
Cribl LogStream Documentation Manual

Version: v1.7

Generated: 2019-08-28 17:42:07

INTRODUCTION 5

About Cribl 5

Basic Concepts 7

DEPLOYING CRIBL 9

Before Deploying 9

Standalone Deployment 11

Splunk App Deployment 16

Configuration Files 21

cribl.yml 23

inputs.yml 24

outputs.yml 25

licenses.yml 27

regexes.yml 28

breakers.yml 30

Licensing 31

User Authentication 33

Persistent Queues 35

Upgrading 37

Diagnosing 38

Uninstalling 39

WORKING WITH CRIBL 40

Routes 40

Pipelines 43

Functions 46

Auto Timestamp 48

Aggregations 49

CEF Serializer 54

Clone 56

Comment 57

Eval 58

Drop 60

Dynamic Sampling 61

JSON Unroll 63

Lookup 65

Mask 67

Numerify 68

Parser 69

Publish Metrics 74

Regex Extract 76

Regex Filter 78

Sampling 79

Serialize 80

Suppress 81

Tee 83

XML Unroll 84

Prometheus Publisher (beta) 87

Reverse DNS (beta) 88

Sources 89

Splunk 91

Syslog 93

TCP JSON 95

HTTP(S) 98

Kafka 101

Kinesis Streams 104

Azure Event Hubs 106

Metrics 108

Cribl Internal 110

Destinations 111

Splunk 114

Splunk Load Balanced 116

Splunk HEC 120

S3 Compatible Stores 122

Kinesis Streams 124

CloudWatch Logs 126

Filesystem/NFS 127

Elasticsearch 129

Honeycomb 131

TCP JSON 133

Syslog 135

Kafka 137

Azure Blob Storage 140

Azure Event Hubs 142

Azure Monitor Logs 144

StatsD 146

StatsD Extended 147

Graphite 148

Output Router 149

Data Preview 150

Securing Data 154

Encryption 155

Decryption 159

Scripts 161

EXPRESSION REFERENCE 162

Introduction 162

Cribl Expressions 165

KNOWLEDGE 171

Regex Library 171

Event Breakers 173

Lookups Library 177

Parsers Library 179

USE CASES 180

Ingest-time Fields 180

Ingest-time Lookups 183

Sampling 187

Access Logs: Apache, ELB, CDN, S3 etc. 189

Firewall Logs: VPC Flow Logs, Cisco ASA etc. 192

Masking and Obfuscation 195

Regex Filtering 199

Encrypting Sensitive Data 201

KNOWN ISSUES 207

Known Issues 207

THIRD PARTY SOFTWARE 208

Current List 208

INTRODUCTION

About Cribl
Getting started with Cribl

Cribl LogStream helps you process machine data - logs, instrumentation data, application data, metrics, etc. - in

real-time and deliver them to your analysis platform of choice. It allows you to:

Add context to your data by enriching with information from external data sources

Help secure your data by redacting, obfuscating or encrypting sensitive fields

Optimize your data per your performance and cost requirements .

What is Cribl?

Page 5 of 209

Cribl ships in a single, no-dependencies package and provides a refreshing and modern interface for working

and transforming your data. It scales with and works inline with your existing infrastructure and it is transparent to

your applications.

Cribl is built for administrators, managers and users of operational and security intelligence products and

services.

Who is Cribl for?

Page 6 of 209

Basic Concepts
Notable features and concepts to help get a fundamental understanding of Cribl

As we describe features and concepts it helps to have a mental model of Cribl as a system that receives events

from various sources, processes them, and then sends them to one ore more destinations.

At its core a function is a piece of code that executes on an event and it encapsulates the smallest amount of

processing that can happen to that event. For instance, a simple function can be one that replaces the term foo

with bar on each event. Another one can hash or encrypt bar and yet another can add a field, say, dc=jfk-42

to any event with source=*us-nyc-application.log . Functions process each event that passes thru them. To

help improve performance, functions can be optionally configured with filters to limit processing scope on

matching events only. More details on functions.

A series of functions is called a pipeline and the order in which they are executed matters. Events are delivered

at the beginning of a pipeline (by a Route, see below) and as they're processed by a function they are passed to

the next one down the line. Events only move forward, towards the end of the pipeline and eventually out of the

system. More details on pipelines.

