaults to empty.

Match regex: Pattern to replace. Use /g to replace all matches, e.g.:

/(bar)/g

Replace expression: A JS expression or literal to replace the matching

content.

Apply to fields: Fields on which to apply the masking rules. Defaults to _raw .
Wildcards (*) and nested addressing are supported.

Here, we'll simply search for the string dfhgdfgj , and replace that value (if found)
with Trans AM . This will help close America s̓ muscle-car gap:

Description

Usage

ℹ Negated terms are also supported. When you negate field names, the fields

list is order-sensitive. E.g., !foobar before foo* means "Apply to all

fields that start with foo , except foobar ." However, !foo* before *
means "Apply to all fields, except for those that start with foo ."

Examples

Example 1: Transform a String

Page 591 of 900

Event before masking

Configure the Mask Function > Masking Rules as follows:

Match Regex: dfhgdfgj
Replace Expression: Trans AM

Mask Function configuration

Result: Vroom vroom!

Page 592 of 900

Event after masking

Assume that you're ingesting data whose _raw fields contain unredacted Social

Security numbers in the Key=Value pattern social=######### .

Event with unredacted SSNs

Example 2: Mask Sensitive Data

Page 593 of 900

You can use a Mask Function to run an md5 hash of the social keys' numeric values,

replacing the original values with the hashed values. Configure the Masking Rules as

follows:

Match Regex: (social=)(\d+)
Replace Expression: `${C.Mask.md5(g2)}`

Mask Function configuration

Result: The sensitive values are replaced by their md5 hashes.

Event with hashed SSNs

ℹ In scenarios where you need to send unmodified values to certain

Destinations (such as archival stores), you can narrow the Mask Function's

scope by setting the associated Route's Output field.

For further masking examples, see Masking and Obfuscation.

Page 594 of 900

Updated about a month ago

Page 595 of 900

Numerify

The Numerify Function converts event fields that are numbers to type number .

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Ignore Fields: Specify fields to not numerify, one field per row. By default, Numerify

will apply to all fields. Wildcards (*) and nested addressing are supported.

Assume an event whose text contains a numeric value that must be extracted to

perform some numeric analysis. The text looks like this:

version=11.5.0.0.1.1588476445

We can extract the numeric value by chaining together two Functions:

1. A Regex Extract Function. Set its Regex field to /version=(?<ver>\d+)/ , to
capture the first set of digits found in the event string.

2. Then use Numerify.

This captures the substring 11 and converts it to a numeric 11 value.

Description

Usage

Double Negativesℹ

Negated terms are also supported. When you negate field names, the fields

list is order-sensitive. E.g., !foobar before foo* means "Ignore all fields

that start with foo , except foobar ." However, !foo* before * means

"Ignore all fields, except for those that start with foo ."

Examples

Scenario A:

Page 596 of 900

Assume email transaction log events like the sample below. The final field is the

message s̓ size, in bytes. We want to extract this as a numeric value, for analysis in

LogStream or downstream services:

03:19 03:22 SMTPD (00180250) [209.221.59.70]
C:\IMail\spool\D28de0018025017cd.SMD 3827

Again, we can accomplish this with two Functions:

1. A Regex Extract Function. To capture a substring of digits that follows six other

substrings (all separated by white space), we set the Regex field to:

\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+(?<bytes>\d+)

2. Then use Numerify.

Scenario B:

Updated 2 months ago

Page 597 of 900

Parser

The Parser Function can be used to extract fields out of events, or to reserialize

(rewrite) events with a subset of fields. Reserialization will maintain the format of the

events.

For example: If an event contains comma-delimited fields, and fieldA and fieldB
are filtered out, those fields' positions will be set to null , but not deleted completely.

Parser will not remove fields that it did not create. The Eval Function can do so.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Operation mode: Extract will create new fields. Reserialize will extract, filter fields,

and then reserialize. Serialize will put fields in a certain format. Defaults to Extract.

Source field: Field that contains text to be parsed. Not usually needed in Serialize

mode.

Destination field: Field in which to add extracted fields (Extract mode only).

Destination field: Name of field in which to add extracted and serialized fields.

(Extract and Serialize modes only.)

Type: Parser/Formatter type to use. Options:

CSV

JSON

K=V Pairs

Extended Log File Format (ELFF)

Common Log Format (CLF)

Library: Select an option from the Parsers Library.

Description

Usage

Page 598 of 900

List of fields: Fields expected to be extracted, in order. If not specified, Parser will

auto-generate fields.

Fields to keep: List of fields to keep. Supports wildcards (*). Takes precedence over
Fields to remove. Nested addressing supported.

Fields to remove: List of fields to remove. Supports wildcards (*). Cannot remove
fields matching Fields to keep. Nested addressing supported.

Fields filter expression: Expression to evaluate against {index, name, value}
context of each field. Return truthy to keep, falsy to remove field. Index is zero-based.

The Fields to keep, Fields to remove, and Fields filter expression settings interact as

follows:

Order of evaluation: Fields to keep > Fields to remove > Fields filter expression.

If a field is in both Fields to keep and Fields to remove, Fields to keep takes

precedence.

If a field is in both Fields to remove and Fields filter expression, Fields to remove

takes precedence.

Insert the following sample, using Preview > Add a Sample > Paste a Sample:

2019/06/24 05:10:55 PM Z
a=000,b=001,c=002,d=003,e=004,f=005,g1=006,g2=007,g3=008

Create the following test Parser Function (or import this Pipeline:

https://github.com/weeb-cribl/cribl-

samples/blob/master/parser/functions/parser/parser_1.json).

ℹ Negated terms are supported in both Fields to remove and Fields to keep.

When you use negated terms, the list is order-sensitive. E.g., !foobar,
foo* means "All fields that start with foo , except foobar ." However,
!foo*, * means "All fields, except for those that start with foo ."

How Fields Settings Interact

Example 1

Page 599 of 900

Parser Function initial configuration

First, set the Parser type to Key=Value Pairs .

Keep fields a , b , c . Drop the rest.

Expected result: a , b , c

Fields to Keep: a , b , c

Fields to Remove: *

Fields Filter Expression:

Result: The event will gain four new fields and values, as follows.

a: 000

b: 001

c: 002

cribl_pipe: parser2

Scenario A:

Page 600 of 900

Scenario A result

You can check your stats by clicking the Preview pane s̓ Basic Statistics (chart)

button. In the resulting pop-up, the Number of Fields should have incremented ty four.

Now that you have the hang of it, try out the other simple scenarios below.

Keep fields a , b , those that start with g . Drop the rest.

Expected result: a , b , g1 , g2 , g3

Fields to keep: a , b

Fields to remove: [empty]

Fields filter expression: name.startsWith('g')

Keep fields a , b , those that start with g but only if value is 007 . Drop the rest.

Expected result: a , b , g2

Fields to keep: a , b

Fields to remove: [empty]

Fields filter expression: name.startsWith('g') && value=='007'

Keep fields a , b , c , those that start with g , unless it's g1 . Drop the rest.

Expected result: a , b , c , g2 , g3

Fields to keep: a , b , c

Fields to remove: g1

Fields filter expression: name.startsWith('g')

Scenario B:

Scenario C:

Scenario D:

Page 601 of 900

Keep fields a , b , c , those that start with g but only if index is greater than 6 .
Drop the rest.

Expected result: a , b , c , g2 , g3

Fields to keep: a , b , c

Fields to remove: [empty]

Fields filter expression: name.startsWith('g') && index>6

Assume we have a JSON event that needs to be reserialized, given these

requirements:

1. Remove the level field only if it's set to info .

2. Remove the startTime field, and all fields in the values.total. path that end

in Cxn .

Parser Function configuration:

Scenario E:

ℹ The index refers to the location of a field in the array of all fields extracted

by this Parser. It is zero-based. In the case above, g2 and g3 have

index values of 7 and 8 , respectively.

Example 2

Page 602 of 900

Parser Function configuration for Example 2

JSON event after being processed by the Function:

Example 2 event transformation

Page 603 of 900

Insert the following sample, using Preview > Add a Sample > Paste a Sample:

2019/06/24 15:25:36 PM Z
a=000,b=001,c=002,d=003,e=004,f=005,g1=006,g2=007,g3=008,

For all scenarios below, first create a Parser Function to extract all fields, by setting the

Parser type to Key=Value Pairs . Then add a second Parser Function with the
configuration shown under Parser 2.

Serialize fields a , b , c , d in CSV format.

Expected result: _raw field will have this value 000,001,002,003

Operation mode: Serialize

Source field: [empty]

Destination field: [empty]

Type: CSV

List of fields: a , b , c , d (needed for positional formats)

Serialize fields a , b , c in JSON format, under a field called bar .

Expected result: bar field will be set to:

{"a":"000","b":"001","c":"002","d":"003"}

Operation mode: Serialize

Source field: [empty]

Destination field: bar

Type: JSON

List of fields: [empty]

Fields to keep: a , b , c , d

Example 3

Scenario A:

Parser 2:

Scenario B:

Parser 2:

Updated 2 months ago

Page 604 of 900

Publish Metrics

The Publish Metrics Function extracts, formats, and outputs metrics from events.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Metrics: List of metrics from event to extract and format. Formatted metrics can be

used by a destination to pass metrics to a metrics aggregation platform.

Event field name: The name of the field in event containing the metric value.

Metric name expression: JavaScript expression to evaluate metric field name.

Defaults to the Event Field Name value.

Metric type: Select Counter , Timer , or Gauge (the default).

Dimensions: Optional list of dimensions to associate with every extracted metric

value. If this Function is used to process output from the Aggregations Function, leave

this field blank, because dimensions will be automatically discovered. Defaults to !_*
* .

Description

Usage

ℹ The JavaScript expression will evaluate the metric field name only after

the metrics are processed for transport to the Destination. While in the

processing Pipeline, the metric name expression appears as a literal.

ℹ Dimensions supports wildcards and negated terms. When you use

negated terms, the list is order-sensitive. E.g., !foobar before foo*
means "All fields that start with foo , except foobar ." However, !foo*
before * means "All fields, except for those that start with foo ."

Page 605 of 900

Overwrite: If true, overwrite previous metric specs; otherwise, append. Defaults to

No .

Assume we're working with AWS VPC Flowlog events that have the following structure:

version account_id interface_id srcaddr dstaddr srcport dstport protocol
packets bytes start end action log_status

For example:

2 99999XXXXX eni-02f03c2880e4aaa3 10.0.1.70 10.0.1.11 9999 63030 6 6556
262256 1554562460 1554562475 ACCEPT OK

... and we want to use values of packets and bytes as metrics across these

dimensions: action , interface_id , and dstaddr .

To reference the packets and bytes fields by name, as ‘packets’ and ‘bytes’ ,
our Pipeline will need a Parser Function before the Publish Metrics Function.

Filter: Set as needed

Operation mode: Extract

Type: Extended Log File Format (automatically set when specifying a library)

Library: AWS VPC Flow Logs

Source: _raw
(No need to specify any other fields.)

Below, the metric_name prefix was arbitrarily chosen. Because there is no JavaScript

expression to evaluate – i.e. this is literal text – the strings specified for the Metric

name expression will be identical to those in the final metrics data sent to the

Destination. See Raw Output below.

Examples

Scenario A:

Parser Function

Publish Metrics Function

Metrics

bytes `metric_name.bytes` Gauge

packets `metric_name.packets` Gauge

Dimensions

Event Field NaLme Metric Name Expression Metric Type

Page 606 of 900

All specified dimension names must align with those from the original event. When you

preview the Function's output, the metrics and dimensions will all have special

highlighting to separate them from other fields. Additional highlighting is used to

differentiate the metrics from the dimensions. (If one or more metrics/dimensions are

not highlighted as expected, check the Function's configuration.)

metric_name.bytes:262256|g#action:REJECT,interface_id:eni-
02f03c2880e4aaa3,dstaddr:10.0.1.11

metric_name.packets:6556|g#action:REJECT,interface_id:eni-
02f03c2880e4aaa3,dstaddr:10.0.1.11

Formatted Output

Assume that we want to extract some metrics from specific fields in PANOS logs,

whose events have the following structure:

future_use_0,receive_time, serial_number, type, threat_content_type,
future_use_1, generated_time, source_ip, destination_ip, nat_source_ip,
nat_destination_ip, rule_name, source_user, destination_user,
application, virtual_system, source_zone, destination_zone,
inbound_interface, outbound_interface, log_action, future_use_2,
session_id, repeat_count, source_port, destination_port, nat_source_port,
nat_destination_port, flags, protocol, action, bytes, bytes_sent,
bytes_received, packets, start_time, elapsed_time, category,

action interface_id dstaddr

Raw Output

Compatible Destinationsℹ

All text after the # symbol represents the dimensions as key-value pairs. In

order for dimension data to be included in metrics, the Destination type

cannot be standard StatsD. However, StatsD Extended, Splunk, and

Graphite do support dimensions.

{
 "action": "REJECT",
 "interface_id": "eni-02f03c2880e4aaa3",
 "dstaddr": "10.0.1.11",
 "metric_name.bytes": 262256,
 "metric_name.packets": 6556,
}

Scenario B:

Dimensions

Page 607 of 900

future_use_3, sequence_number, action_flags, source_location,
destination_location, future_use_4, packets_sent, packets_received,
session_end_reason, device_group_hierarchy_level_1,
device_group_hierarchy_level_2, device_group_hierarchy_level_3,
device_group_hierarchy_level_4, virtual_system_name, device_name,
action_source, source_vm_uuid, destination_vm_uuid, tunnel_id_imsi,
monitor_tag_imei, parent_session_id, parent_start_time, tunnel_type,
sctp_association_id, sctp_chunks, sctp_chunks_sent, sctp_chunks_received

For example:

Jan 10 10:19:15 DMZ-internal.nsa.gov 1,2019/01/10
10:19:15,001234567890002,TRAFFIC,drop,2304,2019/01/10
10:19:15,209.118.103.150,160.177.222.249,0.0.0.0,0.0.0.0,InternalServer,,
,not-applicable,vsys1,inside,z1-FW-Transit,ethernet1/2,,All
traffic,2019/01/10
10:19:15,0,1,63712,443,0,0,0x0,udp,deny,60,60,0,1,2019/01/10
10:19:15,0,any,0,0123456789,0x0,Netherlands,10.0.0.0-
10.255.255.255,0,1,0,policy-deny,0,0,0,0,,DMZ-internal,from-
policy,,,0,,0,,N/A,0,0,0,0,1202585d-b4d5-5b4c-aaa2-d80d77ba456e,0

Our goal is to use the four values of bytes_sent , bytes_received, packets_sent ,
and packets_received as metrics across these dimensions: destination_ip ,
inbound_interface , outbound_interface , and destination_port .

Here again, our Pipeline will need a Parser Function before the Publish Metrics

Function.

Filter: Set as needed

Operation mode: Extract

Type: Extended Log File Format (automatically set when specifying a Library)

Library: Palo Alto Traffic

Source: _raw
(No need to specify any other fields.)

Set up the Publish Metrics Function as follows.

Parser Function

Publish Metrics Function

Metrics

bytes_sent metric.${host}.bytes_sent Counter

bytes_received metric.${host}.bytes_rcvd Counter

packets_sent metric.${host}.pkts_sent Counter

Event Field Name Metric Name Expression Metric Type

Page 608 of 900

destination_ip , inbound_interface , outbound_interface , destination_port

metric.10.10.12.192.bytes_sent:60|c|#destination_ip:160.177.222.249,inbou
nd_interface:ethernet1/2,destination_port:443
metric.10.10.12.192.bytes_rcvd:0|c|#destination_ip:160.177.222.249,inboun
d_interface:ethernet1/2,destination_port:443
metric.10.10.12.192.pkts_sent:1|c|#destination_ip:160.177.222.249,inbound
_interface:ethernet1/2,destination_port:443
metric.10.10.12.192.pkts_rcvd:0|c|#destination_ip:160.177.222.249,inbound
_interface:ethernet1/2,destination_port:443

Here again, all text after the # symbol represents the dimensions as key-value pairs.

(See the Compatible Destinations note above.) Unlike the first example, this example

uses JavaScript expressions, which you can see evaluated in the raw output where the

${host} has been converted to 10.10.12.192 .

packets_received metric.${host}.pkts_rcvd Counter

Added Dimensions

Raw Output

Updated 19 days ago

Page 609 of 900

Regex Extract

The Regex Extract Function extracts fields using regex named groups. (In Splunk,

these will be index-time fields). Fields that start with __ (double underscore) are

special fields in Cribl LogStream. They are ephemeral: they can be used by any

Function downstream, but will not be added to events, and will not exit the Pipeline.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Regex: Regex literal. Must contain named capturing groups, e.g.: (?<foo>bar) . Can
contain special _NAME_N and _VALUE_N capturing groups, which extract both the

name and value of a field, e.g.: (?<_NAME_0>[^\s=]+)=(?<_VALUE_0>[^\s]+) .
Defaults to empty. See Examples below.

Additional regex: Click + Add Regex to chain extra regex conditions.

Source field: Field on which to perform regex field extraction. Nested addressing is

supported. Defaults to _raw .

Max exec: The maximum number of times to apply the Regex to the source field when

the global flag is set, or when using _NAME_N and _VALUE_N capturing groups.

Named capturing groups will always use a value of 1 . Defaults to 100 .

Field name format expression: Expression to format field names when _NAME_
capturing groups are used. The original field name is in the global name . E.g., to
append XX to all field names: `${name}_XX` . If not specified, names will be sanitized
using regex: /^[_0-9]+|[^a-zA-Z0-9_]+/g .

Overwrite existing fields: Whether to overwrite existing event fields with extracted

values. If set to No (the default), existing fields will be converted to an array. If toggled

to Yes , Regex Extract will create array fields if applied multiple times, or if fields exist.
(E.g., if src_ip is extracted in an input Pipeline where it is assigned a value of

Description

Usage

Advanced Settings

Page 610 of 900

10.1.2.2 , and is also in a processing Pipeline with a value of 10.2.3.3 , then the
resulting field is ["10.1.2.2", "10.2.3.3"] .)

Assume a simple event that looks like this: metric1=23 metric2=42 dc=23 abc=xyz

Extract only the metric1 field:

Regex: metric1=(?<metric1>\d+)
Result: metric1:"23"

Use the first line of the sample here:

https://github.com/weeb-cribl/cribl-

samples/blob/master/parser/functions/parser/cisco_estreamer.log

Extract all k=v pairs, and add an _XX suffix to the end of the extracted fields:

Regex: (?<_NAME_0>[^\s]+)=(?<_VALUE_0>[^\s]+)

Result:

Examples

Scenario A:

Scenario B:

Page 611 of 900

ℹ For further examples, see Using Cribl to Analyze DNS Logs in Real Time –

Part 2.

Updated 2 days ago

Page 612 of 900

Regex Filter

The Regex Filter Function filters out events based on regex matches.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Regex: Regex to test against. Defaults to empty.

Additional regex: Click + Add Regex to chain extra regex conditions.

Field: Name of the field to test against the regex. Defaults to _raw . Supports nested
addressing.

See Regex Filtering for examples.

Description

Usage

Examples

Updated 2 months ago

Page 613 of 900

Rename

The Rename Function is designed to change fields' names or reformat their names

(e.g., by normalizing names to camelcase). You can use Rename to change specified

fields (much like the Eval Function), or for bulk renaming based on a JavaScript

expression (much like the Parser Function).

Compared to these alternatives, Rename offers a streamlined way to alter only field

names, without other effects. This function does not delete the original fields from

events, but rather sets them to undefined.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Optionally, enter a simple description of this step in the Pipeline. Defaults

to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Base fields: Enter one or more source field names to rename. If empty, rename will be

performed on top-level fields.

Rename fields: Each row here is a key-value pair that defines how to rename fields.

The current name is the key, and the new name is the value. Click + Add Field to add

more rows.

Current name: Original name of the field to rename. You must quote literal

identifiers (non-alphanumeric characters such as spaces or hyphens).

New name: New or reformatted name for the field. Here again, you must quote

literals.

Renaming expression: An optional JavaScript expression (or literal) used to compute

multiple fields' new names. This expression is evaluated against a {name, value}
context, and the expression returns a value with which to rename fields.

Description

Usage

ℹ You can use both Rename fields (to rename specified field names) and

Renaming expression* (to globally rename fields) in the same Function.

The Rename fields** strategy will execute first.

Page 614 of 900

Change the level field, and all fields that start with out , to all-uppercase.

Example event:

Rename Fields:

Current Name: level
New Name: LEVEL
Renaming Expression: name.startsWith('out') ? name.toUpperCase() : name

Event after Rename:

Example

{"inEvents": 622,
 "level": "info",
 "outEvents": 311,
 "outBytes": 144030,
 "activeCxn": 0,
 "openCxn": 0,
 "closeCxn": 0,
 "activeEP": 105,
 "blockedEP": 0
}

{"inEvents": 622,
 "LEVEL": "info",
 "OUTEVENTS": 311,
 "OUTBYTES": 144030,
 "activeCxn": 0,
 "openCxn": 0,
 "closeCxn": 0,
 "activeEP": 105,
 "blockedEP": 0
}

Updated a day ago

Page 615 of 900

Rollup Metrics

The Rollup Metrics Function aggregates frequently generated incoming metrics into

broader, more manageable time windows, or drop any unnecessary dimensions.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Optional description of this Function's purpose in this Pipeline. Defaults

to empty.

Final: If toggled to Yes , stops data from being fed to downstream Functions. Defaults

to No .

Dimensions: List of data dimensions across which to perform rollups. Supports

wildcards. Defaults to * wildcard, meaning all original dimensions.

Time window: The time span over which to roll up (aggregate) metrics. Must be a valid

time string (e.g., 10s). Must match pattern: \d+[sm]$.

Gauge Update: The operation to use when rolling up gauge metrics. Defaults to Last;

other options are Maximum, Minimum, or Average.

Assume that you have metrics coming in at a rate that is too high. For example, Cribl's

internal metrics come in at a 2s interval.

To roll up these metrics to 1-minute granularity, you would set up the Rollup Metrics

Function with a Time Window value of 60s .

Assume that you have metrics coming up with multiple dimensions – e.g. host ,
source , data_center , and application . You want to aggregate these metrics to
eliminate some dimensions.

Description

Usage

Examples

Scenario A:

Scenario B:

Page 616 of 900

Here, you would configure Rollup Metrics Function with a Time Window value that

matches the metrics' generation – e.g., 10s . In the Dimensions field, you would
remove the default * wildcard, and would specify only the dimensions you want to

keep – e.g.: host , data_center .

Updated 4 days ago

Page 617 of 900

Sampling

The Sampling Function filters out events, based on an expression and a sampling rate.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Sampling rules: Events matching these rules will be sampled at the rates you specify:

Filter: Filter expression matching events to be sampled. Use true to match all.

Sampling rate: Enter an integer N . (Defaults to 1 .) Sampling will pick 1/ N
events matching this rule.

Setting this Function s̓ Sampling rate to 30 would mean that only 1 of every 30

events would be kept.

Let s̓ assume that we save this setting, and then capture data from a datagen Source

by selecting Preview > Start a Capture > Capture. In the Capture Sample Data

modal, select: 100 seconds, 100 events, and As they come in. Then start the

capture, and Save as Sample File.

Description

Usage

How It Works

Page 618 of 900

Next, in the Preview pane, click Simple beside the new file s̓ name. If you then click

the Basic Statistics (chart) button, you should see that weʼve kept about 4 of the

original 100 events, or close to 1 in 30.

See Sampling for examples.

Examples

Updated 2 months ago

Page 619 of 900

Serialize

Use the Serialize Function to serialize an event's content into a predefined format.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Type: Data output format. Defaults to CSV .

Library: Browse Parser/Formatter library.

Fields to serialize: Required for CSV , ELFF , and CLF Types. (All other formats

support wildcard field lists.)

Source field: Field containing the object to serialize. Leave blank to serialize top-level

event fields.

Destination field: Field to serialize the data into. Defaults to _raw .

Assume a simple event that looks like this: {"time":"2019-08-
25T14:19:10.240Z","channel":"input","level":"info","message":"initializin
g input","type":"kafka"}

We want to serialize these fields: _time , channel , level , and type into a single

string, in CSV format, stored in a new destination field called test .

To properly extract the key-value pairs from this event structure, we l̓l use a built-in

Event Breaker:

1. Copy the above sample event to your clipboard.

Description

Usage

Examples

Scenario A: JSON to CSV

Page 620 of 900

2. In the Preview pane, select Paste a Sample, and paste in the sample event.

3. Under Select Event Breaker, choose ndjson (newline-delimited JSON), and click

Save as a Sample File.

Now youʼre ready to configure the Serialize Function, using the settings below:

Type: CSV
Fields to Serialize: _time channel level type
Destination Field: test
Source Field: [leave empty]

Result: test: 1566742750.24,input,info,kafka

In the new test field, you now see the time , channel , level , and type keys

extracted as top-level fields.

Let s̓ assume that a merchant wants to extract a subset of each customer order, to

aggregate anonymized order statistics across their customer base. The transaction

data is originally in CSV format, but the statistical data must be in JSON.

Here s̓ a CSV header (which we donʼt want to process), followed by a row that

represents one order:

orderID,custName,street,city,state,zip
20200622102822,john smith,100 Main St.,Anytown,AK,99911

To convert to JSON, we l̓l need to first parse each field from the CSV to a manipulable

field in the Pipeline, which the Serialize Function will be able to reference. In this

example, the new manipulable field is message .

Use the Parser Function:

Filter: true
Operation mode: Extract
Type: CSV
Source field: _raw
Destination field: message
List of fields: orderID custName street city state zip

Now use the Serialize Function:

Filter: true
Type: JSON
Fields to serialize: city state
Source field: message
Destination field: orderStats

Scenario B: CSV to JSON

Page 621 of 900

Updated about a month ago

Page 622 of 900

Suppress

The Suppress Function suppresses events over a time period, based on evaluating a

key expression.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Key expression: Suppression key expression used to uniquely identify events to

suppress. For example, `${ip}:${port}` will use the fields ip and port from

each event to generate the key.

Number to allow: The number of events to allow per time period. Defaults to 1 .

Suppression period (sec): The number of seconds to suppress events after 'Number

to allow' events are received. Defaults to 300 .

Drop suppressed events: Specifies if suppressed events should be dropped, or just

tagged with suppress=1 . Defaults to Yes , meaning drop.

Maximum cache size : The maximum number of keys that can be cached before idle

entries are removed. Before changing the default 50000 , contact Cribl Support to
understand the implications.

Suppression period timeout: The number of suppression periods of inactivity before a

cache entry is considered idle. This defines a multiple of the Suppression period (sec)

value. Before changing the default 2 , contact Cribl Support to understand the
implications.

Num events to trigger cache clean-up: Check cache for idle sessions every N events

when cache size exceeds the Maximum cache size. Before changing the default

10000 , contact Cribl Support to understand the implications.

Description

Usage

Advanced Settings

Page 623 of 900

In the examples below, Filter is the Function-level Filter expression:

1. Suppress by the value of the host field:

Filter: true
Key expression: host
Number to allow: 1
Suppression period (sec): 30

Using a datagen sample as a source, generate at least 100 events over 2 minutes.

Result: One event per unique host value will be allowed in every 30s. Events

without a host field will not be suppressed.

2. Suppress by the value of the host and port tuple :

Filter: true
Key expression: `${host}:${port}`
Number to allow: 1
Suppression period (sec): 300

Result: One event per unique host : port tuple value will be allowed in every

300s.

3. To guarantee that suppression applies only to events with host and port ,
check for their presence using a Filter:

Filter: host!=undefined && port!=undefined
Key expression: `${host}:${port}`
Number to allow: 1
Suppression period (sec): 300

4. Decorate events that qualify for suppression:

Filter: true
Key expression: `${host}:${port}`
Number to allow: 1
Suppression period (sec): 300
Drop suppressed events: No

Result: No events will be suppressed. But all qualifying events will gain an added

field suppress=1 , which can be used downstream to further transform these

events.

Examples

⚠ Suppression will also apply to events without a host or a port field. The

reason is that if field is not present, `${field}` results in the literal

undefined .

Page 624 of 900

Updated about a month ago

Page 625 of 900

Tee

The Tee Function tees events out to a command of choice, via stdin . The output is
one JSON-formatted event per line. You can send the events to (for example) a local

file on the LogStream worker. This can be useful in verifying the data being processed

in a Pipeline.

The Filesystem/NFS Destination offers similar capability, but only after the data leaves

the Pipeline. Tee, by comparison, can be inserted at any point in the Pipeline.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Command: Command to execute and receive events (via stdin) – one JSON-

formatted event per line.

Args: Click + Add Arg to supply arguments to the command.

Restart on exit: Restart the process if it exits and/or we fail to write to it. Defaults to

Yes .

Environment variables: Environment variables to set or overwrite. Click + Add

Variable to add key/value pairs.

Data is passed to the command through its stdin , using the following protocol:

First line: Metadata serialized in JSON, containing the following fields:

format: Serialization format for event. Defaults to JSON .

conf: Full Function configuration.

Remaining: Payload.

Description

Usage

Communication Protocol

Page 626 of 900

Assume that we are parsing PANOS Traffic logs, and want to see how they look at a

particular step in the processing Pipeline We l̓l assume that the Parser Function is

already in place, so we l̓l insert the Tee Function at any (arbitrary) later point in the

Pipeline.

The Tee Function itself requires only that we define the Command field. In this

particular example, that Command will be tee itself.

Weʼve also clicked + Add Arg, to specify a local output file in the resulting Args field.

(A file path would normally be the first argument to a tee command executed from

the command line. The LogStream user must have write permission on the specified

file path.)

Command: tee

Args: /opt/cribl/foo.log

In this first scenario, assume that we have the Parser configured to parse, but not

keep any fields. After changes are deployed and PANOS logs are received, if we tail

foo.log , wed̓ see the following:

Line 1: {"format":"json","conf":{"restartOnExit":true,"env":
{},"command":"tee","args":["/opt/cribl/foo.log"]}

Line 2: {"_raw":"Oct 09 10:19:15 DMZ-internal.nsa.gov 1,2019/10/09
10:19:15,001234567890002,TRAFFIC,drop,2304,2019/10/09
10:19:15,209.118.103.150,160.177.222.249,0.0.0.0,0.0.0.0,InternalServer,,
,not-applicable,vsys1,inside,z1-FW-Transit,ethernet1/2,,All
traffic,2019/10/09
10:19:15,0,1,63712,443,0,0,0x0,udp,deny,60,60,0,1,2019/10/09
10:19:15,0,any,0,0123456789,0x0,Netherlands,10.0.0.0-
10.255.255.255,0,1,0,policy-deny,0,0,0,0,,DMZ-internal,from-
policy,,,0,,0,,N/A,0,0,0,0,1202585d-b4d5-5b4c-aaa2-
d80d77ba456e,0","_time":1593185574.663,"host":"127.0.0.1"}

In Line 2 above, note that the _raw field makes up most of the contents, with only the

_time and host fields added.

Assume that we use the Tee Function, using the same Command and arguments, but

weʼve modified the the Parser Function to retain five fields: receive_time ,
source_port , destination_port bytes_received , and packets_received .

Examples

Scenario A:

Scenario B:

Page 627 of 900

This time, if we tail foo.log , we l̓l see something like the following. If you compare
this output to the previous output example, you l̓l notice the five fields appended to

this event:

Line 3: {"_raw":"Oct 09 10:19:15 DMZ-internal.nsa.gov 1,2019/10/09
10:19:15,001234567890002,TRAFFIC,drop,2304,2019/10/09
10:19:15,209.118.103.150,160.177.222.249,0.0.0.0,0.0.0.0,InternalServer,,
,not-applicable,vsys1,inside,z1-FW-Transit,ethernet1/2,,All
traffic,2019/10/09
10:19:15,0,1,63712,443,0,0,0x0,udp,deny,60,60,0,1,2019/10/09
10:19:15,0,any,0,0123456789,0x0,Netherlands,10.0.0.0-
10.255.255.255,0,1,0,policy-deny,0,0,0,0,,DMZ-internal,from-
policy,,,0,,0,,N/A,0,0,0,0,1202585d-b4d5-5b4c-aaa2-
d80d77ba456e,0","_time":1593185606.965,"host":"127.0.0.1","receive_time":
"2019/10/09
10:19:15","source_port":"63712","destination_port":"443","bytes_received"
:"0","packets_received":"0"}

ℹ In this Function s̓ Command field, you can specify commands other than

tee itself. For example: By using nc as the command, and specifying

localhost and a port number (as two separate arguments), you l̓l see

event data being received via nc on the specified port.