Functions

Pipelines

Routes

Page 7 of 209

Routes evaluate incoming events against filter expressions to find the appropriate pipeline to send them to.

Routes are evaluated in order. A Route can be associated only with one pipeline and one output. By default, a

Route-Pipeline-Output tuple will consume matching events. If the Final flag is disabled, one or more clones are

sent down the pipeline while the original event continues down the rest of the routes. This is very useful in cases

where the same set of events needs to be processed differently and delivered to different destinations. More

details on routes.

Page 8 of 209

DEPLOYING CRIBL

Before Deploying

There are two deployment options for Cribl; standalone or as a Splunk app. Your exact choice will depend on

your requirements. Both packages are available for download here.

OS:

Linux: RedHat, CentOS, Ubuntu, AWS Linux, Suse (64bit)

macOS 10.13 and 10.14

System:

+4CPUs

+4GB RAM

5GB free disk space (more if persistent queuing is enabled)

Deployment Options

Requirements and Supported Platforms

As of v1.7 Node is no longer a runtime dependency.

*Cribl needs these ports to be available by default:

Cribl UI. Default: 9000 (both options)

Cribl HTTP In. Default: 10080 (Standalone)

Splunk to Cribl data port. Default: localhost:10000 (Cribl App for Splunk)

| criblstream Splunk search command to Cribl. Default: localhost:10420 (Cribl App for Splunk)

Network Ports

Overriding Default Ports

Page 9 of 209

$SPLUNK_HOME/etc/apps/cribl/local/outputs.conf

[tcpout:cribl]
server=127.0.0.1:<myPort>

The above ports can be overridden in the following configuration files:

Cribl UI port (9000): Default definitions for host , port and other settings are set in

$CRIBL_HOME/default/cribl/cribl.yml and can be overridden by defining alternatives in

$CRIBL_HOME/local/cribl/cribl.yml .

Data Ports: HTTP In (10080), TCPJSON in (10420) Splunk to Cribl (10000) : Default definitions for

host , port and other settings are set in $CRIBL_HOME/default/cribl/inputs.yml and can be

overridden by defining alternatives in $CRIBL_HOME/local/cribl/inputs.yml .

Note: For Splunk to Cribl the corresponding server attribute in [tcpout:cribl] defined by default

in default/outputs.conf , on Splunk side, can be overridden by re-defining it in

local/outputs.conf (Splunk conf file precedence applies - local overrides default).

Like most data processing applications, Cribl's expected resource utilization will be commensurate with the type

of processing that is occurring. For instance, a function that adds a static ingest-time field on an event will likely

perform faster than one that is applying a regex to finding and replace a string. At the time of this writing:

Cribl processing will use about 2 CPUs (i.e. 4 vCPUs)

Cribl processing happens in-memory

Cribl processing does not require significant disk allocation.

At the time of this writing:

With the Cribl App for Splunk package, data flow from Splunk to Cribl is confined to localhost:10000 and/or

localhost:10420

The control plane (UI/API) runs on port 9000 and it's authenticated either locally or against Splunk's admin

role.

Performance Considerations

Security Considerations

Page 10 of 209

Standalone Deployment
Deployment guide to get you started with Cribl

There are at least two key factors that will determine the type of Cribl deployment in your environment:

Amount of Incoming Data: This is defined as the amount of data planned to be ingested per unit of time. E.g.

How many MB/s or GB/day?

Amount of Data Processing: This is defined as the amount of processing that will happen on incoming data.

E.g. Is most data passing through and just being routed? Or are there a lot of transformations, regex

extractions, field encryptions? Is there a need for heavy re-serialization?

When volume is low and/or amount of processing is light, you can get started with a single instance deployment.

See performance considerations. To accomodate increased load, you will need to scale with multiple instances.

For small volume/light processing environments or for test and evaluation use-cases a single instance of Cribl

may be sufficient to serve all inputs, processing of events and sending to outputs without needing any others. To

implement a single instance Cribl deployment see below.

Single Instance Deployment

Architecture

Page 11 of 209

OS: Linux (RedHat, CentOS, Ubuntu, AWS Linux), MacOS/Darwin

System: +4CPUs, +4GB RAM

Note: 1 CPU here means a physical CPU core. I.e. 2 CPUs = 4 virtual/hyperthreaded CPUs

Select an instance where to install and get the Cribl package here.

Ensure that ports 10080 and 9000 are available. See here.

Un-tar in a directory of choice, say, /apps/

e.g., tar xvzf cribl-<version>-<build>-<arch>.tgz

Go to $CRIBL_HOME directory - this is where the package was extracted e.g. /apps/cribl/ - and use

.bin/cribl.sh to:

Start: ./bin/cribl.sh start [--force]

Stop: ./bin/cribl.sh stop [--force]

Requirements

Installing Cribl on Linux/Mac

Running Cribl

Page 12 of 209

Reload: ./bin/cribl.sh reload [--force]

Restart: ./bin/cribl.sh restart [--force]

Get status: ./bin/cribl.sh status

Next, go to http://<hostname>:9000 and login with default credentials (admin:admin) to start configuring Cribl

with Sources, Destinations or start creating Routes and Pipelines.

Change the admin password immediatly after your first login!

To sustain higher incoming data volumes and/or increased processing you can scale from a single instance to a

multi-instance distributed deployment. All instances in the deployment pool are identical in what they do - they

serve all inputs, process events and send to outputs equally. I.e. there are no separate roles for each for these

"tasks".

Distributed Deployment

Architecture

Page 13 of 209

Health Check Endpoint Healthy Response

curl http://<host>:<port>/api/v1/health {"status":"healthy"}

Procedure is identical as in the single instance case (above).

Configurations for Routes, Pipelines, Functions and every other setting are persisted on disk in configuration

files. These text files are in the popular .yml format and are located under $CRIBL_HOME/(default|local)/cribl/ .

Configurations in local take full precedence over those in default (i.e. there is no layering) and all changes

from the UI affect configurations in local only.

To ensure configuration files are syncronized across all Cribl instances, you can use your configuration

management system of choice. General implementation steps:

Change config files directly, or use the UI of one of the Cribl instances to affect changes. E.g. edit functions,

add pipelines etc.

Copy/Sync $CRIBL_HOME/local/cribl/ directory to your config managment system.

Use your config management system to push to all other instances.

Note: Another directory that needs to be syncronized is $CRIBL_HOME/data/ - this contains samples and

captures but more importantly lookup files.

For new configuration changes to take effect a reload or a restart may be necessary:

CLI reload: ./bin/cribl.sh reload [--force]

Reload after affecting configs files for: routes, pipelines and functions.

CLI restart : ./bin/cribl.sh restart [--force]

Restart after affecting configs files for: inputs, outputs and system.

As your needs increase you can expand and horizontally scale by adding more instances. If incoming data

flows in via Load Balancers make sure to register all new instances. Each Cribl instance also exposes a health

endpoint that your Load Balancer can check to make a data/connection routing decision.

Installing and Running Cribl

Config Management

Scaling and Load Balancing

Securing

Page 14 of 209

cribl.yml

api:
 host: 0.0.0.0
 port: 9000
 disabled : false
 ssl:
 disabled: false
 privKeyPath: /path/to/myKey.pem
 certPath: /path/to/myCert.pem
...

Cribl's API/UI access can be secured by configuring SSL. You can use your own private keys and certs or you

can generate a pair with OpenSSL:

openssl req -nodes -new -x509 -newkey rsa:2048 -keyout myKey.pem -out myCert.pem -days 420

This command will generate both a self-signed cert certified for 420 days and an unencrypted 2048 bit RSA

private key.

Key and Cert can be configured via Settings > System Settings > API Server Settings. Alternatively, you can

manually use privKeyPath and certPath attributes in the api section in local/cribl.yml . E.g.,

To get an operational posture of a single instance deployment the following can be used:

Stats Tab: exposes information about traffic in and out of the system. It tracks events, bytes, split by

data fields over time.

Cribl.log: contains comprehensive information about the status of the instance, its inputs, outputs,

pipelines, routes, functions and traffic metrics.

Monitoring a distributed deployment can be be done by forwarding Cribl's internal data to your preferred log and

metrics monitoring solution. From there, you can create dashboards, run alerts and make operational decision.

To send internal data out of Cribl, go to Sources and enable Cribl Internal. This will send cribl.log down the

routes and pipelines just like another data source.

Monitoring

Page 15 of 209

Splunk App Deployment

In a Splunk environment, Cribl can be installed and configured as a Splunk app and depending on your

requirements and architecture, it can run either on a Search Head, Heavy Forwarder (strongly advised) or an

Indexer.