Updated about a month ago

Page 628 of 900

Trim Timestamp

The Trim Timestamp Function removes timestamp patterns from events, and

(optionally) stores them in a specified field.

This Function looks for a timestamp pattern that exists between the characters

indicated by numeric timestartpos and timeendpos fields. It removes

timestartpos and timeendpos along with the timestamp pattern.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description about this step in the Pipeline. Defaults to empty.

Final: If true, stops data from being fed to the downstream Functions. Defaults to No .

Field name: Name of field in which to save the timestamp. (If empty, timestamp will

not be saved to a field.)

Remove the timestamp pattern (indicated by timestartpos and timeendpos) from
_raw , and stash it in a field called time_field .

Example event before:

Field Name: time_field

Example Event after:

Description

Usage

Example

{"_raw": "Event [Event=UpdateBillingProvQuote, timestamp=1581426279, prop
"timestartpos":0,
"timestartpos":23
}

{"_raw": "2020-05-22 16:32:11,359 Event [Event=UpdateBillingProvQuote, ti
"time_field":"2020-05-22 16:32:11,359"
}

Page 629 of 900

Updated about 17 hours ago

Page 630 of 900

Unroll

The Unroll Function accepts an array field – or an expression to evaluate an array field

– and breaks/unrolls the array into individual events.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Source field expression: Field in which to find/calculate the array to unroll. E.g.:

_raw , _raw.split(/\n/) . Defaults to _raw .

Destination field: Field (within the destination event) in which to place the unrolled

value. Defaults to _raw .

Assume we want to break/unroll each line of this event:

Sample Event

Source field expression: _raw.split(/\n/)

Description

Usage

Example

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.5 38000 5356 ? Ss 2018 2:02 /lib/sys
root 2 0.0 0.0 0 0 ? S 2018 0:00 [kthread
root 3 0.0 0.0 0 0 ? S 2018 1:51 [ksofti
root 5 0.0 0.0 0 0 ? S< 2018 0:00 [kworke
root 7 0.0 0.0 0 0 ? S 2018 3:55 [rcu_sch
root 8 0.0 0.0 0 0 ? S 2018 0:00 [rcu_bh]

Settings

Page 631 of 900

Destination field: _raw

Resulting Events

ℹ The split() JavaScript method breaks _raw into an ordered set of

substrings/values, puts these values into an array, and returns the array.

Event 1:
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

Event 2:
root 1 0.0 0.5 38000 5356 ? Ss 2018 2:02 /lib/sys

Event 3:
root 2 0.0 0.0 0 0 ? S 2018 0:00 [kthread

Event 4:
root 3 0.0 0.0 0 0 ? S 2018 1:51 [ksofti

Event 5:
root 5 0.0 0.0 0 0 ? S< 2018 0:00 [kworke

Event 6:
root 7 0.0 0.0 0 0 ? S 2018 3:55 [rcu_sch

Event 7:
root 8 0.0 0.0 0 0 ? S 2018 0:00 [rcu_bh]

Updated about a month ago

Page 632 of 900

XML Unroll

The XML Unroll Function accepts a proper XML event with a set of elements, and

converts the elements into individual events.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Unroll elements regex: Path to the array to unroll. E.g.:

^root\.child\.ElementToUnroll$

Copy elements regex: Regex matching elements to copy into each unrolled event.

E.g.: ^root\.(childA|childB|childC)$

Unroll index field: LogStream will add a field with this name, containing the 0-based

index at which the element was located within the event. In Splunk, this will be an

index-time field. Supports nested addressing. Name defaults to unroll_idx .

Pretty print: Whether to pretty print the output XML.

Assume that the following sample is ingested as a single event:

sample.xml

Description

Usage

Examples

<?xml version="1.0" encoding="UTF-8"?>
<Parent>
 <myID>123456</myID>
 <branchLocation>US</branchLocation>
 <Child>
 <state>NY</state>
 <city>New York</city>
 </Child>
 <Child>
 <state>NJ</state>

Page 633 of 900

Set up the XML Unroll Function using these settings:

Unroll elements regex: ^Parent\.Child$
Copy elements regex: ^Parent\.(myID|branchLocation)$

Output 4 Events:

Resulting Events

 <city>Edgewater</city>
 </Child>
 <Child>
 <state>CA</state>
 <city>Oakland</city>
 </Child>
 <Child>
 <state>CA</state>
 <city>San Francisco</city>
 </Child>
</Parent>

ℹ If you insert this sample using Preview > Add a Sample > Paste a Sample,

adjust Event Breaker settings to add the sample as a single event. One way

to do this is to add a regex Event Breaker that (by design) will not match

anything present in the sample. For example: /[\n\r]+donotbreak(?!\s)/

Event 1
<?xml version="1.0"?>
<Child>
 <myID>123456</myID>
 <branchLocation>US</branchLocation>
 <state>NY</state>
 <city>New York</city>
</Child>

Event 2
<?xml version="1.0"?>
<Child>
 <myID>123456</myID>
 <branchLocation>US</branchLocation>
 <state>NJ</state>
 <city>Edgewater</city>
</Child>

Event 3
<?xml version="1.0"?>
<Child>
 <myID>123456</myID>
 <branchLocation>US</branchLocation>
 <state>CA</state>
 <city>Oakland</city>
</Child>

Page 634 of 900

Event 4
<?xml version="1.0"?>
<Child>
 <myID>123456</myID>
 <branchLocation>US</branchLocation>
 <state>CA</state>
 <city>San Francisco</city>
</Child>

Updated about a month ago

Page 635 of 900

Prometheus Publisher (beta)

The Prometheus Publisher Function allows for metrics to be published to a

Prometheus-compatible metrics endpoint. These can be upstream metrics received by

LogStream, or metrics derived from the output of LogStreams̓ Publish Metrics or

Aggregation Functions. A Prometheus instance is responsible for collecting the

metrics at that endpoint, and for performing its own processing of the metric data.

In the current LogStream version, the endpoint is: http://<worker_node_IP>:<api-
port>/metrics . Within LogStream, that endpoint redirects from
http://<worker_node_IP>:9000/metrics to

http://<worker_node_IP>:9000/api/v1/metrics .

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Fields to publish: Wildcard list of fields to publish to the Prometheus endpoint.

Batch write interval: How often, in milliseconds, the contents should be published.

Defaults to 5000 .

Passthrough mode: If set to No (the default), overrides the Final setting, and

suppresses output to downstream Functions' Destinations. Toggle to Yes to allow

events to flow to consumers beyond the Prometheus endpoint.

Description

⚠ If used, this Function must follow any Publish Metrics or Aggregations

Functions within the same Pipeline. This is to ensure that any data not

originating from a metrics input is transformed into metrics format.

Usage

Advanced Settings

Page 636 of 900

Update mode: On the default No setting, suppresses output to downstream

Functions' Destinations. (This overrides the Final setting.) Toggle to Yes to allow

events to flow to consumers beyond the Prometheus endpoint.

This example uses the same PANOS sample data as the Publish Metrics Function, and

is similarly preceded in a Pipeline by a Parser Function that extracts fields from the

PANOS log.

Filter: Set as appropriate.

Fields to publish: Set as appropriate. We l̓l use the default of * for this example.

Advanced settings: Accept defaults.

After committing and deploying changes, you should be able to use a curl command

to verify that metrics are being published, just a few seconds after data is ingested on

an idle system.

curl output

Now, we need to have Prometheus scrape the metrics. In this very basic example, you

can add the target endpoint to the prometheus.yml file, under the scrape_configs
-> static_configs section. Specify the endpoint in IP:port syntax, because

Prometheus assumes (and requires) /metrics for all endpoints.

Restart Prometheus. Within just a few seconds, you should be able to use its query

interface to retrieve metrics published by LogStream.

Example

$ curl http://<worker_node_IP>:9000/metrics
TYPE perf_192_168_1_248_bytes_sent counter
metric_192_168_1_248_bytes_sent {destination_ip="160.177.222.249",inbound

TYPE perf_192_168_1_248_bytes_rcvd counter
metric_192_168_1_248_bytes_rcvd {destination_ip="160.177.222.249",inbound

TYPE perf_192_168_1_248_pkts_sent counter
metric_192_168_1_248_pkts_sent {destination_ip="160.177.222.249",inbound_

TYPE perf_192_168_1_248_pkts_rcvd counter
metric_192_168_1_248_pkts_rcvd {destination_ip="160.177.222.249",inbound_

Updated about a month ago

Page 637 of 900

Reverse DNS (beta)

The Reverse DNS Function resolves hostnames from a numeric IP address, using a

reverse DNS lookup.

Filter: Filter expression (JS) that selects data to be fed through the Function. Defaults

to true , meaning that all events will be evaluated.

Description: Simple description of this Function. Defaults to empty.

Final: If true, stops data from being fed to downstream Functions. Defaults to No .

Lookup field name: Name of the field containing the IP address to look up.

Output field name: Name of the field in which to add the resolved hostname. Leave

blank to overwrite the lookup field.

Reload period (minutes): How often to refresh the DNS cache. Use 0 to disable

refreshes. Defaults to 60 minutes.

Lookup field name: dest_ip
Output field name: dest_host
Result: See the dest_ip field, and the newly created dest_host field, in the events.

Description

Usage

Lookup Fields

⚠ If the field value is not in IPv4 or IPv6 format, the lookup is skipped.

Example

Page 638 of 900

Updated about a month ago

Page 639 of 900

Sources

Cribl LogStream can receive data from various Sources, including Splunk, HTTP,

Elastic Beats, Kinesis, Kafka, TCP JSON, and many others.

Supported data Sources that send to Cribl LogStream:

Splunk TCP

Splunk HEC

Syslog

Elasticsearch API

TCP JSON

TCP Raw

HTTP/S

HTTP/ Raw

Kinesis Firehose

SNMP Traps

Metrics

Data from these Sources is normally sent to a set of LogStream Workers through a

loadbalancer. Some Sources, such as Splunk forwarders, have native loadbalancing

capabilities, so you should point these directly at LogStream.

Supported Sources that Cribl LogStream fetches data from:

Kafka

PUSH Sources

PULL Sources

Page 640 of 900

Kinesis Streams

Azure Event Hubs

SQS

S3

Office 365 Services

Office 365 Activity

Sources that are internal to Cribl LogStream:

Datagens

Cribl Internal

For each Source type, you can create multiple definitions, depending on your

requirements.

To configure Sources, select Data > Sources, select the desired type from the tiles or

the left menu, and then click + Add New.

Internal Sources

Configuring and Managing Sources

Updated 8 days ago

Page 641 of 900

Splunk TCP

Cribl LogStream supports receiving Splunk data from Universal or Heavy Forwarders.

Select Data > Sources, then select Splunk > Splunk TCP from the Data Sources

page's tiles or left menu. Click Add New to open the New Splunk source pane, which

provides the following fields.

Input ID: Enter a unique name to identify this Splunk Source definition.

Address: Enter hostname/IP to listen for Splunk data. E.g., localhost or 0.0.0.0 .

Port: Enter port number.

IP whitelist regex: Regex matching IP addresses that are allowed to establish a

connection. Defaults to .* (i.e., all IPs).

Enabled defaults to No . When toggled to Yes :

Certificate name : Name of the predefined certificate.

Private key path: Path on server where to find the private key to use in PEM format.

Path can reference $ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

Certificate path : Path on server where to find certificates to use, in PEM format. Path

can reference $ENV_VARS .

CA certificate path : Path on server where to find CA certificates to use in PEM format.

Path can reference $ENV_VARS .

ℹ Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl LogStream to Receive Splunk TCP
Data

General Settings

TLS Settings (Server Side)

Page 642 of 900

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the

input data stream before the data is sent through the Routes. Defaults to System
Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Enable proxy protocol: Defaults to No . Toggle to Yes if the connection is proxied by

a device that supports Proxy Protocol V1 or V2.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Processing Settings

Event Breakers

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 643 of 900

Field for this Source:

__inputId

To configure a Splunk forwarder (UF, HF) use the following outputs.conf stanzas:

.../outputs.conf

Configuring a Splunk Forwarder

[tcpout]
disabled = false
defaultGroup = cribl, <optional_clone_target_group>,

[tcpout:cribl]
server = [<cribl_ip>|<cribl_host>]:<port>, [<cribl_ip>|<cribl_host>]:<po
sendCookedData=true
useACK = false
negotiateNewProtocol = false
negotiateProtocolLevel = 0

Updated 3 days ago

Page 644 of 900

Splunk HEC

Cribl LogStream supports receiving data over HTTP/S using the Splunk HEC (HTTP

Event Collector).

Select Data > Sources, then select Splunk > HEC from the Data Sources page's tiles

or left menu. Click Add New to open the New Splunk HEC source pane, which

provides the following fields.

Input ID: Enter a unique name to identify this Splunk HEC Source definition.

Address: Enter the hostname/IP on which to listen for HTTP(S) data. (E.g., localhost
or 0.0.0.0 .)

Port: Enter the port number.

Splunk HEC endpoint: Absolute path on which to listen for the Splunk HTTP Event

Collector API requests. This input supports the /event and /raw endpoints.

Defaults to /services/collector .

Allowed Indexes: List the values allowed in the HEC event index field. Allows

wildcards. Leave blank to skip validation.

Splunk HEC acks: Whether to enable Splunk HEC acknowledgments. Defaults to No .

Token: Shared secret to be provided by any client (Authorization: <token>).

Click Generate to create a new secret. If empty, unauthenticated access will be

permitted.

Description: Optional description for this token.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl LogStream to Receive Data over
Splunk HEC

General Settings

Auth Tokens

Page 645 of 900

Fields: Fields (metadata) to add to events referencing this token. Each field is a

Name/Value pair.

Enabled: Defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path : Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

CA certificate path : Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Enable proxy protocol: Defaults to No . Toggle to Yes if the connection is proxied by

a device that supports Proxy Protocol V1 or V2.

This section defines event breaking rulesets that will be applied, in order, on the /raw
endpoint.

ℹ These fields may be overridden by fields added at the request level.

TLS Settings (Server Side)

Advanced Settings

Processing Settings

Event Breakers

Page 646 of 900

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the

input data stream before the data is sent through the Routes. Defaults to System
Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

These fields may be overridden by fields added at the token or request level.

In this section's Pipeline drop-down list, you can select a single existing Piipeline to

process data from this input before the data is sent through the Routes.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__inputId

__hecToken

Configure Cribl LogStream to listen on port 10080 with an authToken of

myToken42 .

Send a payload to your Cribl LogStream receiver.

Note: Token specification can be either Splunk <token> or <token> .

Splunk HEC Event Endpoint

Fields (Metadata)

Pre-Processing Pipeline

Internal Fields

Format and Endpoint Example

curl -k http://<myCriblHost>:10080/services/collector/event -H 'Authoriza

curl -k http://<myCriblHost>:10080/services/collector -H 'Authorization:

Page 647 of 900

Multiple Events
curl -k http://<myCriblHost>:10080/services/collector -H 'Authorization:

Updated 6 days ago

Page 648 of 900

Syslog

Cribl LogStream supports receiving of data over syslog.

Select Data > Sources, then select Syslog from the Data Sources page's tiles or left

menu. Click Add New to open the New Syslog source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this Syslog Source definition.

Address: Enter the hostname/IP on which to listen for data., E.g. localhost or

0.0.0.0 .

UDP port: Enter the UDP port number to listen on. Not required if listening on TCP.

TCP port: Enter the TCP port number to listen on. Not required if listening on UDP.

Enabled: Defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

ℹ Type: Push | TLS Support: YES | Event Breaker Support: No

This Syslog Source supports RFC 3164 and RFC 5424.

Configuring Cribl LogStream to Receive Data over
Syslog

General Settings

TLS Settings (TCP Only)

Page 649 of 900

CA certificate path: Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Enable proxy protocol: Defaults to No . Toggle to Yes if the connection is proxied by

a device that supports Proxy Protocol v1 or v2.

IP whitelist regex: Regex matching IP addresses that are allowed to send data.

Defaults to .* (i.e., all IPs).

Max buffer size (events) : Maximum number of events to buffer when downstream is

blocking. The buffer is only in memory. (This setting is applicable only to UDP syslog.)

Default timezone: Timezone to assign to timestamps without timezone info. Defaults

to local .

Single msg per UDP: Whether to treat UDP packet data received as a full Syslog

message. Defaults to No . (I.e., newlines in the packet will be treated as event
delimiters.)

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Page 650 of 900

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but are accessible and Functions can use them to make

processing decisions.

Fields for this Source:

__inputId

__srcIpPort

Internal Fields

Updated about 8 hours ago

Page 651 of 900

Elasticsearch API

Cribl LogStream supports receiving data over HTTP/S using the Elasticsearch Bulk API.

(See the Configuring Filebeat example below.)

Select Data > Sources, then select Elasticsearch API from the Data Sources page's

tiles or left menu. Click Add New to open the New New Elastic source pane, which

provides the following fields.

Input ID: Enter a unique name to identify this Elasticsearch Source definition.

Address: Enter the hostname/IP on which to listen for Elasticsearch data. (E.g.,

localhost or 0.0.0.0 .)

Port: Enter the port number.

Auth tokens: Shared secrets to be provided by any client (Authorization: <token>).

Click Generate to create a new secret. If empty, unauthenticated access will be

permitted.

Elasticsearch API endpoint (for Bulk API): Absolute path on which to listen for

Elasticsearch API requests. Currently, the only supported option is the default

/elastic , which LogStream expands as /elastic/_bulk . Other entries are faked
as success. Use an empty string to disable.

Enabled: Defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: No

Configuring LogStream to Receive Data over HTTP(S),
Using the Elasticsearch Bulk API Protocol

General Settings

TLS Settings (Server Side)

Page 652 of 900

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path : Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

CA certificate path : Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

The Elasticsearch API input normalizes the following fields:

@timestamp becomes _time at millisecond resolution.

host is set to host.name .

Original object host is stored in __host .

The Elasticsearch Destination does the reverse, and it also recognizes the presence of

__host .

Processing Settings

Fields (Metadata)

Pre-Processing

Field Normalization

Page 653 of 900

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__inputId

__id

__type

__index

__host

To set up Filebeat to send data to LogStream, use its Elasticsearch output. If an Auth

Token is configured here, add it in Filebeat configuration under

output.elasticsearch.headers , as in this example:

...filebeat.yml

Internal Settings

Configuring Filebeat

output.elasticsearch:
 # Array of hosts to connect to.
 hosts: ["http://<LOGSTREAM_HOST>:9200/elastic"]

output.elasticsearch.headers:
 Authorization: "myToken42"

Updated a day ago

Page 654 of 900

TCP JSON

Cribl LogStream supports receiving of data over TCP in JSON format (see protocol

below).

Select Data > Sources, then select TCP JSON from the Data Sources page's tiles or

left menu. Click Add New to open the New TCP JSON source pane, which provides

the following fields.

Input ID: Enter a unique name to identify this TCP JSON Source definition.

Address: Enter hostname/IP to listen for TCP JSON data. E.g., localhost or

0.0.0.0 .

Port: Enter port number.

IP whitelist regex: Regex matching IP addresses that are allowed to establish a

connection. Defaults to .* (i.e., all IPs).

Shared secret (authToken): Shared secret to be provided by any client (in

authToken header field). Click Generate to create a new secret. If empty,

unauthenticated access will be permitted.

Enabled: Defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: No

Configuring Cribl LogStream to Receive TCP JSON
Data

General Settings

TLS Settings (Server Side)

Page 655 of 900

Certificate path : Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

CA certificate path : Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized

with the list of supplied CAs. Defaults to No .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Enable proxy protocol: Toggle to Yes if the connection is proxied by a device

that supports Proxy Protocol v1 or v2.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Field for this Source:

__inputId

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 656 of 900

LogStream expects TCP JSON events in newline-delimited JSON format:

1. A header line. Can be empty – e.g., {} . If authToken is enabled (see above) it
should be included here as a field called authToken . When authToken is not

set, the header line is optional. In this case, the first line will be treated as an

event if does not look like a header record.

In addition, if events need to contain common fields, they can be included here

under fields . In the example below, region and AZ will be automatically

added to all events.

2. A JSON event/record per line.

Sample TCP JSON Events

If a TCP JSON Source is routed to a Splunk destination, fields within the JSON payload

are mapped to Splunk fields. Fields that do not have corresponding (native) Splunk

fields become index-time fields. For example, let's assume we have a TCP JSON event

as below:

{"_time":1541280341, "host":"myHost", "source":"mySource", "_raw":"this
is a sample event ", "fieldA":"valueA"}

Here, _time , host , and source become their corresponding fields in Splunk. The

value of _raw becomes the actual body of the event, and fieldA becomes an

index-time field (fieldA ::̀ valueA``).

1. Configure Cribl LogStream to listen on port 10001 for TCP JSON. Set

authToken to myToken42 .

2. Create a file called test.json with the payload above.

3. Send it over to your Cribl LogStream host: cat test.json | nc <myCriblHost>
10001

Format

{"authToken":"myToken42", "fields": {"region": "us-east-1", "AZ":"az1"}}

{"_raw":"this is a sample event ", "host":"myHost", "source":"mySource",
{"host":"myOtherHost", "source":"myOtherSource", "_raw": "{\"message\":\"

TCP JSON Field Mapping to Splunk

Example

Updated 6 days ago

Page 657 of 900

TCP (RAW)

Cribl LogStream supports receiving of data over TCP. (See examples and header

options below.)

Select Data > Sources, then select TCP from the Data Sources page's tiles or left

menu. Click Add New to open the New TCP source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this TCP Source definition.

Address: Enter hostname/IP to listen for raw TCP data. E.g., localhost or 0.0.0.0 .

Port: Enter port number.

IP whitelist regex: Regex matching IP addresses that are allowed to establish a

connection. Defaults to .* (i.e,. all IPs).

Enable Header: Toggle to Yes to indicate that client will pass a header record with

every new connection. The header can contain an authToken , and an object with a
list of fields and values to add to every event. These fields can be used to simplify

Event Breaker selection, routing, etc. Header format:

{ "authToken" : "myToken", "fields": { "field1": "value1", "field2":
"value2" }} .

Shared secret (authToken): Shared secret to be provided by any client (in

authToken header field). Click Generate to create a new secret. If empty,

unauthenticated access will be permitted.

Enabled: Defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl LogStream to Receive TCP Data

General Settings

TLS Settings (Server Side)

Page 658 of 900

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path : Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

In this section, you can pass the data from this input to an external command for

processing before the data continues downstream.

Enabled: Defaults to No . When toggled to Yes :

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument for the command. You can

drag arguments vertically to resequence them.

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the

input data stream before the data is sent through the Routes. Defaults to System
Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the Routes. Defaults to 10000 .

Processing Settings

Custom Command

Event Breakers

Fields (Metadata)

Page 659 of 900

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Enable proxy protocol: Defaults to No . Toggle to Yes if the connection is proxied by

a device that supports Proxy Protocol V1 or V2.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and functions can use them to

make processing decisions.

Fields accessible for this Source:

__inputId

__srcIpPort

__channel

Every new TCP connection may contain an optional header line, with an authToken
and a list of fields and values to add to every event.

Sample raw TCP test

1. Configure LogStream to listen on port 7777 for raw TCP. Set authToken to

myToken42 .

2. Create a file called test.raw , with the payload above.

Pre-Processing

Advanced Settings

Internal Fields

TCP Source Example

{"authToken":"myToken42", "fields": {"region": "us-east-1", "AZ":"az1"}}

this is event number 1
this is event number 2

Enabling the Example

Page 660 of 900

3. Send it over to your Cribl LogStream host, using this command: cat test.raw |
nc <myCriblHost> 7777

Updated 6 days ago

Page 661 of 900

HTTP/S (Bulk API)

Cribl LogStream supports receiving data over HTTP/S using the Cribl Bulk API, Splunk

HEC, or Elastic Bulk API.

Select Data > Sources, then select HTTP from the Data Sources page's tiles or left

menu. Click Add New to open the New HTTP source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this HTTP(S) Source definition.

Address: Enter the hostname/IP on which to listen for HTTP(S) data. (E.g., localhost
or 0.0.0.0 .)

Port: Enter the port number.

Auth tokens: Shared secrets to be provided by any client (Authorization: <token>).

Click Generate to create a new secret. If empty, unauthenticated access will be

permitted.

Cribl HTTP event API: Absolute path on which to listen for Cribl HTTP API requests.

Currently, the only supported option is the default /cribl , which LogStream expands

as /cribl/_bulk . Use an empty string to disable. Maximum payload size is 2MB.

Elastic API endpoint (for Bulk API): Absolute path on which to listen for Elasticsearch

API requests. Currently, the only supported option is the default /elastic , which
LogStream expands as /elastic/_bulk . Other entries are faked as success. Use an
empty string to disable.

ℹ Type: Push | TLS Support: YES | Event Breaker Support: No

Configuring Cribl LogStream to Receive Data over HTTP(S)

General Settings

ℹ Cribl generally recommends instead using the dedicated Elasticsearch API

Source. The Elastic API implementation here is provided for backward

compatibility, and for users who want to ingest multiple inputs on one

HTTP/S port.

Page 662 of 900

Splunk HEC endpoint: Absolute path on which to listen for Splunk HTTP Event

Collector (HEC) API requests. Use an empty string to disable. Default entry is

/services/collector .

Splunk HEC acks: Whether to enable Splunk HEC acknowledgements. Defaults to

No .

Enabled defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

CA certificate path: Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized

with the list of supplied CAs. Defaults to No .

ℹ This Splunk HEC implementation is an event (i.e., not raw) endpoint. For

details, see Splunk's documentation. To send data to it from a HEC client,

use either /services/collector or /services/collector/event . (See
the examples below.)

Cribl generally recommends instead using the dedicated Splunk HEC

Source. The Splunk HEC implementation here is provided for backward

compatibility, and for users who want to ingest multiple inputs on one

HTTP/S port.

TLS Settings (Server Side)

Processing Settings

Page 663 of 900

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__inputId

__id (Elastic In)

__type (Elastic In)

__index (Elastic In)

__host (Elastic In)

LogStream expects HTTP(S) events to be formatted as one JSON record per event.

Here are two event records:

Sample Event Format

Note 1: Events can be sent as separate POSTs, but Cribl highly recommends

combining multiple events in newline-delimited groups, and POSTing them together.

Note 2: If an HTTP(S) source is routed to a Splunk destination, fields within the JSON

payload are mapped to Splunk fields. Fields that do not have corresponding (native)

Splunk fields become index-time fields. For example, let's assume we have a HTTP(S)

event like this:

Fields (Metadata)

Pre-Processing

Internal Fields

Format and Endpoint

{"_time":1541280341, "_raw":"this is a sample event ", "host":"myHost", "
{"_time":1541280341, "host":"myOtherHost", "source":"myOtherSource", "_ra

Page 664 of 900

{"_time":1541280341, "host":"myHost", "source":"mySource", "_raw":"this
is a sample event ", "fieldA":"valueA"}

Here, _time , host and source become their corresponding fields in Splunk. The

value of _raw becomes the actual body of the event, and fieldA becomes an

index-time field. (fieldA :: valueA).

For the following examples:

1. Configure Cribl to listen on port 10080 for HTTP (default). Set authToken to

myToken42 .

2. Send a payload to your Cribl LogStream receiver.

Cribl Single Event Example:

Cribl Endpoint - Multiple Events

Splunk HEC Event Endpoint

Examples

Cribl Endpoint – Single Event

curl -k http://<myCriblHost>:10080/cribl/_bulk -H 'Authorization: myToken

Cribl Endpoint – Multiple Events

curl -k http://<myCriblHost>:10080/cribl/_bulk -H 'Authorization: myToken

Splunk HEC Event Endpoint

curl -k http://<myCriblHost>:10080/services/collector/event -H 'Authoriza

curl -k http://<myCriblHost>:10080/services/collector -H 'Authorization:

ℹ For Splunk HEC, the token specification can be either Splunk <token> or

<token> .

Updated 5 days ago

Page 665 of 900

Raw HTTP/S

Cribl LogStream supports receiving raw HTTP data. The Raw HTTP Source listens on a

specific port, captures every HTTP request to that port, and creates a corresponding

event that it pushes to its configured Event Breakers.

Select Data > Sources, then select Raw HTTP from the Data Sources page's tiles or

left menu. Click Add New to open the New Raw HTTP source pane, which provides

the following fields.

Input ID: Enter a unique name to identify this Raw HTTP Source definition.

Address: Enter the address to bind on. Defaults to 0.0.0.0 (all addresses).

Port: Enter the port number to listen on.

Auth tokens: Shared secrets to be provided by any client. Click Generate to create a

new secret. If empty, permits open access.

Enabled: Defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path : Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

ℹ Type: Push | TLS Support: YES | Event Breaker Support: YES

Configuring Cribl LogStream to Receive Raw HTTP
Data

General Settings

TLS Settings (Server Side)

Page 666 of 900

CA certificate path : Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Event Breaker rulesets: A list of event breaking rulesets that will be applied to the

input data stream before the data is sent through the Routes. Defaults to System
Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Allowed URI paths: List of URI paths accepted by this input. Supports wildcards, e.g.,

/api/v*/hook . Defaults to * , which allows all paths.

Allowed HTTP methods: List of HTTP methods accepted by this input. Supports

wildcards, e.g., P*, GET . Defaults to * , which allows all methods.

Processing Settings

Event Breakers

Fields (Metadata)

Pre-Processing

Advanced Settings

Page 667 of 900

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and functions can use them to

make processing decisions.

Fields accessible for this Source:

__inputId

__srcIpPort

__channel

Internal Fields

Updated 6 days ago

Page 668 of 900

Kafka

Cribl LogStream supports receiving data records from a Kafka cluster.

Select Data > Sources, then select Kafka from the Data Sources page's tiles or left

menu. Click Add New to open the New Kafka source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this Source definition.

Brokers: List of Kafka brokers to use, e.g., localhost:9092 .

Topics: List of topics to subscribe to.

Group ID: The name of the consumer group to which this Cribl LogStream instance

belongs.

From beginning: Whether to start reading from the earliest available data. Relevant

only during initial subscription. Defaults to Yes .

Enabled: defaults to No . When toggled to Yes :

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension.

This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

ℹ Type: Pull | TLS Support: YES | Event Breaker Support: No

Configuring Cribl LogStream to Receive Data from
Kafka Topics

General Settings

TLS Settings (Client Side)

Page 669 of 900

CA certificate path: Path on client containing CA certificates (in PEM format) to use to

verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format)

to use. Path can reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

This section governs SASL (Simple Authentication and Security Layer) authentication.

Enabled: Defaults to No . When toggled to Yes :

SASL mechanism: Use this drop-down to select the SASL authentication mechanism

to use.

Username: Enter the username for your account.

Password: Enter the account's password.

This section governs Kafka Schema Registry Authentication for AVRO-encoded data

with a schema stored in the Confluent Schema Registry.

Enabled: defaults to No . When toggled to Yes :

Schema registry URL: URL for access to the Confluent Schema Registry. (E.g.,

http://<hostname>:8081 .)

TLS enabled: defaults to No . When toggled to Yes, displays the following TLS

settings for the Schema Registry:

Validate server certs: Require client to reject connections to servers whose certs are

not signed by a CA specified in the CA Certificate Path field. Defaults to No .

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension.

This must be a host name, not an IP address.