When running on a SH, Cribl is set on mode-searchhead, the default mode for the app. It listens for localhost
traffic generated by a custom command - | criblstream . The command is used to forward search results to the

Cribl instance's TCPJSON input on port 10420 but it's also capable of sending to any other Cribl instance

listening for TCPJSON. Once in Cribl, data can be processed and forwarded to any of the supported

destinations. In addition, several out-of-the box saved searches are ready to run and send their results to Cribl

with single click.

Select an instance where to install

Ensure that ports 10000 , 10420 and 9000 are available. See Before Deploying section for more info.

Get the bits here and install as a regular Splunk app.

Restart the Splunk instance

Go to https://<instance>/en-US/app/cribl or https://<instance>:9000 and login with a Splunk admin

role credentials.

Working with search results in a Cribl pipeline

Sending search results to any Destination supported by Cribl.

When running on an HF, Cribl is set on mode-hwf, and receives events from the local Splunk process per

routing configurations in props.conf and transforms.conf . Data is first parsed and processed by Splunk

Deploying Cribl App for Splunk

Running on a Search Head (SH)

Installing the Cribl App for Splunk on a SH

Typical Use Cases for Search Head mode

Running on a Heavy Forwarder (HF)

Page 16 of 209

pipelines and then by Cribl. By default all data except internal indexes are routed out to Cribl right after the

Typing pipeline.

Cribl is capable of accepting data streams (un-broken events) or events from other sources. In this case, the HF

will deliver events locally to Cribl which processes them and sends them to one or more destinations

downstream. When receivers are Splunk indexers Cribl can also load balance across them.

Select an instance where to install

Installing the Cribl App for Splunk on a HF

Page 17 of 209

apps/cribl/default/outputs.conf

[tcpout]
disabled = false
defaultGroup = cribl

[tcpout:cribl]
server=127.0.0.1:10000
sendCookedData=true
useACK = false
negotiateNewProtocol = false
negotiateProtocolLevel = 0

apps/cribl/default/inputs.conf

[splunktcp]
route=has_key:_replicationBucketUUID:replicationQueue;has_key:_dstrx:typingQueue;has_key:__C

Ensure that ports 10000 , 10420 and 9000 are available. See here.

Get the bits here and install as a regular Splunk app.

Set Cribl in mode-hwf: $SPLUNK_HOME/etc/apps/cribl/bin/cribld mode-hwf

Note: SPLUNK_HOME environment variable must be defined

Restart the Splunk instance

Go to https://<instance>:9000 and login with a Splunk admin role credentials.

Note about Splunk warnings

If you come across messages similar to below, on startup, or in logs:

Invalid value in stanza [route2criblQueue]/[hecCriblQueue] in

/opt/splunk/etc/apps/cribl/default/transforms.conf, line 11: (key: DEST_KEY, value: criblQueue) /

line 24: (key: DEST_KEY, value: $1)

please ignore them. They are benign warns.

When Cribl App for Splunk is installed on a HF (in mode-hwf), these are the relevant sections in configuration

files that enable Splunk to send data to Cribl.

Relevant configurations in Cribl App for Splunk on a HF

Page 18 of 209

apps/cribl/default/transforms.conf

[route2cribl]
SOURCE_KEY = _MetaData:Index
REGEX = ^[^_]
DEST_KEY = _TCP_ROUTING
FORMAT = cribl

[route2criblQueue]
SOURCE_KEY = _MetaData:Index
REGEX = ^[^_]
DEST_KEY = queue
FORMAT = criblQueue

apps/cribl/default/props.conf

[default]
TRANSFORMS-cribl = route2criblQueue, route2cribl

The props.conf stanza above will apply the above transforms to everything. Depending on your requirements

you may want to target a subset of your sources, sourcetypes or hosts. For example, the diagram below shows

the effective configurations of outputs.conf , props.conf and transforms.conf to send <bluedata> events

thru Cribl.

Configuring Cribl with a subset of your data

Page 19 of 209

To send data from Cribl to a set of Splunk indexers, use the Cribl UI to go to Destinations | Splunk Load
Balanced and enter the required information.

Cribl can natively accept data streams (un-broken events) or events from sources. In this case, data comes

directly into Cribl which processes it then sends it downstream, including the local Splunk indexer instance. This

is exactly like a Standalone Deployment but using a Splunk Indexer instance as the host.

Configure Cribl to send data to Splunk Indexers

Running on a Indexer

Page 20 of 209

Configuration Files

$CRIBL_HOME Standalone Install:

/path/to/install/cribl/

Splunk App Install:

$SPLUNK_HOME/etc/apps/cribl/

Default Cribl Configuration default/cribl

Local Cribl Configuration local/cribl

Cribl Configuration (default|local)/cribl/cribl.yml

See cribl.yml

API Configuration (default|local)/cribl/api.yml

Source Configuration (default|local)/cribl/inputs.yml

See inputs.yml

Destination Configuration (default|local)/cribl/outputs.yml

See outputs.yml

License Configuration (default|local)/cribl/licenses.yml

Regxes Configuration (default|local)/cribl/regexes.yml

Breakers Configuration (default|local)/cribl/breakers.yml

Limits Configuration (default|local)/cribl/limits.yml

Pipelines Configuration (default|local)/cribl/pipelines/<pname>

Each pipeline's conf is contained therein

Routes Configuration (default|local)/cribl/pipelines/routes.yml

Even though all the Routes, Pipelines and Functions can be managed from the Cribl UI, it's important to

understand how the configuration works under the hood. At the time of this writing this is how Cribl's

configuration paths and files are laid on the filesystem.

Understanding Configuration Paths and Files

All paths below relative to $CRIBL_HOME

Page 21 of 209

Functions (default|local)/cribl/functions/<function_name>

Each function's code, conf is contained therein

Functions Conf (default|local)/cribl/functions/<function_name>/...

Each function's conf contained therein.

Any configuration changes resulting from UI interactions, for instance, changing the order of functions in a

pipeline, or changing the order of routes, do not require restarts.

All Cribl configuration file changes resulting from direct file manipulations in

(bin|local|default)/cribl/... will require restarts.

In the case of a Cribl App for Splunk, Splunk configurations file changes may or may not require restarts.

Please check with recent Splunk docs.

Similar to most *nix systems, Cribl configurations in local take precedence over those in default . There is no

layering of configuration files.

Configurations and Restart

Configuration Layering and Precedence

Editing Configuration Files Manually

When config files must be edited manually, all changes should be done in local .

Page 22 of 209

cribl.yml

$CRIBL_HOME/default/cribl/cribl.yml

api:
 # Address to bind to. Default: 0.0.0.0
 host: 0.0.0.0
 # Port to listen to. Default: 9000
 port: 9000
 # Flag to enable/disable UI. Default: false
 disabled : false
 # SSL Settings
 ssl:
 # SSL is enabled by default
 disabled: false
 # Path to private key
 privKeyPath: /path/to/privkey.pem
 # Path to certificate
 certPath: /path/to/cert.pem
auth:
 # Type of authentication.
 type: splunk
 host: localhost
 port: 8089
 ssl: true
kms.local:
 # Encryption key management system settings. Default type: local.
 type: local
crypto:
 # Crypto settings.
 keyPath: $CRIBL_HOME/local/cribl/auth/keys.json
system:
 # Upgradability options: api, auto, false
 upgrade: api
 # Restart options: api, false
 restart: api
 # installType options: standalone, splunk-app
 installType: standalone
 # Flag to enable/disable intercom. Default: true
 intercom: true

cribl.yml contains settings for configuring API and other system properties.

Page 23 of 209

inputs.yml

$CRIBL_HOME/default/cribl/inputs.yml

inputs:
 # Input name
 local-splunk:
 # Input type
 type: splunk
 # Address to listen to for incoming events
 host: localhost
 # Port to listen to for incoming events
 port: 10000
...

 secureTCPJSON:
 type: tcpjson
 disabled: false
 host: 0.0.0.0
 port: 10002
 tls:
 disabled: false
 privKeyPath: /opt/privkey.pem
 certPath: /opt/cert.pem
 requestCert: false
 rejectUnauthorized: false
 ipWhitelistRegex: /.*/
 authToken: ""

inputs.yml contains settings for configuring inputs into Cribl.