Authentication

Schema Registry

ℹ These have the same format as the TLS Settings (Client Side) above.

TLS Settings (Schema Registry)

Page 670 of 900

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to

verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format)

to use. Path can reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__inputId

__topicIn (indicates the Kafka topic that the event came from; see

__topicOut in our Kafka Destination documentation)

__schemaId (when using Schema Registry)

Processing Settings

Fields (Metadata)

Pre-Processing

Internal Fields

Updated 6 days ago

Page 671 of 900

Kinesis

Cribl LogStream supports receiving data records from Amazon Kinesis Streams.

Select Data > Sources, then select Kinesis from the Data Sources page's tiles or left

menu. Click Add New to open the New Kinesis source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this Kinesis Stream Source definition.

Stream name: Kinesis stream name (not ARN) to read data from.

Shard iterator start: Location at which to start reading a shard for the first time.

Defaults to Earliest Record .

Record data format: Format of data inside the Kinesis Stream records. Gzip

compression is automatically detected. Options include:

Cribl (the default): Use this option if LogStream wrote data to Kinesis in this

format. This is a type of NDJSON.

Newline JSON: Use if the records contain newline-delimited JSON (NDJSON)

events – e.g., Kubernetes logs ingested through Kinesis. This is a good choice if

you don't know the records' format.

CloudWatch Logs: Use if you've configured CloudWatch to send logs to Kinesis.

Event per line: NDJSON can use this format when it fails to parse lines as valid

JSON.

API key: If not present, will fall back to env.AWS_ACCESS_KEY_ID , or to the metadata
endpoint for IAM credentials.

Secret key: If not present, will fall back to env.AWS_SECRET_ACCESS_KEY , or to the
metadata endpoint for IAM credentials.

ℹ Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: No

Configuring Cribl LogStream to Receive Data from
Kinesis Streams

General Settings

Page 672 of 900

Region: Region where the Kinesis stream is located. Required.

Enable for Kinesis stream: Use Assume Role credentials to access Kinesis stream.

Defaults to No .

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Shard selection expression: A JavaScript expression to be called with each shardId
for the stream. The shard will be processed if the expression evaluates to a truthy

value. Defaults to true .

Service Period: Time interval (in minutes) between consecutive service calls. Defaults

to 1 minute.

Endpoint: Kinesis stream service endpoint. If empty, the endpoint will be automatically

constructed from the region.

Signature version: Signature version to use for signing Kinesis Stream requests.

Defaults to v4 .

Verify KPL checksums: Enable this setting to verify Kinesis Producer Library (KPL)

event checksums.

Assume Role

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 673 of 900

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Field for this Source:

__inputId

Updated a day ago

Page 674 of 900

Kinesis Firehose

Cribl LogStream supports receiving data from Amazon Kinesis Firehose delivery

streams via Kinesis' HTTP endpoint destination option.

Select Data > Sources, then select Amazon > Firehose from the Data Sources page's

tiles or left menu. Click Add New to open the New Firehose source pane, which

provides the following fields.

Input ID: Enter a unique name to identify this Source definition.

Address: Address to bind on. Defaults to 0.0.0.0 (all addresses).

Port: Enter the port number to listen on.

Auth tokens: Shared secrets to be provided by any client (Authorization: <token>).

Click Generate to create a new secret. If empty, unauthenticated access will be

permitted.

Enabled: Defaults to No . When toggled to Yes :

Certificate name: The name of the predefined certificate.

Private key path: Server path containing the private key (in PEM format) to use. Path

can reference $ENV_VARS .

Passphrase: Passphrase to use to decrypt private key.

Certificate path: Server path containing certificates in (PEM format) to use. Path can

reference $ENV_VARS .

ℹ Type: Push | TLS Support: YES | Event Breaker Support: No

Configuring LogStream to Receive Data over HTTP(S) from
Amazon Kinesis Firehose

General Settings

TLS Settings (Server Side)

Page 675 of 900

CA certificate path: Server path containing CA certificates (in PEM format) to use.

Path can reference $ENV_VARS .

Authenticate client (mutual auth): Require clients to present their certificates. Used

to perform mutual authentication using SSL certs. Defaults to No . When toggled to
Yes :

Common name: Regex matching peer certificate subject common names allowed

to connect. Defaults to .* .

Validate client certs: Require server to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and functions can use them to

make processing decisions.

Fields accessible for this Source:

__inputId

__firehoseArn

__firehoseReqId

__firehoseEndpoint

Processing Settings

Fields (Metadata)

Pre-Processing

Internal Fields

Updated 6 days ago

Page 676 of 900

Azure Event Hubs

Cribl LogStream supports receiving data records from Azure Event Hubs.

Select Data > Sources, then select Azure Event Hubs from the Data Sources page's

tiles or left menu. Click Add New to open the New Event Hubs source pane, which

provides the following fields.

Input ID: Enter a unique name to identify this source definition.

Brokers: List of Event Hubs Kafka brokers to connect to, e.g.,

yourdomain.servicebus.windows.net:9093 . Get the hostname from the host

portion of the primary or secondary connection string in Shared Access Policies.

Event Hub name: The name of the Event Hub (a.k.a. Kafka Topic) to subscribe to.

Group ID: Specifies the name of the consumer group to which this Cribl LogStream

instance belongs. Should always be $Default for Event Hubs.

From beginning: Whether to start reading from the earliest available data. Relevant

only during initial subscription. Defaults to Yes .

Enabled: Defaults to Yes .

Validate server certs: Whether to reject connections to servers without signed

certificates. Defaults to No . (For Event Hubs, this should always be disabled.)

ℹ Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: No

Configuring Cribl LogStream to Receive Data from
Azure Event Hubs

General Settings

TLS Settings (Client Side)

Authentication

Page 677 of 900

Enabled: Defaults to No . When toggled to Yes :

SASL mechanism: SASL (Simple Authentication and Security Layer)

authentication mechanism to use. Currently, PLAIN is the only mechanism

supported for Event Hubs Kafka brokers.

Username: The username for authentication. For Event Hubs, this should always

be $ConnectionString .

Password: Connection-string primary key or connection-string secondary key

from the Event Hub workspace.

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Processing Settings

Fields (Metadata)

Pre-Processing

Updated 6 days ago

Page 678 of 900

Metrics

Cribl LogStream supports receiving metrics in these wire formats/protocols: StatsD,

StatsD Extended, and Graphite. Automatic protocol detection will happen on the first

line received over a TCP connection or a UDP packet. Lines not matching the detected

protocol will be dropped.

Select Data > Sources, then select Metrics from the Data Sources page's tiles or left

menu. Click Add New to open the New Metrics source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this Source definition.

Address: Enter the hostname/IP to listen to. Defaults to 0.0.0.0 .

UDP port: Enter the UDP port number to listen on. Not required if listening on TCP.

TCP port: Enter the TCP port number to listen on. Not required if listening on UDP.

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

ℹ Type: Push | TLS Support: No | Event Breaker Support: No

Configuring Cribl LogStream to Receive Metrics

General Settings

Processing Settings

Fields (Metadata)

Pre-Processing

Page 679 of 900

Enable proxy protocol: Defaults to No . Toggle to Yes if the connection is proxied by

a device that supports Proxy Protocol v1 or v2.

IP whitelist regex: Regex matching IP addresses that are allowed to send data.

Defaults to .* (i.e., all IPs.)

Max buffer size (events) : Maximum number of events to buffer when downstream is

blocking. Defaults to 1000 .

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__srcIpPort

__metricsInType

Metric data is read into the following event schema:

Text

LogStream places sufficient information into a field called __criblMetric to enable

these events to be properly serialized out to any metric outputs (independent of the

input type).

The following Destinations natively support the __criblMetric field:

Splunk

Splunk HEC

InfluxDB

Statsd

Advanced Settings

Internal Fields

Metric Event Schema and Destination Support

_metric - the metric name
_metric_type - the type of the metric (gauge, counter, timer)
_value - the value of the metric
_time - metric_time or Date.now()/1000
dim1 - value of dimension1
dim3 - value of dimension2
....

Page 680 of 900

Statsd Extended

Graphite

Updated 6 days ago

Page 681 of 900

SQS

Cribl LogStream supports receiving events from Amazon Simple Queuing Service.

Select Data > Sources, then select SQS from the Data Sources page's tiles or left

menu. Click Add New to open the New SQS source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this SQS Source definition.

Queue: The name, URL, or ARN of the SQS queue to read events from. When

specifying a non-AWS URL, you must use the format: {url}/<queueName> . (E.g.,
https://host:port/<queueName> .) This value can be a constant or a JavaScript
expression.

Create queue: Create queue if it does not exist.

API Key: If not present, will fall back to env.AWS_ACCESS_KEY_ID , or to the metadata
endpoint for IAM credentials.

Secret key: If not present, will fall back to env.AWS_SECRET_ACCESS_KEY , or to the
metadata endpoint for IAM credentials.

Region: AWS Region where the SQS queue is located. Required, unless the Queue

entry is a URL or ARN that includes a Region.

Enable for SQS: Whether to use Assume Role credentials to access SQS. Defaults to

No .

ℹ Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: No

Configuring Cribl LogStream to Receive Data from
Amazon SQS

General Settings

Assume Role

Page 682 of 900

AWS account ID: SQS queue owner AWS account id. Leave empty if SQS queue is in

same AWS account.

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Endpoint: SQS service endpoint. If empty, the endpoint will be automatically

constructed from the AWS Region.

Signature version: Signature version to use for signing SQS requests. Defaults to v4 .

Max messages: The maximum number of messages that SQS should return in a poll

request. Amazon SQS never returns more messages than this value. (However, fewer

messages might be returned.) Acceptable values: 1 to 10. Defaults to 10 .

Visibility timeout seconds: The duration (in seconds) that the received messages are

hidden from subsequent retrieve requests, after being retrieved by a ReceiveMessage

request. Defaults to 600 .

Num receivers: The number of receiver processes to run. The higher the number, the

better the throughput, at the expense of CPU overhead. Defaults to 3 .

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 683 of 900

__inputId

__sqsSysAttrs

The following permissions are needed on the SQS queue:

sqs:ReceiveMessage
sqs:DeleteMessage
sqs:GetQueueAttributes
sqs:GetQueueUrl
sqs:CreateQueue (optional, if and only if you want LogStream to create the queue)

SQS Permissions

Troubleshooting Notes

⚠ VPC endpoints for SQS might need to be set up in your account. Check

with your administrator for details.

Updated about 15 hours ago

Page 684 of 900

S3

Cribl LogStream supports receiving data from Amazon S3, using event notifications

through SQS.

Select Data > Sources, then select S3 from the Data Sources page's tiles or left

menu. Click Add New to open the New S3 source pane, which provides the following

fields.

ℹ Type: Pull | TLS Support: YES (secure API) | Event Breaker Support: YES

S3 Setup Strategy

ℹ The source S3 bucket must be configured to send s3:ObjectCreated:*
events to an SQS queue, either directly (easiest) or via SNS (Amazon

Simple Notification Service). See the event notification configuration

guidelines below.

SQS messages will be deleted after they're read, unless an error occurs, in

which case LogStream will retry. This means that although LogStream will

ignore files not matching the Filename Filter, their SQS events/notifications

will still be read, and then deleted from the queue (along with those from

files that match).

These ignored files will no longer be available to other S3 Sources targeting

the same SQS queue. If you still need to process these files, we suggest:

Using a different, dedicated SQS queue. (Preferred and recommended.)

Applying a broad filter on a single Source, then using input conditioning

Pipelines an/or Route filters for further processing.

Configuring Cribl LogStream to Receive Data from
Amazon S3

General Settings

Page 685 of 900

Input ID: Enter a unique name to identify this S3 Source definition.

Queue: The name, URL, or ARN of the SQS queue to read events from. When

specifying a non-AWS URL, you must use the format: {url}/<queueName> . (E.g.,
https://host:port/<queueName> .) This value can be a constant or a JavaScript
expression.

API key: If not present, will fall back to env.AWS_ACCESS_KEY_ID , or to the metadata
endpoint for IAM credentials.

Secret key: If not present, will fall back to env.AWS_SECRET_ACCESS_KEY , or to the
metadata endpoint for IAM credentials.

Region: AWS Region where the S3 bucket and SQS queue are located. Required,

unless the Queue entry is a URL or ARN that includes a Region.

Enable for S3: Whether to use Assume Role credentials to access S3. Defaults to

Yes .

Enable for SQS: Whether to use Assume Role credentials when accessing SQS

(Amazon Simple Queue Service). Defaults to No .

AWS account ID: SQS queue owner's AWS account ID. Leave empty if the SQS queue

is in the same AWS account.

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

In this section, you can pass the data from this input to an external command for

processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You can

drag arguments vertically to resequence them.

Assume Role

Processing Settings

Custom Command

Event Breakers

Page 686 of 900

This section defines event breaking rulesets that will be applied, in order.

Event Breaker Rulesets: A list of event breaking rulesets that will be applied to the

input data stream before the data is sent through the Routes. Defaults to System
Default Rule .

Event Breaker Buffer Timeout: The amount of time (in milliseconds) that the Event

Breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Endpoint: S3 service endpoint. If empty, defaults to AWS's region specific endpoint.

Otherwise, used to point to an S3 compatible endpoint.

Signature version: Signature version to use for signing SQS requests. Defaults to v4 .

Num receivers: The number of receiver processes to run,. The higher the number, the

better the throughput, at the expense of CPU overhead. Defaults to 3 .

Max messages: The maximum number of messages that SQS should return in a poll

request. Amazon SQS never returns more messages than this value. (However, fewer

messages might be returned.) Acceptable values: 1 to 10. Defaults to 10 .

Visibility timeout seconds: The duration (in seconds) that the received messages are

hidden from subsequent retrieve requests, after being retrieved by a ReceiveMessage

request. Defaults to 600 .

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 687 of 900

__inputId

__source

1. Create a Standard SQS Queue. Note its ARN.

2. Replace its access policy with one similar to below: Selecting the queue, and in

the Permissions tab, click Edit Policy Document (Advanced).

3. In the Amazon S3 console, add a notification configuration to publish events of

the s3:ObjectCreated:* type to the SQS queue.

Example SQS Access Policy

The following permission is required on the S3 bucket:

s3:GetObject

The following permissions are required on the SQS queue:

sqs:ListQueues

How to Configure S3 to Send Event Notifications to SQS

ℹ For step-by-step instructions, see AWS' Walkthrough: Configure a Bucket

for Notifications (SNS Topic and SQS Queue).

{
 "Version": "example-2020-04-20",
 "Id": "example-ID",
 "Statement": [
 {
 "Sid": "<SID name",
 "Effect": "Allow",
 "Principal": {
 "AWS":"*"
 },
 "Action": [
 "SQS:SendMessage"
],
 "Resource": "example-SQS-queue-ARN",
 "Condition": {
 "ArnLike": { "aws:SourceArn": "arn:aws:s3:*:*:example-bucket-name"
 }
 }
]
}

S3 and SQS Permissions

Page 688 of 900

sqs:SendMessage

sqs:SendMessageBatch

sqs:CreateQueue

sqs:GetQueueAttributes

sqs:SetQueueAttributes

sqs:GetQueueUrl

VPC endpoints for SQS and for S3 might need to be set up in your account. Check

with your administrator for details.

If you're having connectivity issues, but no problems with the CLI, see if the AWS

CLI proxy is in use. Check with your administrator for details.

Troubleshooting Notes

Updated about 15 hours ago

Page 689 of 900

Office 365 Services

Cribl LogStream supports receiving data from the Office 365 Service Communications

API. This facilitates analyzing the status and history of service incidents on multiple

Microsoft cloud services, along with associated incident and Message Center

communications.

Select Data > Sources, then select Office 365 > Services from the Data Sources

page's tiles or left menu. Click Add New to open the New Office 365 Services source

pane, which provides the following fields.

Input ID: Enter a unique name to identify this Office 365 Services definition.

Tenant ID: Enter the Office 365 Azure tenant ID.

App ID: Enter the Office 365 Azure application ID.

Client secret: Enter the Office 365 Azure client secret.

Here, you can configure polling separately for the following types of data from the

Office 365 Service Communications API:

Current Status: Get a real-time view of current and ongoing service incidents.

Messages: Find izxncident and Message Center communications.

Historical Status: Get a historical view of service incidents.

As of this revision, this Microsoft API provides data for Office 365, Yammer,

Dynamics CRM, and Microsoft Intune cloud services. For each of these content types,

this section provides the following controls:

Enabled: Toggle this to Yes for each service that you want to poll.

ℹ Type: Pull | TLS Support: NO | Event Breaker Support: YES

Configuring Cribl LogStream to Receive Data from
Office 365 Services

General Settings

Content Types

Page 690 of 900

Interval: Optionally, override the default polling interval. See About Polling Intervals

below.

Log level: Set the verbosity level to one of debug , info (the default), warn , or
error .

To poll the Office 365 Service Communications API, LogStream uses the Interval

field's value to establish the search date range and the cron schedule

(e.g.: */${interval} * * * *).

Therefore, intervals set in minutes – those for Current Status and Historical Status –

must divide evenly into 60 minutes to create a predictable schedule. Dividing 60 by

intervals like 1 , 2 , 3 , 4 , 5 , 6 , 10 , 12 , 15 , 20 , or 60 itself yields an integer,

so you can enter any of these values.

LogStream will reject intervals like 23 , 42 , or 45 , or 75 – which would yield non-

integer results, meaning unpredictable schedules.

The Historical Status service polls only once per day. So here, the Interval field's

value simply establishes the hour of the day at which to poll. (In distributed

deployments, this time is set based on the Master Node's system time. In single-

instance deployments, it is set based on the API server's time zone.)

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Keep Alive Time (seconds): How often Workers should check in with the scheduler to

keep their job subscription alive. Defaults to 60 .

Worker timeout (periods): The number of Keep Alive Time periods before an inactive

Worker will have its job subscription revoked. Defaults to 3 .

About Polling Intervals

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Page 691 of 900

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__final

__inputId

__isBroken

__source

Internal Fields

Updated a day ago

Page 692 of 900

Office 365 Activity

Cribl LogStream supports receiving data from the Office 365 Management Activity

API. This facilitates analyzing actions and events on Azure Active Directory, Exchange,

and SharePoint, along with global auditing and Data Loss Prevention data.

Select Data > Sources, then select Office 365 > Activity from the Data Sources

page's tiles or left menu. Click Add New to open the New Office 365 Activity source

pane, which provides the following fields.

Input ID: Enter a unique name to identify this Office 365 Services definition.

Tenant ID: Enter the Office 365 Azure tenant ID.

App ID: Enter the Office 365 Azure application ID.

Client secret: Enter the Office 365 Azure client secret.

Subscription Plan: Select the Office 365 subscription plan for your organization. This

is typically Enterprise and GCC Government Plan .

Here, you can configure polling independently for the following types of audit data

from the Office 365 Management Activity API:

Active Directory

Exchange

SharePoint

General: All workloads not included in the above content types

DLP.All: Data Loss Prevention events only, for all workloads

For each of these content types, this section provides the following controls:

ℹ Type: Pull | TLS Support: NO | Event Breaker Support: YES

Configuring Cribl LogStream to Receive Data from
Office 365 Activity

General Settings

Content Types

Page 693 of 900

Enabled: Toggle this to Yes for each service that you want to poll.

Interval: Optionally, override the default polling interval. See About Polling Intervals

below.

Log level: Set the verbosity level to one of debug , info (the default), warn , or
error .

To poll the Office 365 Management Activity API, LogStream uses the Interval field's

value to establish the search date range and the cron schedule (e.g.: */${interval}
* * * *).

Therefore, intervals set in minutes must divide evenly into 60 minutes to create a

predictable schedule. Dividing 60 by intervals like 1 , 2 , 3 , 4 , 5 , 6 , 10 , 12 ,
15 , 20 , or 60 itself yields an integer, so you can enter any of these values.

LogStream will reject intervals like 23 , 42 , or 45 , or 75 – which would yield non-

integer results, meaning unpredictable schedules.

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

Keep Alive Time (seconds): How often Workers should check in with the scheduler to

keep their job subscription alive. Defaults to 60 .

Worker timeout (periods): The number of Keep Alive Time periods before an inactive

Worker will have its job subscription revoked. Defaults to 3 .

About Polling Intervals

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Internal Fields

Page 694 of 900

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__final

__inputId

__isBroken

__source

Updated a day ago

Page 695 of 900

SNMP Trap

Cribl LogStream supports receiving data from SNMP Traps.

Select Data > Sources, then select SNMP Trap from the Data Sources page's tiles or

left menu. Click Add New to open the New SNMP Trap source pane, which provides

the following fields.

Input ID: Enter a unique name to identify this Source definition.

Address: Address to bind on. Defaults to 0.0.0.0 (all addresses).

UDP Port: Port on which to receive SNMP traps. Defaults to 162 .

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

ℹ Type: Push | TLS Support: NO | Event Breaker Support: No

Configuring Cribl LogStream to Receive SNMP Traps

General Settings

Processing Settings

Fields (Metadata)

Pre-Processing

Advanced Settings

Page 696 of 900

IP whitelist regex: Regex matching IP addresses that are allowed to send data.

Defaults to .* i.e. all IPs.

Max buffer size (events) : Maximum number of events to buffer when downstream is

blocking. Defaults to 1000 .

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__inputId

__snmpVersion : Acceptable values are 0 , 2 , 3 . Versions: 0 =v1, 2 =v2c,
3 =v3.

__srcIpPort : <hostname>|port

__snmpRaw : Buffer containing Raw SNMP packet

It's possible to work with SNMP metadata (i.e., we'll decode the packet). Options

include dropping, routing, etc.

SNMP packets can be forwarded to other SNMP destinations. However, the

contents of the incoming packet cannot be modified – i.e., we'll forward the

packets verbatim as they came in.

SNMP packets can be forwarded to non-SNMP destinations (e.g., Splunk, Syslog,

S3, etc.).

Non-SNMP input data cannot be sent to SNMP destinations.

Internal Fields

Considerations for Working with SNMP Trap Data

Updated 6 days ago

Page 697 of 900

Datagens

Cribl LogStream supports generating of data from datagen files. See Using Datagens

for more details.

Select Data > Sources, then select Datagens from the Data Sources page's tiles or

left menu. Click Add New to open the New Datagen source pane, which provides the

following fields.

Input ID: Enter a unique name to identify this Source definition.

Datagens: List of datagens.

Data generator file: Name of the datagen file.

Events per second per Worker Node: Maximum number of events to generate

per second, per worker node. Defaults to 10 .

In this section, you can add fields/metadata to each event using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

ℹ Type: Internal | TLS Support: N/A | Event Breaker Support: No

Configuring Cribl LogStream to Generate Sample Data

General Settings

Processing Settings

Fields (Metadata)

Pre-Processing

Page 698 of 900

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and Functions can use them to

make processing decisions.

Fields for this Source:

__inputId

Internal Fields

Updated 6 days ago

Page 699 of 900

Cribl Internal

The Cribl Internal Source enables you to capture and send LogStream's own internal

logs and metrics through Routes and Pipelines. In distributed mode, only Worker

Node internal logs can be processed through this Source. (Logs on the Master remain

on the Master, since the Master Node is not part of any processing path.)

Select Data > Sources, then select Cribl Internal from the Data Sources page's tiles

or left menu. Then click the CriblLogs and/or CriblMetrics accordion to expose the

corresponding section's settings, listed below.

Enabled: Toggle to Yes to enable Cribl logs as a Source.

Input ID: Enter a unique name to identify this CriblLogs Source definition.

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

ℹ Type: Internal | TLS Support: N/A | Event Breaker Support: No

Configuring Cribl Internal Logs/Metrics to Behave as a
Data Source

CriblLogs Settings – General

CriblLogs Settings – Processing

Fields (Metadata)

Pre-Processing

CriblMetrics Settings – General

Page 700 of 900

Enabled: Toggle to Yes to enable Cribl metrics as a Source.

Input ID: Enter a unique name to identify this CriblMetrics Source definition.

Metric name prefix: Enter an optional prefix that will be applied to metrics provided by

LogStream. The prefix defaults to cribl.logstream. .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute field's value (can be a constant).

In this section's Pipeline drop-down list, you can select a single existing Pipeline to

process data from this input before the data is sent through the Routes.

The following fields will be added to all events/metrics:

source : set to cribl .

host : set to the hostname of the Cribl instance.

Use these fields to guide these events/metrics through Cribl Routes.

CriblMetrics Settings – Processing

Fields (Metadata)

Pre-Processing

Internal Fields

⚠ These internal fields are subject to change and modification. Cribl provides

them to assist with analytics and diagnostics, but does not guarantee that

they will remain available.

Updated 6 days ago

Page 701 of 900

Collectors

Collectors enable you to dispatch on-demand collection tasks that fetch data from

local or remote locations. As of v.2.3, LogStream supports scheduled collection jobs.

These recurring jobs can make batch collection of stored data more like continual

processing of streaming data.

You can configure a LogStream node to retrieve data from a remote system via Data >

Collectors. Data collection is a multi-step process:

First, define a collector instance. In this step, you configure collector-specific settings

by selecting a collector type and pointing it at a specific target. (E.g., the target will be

a directory if the type is Filesystem, or an S3 bucket/path if the type is Amazon S3.)

Next, schedule or manually run the collector. In this step, you configure scheduled-

job–specific or run-specific settings – such as the Run Mode, the Filter expression to

match the data against, the time range, etc.

When a node receives this configuration, it prepares the infrastructure to execute a

collection job. A collection job is typically made up of one or more tasks that: discover

the data to be fetched; fetch data that match the run filter; and finally, pass the results

either through the Routes or (optionally) into a specific Pipeline and Destination.

You might process data from inherently non-streaming sources, such as REST

endpoints, blob stores, etc. Scheduled jobs enable you to emulate a data stream by

scraping data from these sources in batches, on a set interval.

You can schedule a specific job to pick up new data from the source – data that hadnʼt

been picked up in previous invocations of this scheduled job. This essentially

transforms a non-streaming data source into a streaming data source.

In a distributed deployment, collectors are set up at the Worker Group level, and the

tasks are executed by Worker Nodes. The Master Node oversees the task distribution,

and tries to maintain a fair balance across jobs.

How Do Collectors Work

Scheduled Collector Jobs

Collectors in Distributed Deployments

Page 702 of 900

What's Next
See the configuration instructions for the collector type you want to configure,

Then proceed to instructions for scheduling and running collection jobs.

Filesystem/NFS

S3

Script

REST

Scheduling and Running

When Workers ask for tasks, the Master will normally try to assign the next task from a

job with the least tasks in progress. This is known as Least In Flight Scheduling and

provides the fairest task distribution for most cases. Default behavior can be changed

via Settings > General Settings > Job Limits > Job Scheduling.

Cribl LogStream currently provides the following collector options:

Filesystem/NFS – enables data collection from local or remote filesystem

locations.

S3 – enables data collection from Amazon S3 buckets or S3-compatible stores.

Script – enables data collection via custom scripts.

REST – enables data collection via REST API calls. Provides four Discover options,

to support progressively more complex (and dynamic) item enumerations.

Collector Types

Updated 12 days ago

Page 703 of 900

Filesystem/NFS

Cribl LogStream supports collecting data from a local or a remote filesystem location.

From the top menu, select Data > Collectors. On the resulting Manage Collectors

page, click Add New. This displays the following options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., DysonV11Roomba960 .

Collector type: Defines the type of Collector to configure.

Auto-populate from: Select a Destination with which to auto-populate Collector

settings. Useful when replaying data.

Directory: The directory from which to collect data. Symlinks will not be followed.

Templating is supported (e.g., /myDir/${host}/${year}/${month}/). More on
templates and Filters.

Recursive: If set to Yes (the default), data collection will recurse through

subdirectories.

Destructive: If set to Yes , the Collector will delete files after collection. Defaults to
No .

Max batch size (files) : Maximum number of files to batch before recording as results.

Configuring a Filesystem Collector

Collector Settings

ℹ Set this to Filesystem to configure the Collector as shown below.

The sections described below are spread across several tabs. Click the tab

links at left, or the Next and Prev buttons, to navigate among tabs. Click

Save when you've configured your Collector.

Result Settings

Page 704 of 900

The Result Settings determine how LogStream transforms and routes the collected

data.

In this section, you can pass the data from this input to an external command for

processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You can

drag arguments vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete

events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order,

to the input data stream. Defaults to System Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), events will be sent to normal routing and

event processing. Toggle to No to select a specific pipeline/destination combination,

in these two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

Preprocess Pipeline: Pipeline to process results before sending to Routes. Optional.

Custom Command

Event Breakers

Fields (Metadata)

Result Routing

Advanced Settings

Page 705 of 900

What's Next

Scheduling and Running

Advanced Settings enable you to customize post-processing and administrative

options.

Time to Live: How long to keep the job's artifacts on disk after job completion. This

also affects how long a job is listed in Job Inspector. Defaults to 4h .

Updated 14 days ago

Page 706 of 900

S3

Cribl LogStream supports collecting data from Amazon S3 stores.

From the top menu, select Data > Collectors. On the resulting Manage Collectors

page, click Add New. This displays the following options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., Attic42TreasureChest .

Collector type: Defines the type of Collector to configure.

Auto-populate from: Select a Destination with which to auto-populate Collector

settings. Useful when replaying data.

S3 bucket: Simple Storage Service bucket from which to collect data.

Region: S3 Region from which to retrieve data.

Path: Path, within the bucket, from which to collect data. Templating is supported

(e.g., /myDir/${host}/${year}/${month}/). More on templates and Filters.

API key: Enter API key. If empty, will fall back to env.AWS_ACCESS_KEY_ID , or to the
metadata endpoint for IAM credentials. Optional when running on AWS.

Secret key: Enter secret key. if empty, will fall back to env.AWS_SECRET_ACCESS_KEY ,
or to the metadata endpoint for IAM credentials. Optional when running on AWS.

Recursive: If set to Yes (the default), data collection will recurse through

subdirectories.

Configuring an S3 Collector

Collector Settings

ℹ Set this to S3 to configure the Collector as shown below.

The sections described below are spread across several tabs. Click the tab

links at left, or the Next and Prev buttons, to navigate among tabs. Click

Save when you've configured your Collector.

Page 707 of 900

Max batch size (files) : Maximum number of files to batch before recording as results.

Endpoint: S3 service endpoint. If empty, LogStream will automatically construct the

endpoint from the region.

Signature version: Signature version to use for signing S3 requests. Defaults to v4 .

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

The Result Settings determine how LogStream transforms and routes the collected

data.

In this section, you can pass the data from this input to an external command for

processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You can

drag arguments vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete

events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order,

to the input data stream. Defaults to System Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Advanced Collector Settings

Result Settings

Custom Command

Event Breakers

Fields (Metadata)

Page 708 of 900

What's Next

Scheduling and Running

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), events will be sent to normal routing and

event processing. Toggle to No to select a specific pipeline/destination combination,

in these two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

Preprocess Pipeline: Pipeline to process results before sending to Routes. Optional.

Advanced Settings enable you to customize post-processing and administrative

options.

Time to live: How long to keep the job's artifacts on disk after job completion. This

also affects how long a job is listed in Job Inspector. Defaults to 4h .

Result Routing

Advanced Settings

Updated 14 days ago

Page 709 of 900

Script

Cribl LogStream supports flexible data collection configured by your custom scripts.

From the top menu, select Data > Collectors. On the resulting Manage Collectors

page, click Add New. This displays the following options and fields.

The Collector Settings determine how data is collected before processing.

Collector ID: Unique ID for this Collector. E.g., sh2GetStuff .

Collector type: Defines the type of Collector to configure.

Discover script: Script to discover which objects/files to collect. This script should

output one task per line in stdout .

Collect script: Script to perform data collections. Pass in tasks from the Discover

script as $CRIBL_COLLECT_ARG . Should output results to stdout .

Shell: Shell in which to execute scripts. Defaults to /bin/bash .

Configuring a Script Collector

Collector Settings

ℹ Set this to Script to configure the Collector as shown below.