Page 24 of 209

outputs.yml

$CRIBL_HOME/default/cribl/outputs.yml

outputs:
 # Default output setting
 default:
 type: default
 defaultId: local-splunk
 # Output Name
 local-splunk:
 # Output type
 type: splunk
 # Output host address to send data from
 host: localhost
 # Output port to send data from
 port: 9999
 # Output name
 myFilesystemDestination:
 # Output type
 type: filesystem
 # Final destination path. Writable by Cribl.
 destPath: /path/to/destiation
 # Staging destination path. Writable by Cribl.
 stagePath: /tmp/foo
 # Partition schema for outputted files
 partitionExpr: >-
 `${host}/${sourcetype}`
 # Format of the output data
 format: json
 # The output filename prefix
 baseFileName: CriblOut
 # Compression options. None | Gzip
 compress: none
 # Maximum uncompressed output file size
 maxFileSizeMB: 32
 # Maximum amount of time to keep inactive files open.
 maxFileOpenTimeSec: 300
 # Maximum amount of time to keep inactive files open.
 maxFileIdleTimeSec: 30
 # Maximum number of files to keep open concurrently.
 maxOpenFiles: 100
 myS3Destination:
 # Output type
 type: s3
 # S3 bucket address

outputs.yml contains settings for configuring outputs from Cribl. Also see Destinations for more info.

Page 25 of 209

 bucket: s2.bucket.address.here
 # Prefix to append to files before uploading
 destPath: keyprefix
 # AWS API key, if not present will fallback on env.AWS_ACCESS_KEY_ID, or the meta-data e
 awsApiKey: key
 # AWS Secret Key. If left blank, Cribl will fallback on env.AWS_SECRET_ACCESS_KEY, or t
 awsSecretKey: secretkey
 # Staging destination path. Writable by Cribl.
 stagePath: /tmp/foo
 # Partition schema for outputted files
 partitionExpr: >-
 `${host}/${sourcetype}`
 # Format of the output data
 format: json
 # The output filename prefix
 baseFileName: CriblOut
 # Compression options. None | Gzip
 compress: none
 # Maximum uncompressed output file size
 maxFileSizeMB: 32
 # Maximum amount of time to keep inactive files open.
 maxFileOpenTimeSec: 300
 # Maximum amount of time to keep inactive files open.
 maxFileIdleTimeSec: 30
 # Maximum number of files to keep open concurrently.
 maxOpenFiles: 100

Page 26 of 209

licenses.yml

$CRIBL_HOME/default/cribl/licenses.yml

licenses:
 # List of license keys
 - eyJ0eXAiOiJKV1QiLCJhasdfasfasdfdasfasdfa-Abo2_ogVbR_5VKeAelZlTc5b-TKQax9R1ywnoOG8guis2RC

licenses.yml maintains a list of licenses for Cribl.

Page 27 of 209

regexes.yml

$CRIBL_HOME/default/cribl/regexes.yml

...
"uuid":
 lib: cribl
 description: UUID/GUID
 regex: /[0-9a-f]{8}-[0-9a-f]{4}-[1-5][0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}/gm
 sampleData: 9a50fa34-58b1-4a67-8b8d-ea9c0ae48c8f

 eb671525-2b9e-4140-ae21-a0a8a81b506e
 tags: uuid,guid
"aws_secret_key":
 description: AWS Secret Access Key
 regex: /(?<![A-Za-z0-9\/+=])[A-Za-z0-9\/+=]{40}(?![A-Za-z0-9\/+=])/gm
 lib: cribl
 sampleData: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
 tags: aws,access,key,secret
"aws_access_key":
 lib: cribl
 description: AWS Access Key ID
 regex: /(A3T[A-Z0-9]|AKIA|AGPA|AIDA|AROA|AIPA|ANPA|ANVA|ASIA)[A-Z0-9]{16}(?![A-Za-z0-9\/+=
 sampleData: >-2
 AKIAIOSFODNN7EXAMPLE
 tags: aws,access,key
"private_key":
 description: Private key block
 regex: /-----BEGIN (DSA|RSA|EC|PGP|OPENSSH) PRIVATE KEY(\sBLOCK)?-----[\s\S]*/gm
 lib: cribl
 tags: ssh,openssh,dsa,ec,rsa,private key
"slack_token":
 lib: cribl
 description: Slack Token
 regex: /xox[p|b|o|a][\s\S]*/g
 sampleData: xoxp-23984754863-2348975623103

 xoxa-23984754863-2348975623103

 xoxb-23984754863-2348975623103

 xoxo-23984754863-2348975623103
 tags: slack,token
...

regexes.yml maintains a list of regexes. Cribl's Regex Library ships under default

Page 28 of 209

Page 29 of 209

breakers.yml

$CRIBL_HOME/default/cribl/breakers.yml

...
AWS Ruleset:
 lib: cribl
 description: Event breaking rules for common AWS data sources
 tags: flowlogs,elb,alb,loadbalancer,cdn
 rules:
 - name: AWS VPC Flow
 condition: /^\d+\s+\d+\s+eni-\w+.*(OK|NODATA|SKIPDATA)?$/.test(_raw) || sourcetype=='a
 eventBreakerRegex: /[\n\r]+/
 timestampAnchorRegex: /(?=\d{10}\s\d{10})/
 timestamp:
 type: format
 length: 150
 format: "%s"
 timestampTimezone: utc
 maxEventBytes: 1024
 - name: AWS ALB
 condition: /^(?:https?|h2|wss?)\s\d+-\d+-\d+.*?arn:aws:elasticloadbalancing/.test(_raw
 eventBreakerRegex: /[\n\r]+/
 timestampAnchorRegex: /\w+\s/
 timestamp:
 type: format
 length: 150
 format: "%Y-%m-%dT%H:%M:%S.%f%Z"
 timestampTimezone: local
 maxEventBytes: 4096
 - name: AWS ELB
 condition: /^\d+-\d+-\d+.*?(?:\d+\.\d+\s){3}/.test(_raw) || sourcetype=='aws:elb:acces
 eventBreakerRegex: /[\n\r]+/
 timestampAnchorRegex: /^/
 timestamp:
 type: format
 length: 150
 format: "%Y-%m-%dT%H:%M:%S.%f%Z"
 timestampTimezone: local
 maxEventBytes: 4096
...

Cribl's default Event Breaker Library is located under $CRIBL_HOME/default/cribl/breakers.yml

Page 30 of 209

Licensing

Every Cribl version ships with a Free license that allows for processing of up to 100GB/day on a single node

deployment. Free licenses are restricted to one node per email address, and will require phoning home with

telemetry metadata (see below). Sales Trial and Enterprise licenses do not require phoning home, are not

restricted to a single node, and are entitled to a certain amount of daily ingestion volume.

Licenses can be managed in Settings | Licensing.

The latest license expires on: 2019-11-30T12:00:00+00:00

This is a Cribl standard license available for purchase. Contact Cribl Sales at sales@cribl.io for more information.

A license type used when preparing a POC or a pilot with requirements that go beyond those afforded by the

Free license. Contact Cribl Sales at sales@cribl.io for more information.

A license type that allows for processing of up to 100GB/day on a single node deployment. Free licenses ship

with the download, are restricted to one node per email address, and will require phoning home with telemetry

metadata.

Multiple license types can co-exist on an instance, however a single type of license can be effective at any one

time. When multiple types exist the following method of resolution is used:

If there are any unexpired Enterprise licenses - use only Enterprise licenses to compute the effective license

Else if there are any Sales Trial licenses - use only Sales Trial licenses to compute the effective license

Else if there exists a Free licenses - use only free licenses to compute the effective license

License Types

Enterprise License

Sales Trial License

Free License

Combining License Types

Page 31 of 209

Upon an Enterprise license expiration, system will fallback to Sales Trial and Free types to compute a future

expiration date. An expired Sales Trial license cannot use Free to fallback to.

License Expiration Behavior

Upon license expiration, Crill will backpressure and block all incoming data.

If you are on the Free license, your instance will periodically share usage and deployment performance

metadata with Cribl. The data will be sent to phonehome.cribl.io and Cribl will use it only to make decisions

about product development and improved customer experience.

If you would like this feature disabled in order to deploy on your environment, please reach out to Cribl Sales at

sales@cribl.io, and we will work with you to issue another license that does that.

Data Shared Per Interval (roughly very minute):

Version

Instance's GUID

Earliest, Latest Time

Number of Events In, Out

Number of Bytes In, Out

Number of Open, Closed, Active Connections

Number of Routes

Number of Pipelines

Telemetry Data

Page 32 of 209

User Authentication

$CRIBL_HOME/default/cribl/cribl.yml

...

auth:
 type: splunk
 host: localhost
 port: 8089
 ssl: true
 fallback: false

...

Cribl supports both local and Splunk authentication.

Local user management in Cribl is done through Settings > Local Users. All changes made to users are

persisted in a file located in $CRIBL_HOME/local/cribl/auth/users.json .