The sections described below are spread across several tabs. Click the tab

links at left, or the Next and Prev buttons, to navigate among tabs. Click

Save when you've configured your Collector.

With Great Power Comes Great Responsibility!⚠

Scripts will allow you to execute almost anything on the system where Cribl

LogStream is running. Make sure you understand the impact of what you're

executing before you do so! These scripts run as the user running

LogStream, so if you are running it as root, these commands will run with

root user permissions. ☠ ☠

Page 710 of 900

The Result Settings determine how LogStream transforms and routes the collected

data.

In this section, you can pass the data from this input to an external command for

processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You can

drag arguments vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete

events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order,

to the input data stream. Defaults to System Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the Routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), events will be sent to normal routing and

event processing. Toggle to No to select a specific pipeline/destination combination,

in these two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

Preprocess Pipeline: Pipeline to process results before sending to Routes. Optional.

Result Settings

Custom Command

Event Breakers

Fields (Metadata)

Result Routing

Page 711 of 900

What's Next

Scheduling and Running

Advanced Settings enable you to customize post-processing and administrative

options.

Time to live: How long to keep the job's artifacts on disk after job completion. This

also affects how long a job is listed in Job Inspector. Defaults to 4h .

Advanced Settings

Updated 14 days ago

Page 712 of 900

REST

Cribl LogStream supports collecting data from REST endpoints.

From the top menu, select Data > Collectors. On the resulting Manage Collectors

page, click Add New. This displays the following options and fields.

The Collector Settings determine how data is collected before processing.

Unique ID for this Collector. E.g., rest42json .

Defines the type of Collector to configure.

Once you've selected the REST Collector type above, this exposes a Discover type

drop-down. Here you have four options, corresponding to different use cases. Each

Discover type selection will expose a different set of Collector Settings fields. Below,

we cover the Discover types from simplest to most-complex.

Discover type: None matches cases where one simple API call will retrieve all the

data you need. This suppresses the Discover stage. (Example: Collect a list of

configured LogStream Pipelines.)

Discover type: Item List matches cases where you want to enumerate a known

list of items to retrieve. (Example: Collect network traffic data that's tagged with

Configuring a REST Collector

Collector Settings

Collector ID

Collector Type

ℹ Set this to REST to configure the Collector as shown below.

The sections described below are spread across several tabs. Click the tab

links at left, or the Next and Prev buttons, to navigate among tabs. Click

Save when you've configured your Collector.

Discover Type

Page 713 of 900

specific subnets.)

Discover type: JSON Response provides a Discover result field where you can

(optionally) define Discover tasks as a JSON array of objects. Each entry returned

by Discover will generate a Collect task. (Example: Collect data for specific geo

locations the National Weather Service API's stream of worldwide weather data.

This API requires multiple parameters in the request URL – latitude, longitude, etc.

– so an Item List would not work.)

Discover type: HTTP Request matches cases where you need to dynamically

discover what you can collect from a REST endpoint. This Discover type most

fully exploits LogStream's Discover-Before-Collect architecture. (Example: Make a

REST call to get a list of available log files, then run Collect against each of those

files.)

These remaining Collector Settings options appear for Discover type: None , as well
as for all other Discover type selections:

Collect URL: URL (constant or expression) to use for the Collect operation.

Collect method: Select the HTTP verb to use for the Collect operation, GET or POST .

Collect parameters: Optional HTTP request parameters to append to the request

URL. These refine or narrow the request. Click + Add Parameter to add parameters as

key-value pairs:

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Collect headers:: Click + Add Header to (optionally) add collection request haaders

as key-value pairs:

Name: Header name.

Value: JavaScript expression to compute the header's value (can be a constant).

Common Collector Settings / Discover Type: None

Time Range Variablesℹ

The following fields fields accept ${earliest} and ${latest} variables,

which reference any Time Range values that have been set in manual or

scheduled collection jobs:

Collect URL, Collect parameters, Collect headers

Discover URL, Discover parameters, Discover headers.

As an example, here is a Collect URL entry using these variables:

http://localhost/path?from=${earliest}&to=${latest}

Page 714 of 900

In the Authentication drop-down, select an authentication method to use for discover

and collect REST requests:

None : Compatible with REST servers like AWS, where you embed a secret
directly in the request URL.

Basic : Compatible with Basic Authentication servers. Selecting Basic exposes

additional fields in which you specify a Basic Auth zxUsername and Password.

Login : Enables you to specify several credentials, then perform a POST to an

endpoint during the Discover operation. The POST response returns a token,

which LogStream uses for later Collect operations.

Selecting Login exposes the following additional fields:

Login URL: URL for the login API call, which is expected to be a POST call.

Username: Login username.

Password: Login password.

POST Body: Template for POST body to send with the login request. The

${username} and ${password} variables specify the corresponding

credentials' locations in the message.

Token Attribute: Path to the token attribute in the login response body. Supports

nested attributes.

Authorize Expression: JavaScript expression used to compute the Authorization

header to pass in Discover and Collect calls. Uses ${token} to reference the

token obtained from the login POST request.

Setting the Discover type to Item List exposes this additional field above the

Common Collector Settings:

Discover Items: List of items to return from the Discover task. Each returned item will

generate a Collect task, and can be referenced using ${id} in the Collect URL, the

Collect parameters, or the Collect headers.

ℹ By adding the appropriate Collect headers, you can specify API Key–based

authentication as an alternative to the Authentication: Basic or Login
options below.

Authentication

Discover Type: Item List

Page 715 of 900

Setting the Discover type to JSON Response exposes these additional fields above

the Common Collector Settings:

Discover result: Allows hard-coding the Discover result. Must be a JSON object.

Works with the Discover data field.

Discover data field: Within the response JSON, name of the field or array element to

pull results from. Leave blank if the result is an array of values. Sample entry: items,
json: { items: [{id: 'first'},{id: 'second'}] }

Setting the Discover type to HTTP Request exposes these additional fields above the

Common Collector Settings:

Discover URL: Enter the URL to use for the Discover operation. This can be a constant

URL, or an expression to derive the URL.

Discover method: Select the HTTP verb to use for the Discover operation, GET or

POST .

Discover parameters: Optional HTTP request parameters to append to the Discover

request URL. These refine or narrow the request. Click + Add Parameter to add

parameters as key-value pairs:

Name: Parameter name.

Value: JavaScript expression to compute the parameter's value (can also be a

constant).

Discover headers: Optional Discover request headers.: Click + Add Header to add

headers as key-value pairs:

Name: Header name.

Value: JavaScript expression to compute the header's value (can also be a

constant).

Discover data field: Within the response JSON, name of the field that contains

Discover results. Leave blank if the result is an array.

Discover Type: JSON Response

Discover Type: HTTP Request

ℹ The following sections describe the Collector Settings' remaining tabs,

whose settings and content apply equally to all Discover type selections.

Result Settings

Page 716 of 900

The Result Settings determine how LogStream transforms and routes the collected

data.

In this section, you can pass the data from this input to an external command for

processing, before the data continues downstream.

Enabled: Defaults to No . Toggle to Yes to enable the custom command.

Command: Enter the command that will consume the data (via stdin) and will
process its output (via stdout).

Arguments: Click + Add Argument to add each argument to the command. You can

drag arguments vertically to resequence them.

In this section, you can apply event breaking rules to convert data streams to discrete

events.

Event Breaker rulesets: A list of event breaking rulesets that will be applied, in order,

to the input data stream. Defaults to System Default Rule .

Event Breaker buffer timeout: The amount of time (in milliseconds) that the event

breaker will wait for new data to be sent to a specific channel, before flushing out the

data stream, as-is, to the routes. Defaults to 10000 .

In this section, you can add fields/metadata to each event, using Eval-like functionality.

Name: Field name.

Value: JavaScript expression to compute the field's value (can be a constant).

Send to Routes: If set to Yes (the default), events will be sent to normal routing and

event processing. Toggle to No to select a specific pipeline/destination combination,

in these two additional fields:

Pipeline: Select a Pipeline to process results.

Destination: Select a Destination to receive results.

Preprocess Pipeline: Pipeline to process results before sending to Routes. Optional.

Custom Command

Event Breakers

Fields (Metadata)

Result Routing

Advanced Settings

Page 717 of 900

What's Next

Scheduling and Running

Advanced Settings enable you to customize post-processing and administrative

options.

Time to live: How long to keep the job's artifacts on disk after job completion. This

also affects how long a job is listed in Job Inspector. Defaults to 4h .

Updated 13 days ago

Page 718 of 900

Scheduling and Running

Once you've configured a Collector, you can either run it immediately to collect data,

or schedule it to run on a recurring schedule. Scheduling requires some extra

configuration upfront, so we cover this option first.

Click Schedule beside a configured Collector to display the Schedule configuration

modal. This provides the following controls.

Enabled: Slide to Yes to enable this collection schedule.

Cron schedule: A cron schedule on which to run this job.

The Estimated schedule below this field shows the next few collection runs, as

examples of the cron interval you've scheduled.

Skippable: Skippable jobs can be delayed up to their next run time if the system is

hitting concurrency limits. Defaults to Yes .

If toggled to Yes , the Skippable option obliges these concurrency limits in Settings >
General Settings > Job Limits:

Concurrent Job Limit

Concurrent Scheduled Job Limit

When the above limits delay a Skippable job:

The Skippable job will be granted slightly higher priority than non-Skippable jobs.

If the job receives resources to run before its next scheduled run, LogStream will

run the delayed job, then snap back to the original cron schedule.

If resources do not free up before the next scheduled run: LogStream will skip the

delayed run, and snap back to the original cron schedule.

Schedule Configuration

⚠ The scheduled job will keep running on this schedule forever, unless you

toggle Enabled back to Off .

Skippable Jobs and Concurrency Limits

Page 719 of 900

Set Skippable to No if you absolutely must have all your data, for compliance or other

reasons. In this case, LogStream will build up a backlog of jobs to run.

You can think of Skippable: No as behaving more like the TCP protocol, with

Skippable: Yes behaving more like UDP.

Most of the remaining fields and options below are shared with the Run configuration

modal, which you can open by clicking Run beside a configured Collector.

Depending on your requirements, you can schedule or run a collector in these modes:

Preview – default for Run, but not offered for Scheduled Jobs

Discovery – default for Scheduled Jobs

Full Run

In the Preview mode, a collection job will return only a sample subset of matching

results (e.g., 100 events). This is very useful in cases when users need a data sample

to:

Ensure that the correct data comes in.

Iterate on filter expressions.

Capture a sample to iterate on pipelines.

⚠ All collection jobs are constrained by the following Settings >

General Settings > Job Limits:

Concurrent Task Limit

Max Task Usage Percentage

Run Configuration and Shared Settings

Mode

Preview

ℹ Schedule configuration omits the Preview option, because Preview is

designed for immediate analysis and decision making. To configure a

Scheduled Job with high confidence, you might want to first manually run

Preview jobs with the same Collector, to verify that you're collecting the

data you expect.

Preview Settings

Page 720 of 900

In Preview mode, you can optionally set these limits:

Capture time (sec): Maximum time interval (in seconds) to collect data.

Capture up to N events: Maximum number of events to capture.

In Discovery mode, a collection job will return only the list of objects/files to be

collected, but none of the data. This mode is typically used to ensure that the Filter

expression and time range are correct before a Full Run job collects unintended data.

In Discovery mode, this slider enables you to send the discover results to LogStream

Routes. Defaults to No .

In Full Run mode, the collection job is fully executed by Worker Nodes, and will return

all data matching the Run configuration.

Set an Absolute or Relative time range for data collection.

Select the Absolute button to set fixed collection boundaries in your local time. Next,

use the Earliest and Latest controls to set the start date/time and end date/time.

Select the Relative button to set collection boundaries relative to the current time.

Next, use the Earliest and Latest to set start and end times like these:

Earliest example values: -1hr , -42m , - 42m@h

Latest example values: now , -20m , +42m@h

For Relative times, the Earliest and Latest controls accept the following syntax:

[+|-]<time_integer><time_unit>@<snap-to_time_unit>

To break down this syntax:

Discovery

Send to Routes

Full Run

Time Range

✅ The Relative option is particularly useful for configuring scheduled jobs.

Absolute

Relative

Relative Time Syntax

Page 721 of 900

The @ snap modifier always rounds down (backwards) from any specified time. This

is true even in relative time expressions with + (future) offsets. For example:

@d snaps back to the beginning of today, 12�00 AM (midnight).

+128m@h looks forward 128 minutes, then snaps back to the nearest round hour.

(If you specified this in the Latest field, and ran the Collector at 4�20 PM,

collection would end at 6�00 PM. The expression would look forward to 6�28 PM,

but snap back to 6�00 PM.)

Other options:

@w or @w7 to snap back to the beginning of the week – defined here as the

preceding Sunday.

To snap back to other days of a week, use w1 (Monday) through w6 (Saturday).

@m to snap back to the 1st of a month.

@q to snap back to the beginning of the most recent quarter – Jan. 1, Apr. 1, Jul.

1, or Oct. 1.

@y to snap back to Jan. 1.

This is a JavaScript filter expression that is evaluated against token values in the

provided collector path (see below), and against the events being collected. The Filter

value defaults to true , which matches all data, but this value can be customized
almost arbitrarily.

For example, if a Filesystem or S3 collector is run with this Filter:

host=='myHost' && source.endsWith('.log') || source.endsWith('.txt')

Offset
Specify: - for times in the past, + for times in the future, or

omit with now .

<time_integer> Specify any integer, or omit with now .

<time_unit>

Specify the now constant, or one of the following

abbreviations: s[econds] , m[inutes] , h[ours] , d[ays] ,
w[eeks] , m[onths] , q[uarters] , y[ears]

@<snap-

to_time_unit>

Optionally, you can append the @ modifier, followed by any of

the above <time_unit> s, to round down to the nearest
instance of that unit. (See the next section for details.)

Snap-to-Time Syntax

Filter

Syntax

Element
Values Supported

Page 722 of 900

...then only files/objects with .log or .txt extensions will be fetched. And, from

those, only those events with host field myHost will be collected.

For more extensive options, see Tokens for Filtering below.

Log Level: Level at which to set task logging. More-verbose levels are useful for

troubleshooting jobs and tasks, but use them sparingly.

Min task size: Minimum size of each task for the job. Defaults to 1 MB .

Max task size: Maximum size of each task for the job. Defaults to 10 MB .

Let's look at the options for path-based (basic) and time-based token filtering.

In collectors with paths, such as Filesystem or S3, LogStream supports path filtering

via token notation. Basic tokens' syntax follows that of JS template literals:

${<token_name>} – where token_name is the field (name) of interest.

For example, if the path was set to /var/log/${hostname}/${sourcetype}/ , you
could use a Filter such as hostname=='myHost' && sourcetype=='mySourcetype' to

collect data only from the /var/log/myHost/mySourcetype/ subdirectory.

In paths with time partitions, LogStream supports further filtering via time-based

tokens. This has a direct effect with earliest and latest boundaries. When a job runs

against a path with time partitions, the job traverses a minimal superset of the required

directories to satisfy the time range, before subsequent event _time filtering.

LogStream processes time-based tokens as follows:

For each path, time partitions must be notated in descending order. So

Year/Month/Day order is supported, but Day/Month/Year is not.

Paths may contain more than one partition. E.g., /my/path/2020-04/20/ .

In a given path, each time component can be used only once.

So /my/path/${_time:%Y}/${_time:%m}/${_time:%d}/... is a valid expression

format, but /my/path/${_time:%Y}/${_time:%m}/${host}/${_time:%Y}/...
(with a repeated Y) is not supported.

Advanced Settings

Tokens for Filtering

Basic Tokens

Time-based Tokens

About Partitions and Tokens

Page 723 of 900

For each path, all extracted dates/times are considered in UTC.

The following strptime format components are allowed:

'Yy' , for years

'mBbj' , for months

'dj' , for days

'HI' , for hours

'M' , for minutes

'S' , for seconds

Time-based token syntax follows that of a slightly modified JS template literal:

${_time: <some_strptime_format_component>} . Examples:

Token Syntax

/my/path/${_time:%Y}/${_time:%m}/${_time:%d}/... /my

/my/path/${_time:year=%Y}/${_time:month=%m}/${_time:date=%d}/... /my

/my/path/${_time:%Y-%m-%d}/... /my

Updated about 16 hours ago

Filter Ma

Page 724 of 900

Destinations

Cribl LogStream can send data to various Destinations, including Splunk, Kafka,

Kinesis, InfluxDB, Snowflake, Databricks, TCP JSON, and many others.

Destinations that accept events in real time are referred to as streaming Destinations:

Splunk Single Instance

Splunk Load Balanced

Splunk HEC

AWS Kinesis Streams

AWS CloudWatch Logs

AWS SQS

Elasticsearch

Honeycomb

TCP JSON

Syslog

Kafka

Azure Event Hubs

Azure Monitor Logs

StatsD

StatsD Extended

Graphite

InfluxDB

Wavefront

SignalFx

Streaming Destinations

Page 725 of 900

Destinations that accept events in groups or batches are referred to as non-streaming

Destinations:

S3 Compatible Stores

Filesystem/NFS

MinIO

Azure Blob Storage

LogStream also provides these special-purpose Destinations:

Output Router: Flexible "meta-destination." Here, you can configure rules that

route data to multiple outputs.

DevNull: An output that simply drops events. Preconfigured and active when you

install LogStream, so it requires no configuration. Useful for testing.

Default: Here, you can specify a default output from among your configured

Destinations.

Cribl LogStream uses a staging directory in the local filesystem to format and write

outputted events before sending them to configured Destinations. After a set of

conditions is met – typically file size and number of files, further details below – data is

compressed and then moved to the final Destination.

An inventory of open, or in-progress, files is kept in the staging directory's root, to

avoid having to walk that directory at startup. This can get expensive if staging is also

the final directory. At startup, Cribl LogStream will check for any leftover files in

progress from prior sessions, and will ensure that they're moved to their final

Destination. The process of moving to the final Destination is delayed after startup

(default delay: 30 seconds). Processing of these files is paced at one file per service

period (which defaults to 1 second).

Several conditions govern when files are closed and rolled out:

1. File reaches its configured maximum size.

2. File reaches its configured maximum open time.

3. File reaches its configured maximum idle time.

If a new file needs to be open, Cribl LogStream will enforce the maximum number of

open files, by closing files in the order in which they were opened.

Non-Streaming Destinations

Other Destinations

How Does Non-Streaming Delivery Work

Batching Conditions

Page 726 of 900

Data is delivered to all Destinations on an at-least-once basis. When a Destination is

unreachable, there are three possible behaviors:

Block - Cribl LogStream will block incoming events.

Drop - Cribl LogStream will drop events addressed to that Destination.

Queue - Cribl LogStream will Persistent-Queue events to that Destination.

You can configure the desired behavior through a Destination's Backpressure

Behavior option. If this option is not present, Cribl LogStream's default behavior is to

Block.

For each Destination type, you can create multiple definitions, depending on your

requirements.

To configure Destinations, select Data > Destinations, select the desired type from

the tiles or the left menu, then click + Add New.

Data Delivery

Configuring Destinations

Updated 8 days ago

Page 727 of 900

Output Router

Output Routers are meta-destinations that allow for output selection based on rules.

Rules are evaluated in order, top->down, with the first match being the winner.

Select Data > Destinations, then select Output Router from the Data Destinations

page's tiles or left menu. Click Add New to open the New Router destination pane,

which provides the following fields.

Router name: Enter a unique name to identify this Router definition.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Rules: A list of event routing rules. Each provides the following settings:

Filter expression: JavaScript expression to select events to send to output.

Output: Output to send matching events to.

Final: Flag that controls whether to stop the event from being checked against

other rules lower in the stack. Defaults to Yes .

An Output Router cannot reference another. This is by design, so as to avoid

cycles.

Events that do not match any of the rules are dropped. Use a catchall rule to

change this behavior.

No post-processing (conditioning) can be done here. Use Pre-Processing

Pipelines on the Source tier.

Data can be cloned by toggling the Final flag to No . (The default is Yes , i.e.,
no cloning.)

Configuring Cribl LogStream to Send to an Output Router

Notes

Example

Page 728 of 900

Scenario:

Send all events where host starts with 66 to Destination San Francisco .

From the rest of the events:

Send all events with method field POST or GET to both Seattle and Los
Angeles (i.e., clone).

Send the remaining events to New York City .

Router Name: router66

host.startsWith('66') San Francisco Yes

method=='POST' || method=='GET Seattle No

method=='POST' || method=='GET' Los Angeles Yes

true New York Yes

Updated 5 days ago

Filter Expression Output Final

Page 729 of 900

Splunk Single Instance

Splunk Enterprise is a streaming Destination type.

Select Data > Destinations, then select Splunk > Single Instance from the

Data Destinations page's tiles or left menu. Click Add New to open the

New Splunk Single Instance destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this Splunk Single Instance definition.

Address: Hostname of the Splunk receiver.

Port: The port number on the host.

Nested field serialization: Specifies how to serialize nested fields into index-time

fields. Defaults to None .

Throttling: Throttle rate in bytes per second. Multiple byte units such as KB, MB, GB

etc. are also allowed. E.g., 42 MB. Default value of 0 indicates no throttling. When

throttle engaged, excesses data will be dropped only if Backpressure Behavior is set to

drop, and blocked for all other settings.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Configuring Cribl LogStream to Output to Splunk
Destinations

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 730 of 900

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enabled defaults to No . When toggled to Yes :

Validate server certs: Require client to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Server name (SNI): Server name for the SNI (Server Name Indication) TLS extension.

This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to use to

verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is required.

Certificate path (mutual auth): Path on client containing certificates in (PEM format)

to use. Path can reference $ENV_VARS . Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to

establish, before retrying. Defaults to 10000 .

TLS Settings (Client Side)

Single .pem Fileℹ

If you have a single .pem file containing cacert , key , and cert
sections, enter it in all of these fields above: CA certificate path, Private

key path (mutual auth), and Certificate path (mutual auth).

Timeout Settings

Page 731 of 900

Write timeout: Amount of time (in milliseconds) to wait for a write to complete, before

assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Data sent to Splunk is not compressed.

If events have a Cribl LogStream internal field called __criblMetrics , they'll be
forwarded to Splunk as metric events.

If events do not have a _raw field, they'll be serialized to JSON prior to sending

to Splunk.

Processing Settings

Post-Processing

Notes about Forwarding to Splunk

Updated a day ago

Page 732 of 900

Splunk Load Balanced

Splunk is a streaming Destination type, and with Splunk Load Balanced output, you

can load-balance data out to multiple Splunk receivers.

Cribl LogStream will attempt to load-balance outbound data as fairly as possibly

across all receivers. Data is sent to all receivers simultaneously, and the amount sent to

each receiver depends on these parameters:

1. Respective destination weight.

2. Respective destination historical data.

By default, historical data is tracked for 300s. LogStream uses this data to influence

the traffic sent to each destination, to ensure that differences decay over time, and

that total ratios converge towards configured weights.

Suppose we have two receivers, A and B, each with weight of 1 (i.e., they are

configured to receive equal amounts of data). Suppose further that the load-balance

stats period is set at the default 300s and – to make things easy – for each period,

there are 200 events of equal size (Bytes) that need to be balanced.

Both A and B start this interval with 0 historical stats each.

Let's assume that, due to various circumstances, 200 events are "balanced" as

follows:

A = 120 events and B = 80 events – a difference of 40 events and a ratio of

1.5�1.

At the beginning of interval 2, the load-balancing algorithm will look back to the

previous interval stats and carry half of the receiving stats forward. I.e., receiver A will

start the interval with 60 and receiver B with 40. To determine how many events A and

How Does Load Balancing Work

Example

1 time=0s ---> time=300s 200

2 time=300s ---> time=600s 200

Interval Time Range Events to be dispensed

Interval Time Range Events to be dispensed

Page 733 of 900

B will receive during this next interval, LogStream will use their weights and their stats

as follows:

Total number of events: events to be dispensed + stats carried forward = 200
+ 60 + 40 = 300 .
Number of events per each destination (weighed): 300/2 = 150 (they're equal, due

to equal weight).

Number of events to send to each destination A: 150 - 60 = 90 and B: 150 - 40
= 110 .

Totals at end of interval 2: A=120+90=210 , B=80+110=190 , a difference of 20 events

and a ratio of 1.1�1.

Over the subsequent intervals, the difference becomes exponentially less pronounced,

and eventually insignificant. Thus, the load gets balanced fairly.

To configure load balancing, first select Data > Destinations, then select

Splunk > Load Balanced from the Data Destinations page's tiles or left menu. Then

click Add New to open the New Splunk Load Balanced destination pane, which

provides the following fields.

Output ID: Enter a unique name to identify this Splunk LB Destination definition.

DNS resolution period (seconds): Re-resolve any hostnames after each interval of

this many seconds, and pick up destinations from A records. Defaults to 60s.

Exclude current host IPs: Exclude all IPs of the current host from the list of any

resolved hostnames. Defaults to Yes .

Load balance stats period (seconds): Lookback traffic history period. Defaults to

300s. (Note that If multiple receivers are behind a hostname – i.e., multiple A records –

all resolved IPs will inherit the weight of the host, unless each IP is specified separately.

In Cribl LogStream load balancing, IP settings take priority over those from

hostnames.)

Nested field serialization: Specifies whether and how to serialize nested fields into

index-time fields. Select None (the default) or JSON .

Throttling: Throttle rate, in bytes per second. Multiple byte units such as KB, MB, GB,

etc., are also allowed. E.g., 42 MB . Default value of 0 indicates no throttling. When

throttling is engaged, excess data will be dropped only if Backpressure behavior is set

to Drop events. (Data will be blocked for all other Backpressure behavior settings.)

Configuring Cribl LogStream to Load-Balance to
Multiple Splunk Destinations

General Settings

Page 734 of 900

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Toggle to Yes to automatically discover indexers in an indexer clustering environment.

This displays the following fields:

Site: Clustering site from which indexers need to be discovered. In the case of a

single site cluster, default is the default entry.

Cluster Master URI: Full URI of Splunk Cluster Master, in the format:

scheme://host:port .
(Worker Nodes normally access the Cluster Master on port 8089 to get the list of

currently online indexers.)

Auth token: Authentication token required to authenticate to Cluster Master for

indexer discovery.

Refresh period: Time interval (in seconds) between two consecutive fetches of

indexer list from Cluster Master. Defaults to 60 .

The Destinations section appears only when Indexer discovery is set to No . Here,
you specify a known set of Splunk receivers on which to load-balance data.

Click + Add Destination to specify more receivers on new rows. Each row provides the

following fields:

Address: Hostname of the Splunk receiver. Optionally, you can paste in a comma-

separated list, in <host>:<port> format.

Port: Port number to send data to.

TLS: Whether to inherit TLS configs from group setting, or disable TLS. Defaults

to inherit .

TLS servername: Servername to use if establishing a TLS connection. If not

specified, defaults to connection host (if not an IP). Otherwise, uses the global

Indexer Discovery

ℹ To enable token authentication on the Splunk Cluster Master, follow the

steps in this Splunk documentation. The following capabilites are required:

list_indexer_cluster and list_indexerdiscovery .

If you have a failover site configured on Splunk's Cluster Master, Cribl

respects this configuration, and forwards the data to the failover site in case

of site failure.

Destinations

Page 735 of 900

TLS settings.

Load weight: The weight to apply to this Destination for load-balancing purposes.

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enabled: Defaults to No . When toggled to Yes :

Validate server certs: Require client to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Server name (SNI): Server Name Indication.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates to use to verify the

server's cert. Path can reference $ENV_VARS . Certificates in PEM format.

Private key path (mutual auth): Path on client containing the private key to use.

Path can reference $ENV_VARS . Private key file in PEM format. Use only if mutual

auth is required.

Certificate path (mutual auth): Path on client containing certificates to use.

Path can reference $ENV_VARS . Certificates in PEM format. Use only if mutual

auth is required.

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

TLS Settings (Client Side)

Page 736 of 900

Passphrase: Passphrase to use to decrypt private key.

Connection timeout: Amount of time (milliseconds) to wait for the connection to

establish, before retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete,

before assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

To connect to Splunk Cloud, you might need to extract the private and public key from

the Splunk-provided Splunk Cloud Certificate, which is typically bundled in an app.

Use the following steps:

Step 1. Test connectivity to Splunk Cloud, using the Root CA certificate:

openssl s_client -CApath path_to_ca.pem -connect
hostnameToSplunkCloud:9997

ℹ Single PEM File

If you have a single .pem file containing cacert , key , and cert
sections, enter this file's path in all of these fields above: CA certificate

path, Private key path (mutual auth), and Certificate path (mutual

auth).

Timeout Settings

Processing Settings

Post-Processing

SSL Configuration for Splunk Cloud – Special Note

Page 737 of 900

Step 2. Extract the Private key from the Splunk Cloud Certificate. At the prompt, you

will need the sslPassword value from the outputs.conf file bundled with the

Splunk Cloud app:

openssl ec -in path_to_server_cert.pem -out private.pem

Step 3. Extract the Public Key for the Server Certificate:

openssl x509 -in path_to_server_cert.pem -out server.pem

Step 4. In the LogStream Destination's TLS Settings (Client Side) section, enter the

following:

CA Certificate Path: Path to CA Certificate.

Private Key Path (mutual auth): Path to private.pem (Step 2 above).

Certificate Path (mutual auth): Path to server.pem (Step 3 above).

Data sent to Splunk is not compressed.

If events have a LogStream internal field called __criblMetrics , they'll be
forwarded to Splunk as metric events.

If events do not have a _raw field, they'll be serialized to JSON prior to sending

to Splunk.

Notes About Forwarding to Splunk

Updated a day ago

Page 738 of 900

Splunk HEC

Splunk HEC is a streaming Destination type. In a typical deployment, Cribl LogStream

will be installed/ co-located in a Splunk heavy forwarder. If this output is enabled, it can

send data out to a Splunk HEC (HTTP Event Collector) destination through the event

endpoint.

Select Data > Destinations, then select Splunk > HEC from the Data Destinations

page's tiles or left menu. Click Add New to open the New Splunk HEC destination

pane, which provides the following fields.

Output ID: Enter a unique name to identify this Splunk HEC definition.

Splunk HEC endpoint: URL of a Splunk HEC endpoint to send events to (e.g.,

http://myhost.example.com:8088/services/collector/event).

HEC auth token: Splunk HEC authentication token.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Configuring Cribl LogStream to Output to Splunk HEC
Destinations

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 739 of 900

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete

before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This

is set per Worker Process. Defaults to 5 . Each request can potentially hit a different
HEC receiver.

Max body size (KB): Maximum size, in KB, of the request body. Defaults to 4096 .
Lowering the size can potentially result in more parallel requests and also cause

outbound requests to be made sooner.

Flush period (sec): Maximum time between requests. Low values can cause the

payload size to be smaller than the configured Max body size. Defaults to 1 .

Processing Settings

Post-Processing

Advanced Settings

ℹ Retries happen on this flush interval.

Any HTTP response code in the 2xx range is considered success.

Any response code in the 5xx range is considered a retryable error,

which will not trigger Persistent Queue (PQ) usage.

Page 740 of 900

Extra HTTP headers: Click + Add Header to add Name/Value pairs to pass as

additional HTTP headers.

Next processing queue: Specify the next Splunk processing queue to send the events

to, after HEC processing. Defaults to indexQueue .

Default _TCP_ROUTING: Specify the value of the _TCP_ROUTING field for events that

do not have _ctrl._TCP_ROUTING set. Defaults to nowhere .

Cribl LogStream will attempt to use keepalives to reuse a connection for multiple

requests. After 2 minutes of the first use, the connection will be thrown away, and

a new connection will be reattempted. This is to prevent sticking to a particular

Destination when there is a constant flow of events.

If the server does not support keepalives – or if the server closes a pooled

connection while idle – a new connection will be established for next request.

When resolving the Destination's hostname, LogStream will pick the first IP in the

list for use in the next connection. Round-robin DNS would help with event

balancing.

Any other response code will trigger PQ (if PQ is configured as the

Backpressure behavior).

ℹ This is useful only when you expect the HEC receiver to route this data on

to another destination.

Notes on HTTP-based Outputs

Updated about 16 hours ago

Page 741 of 900

S3 Compatible Stores

S3 is a non-streaming Destination type. Cribl LogStream does not have to run on AWS

in order to deliver data to S3. Stores that are S3-compatible will also work with this

Destination type.

Select Data > Destinations, then select Amazon > S3 from the Data Destinations

page's tiles or left menu. Click Add New to open the New S3 destination pane, which

provides the following fields.

Output ID: Enter a unique name to identify this S3 definition.

S3 bucket name: Name of the destination S3 Bucket. This value can be a constant or

a JavaScript expression.

Region: Region where the S3 bucket is located.

API key: Enter your AWS API Key. If left blank, LogStream will fall back to

env.AWS_ACCESS_KEY_ID , or to the metadata endpoint for IAM credentials.

Secret key: Enter your AWS Secret Key. If left blank, Cribl LogStream will fall back to

env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM credentials.

Staging location: Filesystem location in which to locally buffer files before

compressing and moving to final destination. Cribl recommends that this location be

stable and high-performance.

Key prefix: Prefix to add to files before uploading. This value can be a constant or a

JavaScript expression.

Partitioning expression: JavaScript expression to define how files are partitioned and

organized. If left blank, Cribl LogStream will fall back to event.__partition . Defaults
to `${host}/${sourcetype}` . Partitioning by time is also possible, e.g.,
`${host}/${C.Time.strftime(_time, '%Y-%m-%d')}/${sourcetype}`

Data format: Format of the output data. Defaults to json .

File name prefix: The output filename prefix. Defaults to CriblOut .

Configuring Cribl LogStream to Output to S3
Destinations

General Settings

Page 742 of 900

Compress: Select the data compression format to use before moving data to final

destination. Defaults to none . Cribl recommends setting this to gzip .

Backpressure behavior: Select whether to block or drop events when all receivers in

this group are exerting backpressure. Defaults to Block .

Enable for S3: Use Assume Role credentials to access Kinesis stream. Defaults to No .

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Endpoint: S3 service endpoint. If empty, the endpoint will be automatically

constructed from the region.

Object ACL: Object ACL (Access Control List) to assign to uploaded objects.

Storage class: Select a storage class for uploaded objects. Defaults to Standard .

Server side encryption: Server side encryption type for uploaded objects. Defaults to

none .

Signature version: Signature version to use for signing S3 requests. Defaults to v4 .

Max file size (MB): Maximum uncompressed output file size. Files of this size will be

closed and moved to final output location. Defaults to 32 .

Assume Role

Processing Settings

Post-Processing

Advanced Settings

Page 743 of 900

Max file open time (sec): Maximum amount of time to write to a file. Files open for

longer than this limit will be closed and moved to final output location. Defaults to

300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open. Files

open for longer than this limit will be closed and moved to final output location.

Defaults to 30 .

Max open files: Maximum number of files to keep open concurrently. When exceeded,

the oldest open files will be closed and moved to final output location. Defaults to

100 .

The following permissions are needed to write to an Amazon S3 bucket:

s3:GetObject
s3:ListBucket
s3:GetBucketLocation
s3:PutObject

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Field for this Destination:

__partition

ℹ Cribl LogStream will close files when either of the Max file size (MB) or

the Max file open time (sec) conditions are met.

Amazon S3 Permissions

Internal Fields

Updated about 14 hours ago

Page 744 of 900

Kinesis Streams

Cribl LogStream can output events to Amazon Kinesis Data Streams records of up to

1MB uncompressed. Cribl LogStream does not have to run on AWS in order to deliver

data to a Kinesis Data Stream.

Select Data > Destinations, then select Amazon > Kinesis from the

Data Destinations page's tiles or left menu. Click Add New to open the New Kinesis

destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this Kinesis definition.

Stream name: Enter the name of the Kinesis Data Stream to which to send events.

API key: Enter your AWS API Key. If left blank, LogStream will fall back to

env.AWS_ACCESS_KEY_ID , or to the metadata endpoint for IAM credentials.

Secret key: Enter your AWS Secret Key. If left blank, LogStream will fall back to

env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM credentials.

Region: Select the AWS Region where the Kinesis Data Stream is located.

Endpoint: Kinesis Stream service endpoint. If empty, the endpoint will be automatically

constructed from the region.

Signature version: Signature version to use for signing Kinesis stream requests.

Defaults to v4 .

Put request concurrency: Maximum number of ongoing put requests before blocking.

Defaults to 5 .

Max record size (KB, uncompressed): Maximum size of each individual record before

compression. For non-compressible data, 1MB (the default) is the maximum

recommended size.

Flush period (sec): Maximum time between requests. Low settings could cause the

payload size to be smaller than its configured maximum.

Configuring Cribl LogStream to Output to Amazon
Kinesis Data Streams

General Settings

Page 745 of 900

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enable for Kinesis stream: Use Assume Role credentials to access Kinesis stream.

Defaults to No .

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Assume Role

Processing Settings

Post-Processing

Page 746 of 900

cribl_output – LogStream Destination that processed the event.

Currently, outputted events use the following record format:

Header line containing information about the payload (currently supports one

type, as shown below).

Newline-Delimited JSON (that is, each Kinesis record will contain multiple events,

in ndjson format).

Record payloads (including header and body) will be gzip-compressed, and then

Kinesis will base64-encode them.

Sample Kinesis Record

Format

{"format":"ndjson","count":8,"size":3960}
{"_raw":"07-03-2018 18:33:51.136 -0700 ERROR TcpOutputFd - Read error. Co
{"_raw":"07-03-2018 18:33:51.136 -0700 INFO TcpOutputProc - Connection t
...

Updated a day ago

Page 747 of 900

CloudWatch Logs

Cribl LogStream supports sending data to Amazon CloudWatch Logs. This is a

streaming Destination type. Cribl LogStream does not have to run on AWS in order to

deliver data to CloudWatch Logs.

Select Data > Destinations, then select Amazon > CloudWatch Logs from the

Data Destinations page's tiles or left menu. Click Add New to open the

New CloudWatch Logs destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this CloudWatch definition.

Log group name: CloudWatch log group to associate events with.

Log stream prefix: Prefix for CloudWatch log stream name. This prefix will be used to

generate a unique log stream name per Cribl LogStream instance. (E.g.,

myStream_myHost_myOutputId .)

API key: Enter your AWS API Key. If left blank, LogStream will fall back to

env.AWS_ACCESS_KEY_ID , or to the metadata endpoint for IAM credentials.

Secret key: Enter your AWS Secret Key. If left blank, LogStream will fall back to

env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM credentials.

Region: AWS region where the CloudWatch Logs group is located.

Endpoint: CloudWatch Logs service endpoint. If empty, defaults to AWS' Region-

specific endpoint. Otherwise, use this field to point to a CloudWatchLogs-compatible

endpoint.

Signature version: Signature version to use for signing CloudWatch Logs requests.

Defaults to v4 .

Max queue size: Maximum number of queued batches before blocking. Defaults to

5 .

Max record size (KB, uncompressed): Maximum size of each individual record before

compression. For non-compressible data, 1MB (the default) is the maximum

Configuring Cribl LogStream to Output to Amazon
CloudWatch Logs

General Settings

Page 748 of 900

recommended size.

Flush period (sec): Maximum time between requests. Low settings could cause the

payload size to be smaller than its configured maximum.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enable for Cloudwatch Logs: Use Assume Role credentials to access Kinesis stream.

Defaults to No .

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Assume Role

Processing Settings

Post-Processing

Page 749 of 900

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Updated a day ago

Page 750 of 900

SQS

Cribl LogStream supports sending events to Amazon Simple Queuing Service.

Select Data > Destinations, then select Amazon > SQS from the Data Destinations

page's tiles or left menu. Click Add New to open the New SQS destination pane,

which provides the following fields.

Output ID: Enter a unique name to identify this SQS Destination.

Queue name: The name of the AWS SQS queue to send events to. This value can be a

constant or a JavaScript expression.

Message group ID: This parameter applies only to queues of type FIFO. Enter the tag

that specifies that a message belongs to a specific message group. (Messages

belonging to the same message group are processed in FIFO order.) Defaults to

cribl . Use event field __messageGroupId to override this value.

Create queue: Specifies whether to create the queue if it does not exist. Defaults to

Yes .

API key: Enter your AWS API Key. If left blank, LogStream will fall back to

env.AWS_ACCESS_KEY_ID , or to the metadata endpoint for IAM credentials.

Secret key: Enter your AWS Secret Key. If left blank, LogStream will fall back to

env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM credentials.

Region: Region where SQS queue is located.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Send Data to Amazon
SQS

General Settings

Persistent Queue Settings

Page 751 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enable for SQS: Use Assume Role credentials to access Kinesis stream. Defaults

to No .

AWS account ID: SQS queue owner's AWS account ID. Leave empty if the SQS queue

is in the same AWS account where this Cribl LogStream instance is located.

AssumeRole ARN: Amazon Resource Name (ARN) of the role to assume.

External ID: External ID to use when assuming role.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Assume Role

Processing Settings

Post-Processing

Page 752 of 900

Endpoint: SQS service endpoint. If empty, the endpoint will be automatically

constructed from the region.

Signature version: Signature version to use for signing SQS requests. Defaults to v4 .

Max queue size: Maximum number of queued batches before blocking. Defaults to

100 .

Max record size (KB): Maximum size of each individual record. Per the SQS spec, the

maximum allowed value is 256 KB. (the default).

Flush period (sec): Maximum time between requests. Low settings could cause the

payload size to be smaller than its configured maximum. Defaults to 1 .

Max concurrent requests: The maximum number of in-progress API requests before

backpressure is applied. Defaults to 10 .

The following permissions are needed to write to an SQS queue:

sqs:ListQueues

sqs:SendMessage

sqs:SendMessageBatch

sqs:CreateQueue

sqs:GetQueueAttributes

sqs:SetQueueAttributes

sqs:GetQueueUrl

Cribl LogStream uses a set of internal fields to assist in handling of data. These "meta"

fields are not part of an event, but they are accessible, and functions can use them to

make processing decisions.

Fields for this Destination:

__messageGroupId

__sqsMsgAttrs

__sqsSysAttrs

Advanced Settings

SQS Permissions

Internal Fields

Page 753 of 900

Updated about 15 hours ago

Page 754 of 900

Filesystem/NFS

Filesystem is a non-streaming Destination type that Cribl LogStream can use to output

files to a local or a network-attached filesystem (NFS).

Select Data > Destinations, then select Filesystem from the Data Destinations

page's tiles or left menu. Click Add New to open the New Filesystem destination

pane, which provides the following fields.

Output ID: Enter a unique name to identify this Filesystem definition.

Output location: Final destination for the output files.

Staging location: Local filesystem location in which to buffer files before compressing

and moving them to the final destination. Cribl recommends that this location be stable

and high-performance.

Partitioning expression: JavaScript expression to define how files are partitioned and

organized. Defaults to `${host}/${sourcetype}` . If left blank, Cribl LogStream will

fall back to event.__partition . Partitioning by time is also possible, e.g.:
`${host}/${C.Time.strftime(_time, '%Y-%m-%d')}/${sourcetype}`

Data format: Format of the output data. Defaults to json .

File name prefix: The output filename prefix. Defaults to CriblOut

Compress: Data compression format used before moving to final destination. Default

none . It is recommended that gzip is used.

Max file size (MB): Maximum uncompressed output file size. Files of this size will be

closed and moved to final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open for

longer than this will be closed and moved to final output location. Defaults to 300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open. Files

open for longer than this will be closed and moved to final output location. Defaults to

30 .

Configuring Cribl LogStream to Output to Filesystem
Destinations

General Settings

Page 755 of 900

Max open files: Maximum number of files to keep open concurrently. When exceeded,

the oldest open files will be closed and moved to final output location. Defaults to

100 .

Backpressure Behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Field for this Destination:

__partition

ℹ Cribl LogStream will close files when either of the Max file size (MB) or

the Max file open time (sec) conditions are met.

Processing Settings

Post-Processing

Internal Fields

ℹ To export events from an intermediate stage within a Pipeline to a file, see

the Tee Function.

Updated 3 days ago

Page 756 of 900

Elasticsearch

Cribl LogStream can send events to an Elasticsearch cluster using the Bulk API.

Select Data > Destinations, then select Elasticsearch from the Data Destinations

page's tiles or left menu. Click Add New to open the New Elasticsearch destination

pane, which provides the following fields.

Output ID: Enter a unique name to identify this Elasticsearch Destination definition.

Bulk API URL: URL of an Elasticsearch cluster to send events to.

(E.g., http://<myElasticCluster>:9200/_bulk .)

Index: Elasticsearch Index where to send events to. Note that this value can be

overwritten by an event's __index field.

Type: Specify document type to use for events. Note that this value can be overwritten

by an event's __type field.

Authentication enabled: Set to No by default. Toggle to Yes to enter a Username

and Password.

Backpressure behavior: Specify whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Configuring Cribl LogStream to Output to
Elasticsearch

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 757 of 900

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete

before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This

is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (s): Maximum time between requests. Low values could cause the

payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

This Destination normalizes the following fields:

Processing Settings

Post-Processing

Advanced Settings

Field Normalization

Page 758 of 900

_time becomes @timestamp at millisecond resolultion.

host.name is set to host .

See also our Elasticsearch Source documentation's Field Normalization section.

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Fields for this Destination:

__id

__type

__index

Cribl LogStream will attempt to use keepalives to reuse a connection for multiple

requests. After 2 minutes of the first use, the connection will be thrown away, and

a new one will be reattempted. This is to prevent sticking to a particular

destination when there is a constant flow of events.

If the server does not support keepalives (or if the server closes a pooled

connection while idle), a new connection will be established for the next request.

When resolving the Destination's hostname, LogStream will pick the first IP in the

list for use in the next connection. Round-robin DNS would help with event

balancing.

Internal Fields

Notes on HTTP-based Outputs

Updated about 16 hours ago

Page 759 of 900

Honeycomb

Cribl LogStream supports sending events to a Honeycomb dataset.

Select Data > Destinations, then select Honeycomb from the Data Destinations

page's tiles or left menu. Click Add New to open the New Honeycomb destination

pane, which provides the following fields.

Output ID: Enter a unique name to identify this Honeycomb definition.

Dataset name: Name of the dataset to send events to. (E.g.,

iLoveObservabilityDataset .)

API Key: Team API Key to which the dataset belongs. (E.g., teamWilde .)

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Configuring Cribl LogStream to Output to Honeycomb

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 760 of 900

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete

before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This

is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (sec): Maximum time between requests. Low values could cause the

payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Cribl LogStream will attempt to use keepalives to reuse a connection for multiple

requests. After 2 minutes of the first use, the connection will be thrown away, and

a new one will be reattempted. This is to prevent sticking to a particular

Destination when there is a constant flow of events.

If the server does not support keepalives (or if the server closes a pooled

connection while idle), a new connection will be established for the next request.

When resolving the Destination's hostname, LogStream will pick the first IP in the

list for use in the next connection. Round-robin DNS would help with event

balancing.

Processing Settings

Post-Processing

Advanced Settings

Notes on HTTP-based Outputs

Page 761 of 900

Updated about 16 hours ago

Page 762 of 900

TCP JSON

Cribl LogStream supports sending data over TCP in JSON format. TCP JSON is a

streaming Destination type.

Select Data > Destinations, then select TCP JSON from the Data Destinations page's

tiles or left menu. Click Add New to open the New TCP JSON destination pane, which

provides the following fields.

Output ID: Enter a unique name to identify this Destination definition.

Address: Hostname of the receiver.

Port: Port number to connect to on the host.

Auth token: Optional authentication token to include as part of the connection header.

Defaults to empty.

Compression: Codec to use to compress the data before sending. Defaults to None .

Throttling: Throttle rate in bytes per second. Multiple byte units such as KB, MB, GB

etc. are also allowed. E.g., 42 MB. Default value of 0 indicates no throttling. When

throttle engaged, excesses data will be dropped only if Backpressure Behavior is set to

drop, and blocked for all other settings.

Backpressure behavior: Specifies whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output in TCP JSON
Format

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 763 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enabled: Defaults to No . When toggled to Yes :

Validate server certs: Require client to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Server name (SNI): Server name for the SNI (Server Name Indication) TLS

extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to

use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Certificate path (mutual auth): Path on client containing certificates in (PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Passphrase: Passphrase to use to decrypt private key.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to

establish before retrying. Defaults to 10000 .

Write timeout: Amount of time (in milliseconds) to wait for a write to complete before

assuming connection is dead. Defaults to 60000 .

TLS Settings (Client Side)

Timeout Settings

Page 764 of 900

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

TCP JSON events are sent in newline-delimited JSON format, consisting of:

1. A header line. Can be empty, e.g.: {} . If Auth Token is enabled, the token will be
included here as a field called authToken . In addition, if events contain common
fields, they will be included here under fields .

2. A JSON event/record per line.

See an example in our TCP JSON Source topic.

Processing Settings

Post-Processing

Format

Example

Updated a day ago

Page 765 of 900

Syslog

Cribl LogStream supports sending of data over syslog via TCP. Syslog is a streaming

Destination type.

Select Data > Destinations, then select Syslog from the Data Destinations page's

tiles or left menu. Click Add New to open the New Syslog destination pane, which

provides the following fields.

Output ID: Enter a unique name to identify this Syslog definition.

Protocol: The network protocol to use for sending out syslog messages. Defaults to

TCP ; UDP is also available.

Address: Address/hostname of the receiver.

Port: Port number to connect to on the host.

Facility: Default value for message facility. If set, will be overwritten by the value of

__facility . Defaults to user .

Severity: Default value for message severity. If set, will be overwritten by the value of

__severity . Defaults to notice .

App name: Default value for application name. If set, will be overwritten by the value of

__appname . Defaults to Cribl .

Message format: The syslog message format supported by the receiver. Defaults to

RFC3164 .

Timestamp format: The timestamp format to use when serializing an event's time

field. Defaults to Syslog .

ℹ This Syslog Destination supports RFC 3164 and RFC 5424.

Configuring Cribl LogStream to output in Syslog
format

General Settings

Page 766 of 900

Throttling: Throttle rate in bytes per second. Multiple byte units such as KB, MB, GB

etc. are also allowed. E.g., 42 MB. Default value of 0 indicates no throttling. When

throttle engaged, excesses data will be dropped only if Backpressure Behavior is set to

drop, and blocked for all other settings.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enabled: Defaults to No . When toggled to Yes :

Validate server certs: Require client to reject any connection that is not authorized by

a CA in the CA certificate path, or by another trusted CA (e.g., the system's CA).

Defaults to No.

Server name (SNI): Server name for the SNI (Server Name Indication) TLS

extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to

use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

TLS Settings (Client Side)

Page 767 of 900

Certificate path (mutual auth): Path on client containing certificates in (PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Passphrase: Passphrase to use to decrypt private key.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to

establish, before retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete, before

assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Fields for this destination:

__priority

__facility

__severity

__procid

Timeout Settings

ℹ These timeout settings apply only to the TCP protocol.

Processing Settings

Post-Processing

Internal Fields

Page 768 of 900

__appname

__msgid

__syslogout

Updated about 8 hours ago

Page 769 of 900

Kafka

Cribl LogStream supports sending data to a Kafka topic. Kafka is a streaming

Destination type.

Select Data > Destinations, then select Kafka from the Data Destinations page's tiles

or left menu. Click Add New to open the New Kafka destination pane, which provides

the following fields.

Output ID: Enter a unique name to identify this Kafka definition.

Brokers: List of Kafka brokers to connect to. (E.g., localhost:9092 .)

Topic: The topic on which to publish events. Can be overwritten using event's

__topic field.

Acknowledgments: Select the number of required acknowledgments. Defaults to

Leader .

Record data format: Format to use to serialize events before writing to Kafka. Defaults

to JSON .

Compression: Codec to compress the data before sending to Kafka. Defaults to

Gzip .

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Enabled: defaults to No . When toggled to Yes, displays the following client-side

TLS settings:

Autofill?: This setting is experimental.

Validate server certs: Require client to reject any connection that is not

authorized by a CA in the CA certificate path, or by another trusted CA (e.g., the

system's CA). Defaults to No.

Configuring Cribl LogStream to Output to Kafka

General Settings

TLS Settings (Client Side)

Page 770 of 900

Server name (SNI): Server name for the SNI (Server Name Indication) TLS

extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to

use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Certificate path (mutual auth): Path on client containing certificates in (PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Passphrase: Passphrase to use to decrypt private key.

Authentication parameters to use when connecting to brokers. Using TLS is highly

recommended.

Enabled: Defaults to No . When toggled to Yes :

SASL mechanism: Select the SASL (Simple Authentication and Security Layer)

authentication mechanism to use,

Username: The username for authentication.

Password: The password for authentication.

This section governs Kafka Schema Registry Authentication for AVRO-encoded data

with a schema stored in the Confluent Schema Registry.

Enabled: defaults to No . When toggled to Yes :

Schema registry URL: URL for access to the Confluent Schema Registry.

(E.g., http://<hostname>:8081 .)

Default key schema ID: Used when __keySchemaIdOut is not present to

transform key values. Leave blank if key transformation is not required by default.

Default value schema ID: Used when __valueSchemaIdOut not present to

transform _raw . Leave blank if value transformation is not required by default.

Authentication

Schema Registry

Page 771 of 900

TLS enabled: defaults to No . When toggled to Yes, displays the following TLS

settings for the Schema Registry:

TLS Settings (Schema Registry)

Validate server certs: Require client to reject any connection that is not

authorized by a CA in the CA certificate path, or by another trusted CA (e.g., the

system's CA). Defaults to No.

Server name (SNI): Server name for the SNI (Server Name Indication) TLS

extension. This must be a host name, not an IP address.

Certificate name: The name of the predefined certificate.

CA certificate path: Path on client containing CA certificates (in PEM format) to

use to verify the server's cert. Path can reference $ENV_VARS .

Private key path (mutual auth): Path on client containing the private key (in PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Certificate path (mutual auth): Path on client containing certificates in (PEM

format) to use. Path can reference $ENV_VARS . Use only if mutual auth is
required.

Passphrase: Passphrase to use to decrypt private key.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

ℹ These have the same format as the TLS Settings (Client Side) above.

Processing Settings

Post-Processing

Advanced Settings

Page 772 of 900

Max record size (KB, uncompressed): Maximum size (KB) of each record batch

before compression. Setting should be < message.max.bytes settings in Kafka

brokers. Defaults to 768 .

Max events per batch: Maximum number of events in a batch before forcing a flush.

Defaults to 1000 .

Flush period (sec): Maximum time between requests. Low values could cause the

payload size to be smaller than its configured maximum. Defaults to 1 .

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Fields for this Destination:

__topicOut

__key

__headers

__keySchemaIdOut

__valueSchemaIdOut

Internal Fields

Updated 3 days ago

Page 773 of 900

Azure Blob Storage

Azure Blob Storage is a non-streaming Destination type. Cribl LogStream does not

have to run on Azure in order to deliver data to it. Azure Data Lake Storage Gen2

(hierarchical namespace) is also supported.

Select Data > Destinations, then select Azure > Azure Blob Storage from the

Data Destinations page's tiles or left menu. Click Add New to open the New Blob

Storage destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this Destination definition.

Account name: Enter your Azure Storage Account Name. If left blank, Cribl LogStream

will fall back to env.AZURE_STORAGE_ACCOUNT .

Account key: Enter your Azure Storage Key. If left blank, Cribl LogStream will fall back

to env.AZURE_STORAGE_KEY .

Container name: Enter the container name. (A container organizes a set of blobs,

similar to a directory in a file system.)

Create container: Defaults to No . Toggle to Yes to create the configured container

in Azure Blob Storage if it does not already exist.

Blob prefix: Prefix to add to files before uploading.

Staging location: Local filesystem location in which to buffer files before compressing

and moving them to the final destination. Cribl recommends that this location be stable

and high-performance.

Partitioning expression: JavaScript expression to define how files are partitioned and

organized. Defaults to `${host}/${sourcetype}` If left blank, Cribl LogStream will

fall back to event.__partition .

Data format: Format of the output data. Defaults to json .

File name prefix: The output filename prefix. Defaults to CriblOut .

Configuring Cribl LogStream to Output to Azure Blob
Storage

General Settings

Page 774 of 900

Compress: Data compression format used before moving to final destination. Defaults

to none . Cribl recommends setting to gzip .

Backpressure behavior: Whether to block or drop events when all receivers in this

group are exerting backpressure. Defaults to Block .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Max file size (MB): Maximum uncompressed output file size. Files reaching this size

will be closed and moved to the final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open for

longer than this limit will be closed and moved to final output location. Defaults to

300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open. Files

open for longer than this limit will be closed and moved to final output location.

Default: 30 .

Max open files: Maximum number of files to keep open concurrently. When exceeded,

the oldest open files will be closed and moved to final output location. Default: 100 .

Processing Settings

Post-Processing

Advanced Settings

ℹ LogStream will close files when either of the Max file size (MB) or the

Max file open time (sec) conditions are met.

Internal Fields

Page 775 of 900

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Field for this Destination:

__partition

Updated 3 days ago

Page 776 of 900

Azure Monitor Logs

Cribl LogStream supports sending of data over to Azure Monitor Logs. This is a

streaming Destination type.

Select Data > Destinations, then select Azure > Monitor Logs from the

Data Destinations page's tiles or left menu. Click Add New to open the

New Monitor Logs destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this Azure Monitor Logs definition.

Workspace ID: Enter the Azure Log Analytics Workspace ID. (See

Workspace->Advanced settings in the Azure Dashboard.)

Workspace key: Enter the Azure Log Analytics Workspace Primary or Secondary

Shared Key. (In the Azure Dashboard, see Workspace->Advanced settings.)

Log type: The Record Type of events sent to this LogAnalytics workspace. Defaults to

Cribl .

Resource ID: Resource ID of the Azure resource to associate the data with. This

populates the _ResourceId property, and allows the data to be included in resource-

centric queries. (Optional, but if this field is not specified, the data will not be included

in resource-centric queries.)

Backpressure behavior: Whether to block, drop, or queue events when all receivers in

this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output to Azure
Monitor Logs

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 777 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete

before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This

is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 .

Flush period (sec): Maximum time between requests. Low settings could cause the

payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Processing Settings

Post-Processing

Advanced Settings

Page 778 of 900

Cribl LogStream will attempt to use keepalives to reuse a connection for multiple

requests. After 2 minutes of the first use, the connection will be thrown away, and

a new one will be reattempted. This is to prevent sticking to a particular

Destination when there is a constant flow of events.

If keepalives are not supported by the server (or if the server closes a pooled

connection while idle), a new connection will be established for the next request.

When resolving the Destination's hostname, LogStream will pick the first IP in the

list for use in the next connection. Round-robin DNS would help with event

balancing.

Notes on HTTP-based Outputs

Updated about 16 hours ago

Page 779 of 900

Azure Event Hubs

Cribl LogStream supports sending data to Azure Event Hubs. This is a streaming

Destination type.

Select Data > Destinations, then select Azure > Event Hubs from the

Data Destinations page's tiles or left menu. Click Add New to open the

New Event Hubs destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this Azure Event Hubs definition.

Brokers: List of Event Hub Kafka brokers to connect to. (E.g.,

yourdomain.servicebus.windows.net:9093 .) Find the hostname in Shared Access
Policies, in the host portion of the primary or secondary connection string.

Event Hub name: The name of the Event Hub (a.k.a., Kafka Topic) on which to publish

events. Can be overwritten using the __topicOut field.

Acknowledgments: Control the number of required acknowledgments. Defaults to

Leader .

Record data format: Format to use to serialize events before writing to the Event Hub

Kafka brokers. Defaults to JSON .

Compression: Codec to use to compress the data before sending it to Event Hub

Kafka brokers. Defaults to Gzip .

Backpressure behavior: Whether to block, drop, or queue events when all receivers in

this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output to Azure Event
Hubs

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 780 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Enabled Defaults to Yes .

Validate server certs: Defaults to No . For Event Hubs, this should always be disabled.

Authentication parameters to use when connecting to brokers. Using TLS is highly

recommended.

Enabled: Defaults to Yes . (Toggling to No hides the remaining settings in this

group.)

SASL mechanism: SASL (Simple Authentication and Security Layer) authentication

mechanism to use, PLAIN is the only mechanism currently supported for Event Hub

Kafka brokers.

Username: The username for authentication. For Event Hub, this should always be

$ConnectionString .

Password: Connection-string primary key or connection-string secondary key from

the Event Hub workspace.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

TLS Settings (Client Side)

Authentication

Processing Settings

Post-Processing

Page 781 of 900

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Max record size (KB, uncompressed): Maximum size (KB) of each record batch

before compression. Setting should be < message.max.bytes settings in Kafka

brokers. Defaults to 768 .

Max events per batch: Maximum number of events in a batch before forcing a flush.

Defaults to 1000 .

Flush period (sec): Maximum time between requests. Low settings could cause the

payload size to be smaller than its configured maximum. Defaults to 1 .

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Fields for this Destination:

__topicOut

__key

__headers

__keySchemaIdOut

__valueSchemaIdOut

Advanced Settings

Internal Fields

Updated a day ago

Page 782 of 900

StatsD

Cribl LogStream supports sending data to a StatsD Destination. This is a streaming

Destination type.

While on the Data Destinations page, select Metrics > StatsD from the tiles or the left

menu, then click Add New. The resulting New StatsD destination pane contains the

following fields.

Select Data > Destinations, then select Metrics > StatsD from the Data Destinations

page's tiles or left menu. Click Add New to open the New StatsD destination pane,

which provides the following fields.

Output ID: Enter a unique name to identify this StatsD definition.

Destination protocol: Protocol to use when communicating with the Destination.

Defaults to UDP .

Host: The hostname of the Destination.

Port: Destination port. Defaults to 8125 .

Throttling: Rate (in bytes per second) at which at which to throttle while writing to an

output. Also takes numerical values in multiples of bytes (KB, MB, GB, etc.). Default

value of 0 indicates no throttling.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output via StatsD

General Settings

ℹ The next two settings apply only to the TCP protocol, and are not displayed

for UDP.

Persistent Queue Settings

Page 783 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter

a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is

applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the

form: your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to

establish, before retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete, before

assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

ℹ This section is displayed only for TCP, and only when the Backpressure

behavior is set to Persistent Queue.

Timeout Settings

ℹ These timeout settings apply only to the TCP protocol, and are not

displayed for UDP.

Processing Settings

Post-Processing

Page 784 of 900

Max record size (bytes): Used when Protocol is UDP. Specifies the maximum size of

packets sent to the Destination. (Also known as the MTU – maximum transmission unit

– for the network path to the Destination system.) Defaults to 512 .

Flush period (sec): Used when Protocol is TCP. Specifies how often buffers should be

flushed, sending records to the Destination. Defaults to 1 .

Advanced Settings

Updated about 16 hours ago

Page 785 of 900

StatsD Extended

Cribl LogStream supports sending data to a StatsD Destination. This is a streaming

Destination type.

Select Data > Destinations, then select Metrics > StatsD Extended from the

Data Destinations page's tiles or left menu. Click Add New to open the New StatsD

Extended destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this StatsD Extended definition.

Destination protocol: Protocol to use when communicating with the Destination.

Defaults to UDP .

Host: The hostname of the Destination.

Port: Destination port. Defaults to 8125 .

Throttling: Rate (in bytes per second) at which at which to throttle while writing to an

output. Also takes numerical values in multiples of bytes (KB, MB, GB, etc.). Default

value of 0 indicates no throttling.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output via StatsD
Extended

General Settings

ℹ The next two settings apply only to the TCP protocol, and are not displayed

for UDP.

Persistent Queue Settings

ℹ This section is displayed only for TCP, and only when the Backpressure

behavior is set to Persistent Queue.

Page 786 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter

a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is

applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the

form: your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to

establish, before retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete, before

assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Timeout Settings

ℹ These timeout settings apply only to the TCP protocol, and are not

displayed for UDP.

Processing Settings

Post-Processing

Advanced Settings

Page 787 of 900

Max record size (bytes): Used when Protocol is UDP. Specifies the maximum size of

packets sent to the Destination. (Also known as the MTU – maximum transmission unit

– for the network path to the Destination system.) Defaults to 512 .

Flush period (sec): Used when Protocol is TCP. Specifies how often buffers should be

flushed, sending records to the Destination. Defaults to 1 .

Updated a day ago

Page 788 of 900

Graphite

Cribl LogStream supports sending data to a Graphite backend Destination. This is a

streaming Destination type.

Select Data > Destinations, then select Metrics > Graphite from the

Data Destinations page's tiles or left menu. Click Add New to open the New Graphite

destination pane, which provides the following fields.

Output ID: Enter a unique name to identify this Graphite definition.

Destination protocol: Protocol to use when communicating with the Destination.

Defaults to UDP .

Host: The hostname of the Destination.

Port: Destination port. Defaults to 8125 .

Throttling: Rate (in bytes per second) at which at which to throttle while writing to an

output. Also takes numerical values in multiples of bytes (KB, MB, GB, etc.). Default

value of 0 indicates no throttling.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output to a Graphite
Backend

General Settings

ℹ The next two settings apply only to the TCP protocol, and are not displayed

for UDP.

Persistent Queue Settings

ℹ This section is displayed only for TCP, and only when the Backpressure

behavior is set to Persistent Queue.

Page 789 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter

a numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is

applied. Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the

form: your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Connection timeout: Amount of time (in milliseconds) to wait for the connection to

establish, before retrying. Defaults to 10000 .

Write timeout: Amount of time (milliseconds) to wait for a write to complete, before

assuming connection is dead. Defaults to 60000 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Timeout Settings

ℹ These timeout settings apply only to the TCP protocol, and are not

displayed for UDP.

Processing Settings

Post-Processing

Advanced Settings

Page 790 of 900

Max record size (bytes): Used when Protocol is UDP. Specifies the maximum size of

packets sent to the Destination. (Also known as the MTU – maximum transmission unit

– for the network path to the destination system.) Defaults to 512 .

Flush period (sec): Used when Protocol is TCP. Specifies how often buffers should be

flushed, sending records to the Destination. Defaults to 1 .

Updated a day ago

Page 791 of 900

SNMP Trap

Cribl LogStream supports forwarding of SNMP Traps out.

While on the Data Destinations page, select SNMP Trap from the tiles or the left

menu, then click Add New. The resulting New SNMP destination pane contains the

following fields.

Select Data > Destinations, then select SNMP Trap from the Data Destinations

page's tiles or left menu. Click Add New to open the New SNMP destination pane,

which provides the following fields.

Output ID: Enter a unique name to identify this SNMP Trap definition.

SNMP Trap destinations: One or more SNMP destinations to forward traps to.

Address: Destination host.

Port: Destination port. Defaults to 162 .

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Configuring Cribl LogStream to Forward to SNMP
Traps

General Settings

Processing Settings

Post-Processing

Page 792 of 900

It's possible to work with SNMP metadata (i.e., we'll decode the packet). Options

include dropping, routing, etc. However, packets cannot be modified and sent to

another SNMP Destination.

SNMP packets can be forwarded to non-SNMP Destinations (e.g., Splunk, Syslog,

S3, etc.).

SNMP packets can be forwarded to other SNMP Destinations. However, the

contents of the incoming packet cannot be modified – i.e., we'll forward the

packets verbatim as they came in.

Non-SNMP input data cannot be sent to SNMP Destinations.

Considerations for Working with SNMP Traps Data

Updated 3 days ago

Page 793 of 900

InfluxDB

Cribl LogStream supports sending data to InfluxDB.

Select Data > Destinations, then select InfluxDB from the Data Destinations page's

tiles or left menu. Click Add New to open the New InfluxDB destination pane, which

provides the following fields.

Output ID: Enter a unique name to identify this InfluxDB definition.

Write API URL: URL of an InfluxDB cluster to send events to. (E.g.,

http://localhost:8086/write .)

Database name: The database on which to write data points.

Timestamp precision: Sets the precision for the supplied UNIX time values. Defaults

to Milliseconds .

Dynamic value fields: When enabled, LogStream will pull the value field from the

metric name. (E.g., db.query.user will use db.query as the measurement and

user as the value field). Defaults to Yes .

Value field name: Name of the field in which to store the metric when sending to

InfluxDB. This will be used as a fallback if dynamic name generation is enabled but

fails. Defaults to value .

Authentication enabled: Set to No by default. Toggle to Yes to enter a Username

and Password.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Configuring Cribl LogStream to Output to InfluxDB

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 794 of 900

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Toggle this slider to Yes to compress the payload body before sending.

Request timeout: Amount of time (in seconds) to wait for a request to complete

before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This

is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (sec): Maximum time between requests. Low values could cause the

payload size to be smaller than its configured maximum. Defaults to 1 .

Extra HTTP headers: Name/Value pairs to pass as additional HTTP headers.

Processing Settings

Post-Processing

Advanced Settings

Page 795 of 900

Updated about 16 hours ago

Page 796 of 900

MinIO

MinIO is a non-streaming Destination type, to which Cribl LogStream can output

objects.

Select Data > Destinations, then select MinIO from the Data Destinations page's tiles

or left menu. Click Add New to open the New MinIO destination pane, which provides

the following fields.

Output ID: Enter a unique name to identify this MinIO definition.

MinIO endpoint: MinIO service URL (e.g., http://minioHost:9000).

MinIO bucket name: Name of the destination MinIO bucket. Ensure that the bucket

already exists, otherwise MinIO will generate "bucket does not exist" errors.

API key: If left blank, LogStream will fall back to env.AWS_ACCESS_KEY_ID , or to the
metadata endpoint for IAM credentials.

Secret key: If left blank, Cribl LogStream will fall back to

env.AWS_SECRET_ACCESS_KEY , or to the metadata endpoint for IAM credentials.

Staging location: Filesystem location in which to locally buffer files before

compressing and moving to final destination. Cribl recommends that this location be

stable and high-performance.

Key prefix: Prefix to apply to files/objects before uploading to the specified bucket.

MinIO will display key prefixes as folders.

Partitioning expression: JavaScript expression to define how files are partitioned and

organized. If left blank, Cribl LogStream will fall back to event.__partition . Defaults
to `${host}/${sourcetype}` .

Configuring Cribl LogStream to Output to MinIO
Destinations.

General Settings

ℹ LogStream's internal __partition field can be populated in multiple ways.

The precedence order is: explicit Partitioning expression value ->

${host}/${sourcetype} (default) Partitioning expression value -> user-

Page 797 of 900

Data format: Format of the output data. Defaults to json .

File name prefix: The output filename prefix. Defaults to CriblOut .

Compress: Select the data compression format to use before moving data to final

destination. Defaults to none . Cribl recommends setting this to gzip .

Backpressure behavior: Select whether to block or drop events when all receivers in

this group are exerting backpressure. Defaults to Block .

The full path to a file consists of:

<bucket_name>/<keyprefix><partition_expression | __partition>
<file_name_prefix><filename>.<extension>

As an example, assume that the MinIO bucket name is bucket1 , the Key prefix is
aws , the Partitioning expression is `${host}/${sourcetype}` , the source is
undefined, the File name prefix is the default CriblOut , and the Data format is
json . Here, the full path as displayed in MinIO would have this form:

/bucket1/aws/192.168.1.241/undefined/CriblOut-<randomstring>0.json

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

defined event.__partition , set with an Eval Function (takes effect only
where this Partitioning expression field is blank).

How MinIO Composes File Names

ℹ Although MinIO will display the Key prefix and Partitioning expression

values as folders, both are actually just part of the overall key name, along

with the file name.

Processing Settings

Post-Processing

Page 798 of 900

Region: Region where the MinIO service/cluster is located. Leave blank when using a

containerized MinIO.

Object ACL: ACL (Access Control List) to assign to uploaded objects. Defaults to

Private .

Storage class: Select a storage class for uploaded objects. Defaults to Standard .

Server side encryption: Server side encryption type for uploaded objects. Defaults to

none .

Signature version: Signature version to use for signing MinIO requests. Defaults to

v4 .

Max file size (MB): Maximum uncompressed output file size. Files of this size will be

closed and moved to final output location. Defaults to 32 .

Max file open time (sec): Maximum amount of time to write to a file. Files open for

longer than this limit will be closed and moved to final output location. Defaults to

300 .

Max file idle time (sec): Maximum amount of time to keep inactive files open. Files

open for longer than this limit will be closed and moved to final output location.

Defaults to 30 .

Max open files: Maximum number of files to keep open concurrently. When exceeded,

the oldest open files will be closed and moved to final output location. Defaults to

100 .

Cribl LogStream uses a set of internal fields to assist in forwarding data to a

Destination.

Field for this Destination:

__partition

Advanced Settings

ℹ Cribl LogStream will close files when either of the Max file size (MB) or

the

Max file open time (sec) conditions is met.

Internal Fields

Updated 3 days ago

Page 799 of 900

Page 800 of 900

Wavefront

Cribl LogStream supports sending events to Wavefront analytics.

Select Data > Destinations, then select Wavefront from the Data Destinations page's

tiles or left menu. Click Add New to open the New Wavefront destination pane, which

provides the following fields.

Output ID: Enter a unique name to identify this Wavefront definition.

Auth token: Wavefront API authentication token. For details, see Wavefront's

Generating an API Token topic. Required.

Domain name: WaveFront domain name, e.g., longboard . Required.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Configuring Cribl LogStream to Output to Wavefront

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 801 of 900

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Whether to compress the payload body before sending. Defaults to No .

Request timeout: Amount of time (in seconds) to wait for a request to complete

before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This

is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (sec): Maximum time between requests. Low values can cause the

payload size to be smaller than the configured Max body size. Defaults to 1 second.

Extra HTTP headers: Click + Add Header to insert extra headers as Name/Value

pairs.

For details on integrating with Wavefront, see these Wavefront resources:

Direct Data Ingestion, and adjacent topics on Wavefront Proxies.

Wavefront Data Format.

Processing Settings

Post-Processing

Advanced Settings

Notes About Wavefront

Updated about 16 hours ago

Page 802 of 900

SignalFx

Cribl LogStream supports sending events to SignalFx.

Select Data > Destinations, then select SignalFx from the Data Destinations page's

tiles or left menu. Click Add New to open the New SignalFx destination pane, which

provides the following fields.

Output ID: Enter a unique name to identify this SignalFx definition.

Auth token: SignalFx API access token. For details, see SignalFx's Manage Tokens

topic. Required.

Realm: SignalFx realm name (e.g., us0). Required.

Backpressure behavior: Select whether to block, drop, or queue events when all

receivers in this group are exerting backpressure. Defaults to Block .

Max file size: The maximum size to store in each queue file before closing it. Enter a

numeral with units of KB, MB, etc. Defaults to 1 MB .

Max queue size: The maximum amount of disk space the queue is allowed to

consume. Once this limit is reached, queueing is stopped, and data blocking is applied.

Enter a numeral with units of KB, MB, etc.

Queue file path: The location for the persistent queue files. This will be of the form:

your/path/here/<worker-id>/<output-id> . Defaults to
$CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data, once a file is closed.

Defaults to None ; Gzip is also available.

Configuring Cribl LogStream to Output to SignalFx

General Settings

Persistent Queue Settings

ℹ This section is displayed when the Backpressure behavior is set to

Persistent Queue.

Page 803 of 900

Pipeline: Pipeline to process data before sending the data out using this output.

System fields: A list of fields to automatically add to events that use this output.

By default, includes cribl_pipe (identifying the LogStream Pipeline that processed

the event). Supports wildcards. Other options include:

cribl_host – LogStream Node that processed the event.

cribl_wp – LogStream Worker Process that processed the event.

cribl_input – LogStream Source that processed the event.

cribl_output – LogStream Destination that processed the event.

Compress: Whether to compress the payload body before sending. Defaults to No .

Request timeout: Amount of time (in seconds) to wait for a request to complete

before aborting it. Defaults to 30 .

Request concurrency: Maximum number of concurrent requests before blocking. This

is set per Worker Process. Defaults to 5 .

Max body size (KB): Maximum size of the request body. Defaults to 4096 KB.

Flush period (sec): Maximum time between requests. Low values can cause the

payload size to be smaller than the configured Max body size. Defaults to 1 second.

Extra HTTP headers: Click + Add Header to insert extra headers as Name/Value

pairs.

For details on integrating with SignalFx, see the SignalFx Developers Guide, with

particular reference to the SignalFx HTTP Send Metrics Reference.

Processing Settings

Post-Processing

Advanced Settings

Notes About SignalFx

Updated about 16 hours ago

Page 804 of 900

DevNull

The DevNull Destination simply drops events. Cribl provides this as a basic output to

test Pipelines and Routes.

DevNull requires no configuration: A DevNull Destination is preconfigured and active

as soon as you install Cribl LogStream.

To verify this, select Data > Destinations from the top menu. On the resulting Data

Destinations page, select DevNull from the tiles or the left menu. Look for the Live

indicator at the top right.

Configuring Cribl LogStream to Forward to DevNull

Updated 18 days ago

Page 805 of 900

Default

The Default Destination simply enables you to specify a default output from among

your configured Destinations.

Select this from the Default Output ID drop-down.

The only other field here is the Output ID, whose value is locked to default .

Updated 13 days ago

Page 806 of 900

Data Preview

Sample Data Preview is a LogStream feature that allows for visual inspection of events

as they make their trip into a Pipeline. It helps you shape and control events before

they're delivered to a Destination, as well as assisting with troubleshooting LogStream

Functions.

Preview works by taking a set of Sample events, passing them through the Pipeline,

and displaying the result in a separate pane. Any time a Function is modified, added, or

removed, the Pipeline changes, and so does its output.

Preview options

While you're in a Pipeline, you can add samples through one of the supported options:

Paste, Attach, or Capture New. The Paste and Attach options work with content that

needs to be broken into events, while the Capture New option works with events only.

When you click on the corresponding option, you'll be presented with a modal like the

one shown below.

Adding Sample Data (Using Paste as an Example)

Page 807 of 900

Add Sample Data modal

This is where the content of the paste (or uploaded file) is displayed.

An Event Breaker is a regular expression that tells Cribl LogStream how to break the

file or pasted content into events. Breaking will occur at the start of the match. Cribl

LogStream ships with several common breaker patterns out of the box, but you can

also configure custom breakers. The UI here is interactive, and you can iterate until you

find the exact pattern.

The Fields section enables users to add, or overwrite. key/value pairs on the sample.

There are two display options for the event: Event and Table. (You can also download

data as JSON or NDJSON, using the Advanced Settings menu at the top right.) Each

format can be useful, depending on the type of data you are previewing.

ℹ The Capture screen is slightly different – it does not require event breaking.

Paste Area

Event Breaker Settings

Fields

In Tab: Displaying Samples on the Way IN to the Pipeline

Page 808 of 900

Event, Table, Advanced, and Download options

As you add more samples to your system, you can easily access them via the Samples

drop-down near the top right, under Quick Stats.

Selecting an existing sample

As data traverses Functions in a Pipeline, events can be modified, and some might be

dropped altogether. When they're dropped, the Out tab displays them as grayed-out

text, with strikethrough. You can control their display using the Advanced Settings

menu's Show Dropped Events slider.

When LogStream's processing adds new fields, these fields are highlighted green. You

can control these fields' display using the Select Fields drop-down.

Out Tab: Displaying Samples on the Way OUT of the Pipeline

Page 809 of 900

Dropped and added fields in a Pipeline's output

Updated about 8 hours ago

Page 810 of 900

Securing Data

Cribl LogStream can be used to encrypt sensitive data in real time and route it to an

end system. Decrypted retrieval can be implemented on a per-system basis. Currently,

decryption is supported only when Splunk is the end system.

Data Encryption

Data Decryption

Updated 2 months ago

Page 811 of 900

Encryption

With Cribl LogStream, you can encrypt fields or patterns within events in real time, by

using C.Crypto.encrypt() in a Mask function. The Mask function accepts multiple

replacement rules and multiple fields to apply them to.

A Match Regex defines the pattern of content to be replaced. The Replace

Expression is a JS expression or literal to replace matched content. The

C.Crypto.encrypt() method can be used here to generate an encrypted string from

a value passed to it.

Symmetric keys can be configured through the CLI or UI. Users are free to define as

many keys as required. Each key is characterized by the following:

keyId : ID of the key.

algorithm : Algorithm used with the key

keyclass : Cribl Key Class (below) that the key belongs to.

kms : Key management system for the key. Defaults to local .

created : Time (epoch) when key was generated.

expires : Time (epoch) after which the key is invalid. Useful for key rotation.

useIV : Flag that indicates whether or not an initialization vector was used.

Encryption of Data in Motion

C.Crypto.encrypt() Syntaxℹ

(method) Crypto.encrypt(value: any, keyclass: number, keyId?:
string, defaultVal?: string): string
Encrypt the given value with the keyId or a keyId picked up automatically

based on keyclass

@param {string | Buffer} value - what to encrypt

@param - keyclass - if keyId isn't specified, pick one at the given key class

@param - keyId - encryption keyId, takes precedence over keyclass

@param - defaultVal - what to return if encryptions fails for any reason, if

unspecified the original value is returned

@returns - - if encryption succeeds the encrypted value, otherwise

defaultVal if specified, otherwise value.

Encryption Keys

Page 812 of 900

Key Classes in Cribl LogStream are collections of keys that can be used to implement

multiple levels of access control. Users (or groups of users) with access to data with

encrypted patterns can be associated with key classes, for even more granular,

pattern-level compartmentalized access.

Users U0, U1 have been given access to keyclass 0 which contains key IDs 0 and

1 . These keys are used to encrypt certain patterns in datasetA . Even though users
U0, U1, U2 have access to read this dataset, only U0 and U1 can decrypt its

encrypted patterns.

User U1 has been given access to an additional keyclass, 1 , which contains key IDs
11 and 22 . These keys are used to encrypt certain other patterns in datasetA .
Even though users U0, U1, U2 have access to read this dataset – same as above –

only U1 can decrypt the additional encrypted patterns.

When using the local key management system, encryption keys in Cribl LogStream

are encrypted with $CRIBL_HOME/local/cribl/auth/cribl.secret and stored in

$CRIBL_HOME/local/cribl/auth/keys.json . Cribl monitors the keys.json file for

changes every 60 seconds.

Keys are added and listed using the keys command:

$CRIBL_HOME/bin/cribl keys list

Key Classes

Example

keyclass: 0
Keys: keyId: 0, keyId: 1
Users: U0, U1

datasetA
Users: U0, U1, U2

keyclass: 1
Keys: keyId: 11, keyId: 22
Users: U1

datasetA
Users: U0, U1, U2

Configuring Keys with CLI

ℹ When installed as a Splunk app, $CRIBL_HOME is

$SPLUNK_HOME/etc/apps/cribl .

Listing Keys

Key Class Dataset

Key Class Dataset

Page 813 of 900

Sample Command Output

Displaying --help :

$CRIBL_HOME/bin/cribld keys add --help

Sample Command Output

Adding a key to keyclass 1 with no expiration date:

$CRIBL_HOME/bin/cribl keys add -c 1 -i

Sample Command Output

Listing keys to verify key generation:

$CRIBL_HOME/bin/cribl keys list

Sample Command Output

The key management interface can be accessed through Settings > Encryption Keys

. Here, you can list and add new keys. To protect against accidental changes, a key's

keyId algorithm keyclass kms created expires useIV

1 aes-256-cbc 0 local 1544906269.316 0 false
2 aes-256-cbc 1 local 1544906272.452 0 false
3 aes-256-cbc 2 local 1544906275.948 1545906275 true
4 aes-256-cbc 3 local 1544906278.026 0 false

Adding Keys

Add encryption keys
Usage: [options] [args]

Options:
-c <keyclass> - key class to set for the key
-k <kms> - KMS to use, must be configured, see cribl.yml
-e <expires> - expiration time, epoch time
-i - use an initialization vector

Adding key: success. Key count=1

keyId algorithm keyclass kms created expires useIV

1 aes-256-cbc 1 local 1545243364.342 0 true

Configuring Keys with the UI

Page 814 of 900

parameters, once saved, can be edited only through configuration files.

List or create keys through LogStream's UI

To successfully decrypt data, the decrypt command will need access to the same

keys that were used to encrypt. The cribl.secret and keys.json files in

$CRIBL_HOME/local/cribl/auth (in the Cribl instance where encryption

happened) should be synced/copied over to the ones on the Search Head/decrypting

side. When using the UI, these files can be downloaded through the Get Key Bundle

button.

Sync auth/(cribl.secret|keys.json)

Updated 2 months ago

Page 815 of 900

Decryption

Currently, Cribl LogStream supports decryption only when Splunk is the end system. In

Splunk, decryption is available to users of any role with permissions to run the

decrypt command that ships with Cribl App for Splunk. Further restrictions can be

applied with Splunk capabilities. This page provides details.

Decryption in Splunk is implemented via a custom command called decrypt . To use
the command, users must belong to a Splunk role that has permissions to execute it.

Capabilities, which are aligned to Cribl Key Classes, can be associated with a particular

role to further control the scope of decrypt .

In Splunk, capability names should follow the format cribl_keyclass_N , where N is

the Cribl Key Class. For example, a role with capability cribl_keyclass_1 has access

to all key IDs associated with key class 1 .

You set up decryption in Splunk according to this schematic:

Decryption of Data

Decrypting in Splunk

Decrypt Command Is Search Head ONLYℹ

To ensure that keys don't get distributed to all search peers – including

peers that your search head can search, but you don't have full control over

– decrypt is scoped to run locally on the installed search head.

Restricting Access with Splunk Capabilities

cribl_keyclass_1
cribl_keyclass_2
...

cribl_keyclass_N

1
2
...

N

Configuring Splunk Search Head to Decrypt Data

Capability Name Corresponding Cribl Key Class

Page 816 of 900

1. Install the Cribl App for Splunk on your Splunk search head.

As of LogStream v1.7, the app will run in search head mode by default. If the app

has previously been installed and later modified, you can convert it to search head

mode with the command: $CRIBL_HOME/bin/cribld mode-searchhead . (When
installed as a Splunk app, $CRIBL_HOME is $SPLUNK_HOME/etc/apps/cribl .)

2. Assign permissions to the decrypt command, per your requirements.

3. Assign capabilities to your roles, per your requirements. If you'd like to create

more capabilities, ensure that they follow the naming convention defined above.

4. Sync auth/(cribl.secret|keys.json) . To successfully decrypt data, the
decrypt command will need access to the same keys that were used to encrypt.

The cribl.secret and keys.json files in $CRIBL_HOME/local/cribl/auth –

which must be in the same Cribl instance where encryption happened – should be

synced/copied over to the files on the Search Head/decrypting side. When using

the UI, these files can be downloaded through the Get Key Bundle button.

Updated 2 months ago

Page 817 of 900

Scripts

Admins can run scripts (e.g., shell scripts) from within Cribl LogStream by configuring

and executing them thru Settings > Scripts. Scripts are typically used to call custom

automation jobs or, more generally, to trigger tasks on demand. For example, you can

use Scripts to run an Ansible job, or to place a call to another automation system, when

Cribl LogStream configs are updated.

Settings > Manage Scripts page

The Manage Scripts page provides the following tields:

ID: Unique ID for this script.

Command: Command to execute for this script.

Description: Brief description about this script. Optional.

Arguments: Arguments to pass when executing this script.

Env variables: Extra environment variables to set when executing script.

With Great Power Comes Great Responsibility!⚠

Scripts will allow you to execute almost anything on the system where Cribl

LogStream is running. Make sure you understand the impact of what you're

executing before you do so!

Scripts in Distributed Deploymentsℹ

Scripts can be deployed from Master Node, but can be run only locally

from each Worker Node.

If the Script command is referencing a file (e.g., 420.sh), that file must
exist on the Cribl LogStream instance. In other words, the Script

management interface cannot be used to upload or manage script files.

Page 818 of 900

Updated 2 months ago

Page 819 of 900

Using Datagens
Data generators for testing and troubleshooting

Cribl LogStream's Datagens feature enables you to generate sample data for the

purposes of troubleshooting Routes, Pipelines, Functions, and general connectivity.

Several Datagen template files ship with the product, out of the box. You can create

others from sample files or live captures.

Preview pane – add samples via file upload, paste, or live capture

As outlined in the following tutorial: Once you've created a template, you can configure

a Datagen Source to use the template to generate real-time data at a given EPS

(events per second) rate.

To see how Datagens work, start by enabling a pair of LogStream's out-of-the-box

generators:

Navigate to Sources > Datagens and click Add New.

Select a Data Generator File (e.g., apache_common.log) and set it at 4 EPS/worker
process. Select another Data Generator File (e.g., syslog.log) and set it at 8
EPS/worker process. Hit Save.

Enabling a Datagen

Page 820 of 900

Selecting Datagens files and event rates

On the Monitoring page, under Sources, search for datagen and confirm that the

Source is generating data.

To convert a sample into a template:

Go to Preview > Paste a Sample, and add a sample like the AWS VPC Flow logs

below:

Sample VPC Flow Logs

From the Event Breaker drop-down, select AWS VPC Flow to ensure that:

The pasted text gets broken properly into individual events (notice the Event

Breaker on newlines).

Timestamps are extracted correctly (text highlighted purple below).

Once you've verified these results, click Create a Datagen File.

Creating a Datagen Template from a Sample File

2 123456789010 eni-abc123de 172.31.16.139 172.31.16.21 20641 22 6 20 4249
2 123456789010 eni-abc123de 172.31.9.69 172.31.9.12 49761 3389 6 20 4249
2 123456789010 eni-1a2b3c4d - - - - - - - 1431280876 1431280934 - NODATA
2 123456789010 eni-4b118871 - - - - - - - 1431280876 1431280934 - SKIPDAT
2 123456789010 eni-1235b8ca 203.0.113.12 172.31.16.139 0 0 1 4 336 143291
2 123456789010 eni-1235b8ca 172.31.16.139 203.0.113.12 0 0 1 4 336 143291
2 123456789010 eni-f41c42bf 2001:db8:1234:a100:8d6e:3477:df66:f105 2001:d

Page 821 of 900

Creating a Datagen template

On the resulting Create Datagen File screen:

Enter a file name, e.g.: vpc-flow-datagen.log

Ensure that the timestamp template format is correct: ${timestamp: %s}

${timestamp: <format>} is a template that the datagen engine uses to insert

the current time – in each newly generated event – using the given format. In this

case, %s is the desired strftime format for the timestamp (i.e., the epoch).

Once you've verified these results, click Save as Datagen File.

Page 822 of 900

Saving a named Datagen template

To confirm that the Datagen file has been created, check Preview > Datagens.

Verifying Datagen file creation

Now, to start using your newly created Datagen file, go back to Sources > Datagens.

Add it using the drop-down shown below.

Page 823 of 900

Adding new template file to Datagens Source

Updated about 5 hours ago

Page 824 of 900

CLI Reference
Command line interface basics

In addition to starting and stopping the Cribl LogStream server, LogStream's command

line interface enables you to initiate many configuration and administrative tasks

directly from your terminal.

To execute CLI commands, the basic syntax is:

To see a list of available commands, enter ./cribl alone (or the equivalent ./cribl
help). To execute a command, or to see its required parameters, enter ./cribl
<command> .

Displays help (commands list).

Command Syntax

cd $CRIBL_HOME/bin
./cribl <command> <sub-command> <options> <arguments>

Commands Available

Immediate Execution⚠

As indicated in the sample output below, some commands take effect

immediately. Commands that require further input will echo the sub-

commands, options, and arguments they expect.

help

Cribl LogStream – N.n.n-<build no.>
Usage: [sub-command] [options] [args]

Commands:
help – Display help
reload – Reload Cribl LogStream
restart – Restart Cribl LogStream
start – Start Cribl LogStream
status – Status of Cribl LogStream
stop – Stop Cribl LogStream

Page 825 of 900

Reloads Cribl LogStream. Executes immediately.

Restarts Cribl LogStream. Executes immediately.

Starts Cribl LogStream. Executes immediately.

Displays status of Cribl LogStream. Executes immediately.

version – Print Cribl LogStream version and installation type

auth – Cribl LogStream Auth
boot-start – Enable/Disable Cribl LogStream boot-start
diag – Manage diagnostics bundles
groups – Manage worker groups
keys – Manage encryption keys
mode-searchhead – Configure Cribl LogStream to run on a Splunk Search Hea
nc – Listen on a port for traffic and output stats and data
node – Execute a JavaScript file
pipe – Feed stdin to a pipeline
scope – Grep your apps by the syscalls
splunk-decrypt – Splunk decrypt search command
task – Run Cribl LogStream task
vars – Manage global variables

reload

Reload request submitted to Cribl LogStream

restart

Stopping Cribl LogStream, process 56572
............
Cribl LogStream is not running
Starting Cribl LogStream...
..
Cribl LogStream started with pid 57233
API Server is available at http://192.168.0.100:9000

start

Starting Cribl LogStream...
..
Cribl LogStream started with pid 57279
API Server is available at http://192.168.0.100:9000

status

Page 826 of 900

Stops Cribl LogStream. Executes immediately.

Displays Cribl LogStream version and installation type. Executes immediately.

Log into or out of Cribl LogStream.

Launch interactive login:

$CRIBL_HOME/bin/cribl auth login

Append credentials as command arguments:

$CRIBL_HOME/bin/cribl auth login -h <url> -u <username> -p <password>

Provide credentials in environment variables:

Cribl LogStream is running with pid 57279
API Server is available at http://192.168.0.100:9000

stop

Stopping Cribl LogStream, process 57233
...........
Cribl LogStream is not running

version

Version: 2.2-0####x##
Installation type: standalone

auth

Commands:
login - Log in to Cribl LogStream, args:
 [-h <host>] - Host URL (e.g. http://localhost:9000)
 [-u <username>] - Username
 [-p <password>] - Password
 [-f <file>] - File with credentials
logout - Log out from Cribl LogStream

Login Examples

ℹ All -h and host arguments are optional, provided that the API host and

port are listed in the cribl.yml file's api: section

Page 827 of 900

CRIBL_HOST=<url> CRIBL_USERNAME=<username> CRIBL_PASSWORD=<password>
$CRIBL_HOME/bin/cribl auth login

Provide credentials in a file:

$CRIBL_HOME/bin/cribl auth login -f <path/to/file>

--

Corresponding file contents:

Enables or disables Cribl LogStream boot-start.

Manages diagnostic bundles.

Manages worker groups.

host=<url>
username=<username>
password=<password>

boot-start

Usage: [sub-command] [options] [args]

Commands:
disable - Disable Cribl LogStream boot-start, args:
 [-m <manager>] - Init manager (systemd|initd)
 [-c <configDir>] - Config directory for the init manager
enable - Enable Cribl LogStream boot-start, args:
 [-m <manager>] - Init manager (systemd|initd)
 [-u <user>] - User to run Cribl LogStream as
 [-c <configDir>] - Config directory for the init manager

diag

create - Creates diagnostic bundle for Cribl LogStream

list - List existing Cribl LogStream diagnostic bundles

send - Send LogStream diagnostics bundle to Cribl Support, args:
 -c <caseNumber> - Cribl Support Case Number
 [-p <path>] - Diagnostic bundle path (if empty then new bundle wil

groups

Usage: [sub-command] [options] [args]

Commands:

Page 828 of 900

Manages encryption keys.

Configures Cribl LogStream to run on a Splunk Search Head.

Listens on a port for traffic, and outputs stats and data. (Netcat-like utility.)

Executes a JavaScript file. Displays a command prompt for path/filename input, as

shown here:

commit - Commit, args:
 [-g <group>] - Group ID
 [-m <message>] - Commit message
commit-deploy - Commit & Deploy, args:
 -g <group> - Group ID
 [-m <message>] - Commit message
deploy - Deploy, args:
 -g <group> - Group ID
 [-v <version>] - Deploy version
list - List worker groups

keys

Usage: [sub-command] [options] [args]

Commands:
add - Add encryption keys, args:
 [-c <keyclass>] - key class to set for the key
 [-k <kms>] - KMS to use, must be configured, see cribl.yml
 [-e <expires>] - expiration time, epoch time
 [-i] - use an initialization vector
 [-g <group>] - Group ID
list - List encryption keys

mode-searchhead

nc

Usage: [options] [args]

Options:
 -p <port> - Port to listen on
[-s <statsInterval>] - Stats output interval (ms), use 0 to disable
[-u] - Listen on UDP port instead
[-o] - Output received data to stdout

node

>

Page 829 of 900

Feeds stdin to a pipeline. Examples:

Greps your apps by the syscalls. Executes immediately.

Splunk decrypt search command. Executes immediately.

Runs a Cribl LogStream task. Requires definitions for the dir , executor , and path
properties.

Manages LogStream Global Variables.

pipe

cat sample.log | ./cribl pipe -p <pipelineName>
cat sample.log | ./cribl pipe -p <pipelineName> 2>/dev/null

scope

splunk-decrypt

task

vars

Usage: [sub-command] [options] [args]

Commands:
add - Add global variable, args:
 -i <id> - Global variable ID
 -t <type> - Type
 -v <value> - Value
 [-a <args>] - Arguments
 [-d <description>] - Description
 [-c <tags>] - Custom Tags (comma separated list)
 [-g <group>] - Group ID
get - List encryption keys, args:
 [-i <id>] - Global variable ID
 [-g <group>] - Group ID
remove - Remove global variable, args:
 -i <id> - Global variable ID
 [-g <group>] - Group ID
update - Update global variable, args:
 -i <id> - Global variable ID
 -t <type> - Type
 -v <value> - Value
 [-a <args>] - Arguments
 [-d <description>] - Description
 [-c <tags>] - Custom Tags (comma separated list)
 [-g <group>] - Group ID

Page 830 of 900

Updated 7 days ago

Page 831 of 900

Expression Reference

Introduction to Expression Syntax

As data travels through a Cribl LogStream pipeline, it is operated on by a series of

functions. Functions are fundamentally JavaScript code.

Functions that ship with Cribl LogStream are configurable via a set of inputs. Some of

these configuration options are literals, such as field names, and others can be

JavaScript expressions.

Expressions are valid units of code that resolve to a value. Every syntactically valid

expression resolves to some value, but conceptually, there are two types of

expressions: those that assign value to a variable (a.k.a., with side effects), and those

that evaluate to a value.

Filters are used in Routes to select a stream of the data flow, and in Functions to scope

or narrow down the applicability of a function. Filters are expressions that must

evaluate to either true (or truthy) or false (or falsy). Keep this in mind when

creating routes or functions. For example:

sourcetype=='access_combined' && host.startsWith('web')

source.endsWith('.log') || sourcetype=='aws:cloudwatchlogs:vpcflow'

x = 42
newFoo = foo.slice(30)

(Math.random() * 42)
3 + 4
'foobar'
'42'

Filters and Value Expressions

Filters

true
42
-42

false
null
undefined

Assigning a value Evaluating to a value

Truthy Falsy

Page 832 of 900

Value expressions are typically used in Functions to assign a value – for example, to a

new field. For example:

Math.floor(_time/3600)

source.replace(/.{3}/, 'XXX')

In a value expression, ensure that the source variable is not null, undefined, or

empty. For example, assume you want to have a field called len , to be assigned
the length of a second field called employeeID . But you're not sure if
employeeID exists. Instead of employeeID.length you can use a safer

shorthand, such as: (employeeID || '').length .

If a field does not exist (undefined), and you're doing a comparison with its

properties, then the boolean expression will always evaluate to false. For example,

if employeeID is undefined, then both of these expressions will evaluate to false:

employeeID.length > 10 , and employeeID.length < 10 .

== means "equal to," while === means "equal value and equal type." For

example, 5 == 5 evaluates to true, while 5 === "5" evaluates to false.

A ternary operator is a very powerful way to create conditional values. For

example, if you wanted to assign either minor or adult to a field groupAge ,
based on the value of age , you could do: (age >= 18) ? 'adult' : 'minor' .

If there are fields with non-alphanumeric characters – e.g., @timestamp or user-
agent or kubernetes.namespace_name – you can access them using __e['<field-
name-here>'] . (Note the single quotes.) More details here. In any other place where
the field is referenced – e.g., in the Eval function's field names – you should use a

single-quoted literal, of the form: '<field-name-here>' .

Wildcard Lists are used throughout the product, especially in various Functions, such

as Eval, Mask, Publish Metrics, Parser, etc.

3.14
"foo"
Infinity
-Infinity

0
NaN
''
""

Value Expressions

Considerations and Best Practices for Creating Predictable
Expressions

Expressions Using Fields with Non-Alphanumeric Characters

Wildcard Lists

Page 833 of 900

Wildcard Lists, as their name implies, accept strings with asterisks (*) to represent
one or more terms. They also accept strings that start with an exclamation mark (!)
to negate one or more terms.

Wildcard Lists are order-sensitive only when negated terms are used. This allows for

implementing any combination of whitelists and blacklists.

For example:

List 1
!foobar,
foo*

All terms that start with foo, except foobar.

List 2 !foo*, *
All terms, except for those that start with

foo.

Updated 22 days ago

Wildcard

List
Value Meaning

Page 834 of 900

Cribl Expressions

Native Cribl LogStream function methods can be found under C.* , and can be
invoked from any Function that allows for expression evaluations. For example, to

create a field that is the SHA1 of a another field's value, you can use the Eval function

with this Evaluate Fields pair:

C.Crypto.decrypt
(method) Crypto.decrypt(value: string): string
Decrypt all occurrences of ciphers in the given value. Instances that cannot be

decrypted (for any reason) are left intact.

@param – value – string in which to look for ciphers

@returns – value with ciphers decrypted

C.Crypto.encrypt
(method) Crypto.encrypt(value: any, keyclass: number, keyId?: string,
defaultVal?: string): string
Encrypt the given value with the keyId , or with a keyId picked up automatically

based on keyclass .

@param {string | Buffer} value - what to encrypt.

@param – keyclass – if keyId isn't specified, pick one at the given keyclass .
@param – keyId - encryption keyId, takes precedence over keyclass .
@param – defaultVal – what to return if encryption fails for any reason; if

unspecified, the original value is returned.

@returns – if encryption succeeds, the encrypted value; otherwise, defaultVal if

specified; otherwise, value .

C.Decode.base64
(method) Decode.base64(val: string, resultEnc?: string): any
Performs base64 decoding of the given string. Returns a string or Buffer, depending

on the resultEnc value, which defaults to 'utf8' .
@param – val – value to base64-decode

myNewField C.Mask.sha1(myOtherField)

C.Crypto – Data Encryption and Decryption Functions

C.Decode – Data Decoding Functions

Name Value Expression

Page 835 of 900

@param – resultEnc – encoding to use to convert the binary data to a string.

Defaults to 'utf8' . Use 'utf8‑valid' to validate that result is valid UTF8; use

'buffer' if you need the binary data in a Buffer.

C.Decode.gzip
(method) Decode.gzip(value: any, encoding?: string): string
Gunzip the supplied value.

@param – value – the value to gunzip.

@param – encoding – encoding of value , for example: 'base64' , 'hex' , 'utf-
8' , 'binary' . Default is 'base64' . If data is received as Buffer (from gzip with

encoding: 'none'), decoding is skipped.

C.Decode.hex
(method) Decode.hex(val: string): number
Performs hex to number conversion. (Returns NaN if value cannot be converted to a

number.)

@param – val – hex string to parse to a number (e.g., "0xcafe").

C.Decode.uri
(method) Decode.uri(val: string): string
Performs URI-decoding of the given string.

@param – val – value to URI-decode.

C.Encode.base64
(method) Encode.base64(val: any, trimTrailEq?: boolean): string
Returns a base64 representation of the given string or Buffer.

@param – val – value to base64-encode.

@param – trimTrailEq – whether to trim any trailing = .

C.Encode.gzip
(method) Encode.gzip(value: string, encoding?: string): any
Gzip, and optionally base64-encode, the supplied value.

@param – value – the value to gzip.

@param – encoding – encoding of value , for example: 'base64' , 'hex' , 'utf-
8' , 'binary' , 'none' . Default is 'base64' . If 'none' is specified, data will be

returned as a Buffer.

C.Encode.hex
(method) Encode.hex(val: string | number): string
Rounds the number to an integer and returns its hex representation (lowercase). If a

string is provided, it will be parsed into a number or NaN .
@param – val – value to convert to hex.

C.Encode.uri
(method) Encode.uri(val: string): string

C.Encode – Data Encoding Functions

Page 836 of 900

Returns the URI-encoded representation of the given string.

@param – val – value to uri encode.

C.env
(property) env: {[key: string]: string;}
An object containing the environment variables.

C.Lookup – Exact Lookup

(property) Lookup: (file: string, primaryKey?: string, otherFields?:
string[], ignoreCase?: boolean) => InlineLookup
Returns an instance of a lookup to use inline.

C.LookupCIDR - CIDR Lookup

(property) Lookup: (file: string, primaryKey?: string, otherFields?:
string[]) => InlineLookup
Returns an instance of a CIDR lookup to use inline.

C.LookupRegex - Regex Lookup

(property) Lookup: (file: string, primaryKey?: string, otherFields?:
string[]) => InlineLookup
Returns an instance of a Regex lookup to use inline.

(method) InlineLookup.match(value: string, fieldToReturn?: string): any
@param – value – the value to look up.

@param – fieldToReturn – name of the lookup file > field to return.

E.g., C.Lookup('lookup-exact.csv', 'foo').match('abc', 'bar')
Return the value of field bar in the lookup table if field foo matches abc .

Example 1: C.LookupCIDR('lookup-cidr.csv', 'foo').match('192.168.1.1',
'bar')
Return the value of field bar in the lookup table if the CIDR range in foo includes

192.168.1.1 .

Example 2: C.LookupCIDR('lookup-cidr.csv', 'cidr').match(hostIP,
'location')

Example 3: C.LookupRegex('lookup-regex.csv', 'foo').match('manchester',
'bar')
Return the value of field bar in the lookup table if the regex in foo matches the string

manchester .

C.env – Environment

C.Lookup – Inline Lookup Functions

Page 837 of 900

C.Mask.CC
(method) Mask.CC(value: string, unmasked?: number, maskChar?: string):
string
Check whether a value could be a valid credit card number, and mask a subset of the

value. By default, all digits except the last 4 will be replaced with X .
@param – value – a string whose digits to mask IFF it could be a valid credit card

number.

@param – unmasked – number of digits to leave unmasked: positive for left, negative

for right, 0 for none.

@param – maskChar – a string/char to replace a digit with.

C.Mask.IMEI
(method) Mask.IMEI(value: string, unmasked?: number, maskChar?: string):
string
Check whether a value could be a vlaid IMEI number, and mask a subset of the value.

By default, all digits except the last 4 will be replaced with X .
@param – value – a string whose digits to mask IFF it could be a valid IMEI number.

@param – unmasked – number of digits to leave unmasked: positive for left, negative

for right, 0 for none.

@param – maskChar – a string/char to replace a digit with.

C.Mask.isCC
(method) Mask.isCC(value: string): boolean
Checks whether the given value could be a valid credit card number, by computing the

string's Lunh's checksum modulo 10 == 0 .
@param – value – a string to check for being a valid credit card number.

C.Mask.isIMEI
(method) Mask.isIMEI(value: string): boolean
Checks whether the given value could be a valid IMEI number, by computing the

string's Lunh's checksum modulo 10 == 0 .
@param – value – a string to check for being a valid IMEI number

C.Mask.luhn
(method) Mask.luhn(value: string, unmasked?: number, maskChar?: string):
string
Check that value Lunh's checksum mod 10 is 0 , and mask a subset of the value. By
default, all digits except the last 4 will be replaced with X . If the value's Lunh's
checksum mod 10 is not 0 , then the value is returned unmodified.
@param – value – a string whose digits to mask IFF the value's Lunh's checksum

mod 10 is 0 .
@param – unmasked – number of digits to leave unmasked: positive for left, negative

for right, 0 for none.

@param – maskChar – a string/char to replace a digit with.

C.Mask – Data Masking Functions

Page 838 of 900

C.Mask.LUHN_SUB
(property) Mask.LUHN_SUB: any

C.Mask.luhnChecksum
(method) Mask.luhnChecksum(value: string, mod?: number): number
Generates the Luhn checksum (used to validate certain credit card numbers, IMEIs,

etc.). By default, the mod 10 of the checksum is returned. Pass mod = 0 to get the

actual checksum.

@param – value – a string whose digits you want to perform the Lunh checksum on.

@param – mod – return checksum modulo this number. If 0 , skip modulo. Default is
10 .

C.Mask.md5
(method) Mask.md5(value: string, len?: string | number): string
Generate MD5 hash of a given value.

@param – value – compute the hash of this.

@param – len – length of hash to return: 0 for full hash, a +number for left or a -

number for right substring. If a string is passed it's length will be used.

C.Mask.random
(method) Mask.random(len?: string | number): string
Generates a random alphanumeric string.

@param – len – a number indicating the length of the result; or, if a string, use its

length.

C.Mask.REDACTED
(property) Mask.REDACTED: string
The literal 'REDACTED' .

C.Mask.repeat
(method) Mask.repeat(len?: string | number, char?: string): string
Generates a repeating char/string pattern, e.g., XXXX .
@param – len – a number indicating the length of the result; or, if a string, use its

length.

@param – char – pattern to repeat len times.

C.Mask.sha1
(method) Mask.sha1(value: string, len?: string | number): string
Generate SHA1 hash of given value.

@param – value - compute the hash of this.

@param – len - length of hash to return: 0 for full hash, a +number for left, or a -

number for right.

substring. If a string is passed, its length will be used

C.Misc.zip()
(method) Misc.zip(keys: string[], values: any[], dest?: any): any

C.Misc – Miscellaneous Utility Functions

Page 839 of 900

Set the given keys to the corresponding values on the given dest object. If dest is

not provided, a new object will be constructed.

@param – keys – field names corresponding to values.

@param – values – values corresponding to keys.

@param – dest – object on which to set field values.

@returns – object on which the fields were set.

E.g., people = C.Misc.zip(titles, names)
Sample data: titles=['ceo', 'svp', 'vp'] , names=['foo', 'bar', 'baz']
Create an object called people , with key names from elements in titles , and with
corresponding values from elements in names .
Result: "people": {"ceo": "foo", "svp": "bar", "vp": "baz"}

C.Net.cidrMatch()
(method) Net.cidrMatch(cidrIpRange: string, ipAddress: string): boolean
Determines whether the supplied IPv4 ipAddress is inside the range of addresses

identified by cidrIpRange . For example: C.Net.cidrMatch ('10.0.0.0/24',
'10.0.0.100') returns true .
@param – cidrIpRange – IPv4 address range in CIDR format. E.g., 10.0.0.0/24 .
@param – ipAddress – The IPv4 IP address to test for inclusion in cidrIpRange .

C.Net.ipv6Normalize()
(method) Net.ipv6Normalize(address: string): string
Normalize an IPV6 address based on RFC draft-ietf-6man-text-addr-representation-

04.

@param – address – the IPV6 address to normalize.

C.Net.isPrivate()
(method) Net.isPrivate(address: string): string
Determine whether the supplied IPv4 address is in the range of private addresses per

RFC1819.

@param – address – address to test.

C.confVersion
Returns Cribl LogStream config version.

C.os.hostname()
Returns hostname of the system running this Cribl LogStream instance.

C.Net – Network Functions

C.os – System Functions

C.Schema – Schema Functions

Page 840 of 900

C.Schema()
(property) Schema: (id: string) => SchemaValidator
(method) SchemaValidator.validate(data: any): boolean
Validates the given object against the schema.

@param – data – object to be validated.

@returns – true when schema is valid; otherwise, false .

Example: C.Schema('schema1').validate(myField) will validate if myField object

conforms to schema1 .

See Schema Library for more details.

C.Text.entropy()
(method) Text.entropy(bytes: any): number
Computes the Shannon entropy of the given buffer or string.

@param – bytes – value to undergo Shannon entropy computation.

@returns – the entropy value; or -1 in case of an error.

C.Text.hashCode()
(method) Text.hashCode(val: string | Buffer | number): number
Computes hashcode (djb2) of the given value.

@param – val - value to be hashed.

@returns – hashcode value.

C.Text.isASCII()
(method) Text.isASCII(bytes: any): boolean
Checks whether all bytes or chars are in the ASCII printable range.

@param – bytes – value to check for character range.

@returns – true if all chars/bytes are within ASCII printable range; otherwise, false .

C.Text.isUTF8()
(method) Text.isUTF8(bytes: any): boolean
Checks whether the given Buffer contains valid UTF8.

@param – bytes – bytes to check.

@returns – true if bytes are UTF8; otherwise, false .

C.Text.relativeEntropy()
(method) Text.relativeEntropy(bytes: any, modelName?: string): number
Computes the relative entropy of the given buffer or string.

@param – bytes – value whose relative entropy to compute.

@param – modelName – Name of the model to test the string with.

@returns – the relative entropy value, or -1 in case of an error.

C.Text – Text Functions

C.Time – Time Functions

Page 841 of 900

C.Time.adjustTZ()
(method) Time.adjustTZ(epochTime: number, tzTo: string, tzFrom?: string):
number
Adjust a timestamp from one timezone to another.

@param – epochTime – UNIX epoch time.

@param – tzTo – timezone to adjust to.

@param – tzFrom – optional timezone of the timestamp.

C.Time.strftime()
(method) Time.strftime(date: number | Date, format: string, utc?:
boolean): string
Format a Date object or number as a time string, using strftime specifier.

@param – date – Date object or number (seconds since epoch) to format.

@param – format – specifier to use to format the date.

@param – utc – whether to output the time in UTC, rather than in local timezone.

@returns – representation of the given date.

C.Time.strptime()
(method) Time.strptime(str: string, format: string, utc?: boolean,
strict?: boolean): Date
Extract time from a string using strptime specifier.

@param – str – string to parse to a timestamp (see strict flag).

@param - format – strptime specifier.

@param – utc – whether to interpret times as UTC, rather than as local time.

@param – strict – whether to return null if there are any extra characters after

timestamp.

@returns – a parsed Date object, if successful; otherwise, null if the specifier did not

match.

C.Time.timestampFinder()
(method) Time.timestampFinder(utc?: boolean): AutoTimeParser

See Global Variables Library for more details.

(property) version: string
Cribl LogStream Version.

C.vars – Global Variables

C.version – Cribl LogStream Version

Updated 2 months ago

Page 842 of 900

Knowledge

Regex Library

Cribl LogStream ships with a Regex Library that contains a set of pre-built common

regex patterns. This library serves as an easily accessible repository of regular

expressions. The Library is searchable, and you can assign tags to each pattern for

further organization or categorization. The Library is located under Knowledge >

Regex Library .

Regular Expression Library

As of this version, the Library contains 25 patterns shipped by Cribl LogStream. To

insert a pattern into a Function's regex field, first click the pop-out or Edit icon beside

that field.

What Is the Regex Library

Using Library Patterns

Page 843 of 900

Opening a Regex modal

In the resulting Regex or Rules modal, Regex Library patterns will appear as typeahead

options. Click a pattern to paste it in. You can then use the pattern as-is, or modify it as

necessary.

Inserting a pattern from the Regex Library

You can also add new, custom patterns to the Library. In the same modal, once you've

built your pattern, click the Save to Library button.

Adding a custom pattern to the Regex Library from a Function's Regex modal

In the resulting modal, give your custom pattern a unique ID. Optionally, you can also

provide a Description (name) and groom the Sample data. Then click Save.

Adding Patterns to the Library

Page 844 of 900

Identifying the custom pattern

Your custom pattern will now reside in the Regex Library. It will be available to

Functions using the same typeahead assist as Cribl's pre-built patterns.

Within the Library, patterns shipped by Cribl will be listed under the Cribl tab, while

those built by users will be found under Custom. Over time, Cribl LogStream will ship

more patterns, and this distinction allows for both sets to grow independently.

In the case of an ID/Name conflict, the Custom pattern takes priority in listings and

search. For example, if a Cribl-provided pattern and a Custom one are both named

ipv4 , the one from Cribl will not be displayed or delivered as a search result.

Cribl vs. Custom and Priority

Updated 19 days ago

Page 845 of 900

Grok Patterns Library

Cribl LogStream ships with a Grok Patterns Library that contains a set of pre-built

common patterns, organized as files.

Grok Patterns Library

You can access the Grok Patterns Library in the UI by selecting Knowledge > Grok

Patterns. The library contains several pattern files that Cribl provides for basic Grok

scenarios, and is searchable.

To edit a pattern file, click Edit in its Actions column.

To create a new pattern file, click + Add New. In the resulting Create Grok Patterns

modal, assign a unique Filename/ID, populate the file with patterns, then click Save.

Adding Grok patterns

What Is the Grok Patterns Library

Managing Library Patterns

ℹ Pattern files reside in: $CRIBL_HOME/(default|local)/cribl/grok-
patterns/

Page 846 of 900

In the current LogStream version, you apply Grok patterns by inserting a Grok Function

into a Pipeline, then manually typing or pasting patterns into the Pattern field(s).

Using Grok Patterns

Updated a day ago

Page 847 of 900

Event Breakers

Event Breakers help break incoming streams of data into discrete events. You access

the Event Breakers management interface under Knowledge > Event Breakers. On

the resulting Event Breaker Rulesets page, you can edit, add, delete, search, and tag

Event Breaker rules and rulesets, as necessary.

Event Breaker Rulesets page

Rulesets are collections of Event Breaker rules that are associated with Sources.

Rules define configurations needed to break down a stream of data into events. Rules

within a ruleset are ordered and evaluated top->down. One or more rulesets can be

associated with a Source, and these rulesets are also evaluated top->down. For a

stream from a given Source, the first matching rule goes into effect.

Rulesets and Rules - Ordered

What Are Event Breakers

Event Breaker Rulesets

Ruleset A
 Rule 1
 Rule 2
 ...
 Rule n

Page 848 of 900

An example of multiple rulesets associated with a Source:

Three Event Breaker rulesets on a Source

This rule breaks on newlines and uses Manual timestamping after the sixth comma, as

indicated by this pattern: ^(?:[^,]*,){6} .

...

Ruleset B
 Rule Foo
 Rule Bar
 ...
 Rule FooBar

Rule Example

Page 849 of 900

An Event Breaker rule

The system default rule sits at the bottom of the ruleset/rule hierarchy, and goes into

effect if there are no matching rules:

Filter Condition defaults to true

Event Breaker to [\n\r]+(?!\s)

Timestamp anchor to ^

Timestamp format to Auto and a scan depth of 150 bytes

Max Event Bytes to 51200

Default Timezone to Local

On the Event Breaker Rulesets page (see screenshot above), click + Add New to

create a new Event Breaker ruleset. Click + Add Rule within a ruleset to add a new

Event Breaker.

Adding a new Event Breaker rule

Each Event Breaker includes the following components, which you configure from top

to bottom in the above Event Breaker Rule modal:

System Default Rule

How Do Event Breakers Work

Filter Condition

Page 850 of 900

As a stream of data moves into the engine, a rule's filter expression is applied. If the

expression evaluates to true , the rule configurations are engaged for the entire
duration of that stream. Else, the next rule down the line is evaluated.

After a breaker pattern has been selected, it will apply on the stream continuously.

See below for specific information on different Event Breaker Types.

After events are synthesized out of streams, LogStream will attempt timestamping.

First, a timestamp anchor will be located inside the event. Next, starting there, the

engine will try to do one of the following:

Scan up to a configurable depth into the event and autotimestamp, or

Timestamp using a manually supplied strptime format, or

Timestamp the event with the current time.

The closer an anchor is to the timestamp pattern, the better the performance and

accuracy – especially if multiple timestamps exist within an event. For the manually

supplied option, the anchor must lead the engine right before the timestamp pattern

begins.

Anchors preceding timestamps

After events have been timestamped, one or more fields can be added here as key-

value pairs. In each field's Value Expression, you can fully evaluate the field value

using JavaScript expressions.

Several types of Event Breaker can applied to incoming data streams:

1. Type Regex – uses regular expressions to find breaking points in data streams.

After a breaker regex pattern has been selected, it will apply on the stream

continuously. Breaking will occur at the beginning of the match, and the matched

content will be consumed/thrown away. If necessary, a positive lookahead regex

can be used – e.g., (?=pattern) – to keep the content.

Event Breaker Type

Timestamp Settings

Add Fields to Events

Event Breaker Types

Page 851 of 900

Capturing groups are not allowed to be used anywhere in the Event Breaker

pattern, as they will further break the stream – which is often undesirable.

Breaking will also occur if Max Event Bytes has been reached.

Example: Break after a newline or carriege return but only if followed by a

timestamp pattern:

Event Breaker: [\n\r]+(?=\d+-\d+-\d+\s\d+:\d+:\d+)

Sample Event - Multiline

2. Type File Header – can be used to break files with headers, such as IIS or Bro

logs. This type of breaker relies on a header section that lists field names. The

header section is typically present at the top of the file, and can be single-line or

greater.

After the file has been broken into events, fields will also be extracted, as follows:

Header Line: Regex matching a file header line. For example, ^# .

Field Delimiter: Field delimiter regex. For example, \s+ .

Field Regex: Regex with one capturing group, capturing all the fields to be

broken by field delimiter. For example, ^#[Ff]ields[:]?\s+(.*)

Null Values: Representation of a null value. Null fields are not added to

events.

Clean Fields: Whether to clean up field names by replacing non [a-zA-Z0-
9] characters with _ .

Example: Using the values above, let's see how this sample file breaks up:

S l E Fil H d

--- input ---
2020-05-19 16:32:12 moen3628 ipsum[5213]: Use the mobile TCP feed, then y
 Try to connect the FTP sensor, maybe it will connect the digital bus!
 Try to navigate the AGP panel, maybe it will quantify the mobile alarm
2020-05-19 16:32:12 moen3628 ipsum[5213]: Use the mobile TCP feed, then y
 Try to connect the FTP sensor, maybe it will connect the digital bus!
 Try to navigate the AGP panel, maybe it will quantify the mobile alarm

--- output event 1 ---
{
 "_raw": "2020-05-19 16:32:12 moen3628 ipsum[5213]: Use the mobile TCP f
 "_time": 1589920332
}

--- output event 2 ---
{
 "_raw": "2020-05-19 16:32:12 moen3628 ipsum[5213]: Use the mobile TCP f
 "_time": 1589920332
}

Page 852 of 900

Sample Event - File Header

3. Type JSON Array – can be used to extract events from an array in a JSON

document (e.g., an Amazon CloudTrail file).

Array Field: Path to array in a JSON event with records to extract. For

example, Records .

Timestamp Field: Optional path to timestamp field in extracted events. For

example, eventTime or level1.level2.eventTime .

JSON Extract Fields: Enable this slider to auto-extract fields from JSON

events. If disabled, only _raw and time will be defined on extracted events.

Timestamp Format: If JSON Extract Fields is set to No, you must set this to

Autotimestamp or Current Time. If JSON Extract Fields is set to Yes, you

can select any option here.

Example: Using the values above, let's see how this sample file breaks up:

Sample Event - JSON Document (Array)

--- input ---
#fields ts uid id.orig_h id.orig_p id.resp_h i
#types time string addr port addr port enum
1331904608.080000 - 192.168.204.59 137 192.168.204.255 137
1331904609.190000 - 192.168.202.83 48516 192.168.207.4 53

--- output event 1 ---
{
 "_raw": "1331904608.080000 - 192.168.204.59 137 192.168
 "ts": "1331904608.080000",
 "id_orig_h": "192.168.204.59",
 "id_orig_p": "137",
 "id_resp_h": "192.168.204.255",
 "id_resp_p": "137",
 "proto": "udp",
 "_time": 1331904608.08
}

--- output event 2 ---
{
 "_raw": "1331904609.190000 - 192.168.202.83 48516 192.168
 "ts": "1331904609.190000",
 "id_orig_h": "192.168.202.83",
 "id_orig_p": "48516",
 "id_resp_h": "192.168.207.4",
 "id_resp_p": "53",
 "proto": "udp",
 "_time": 1331904609.19
}

--- input ---
{"Records":[{"eventVersion":"1.05","eventTime":"2020-04-08T01:35:55Z","ev
{"eventVersion":"1.05","eventTime":"2020-04-08T01:35:56Z","eventSource":"

Page 853 of 900

4. Type JSON New Line Delimited – can be used to break and extract fields in

newline-delimited JSON streams.

Example: Using default values, let's see how this sample stream breaks up:

Sample Event - Newline Delimted JSON

--- output event 1 ---
{
 "_raw": "{\"eventVersion\":\"1.05\",\"eventTime\":\"2020-04-08T01:35:55
 "_time": 1586309755,
 "cribl_breaker": "j-array"
}

--- output event 2 ---
{
 "_raw": "{\"eventVersion\":\"1.05\",\"eventTime\":\"2020-04-08T01:35:56
 "_time": 1586309756,
 "cribl_breaker": "j-array"
}

--- input ---
{"time":"2020-05-25T18:00:54.201Z","cid":"w1","channel":"clustercomm","le
{"time":"2020-05-25T18:00:54.246Z","cid":"w0","channel":"clustercomm","le

--- output event 1 ---
{
 "_raw": "{\"time\":\"2020-05-25T18:00:54.201Z\",\"cid\":\"w1\",\"channe
 "time": "2020-05-25T18:00:54.201Z",
 "cid": "w1",
 "channel": "clustercomm",
 "level": "info",
 "message": "metric sender",
 "total": 720,
 "dropped": 0,
 "_time": 1590429654.201,
}

--- output event 21 ---
{
 "_raw": "{\"time\":\"2020-05-25T18:00:54.246Z\",\"cid\":\"w0\",\"channe
 "time": "2020-05-25T18:00:54.246Z",
 "cid": "w0",
 "channel": "clustercomm",
 "level": "info",
 "message": "metric sender",
 "total": 720,
 "dropped": 0,
 "_time": 1590429654.246,
}

Cribl versus Custom Rulesets

Page 854 of 900

Event Breaker rulesets shipped by Cribl will be listed under the Cribl tag, while user-

built rulesets will be found under Custom. Over time, Cribl will ship more patterns, so

this distinction allows for both sets to grow independently. In the case of an ID/Name

conflict, the Custom pattern takes priority in listings and search.

Updated 19 days ago

Page 855 of 900

Lookups Library

Lookups are data tables that can be used in Cribl LogStream to enrich events as

they're processed by the Lookup Function. You can access the Lookups library under

Knowledge > Lookups, and its purpose is to provide a management interface for all

lookups. The library is searchable, and each lookup can be tagged as necessary.

Compressed files are supported but must be in gzip format (gz extension).

Lookups Library

All files handled by the interface are stored in $CRIBL_HOME/data/lookups for

standalone instances. For the paths used in distributed environments, see Distributed

Deployments. You can use the Lookups Library interface to add, edit, and delete

lookups within files/tables. To get started, click the Edit button to the right of a file.

Editing a lookups file

You can edit files in table or text mode. However, text mode is disabled for files larger

than 1 MB.

What Are Lookups

How Does It Work

Page 856 of 900

Editing in table mode

Updated about a month ago

Page 857 of 900

Parsers Library

Parsers are definitions and configurations for the Parser Function. You can find the

library under Knowledge > Parsers, and its purpose is to provide an interface for

creating and editing Parsers. The library is searchable, and each parser can be tagged

as necessary.

Parsers Library

Parsers can be used to extract or reserialize events. See Parser Function page for

examples.

CSV – Parse and reserialize comma-separated values.

ELFF – Parse and reserialize events in Extended Log File Format.

CLF – Parse and reserialize events in Common Log Format.

To create a parser, follow these steps:

1. Go to Knowledge > Parsers and click Add New.

2. Enter a unique ID.

3. Optionally, enter a Description.

4. Select a Parser type (see the supported types above).

What Are Parsers

Supported Parser Types:

Creating a Parser

Page 858 of 900

5. Enter the List of fields expected to be extracted, in order.

Click this field's Maximize icon (far right) if you'd like to open a modal where you

can work with sample data and iterate on results.

6. Optionally, enter any desired Tags.

Adding a new parser

Updated 2 months ago

Page 859 of 900

Schema Library

Schemas are JSON definitions that are used to validate of JSON events. They're based

on the popular JSON Schema standard, and all schemas matching draft version 2019-

09 are supported. You can find the library under Knowledge > Schemas. Its purpose

is to provide an interface for creating, editing, and maintaining Schemas.

You validate a schema using the C.Schema('<schema name>').validate(<object
field>) built-in method. This function can be called anywhere in Cribl LogStream

that JavaScript expressions are supported.

Typical use cases for Schema validation:

Making a decision before sending an event down to a destination.

Making a decision before accepting an event. (E.g., drop an event if invalid.)

Making a decision to route an event based on the result of validation.

To add this example JSON Schema, go to Knowledge > Schemas and click Add New.

Enter the following:

ID: schema1 .

Description: (Enter your own description here.)

Schema: Paste the following schema.

JSON Schema - Sample

What Are Schemas

Example

{
 "$id": "https://example.com/person.schema.json",
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Person",
 "type": "object",
 "required": ["firstName", "lastName", "age"],
 "properties": {
 "firstName": {
 "type": "string",
 "description": "The person's first name."
 },
 "lastName": {
 "type": "string",
 "description": "The person's last name."
 },
 "age": {

Page 860 of 900

Assume that events look like this:

Events

To validate whether the employee field is valid per schema1 , we can use the
following:

C.Schema('schema1').validate(employee)

Results:

First event is valid.

Second event is not valid because age is greater than the maximum of 42 .

Third event is not valid because age is missing.

Schema validation results for the above events

 "description": "Age in years which must be equal to or greater than
 "type": "integer",
 "minimum": 0,
 "maximum": 42
 }
 }
}

{"employee":{"firstName": "John", "lastName": "Doe", "age": 21}}
{"employee":{"firstName": "John", "lastName": "Doe", "age": 43}}
{"employee":{"firstName": "John", "lastName": "Doe"}}

Updated 2 months ago

Page 861 of 900

Global Variables Library

Global Variables are reusable JavaScript expressions that can be accessed in

Functions in any Pipeline. You can access the library under Knowledge > Global

Variables.

Typical use cases for Global Variables include:

Storing a constant that you can reference from any Function in any Pipeline.

Storing a relatively long value expression, or one that uses one or more

arguments.

Global Variables can be of the following types:

Number

String

Boolean

Object

Array

Expression

Global Variables can be accessed via C.vars. – which can be called anywhere in

Cribl LogStream that JS expressions are supported. Typeahead is provided. More on

Cribl Expressions here.

Assign field foo the value in theAnswer Global Variable.

Global Variable Name: theAnswer <-- ships with Cribl LogStream by default.

Global Variable Value: 42

Sample Eval Function: foo = C.vars.theAnswer

Assign field nowEpoch the current time, in epoch format.

Global Variable Name: epoch <-- ships with Cribl LogStream by default.

What Are Global Variables

Examples

Scenario 1:

Scenario 2:

Page 862 of 900

Global Variable Value: Date.now()/1000

Sample Eval Function: nowEpoch = C.vars.epoch()

Create a new field called storage , by converting the value of event field size to

human-readable format.

Global Variable Name: convertBytes <-- ships with Cribl LogStream by default

Global Variable Value: `${Math.round(bytes / Math.pow(1024,
(Math.floor(Math.log(bytes) / Math.log(1024)))), 2)}${['Bytes',
'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB', 'ZiB', 'YiB']
[(Math.floor(Math.log(bytes) / Math.log(1024)))]}`

Global Variable Argument: bytes

Sample Eval Function: storage = C.vars.convertBytes(size)

Note the use of bytes here as an argument.

Scenario 3:

Updated 2 months ago

Page 863 of 900

Use Cases

Ingest-time Fields

To add new fields to any event, we use the out-of-the-box Eval Function. We can

either apply a Filter to select the events, or we can use the default true Filter

expression to apply the Function to all incoming events.

Let's see how we add dc::nyc-42 to all events with

sourcetype=='access_combined' :

First make sure you have a Route and Pipeline configured to match desired

events.

Next, let's add a Eval function to it:

Defining the Eval Function's filter expression

Next, let's click on + Add Field, add our dc field, and click Save.

Adding Fields to Data in Motion

Adding Fields Example

Page 864 of 900

Adding the dc field

To confirm, verify that this search returns results: sourcetype="access_combined"
dc::nyc-42

You can add more conditions to the filter, if you'd like. For example, to limit the

field to only events from hosts that start with web-01 , we can change the filter
input as below:

Refining the filter

This is a very powerful method to change incoming events in real time. In addition to

providing the right context at the right time, users can further benefit substantially by

Page 865 of 900

using tstats for faster analytics.

You can remove fields by listing and/or wildcarding field names. Let's see how we can

remove all fields that start with date_ .:

First, make sure you have a Route and Pipeline configured to match desired

events.

Next, let's add a Eval function to it (as above).

Next, in Remove Fields, add date_* and hit Save.

Goodbye date_ field

To confirm, verify that this search: sourcetype="access_combined" date_minute=*
will soon stop returning results. Enjoy a more efficient Splunk!

Removing Fields

Updated 2 months ago

Page 866 of 900

Ingest-time Lookups

To enrich events with new fields from external sources (say, .csv files), we use

LogStream's out-of-the-box Lookup Function. Ingestion-time lookups are not only

great for normalizing field names and values, but also ideal for use cases where:

Fast access via the looked-up value is required. For example, when you don't have

a datacenter field in your events, but you do have a host-to-datacenter map,

and you need to search by datacenter .

Looked-up information must be temporally correct. For example, assume that you

have a highly dynamic infrastructure, and you need to resolve a resource name

(e.g., a container name) to its address. You can't afford to defer this to search

time/runtime, as the resource and its records might no longer exist.

Let's assume we have the following lookup file. Given the field conn_state in an

event, we would like to add a corresponding ingestion-time field called action .

bro_conn_state.csv

First, make sure you have a Route and Pipeline configured to match desired events.

Next, let's add a Lookup function to the Pipeline, with these settings:

Enriching Data in Motion

ℹ External (non- .csv) lookups are coming soon.

Working with Lookups – Example 1

action,"conn_state","conn_state_meaning"
dropped,S0,"Connection attempt seen, no reply."
allowed,S1,"Connection established, not terminated."
allowed,SF,"Normal establishment and termination."
blocked,REJ,"Connection attempt rejected."
allowed,S2,"Connection established and close attempt by originator seen
allowed,S3,"Connection established and close attempt by responder seen (b
allowed,RSTO,"Connection established, originator aborted (sent a RST)."
allowed,RSTR,"Established, responder aborted."
dropped,RSTOS0,"Originator sent a SYN followed by a RST, we never saw a S
dropped,RSTRH,"Responder sent a SYN ACK followed by a RST, we never saw a
dropped,SH,"Originator sent a SYN followed by a FIN, we never saw a SYN A
dropped,SHR,"Responder sent a SYN ACK followed by a FIN, we never saw a S
allowed,OTH,"No SYN seen, just midstream traffic (a 'partial connection'

Page 867 of 900

Lookup file path:

$SPLUNK_HOME/etc/apps/Splunk_TA_bro/lookups/bro_conn_state.csv
(note that Environment variables are allowed in the path).

Lookup Field Name in Event set to conn_state .

Corresponding Field Name in Lookup set to conn_state .

Output Field Name from Lookup set to action .

Lookup Field Name in Event set to action .

Lookup Function to add action field

To confirm success, verify that this search returns expected results:

sourcetype="bro" action::allowed . Change the action value as necessary.

Let's assume we have the following lookup file, and given both the fields impact and

priority in an event, we would like to add a corresponding ingestion-time field

called severity .

cisco_sourcefire_severity.csv

Working with Lookups – Example 2

impact,priority,severity
1,high,critical
2,high,critical
3,high,high

Page 868 of 900

First, make sure you have a Route and Pipeline configured to match desired events.

Next, let's add a Lookup function to the Pipeline, with these settings:

Lookup file path:

$SPLUNK_HOME/etc/apps/Splunk_TA_sourcefire/lookups/cisco_sourcefire_s
everity.csv
(note that Environment variables are allowed in the path).

Lookup Field Name(s) in Event set to impact and priority .

Corresponding Field Name(s) in Lookup set to impact and priority .

Output Field Name from Lookup set to severity .

Lookup Field Name in Event set to severity .

4,high,high
0,high,high
"*",high,high
.....
"*",medium,medium
1,low,medium
2,low,medium
3,low,low
4,low,low
0,low,low
"*",low,low
1,none,low
2,none,low
3,none,informational
4,none,informational
0,none,informational
"*",none,informational

Page 869 of 900

Lookup Function to add severity field

To confirm success, verify that this search returns expected results:

sourcetype="cisco:sourcefire" severity::medium . Change the severity value

as necessary.

Updated 2 months ago

Page 870 of 900

Sampling

Let's say that you wanted to analyze and troubleshoot with highly

verbose/voluminous data – for example, CDN logs, ELB Access Logs, or VPC Flows –

but you were concerned about storage requirements and search performance. With

Sampling, you can bring in enough samples that your analysis remains statistically

significant, and also do all the necessary troubleshooting.

See the example below, or see more details in Access Logs and Firewall Logs.

Let's use the out-of-the-box Sampling function to sample all events from

sourcetype=='access_combined' where status is '200' . We'll sample these
at 5:1 (and all other events at 1:1). This should lower the volume of all
verbose successes (200 s), but still bring in **all** potentially
erroneous events (400 s, 500`s, etc.) that can be used for troubleshooting.

First, make sure you have a Route and Pipeline configured to match desired

events.

Next, let's add a Regex Extract Function to extract the status field from _raw ,
and let's call the resulting field __status . Remember, fields that start with __
are special fields in Cribl LogStream, and can be used anywhere in a Pipeline.

Extracting the __status field

Sampling at Ingest-Time

Sampling Example

Page 871 of 900

Next, let's add a Sampling function, and scope it to all events where

sourcetype=='access_combined' . Let's apply a filter condition of __status ==
200 , and a Sample Rate of 5 .

Sampling success responses

To confirm that sampling works, compare the event count of all 200 s before and after.

ℹ Each time an event goes through the Sampling function, an index-time

sampled::<rate> field is added to it. You can use this field in your

statistical functions, as necessary.

Updated about a month ago

Page 872 of 900

Access Logs: Apache, ELB, CDN, S3,
etc.

Access logs are extremely common. They're often emitted by web servers or

similar/related technologies (proxies, loadbalancers, etc.), and tend to be highly

voluminous. Typical examples include Apache access logs, and CDN logs such as

those from Amazon Cloudfront, Amazon S3 Server Access Logs, AWS ELB Access

Logs, etc.

For large installations, bringing everything into an analytics tool is often so cost-

prohibitive (storage, resources, license, etc.) that most users don't even bother.

However, some of the logs contain relevant information when looked at individually

(e.g., errors). The much larger majority contains relevant information when looked at in

the aggregate (e.g., successes to determine traffic patterns, etc.).

It would be great if we could find a middle ground. With the Sampling Function, you

can! Specifically, you can:

Ingest enough sample events from the majority category that your aggregate

analysis remains statistically significant.

Ingest all events from the minority categories, and perform troubleshooting and

introspection with full-fidelity data.

Most of the access logs (including the ones mentioned above) have very similar

formats. One quick way to sample is to look at the value of the status field. 2XX s
indicate success and tend to be, by far, the most common ones – with 200 being the

top. Therefore, 200 is the perfect candidate for sampling. All other statuses occur

much less frequently, indicate conditions that often need to be looked at, and can be

brought in with full fidelity.

1. Add a Regex Extract Function that looks at these sourcetypes:

sourcetype=='access_combined' || sourcetype=='aws:s3:accesslogs'

2. Configure that Function to extract a field called __status with this

regex: /HTTP\/\d\.\d"\s(?<__status>\d+)/

Recipe for Sampling Access Logs

Using status as the Sampling Condition

Sample Status 200 at 5�1

Page 873 of 900

Defining the Regex Extract Function

3. Add a Sampling Function to sample 5:1 when __status==200 .

4. Save.

Sampling success reponses

Each time an event goes through the Sampling Function, an index-time sampled::
<rate> field is added to it. Use this field in your statistical Functions, as necessary.

Examples of other sourcetypes that will benefit from sampling, but might need a

different __status extraction regex:

Note About Sampling

Other Sourcetypes

Sourcetype Filter Expression

Page 874 of 900

Amazon Cloudfront Access

Logs
sourcetype=='aws:cloudfront:accesslogs'

Amazon ELB Access Logs sourcetype=='aws:elb:accesslogs'

Updated 2 months ago

Page 875 of 900

Firewall Logs: VPC Flow Logs, Cisco
ASA, Etc.

Firewall logs are another source of important operational (and security) data. Typical

examples include Amazon VPC Flow Logs, Cisco ASA Logs, and other technologies

such as Juniper, Checkpoint, pfSense, etc.

As with Access Logs, bringing in everything for operational analysis might be cost-

prohibitive. But sampling with Cribl LogStream can help you:

Ingest enough sample events from the majority category that your aggregate

analysis remains statistically significant. E.g., sample all ACCEPT s at 5:1 .

Ingest all events from the minority categories, and perform troubleshooting and

introspection with full-fidelity data. E.g., bring in all REJECT s.

AWS' VPC Flow Logs feature enables you to capture information about the IP traffic

going to and from network interfaces in your VPC. Flow Log data can be published to

Amazon CloudWatch Logs and Amazon S3.

Typical VPC Flow Logs look like this:

Flow Log Records for Accepted and Rejected Traffic

Let's use a very simple Filter condition and only look for ACCEPT events:

1. Add a Regex Extract Function that looks at:

sourcetype=='aws:cloudwatchlogs:vpcflow'

2. Configure that Function to extract a field called __action with this regex: /(?
<__action>ACCEPT)/

Recipe for Sampling Firewall Logs

Sampling VPC Flow Logs

2 123456789010 eni-abc123de 172.31.16.139 172.31.16.21 20641 22 6 20 4249
2 123456789010 eni-abc123de 172.31.9.69 172.31.9.12 49761 3389 6 20 4249

Page 876 of 900

Extracting the __action field

3. Add a Sampling Function to sample 5:1 when __action=="ACCEPT" .

4. Save.

Sampling ACCEPT events

Each time an event goes through the Sampling Function, an index-time field is added

to it: sampled: <rate> . It's advisable that you use that in your statistical functions, as
necessary.

Other sourcetypes that will benefit from sampling, but might need a different

__action extraction regex:

Note About Sampling

Other Sourcetypes

Page 877 of 900

Cisco ASA Logs sourcetype=='cisco:asa'

Related sourcetypes to consider sampling:
sourcetype=='cisco:fwsm'
sourcetype=='cisco:pix'

Updated 2 months ago

Sourcetype Filter Expression

Page 878 of 900

Masking and Obfuscation

To mask patterns in real time, we use the out-of-the-box Mask Function. This is similar

to sed , but with much more powerful functionality.

The Masking Function accepts multiple replacement rules and multiple fields to apply

them to.

Match Regex is a JS regex pattern that describes the content to be replaced. It can

optionally contain matching groups. By default, it will stop after the first match, but

using /g will make the Function replace all matches.

Replace Expression is a JS expression or literal to replace matched content.

Matching groups can be referenced in the Replace Expression as g1 , g2 ... gN ,
and the entire match as g0 .

There are several masking methods that are available under C.Mask. :

C.Mask.random : Generates a random alphanumeric string

C.Mask.repeat : Generates a repeating char/string pattern, e.g., XXXX
C.Mask.REDACTED : The literal 'REDACTED'

C.Mask.md5 : Generates a MD5 hash of given value

C.Mask.sha1 : Generates a SHA1 hash of given value

C.Mask.sha256 : Generates a SHA256 hash of given value

Almost all methods have an optional len parameter which can be used to control the

length of the replacement. len can be either a number or string. If it's a string, its

length will be used. For example:

Masking and Anonymization of Data in Motion

Masking Capabilities

Page 879 of 900

Defining the replacement length

Let's look at the various ways that we can mask a string like this one:

cardNumber=214992458870391 . The Regex Match we'll use is: /(cardNumber=)
(\d+)/g . In this example:

g0 = cardNumber=214992458870391

g1 = cardNumber=

g2 = 214992458870391

Masking Examples

Replace Expression Evaluationℹ

Replace Expression accepts a full JS expression that evaluates to a value,

so you're not necessarily limited to what's under C.Mask . For example, you
can do conditional replacement: g1%2==1 ? `fieldA="odd"` :
`fieldA="even"`

Replace Expression can reference other event fields as event.
<fieldName> . For example, `${g1}${event.source}` . Note that this is
slightly different from other expression inputs, where event fields are

referenced without event. Here, we require the event. prefix for the

following reasons:

We don't expect this to be a common case.

Expanding the event in the replace context would have a high

performance hit on the common path.

There is a slight chance that there might be a gN field in the event.

Page 880 of 900

Replace Expression: `${g1}${C.Mask.random()}`

Result: cardNumber=HRhc

Replace Expression: `${g1}${C.Mask.random(7)}`

Result: cardNumber=neNSm8r

Replace Expression: `${g1}${C.Mask.random(g2)}`

Result: cardNumber=DroJ73qmyaro51u3

Replace Expression: `${g1}${C.Mask.repeat()}`

Result: Result: cardNumber=XXXX

Replace Expression: `${g1}${C.Mask.repeat(6, 'Y')}`

Result: cardNumber=YYYYYY

Replace Expression: `${g1}${C.Mask.repeat(g2)}`

Result: cardNumber=XXXXXXXXXXXXXXX

Replace Expression: `${g1}${C.Mask.REDACTED}`

Result: cardNumber=REDACTED

Replace Expression: `${g1}${C.Mask.md5(g2)}`

Result: cardNumber=f5952ec7e6da54579e6d76feb7b0d01f

Replace Expression: `${g1}${C.Mask.md5(g2, 12)}`

Result: cardNumber=d65a3ddb2749
*Replacement length will not exceed that of the hash algorithm output; MD5: 32

chars, SHA1: 40 chars, SHA256: 64 chars.

Random Masking with default character length (4):

Random Masking with defined character length:

Random Masking with length preserving replacement:

Repeat Masking with default character length (4):

Repeat Masking with defined character choice and length:

Repeat Masking with length preserving replacement:

Literal REDACTED masking:

Hash Masking (applies to: md5, sha1 and sha256):

Hash Masking with left N-length* substring (applies to: md5, sha1 and
sha256):

Page 881 of 900

Replace Expression: `${g1}${C.Mask.md5(g2, -12)}`

Result: cardNumber= 933bfcebf992
*Replacement length will not exceed that of the hash algorithm output; MD5: 32

chars, SHA1: 40 chars, SHA256: 64 chars.

Replace Expression: `${g1}${C.Mask.md5(g2, g2)}`

Result: cardNumber= d65a3ddb27493f5
*Replacement length will not exceed that of the hash algorithm output; MD5: 32

chars, SHA1: 40 chars, SHA256: 64 chars.

Hash Masking with right N-length* substring (applies to: md5, sha1 and
sha256):

Hash Masking with length* preserving replacement (applies to: md5, sha1
and sha256):

Updated 2 months ago

Page 882 of 900

Regex Filtering

To filter events in real time, we use the out-of-the-box Regex Filter Function. This is

similar to nullqueueing with TRANSFORMS in Splunk, but the matching condition is

way more flexible.

Let's see how we can filter out any sourcetype=='access_combined' events whose

_raw field contains the pattern Opera :

First, make sure you have a Route and Pipeline configured to match desired events.

Next, let's add a Regex Filter Function to it:

Defining the Regex Filter Function

Next, verify that this search does not return any results:

sourcetype="access_combined" Opera

You can add more conditions to the Filter input field. For example, to further limit the

filtering to only events from hosts with domain dnto.ca , change the filter input as
shown below:

Regex Filtering of Data in Motion

Regex Filtering Example

Page 883 of 900

Filtering by host

This is a very flexible method for filtering incoming events in real time, on virtually any

arbitrary conditions.

Updated about a month ago

Page 884 of 900

Encrypting Sensitive Data

With Cribl LogStream, you can encrypt your sensitive data in real time before it's

forwarded to and stored at a destination. Using the out-of-the-box Mask function, you

can define patterns to encrypt with specific key IDs or key classes. To decrypt in

Splunk, you will need to install Cribl App for Splunk on your search head. (The app will

default to mode-searchhead .)

Symmetric encryption keys can be configured through the CLI or the UI. They're used

to encrypt the patterns, and users are free to define as many keys as required.

Key classes are collections of keys that can be used to implement multiple levels of

access control. Users (or groups of users) that have access to data with encrypted

patterns can be associated with key classes. You can use these classes to provide

more-granular access rights, such as read versus decryption permissions on a

dataset.

1. Define one or more keys and key classes on Cribl LogStream.

2. Sync auth with the decryption side (Splunk Search Head)

3. Apply the Mask function to patterns of interest, using C.Crypto.encrypt().

4. Decrypt on the Splunk search head, using Role Based Access Control on the

decrypt command.

Encryption at Ingest-Time and Decryption in Splunk

Keys and Key Classes

Encrypting in Cribl LogStream and Decrypting in Splunk

Page 885 of 900

Generate one or more keys via the CLI, as follows:

$CRIBL_HOME/bin/cribl keys add -c 1 -i
...
$CRIBL_HOME/bin/cribl keys add -c <N> -i

Add -e <epoch> if you'd like to set expiration for your keys.

Or generate keys via the UI, in Settings > Encryption Keys:

Adding a new encryption key

Sync auth/(cribl.secret|keys.json) . To decrypt data, the decrypt
command will need access to these keys. The cribl.secret and keys.json

Example

Encryption Side

Page 886 of 900

files in $CRIBL_HOME/local/cribl/auth should be synced/copied over to the

search head (decryption side).

Install Cribl App for Splunk on your search head. It will default to mode-
searchhead .

Assign permissions to the decrypt command, per your requirements.

Assign capabilities to your Roles, per your requirements. Capability names should

follow the format cribl_keyclass_N , where N is the Cribl Key Class. For

example, a role with capability cribl_keyclass_1 has access to all key IDs

associated with key class 1 . You can use more capabilities, as long as they follow
this naming convention.

Selecting capabiities

Before Encryption: Sample un-encrypted events. Notice the values of fieldA and

fieldB .

Decryption Side

Usage

Page 887 of 900

Events before encryption

Next, encrypt fieldA values with key class 1 , and fieldB with key class 2 .

Encrypting two fields with separate key classes

After Encryption: again, notice the values of fieldA and fieldB .

Both fields encrypted

Here, we've decrypted fieldB but not fieldA . This is because the logged-in user
has been assigned the capability cribl_keyclass_2 , but not cribl_keyclass_1 .

One field decrypted

Page 888 of 900

Updated 27 days ago

Page 889 of 900

Syslog Data Reduction

When ingesting data from syslog senders, Cribl LogStream can readily trim data

volume by 30% or more, optimizing infrastructure for downstream services like Splunk

or Elasticsearch. Here, we outline some best practices for replacing your Syslog server

with LogStream.

By default, a LogStream Syslog Source will produce the following fields: _time ,
appname , facility and facilityName , host , message , and severity and

severityName .

Parsed syslog event

This output is much more readable, but we haven't saved any volume – we now have

redundant pairs of fields (numeric versus text) representing the facility and severity.

Below, we'll outline how to streamline syslog events to something more like this:

Parsed and redacted syslog event

This extracts the essentials, removes the redundancies, adds one new field that

identifies the LogStream Pipeline we're about to build, and shrinks the outbound _raw

Syslog Event Parsing

Page 890 of 900

payload to just its message component. For still further efficiencies, we'll look at how

to drop or downsample frequent events, and how to balance high-volume syslog

inputs across LogStream worker processes.

Even before setting up a Syslog Source, our first step is to create an input conditioning

Pipeline that will be available to normalize incoming events on all Syslog Sources,

reducing data volume as shown above.

The Pipeline starts with an Eval Function, whose Evaluate Fields section tags syslog

events with two new fields indicating their origin: sourcetype: 'syslog' and

source: __inputId . Because this Pipeline is designed only to condition all incoming
syslog data, we leave Filter set to its default true value, to process all events.

Eval function to tag syslog events' origin

A second Eval Function filters for the presence of a message field. If found, it

overwrites the _raw field with message , and then deletes message as redundant.

This function alone typically reduces syslog data volume by 15–20%.

Create Input Conditioning Pipeline

Page 891 of 900

Eval function to rewrite message as _raw

This third Eval Function deletes two redundant fields. Its Filter condition makes sure

both of these string fields exist and contain values: severity != null && facility
!= null . If so, it removes their corresponding numeric fields, severity and

facility .

Eval function to remove redundant numeric fields

To further shrink the output, this fourth Eval Function removes procid fields that

contain only a dash – meaning "no value extracted." We set Filter: procid=='-' and

⚠ Before using this Pipeline in production, preview sample data to verify that

you're not dropping any essential information.

Page 892 of 900

Remove Fields: procid .

Eval function to remove empty procid fields

With these four Functions enabled, the Preview pane's Basic Statistics confirm that

we've reduced the _raw field's length by more than 30%.

Data reduction example

With some syslog senders, like VMware ESX/ESXi, 80–90% of incoming events can be

of debug severity. To further reduce volume, you could use this final Drop Function to

drop all these events. Its Filter is simply severityName=='debug' .

Drop function to remove debug events

Dropping Noisy Data

Page 893 of 900

Enabling this Function could up our volume savings to about 40%. Depending on your

needs, you might prefer to:

Use a Function like this in your Route's processing Pipeline, rather than in this

upfront Pipeline.

Also drop info events.

Instead use a Sampling Function to sample debug events (at a ratio like 1�10), or

a Dynamic Sampling function.

Instead use a Suppress Function to clamp down the frequency of debug events.

Once we've built and saved the input conditioning Pipeline, our next step is to add a

Syslog Source.

Syslog Source configured for UDP and input conditioning Pipeline

Specify the UDP Port where you want this Source to listen for syslog data.

Then attach the input conditioning Pipeline that you created above, and save the

Source.

Create Syslog Source

ℹ Cribl generally recommends selecting UDP, rather than TCP, for high-

volume syslog senders. This facilitates efficient load balancing by not

continuously tying such senders to any one LogStream worker process.

See Sizing and Scaling for more details.

Fields/Metadata

Page 894 of 900

In the input conditioning Pipeline, we tagged all incoming syslog events with new

sourcetype and source fields to indicate their origin. Alternatively, you could use

the Source's Fields/Metadata section to define similar key-value pairs, specific to

each of your Syslog Sources.

Create Routes, as needed, for each of your Syslog Sources. Give each Route a

corresponding Filter expression, and set its Output to the Destination where you want

to send its processed syslog data.

Example syslog Route

For any or all syslog Routes, you can define and attach a processing Pipeline. These

can apply more-granular Filters and Functions to further reduce volume, using

techniques like Sampling, Dynamic Sampling, or (as shown below) Drop and

Suppression. Your most-verbose Syslog Sources are ideal targets for such further

processing.

Create Route(s)

Processing Pipelines, and Next Steps

Page 895 of 900

Example syslog processing Pipeline

Updated about a month ago

Page 896 of 900

Known Issues

Known Issues

Problem: The Trim Timestamp Function is not working as expected, and its Index-

time field label should simply read Field name.

Fix: In LogStream 2.3.0.

Workaround: Use alternative Functions (such as Parser or Eval) to remove timestamp

patterns from events.

Problem: In a Distributed deployment, attempting to switch Distributed Settings from

Worker to Master Mode blocks with a spurious "Git not available...Please install and try

again" error message.

Fix: In progress.

Workaround: To initialize git , switch first from Worker to Single mode, and then from

Single to Master mode.

Problem: Entering valid credentials on the login page (e.g.,

http://localhost:9000/login) yields only a spinner.
Fix: In progress.

Workaround: Trim /login from the URL.

Problem: In a Distributed deployment, deleting resources in default/ causes them

to reappear on restart.

Workaround/Fix: In progress.

Problem: Using in-product upgrade feature in v1.7 (or earlier) fails to upgrade to v2.0,

due to package-name convention change.

Workaround/Fix: Download the new version and upgrade per steps laid out here.

Trim Timestamp Function is brittle (2020-09-15)

Can't switch from Worker to Master Mode (2020-06-11)

Login page blocks (2020-05-19)

Deleting resources in default/ (2020-02-22)

In-product upgrade issue on v2.0 (2019-10-22)

Page 897 of 900

Problem: Using in-product upgrade feature in v1.6 (or earlier) fails to upgrade to v1.7

due to package name convention change.

Workaround/Fix: Download the new package and upgrade per steps laid out here.

Problem: When upgrading from v1.2 with a S3 output configured stagePath was

allowed to be undefined. In v1.4+ it is a required field and may causing schema

violations on older configs when upgrading.

Workaround/Fix: Re-configure the output with a valid stagePath filesystem path.

In-product upgrade issue on v1.7 (2019-08-27)

S3 stagePath issue on upgrade (2019-03-21)

Updated about 18 hours ago

Page 898 of 900

Third-Party Software

Credits

Various components in Cribl LogStream are built and enhanced with software under

free or open source licenses. We thank those projects' contributors!

@azure-storage-blob-10.3.0

ag-grid-community-19.1.2

ag-grid-react-19.1.2

ajv-6.9.2

ajv-errors-1.0.1

antd-3.13.0

as-table-1.0.36

avsc-5.4.9

aws-sdk-2.323.0

cidr-matcher-1.0.5

classnames-2.2.6

color-hash-1.0.3

d3-time-format-2.1.3

date-fns-1.29.0

diff-3.5.0

diff2html-2.11.3

echarts-4.3.0

echarts-4.6.0

escodegen-1.11.1

esprima-4.0.1

express-4.16.3

fast-bitset-1.3.2

file-saver-1.3.8

http-proxy-agent-3.0.0

https-proxy-agent-4.0.0

jwt-simple-0.5.6

kafkajs-1.11.0

kafkajs-1.4.5

kafkajs-snappy-1.1.0

ldapts-1.10.0

limiter-1.1.4

lodash-4.17.15

lz4js-0.2.0

Page 899 of 900

maxmind-3.1.2

node-cache-4.2.0

node-uuid-1.4.8

numeral-2.0.6

pako-1.0.10

papaparse-5.0.0-beta.0

pbf-3.2.1

proxy-from-env-1.0.0

query-string-6.1.0

react-16.7.0

react-dom-16.7.0

react-grid-layout-0.16.6

react-router-dom-4.3.1

react-sortable-hoc-0.8.3

react-split-pane-0.1.82

regexpp-2.0.0

requirejs-2.3.6

resize-observer-polyfill-1.5.0

rxjs-6.2.2

saxen-8.1.0

simple-git-1.126.0

snappyjs-0.6.0

snmp-native-1.2.0

streamcount-1.0.1

tar-stream-1.6.1

url-0.11.0

winston-3.0.0

xmlbuilder-10.0.0

yaml-1.3.2

Updated 2 months ago

Page 900 of 900