Adding users through direct modification of the file is also supported, though it's not recommended.

Line format:

{"username":"user","first":"Elvis","last":"Bath","disabled":"false",

"passwd":"GIBBERISH/aPNs8RtU5o9Lu2WEOjl7XUA="}

The file is monitored for modifications every 60s and will be reloaded if changes are detected.

To manually add/change a password just add a password key as such: "password":"plainText", in the

corresponding line. The plaintext passwords will be hashed during the next file’s reload and the password key

will be deleted.

This is helpful in deployments using the Splunk App package. Authentication is only available to users with

Splunk admin role and the relevant settings are located under the auth section of the cribl.yml file:

Local Authentication

Splunk Authentication

To override these settings to fit your environment use a local cribl.yml file:

$CRIBL_HOME/local/cribl/cribl.yml . See Configuration Files for setting precedence information.

Page 33 of 209

When auth type is splunk , Cribl can be used as a fallback auth provider. This is set to false by default.

When Cribl first starts, it creates a $CRIBL_HOME/local/cribl/auth/cribl.secret file. It contains a key that is used to

generate auth tokens for users, encrypt their passwords, and encrypt encryption keys.

Fallback

cribl.secret file

Backup and secure access to this file by applying strict permissions. E.g. 600.

Page 34 of 209

Persistent Queues

Persistent queuing is a feature that helps minimize data loss if a downstream receiver (output) is unreachable.

Durability if provided by writing data on disk for the duration of the outage.

Each output has an in memory queue that helps it absorb temporary imbalances in inbound and outbound data

rates. E.g., if there is an inbound burst of data the output will store events in the queue and output them at the

rate that the receiver can sink, as opposed to blocking or dropping them. Only when this queue is full the output

will backpressure upstream. Backpressure behavior can be configured to either block or drop. In block mode

the output will refuse to accept new data until the receiver is ready. The system will back propagate block

"signals" all the way to the sender (assuming they support backpressure, too). In drop behavior, the output will

drop new events until the receiver is ready.

While in some environments the in memory queues and their block/drop behavior are acceptable, in others

where more durability is required (i.e. outages last longer than memory queues can sustain), or when upstream

senders do not support back pressure (e.g. ephemeral/network senders), persistent queues can be engaged to

help minimize data loss. In this case, once the in-memory queue is full, the output will write its data to disk, then,

when the receiver is ready, it will start draining the queues (in first in, first out fashion).

Persistent Queues Are:

Available at the output side (i.e. after processing).

Configured as part of the Backpressure Behavior.

Only engaged when all of the receivers of that output exert backpressure.

Drained when when at least one receiver can accept data.

Not infinite in size. I.e. if data cannot be delivered out you will eventually run out of disk.

Not able to fully protect in cases of application failure. E.g. in-memory data may get lost if a crash occurs.

Not able to protect in cases of hardware failure. E.g. disk failure, corruption or machine/host loss.

Persistent Queuing is available only for certain streaming destinations. Non-streaming destinations, such as

Filesystem or S3 have their own inherent resilience and do not support Persistent Queueing.

How does Persistent Queueing Work

Using Persistent Queueing

Page 35 of 209

Destinations that support persistent queuing

Splunk

Syslog

TCP JSON

Persistent Queueing is configured individually for each output that supports it. To enable it, go to output's

configuration page and select Persistent Queueing under Backpressure Behavior.

Max File Size: The maximum size to store in each queue file before closing and optionally compressing (KB,

MB, etc). Defaults to 1 MB .

Maximum Queue Size: The maximum size amount of disk space the queue is allowed to consume. Once

reached, queueing is stopped and backpressure is applied (KB, MB, etc).

Queue File Path: The location for the persistent queue files. Will be of form your/path/here/<worker-

id>/<output-id> . Defaults to $CRIBL_HOME/state/queues .

Compression: Codec to use to compress the persisted data. Defaults to None.

Configuring Persistent Queueing

Minimum Free Disk Space

Sufficient disk space is required for queuing to operate properly. Minimum disk space is configured in

Settings | System Settings | Limits | Min Free Disk Space.

Page 36 of 209

Upgrading

Except for upgrading to a major version, or from a Beta version and to its GA successor, upgrades for both

packages are done as below. (Direct upgrades from a Beta to a GA version are not supported. To get the GA

version running, a new install is required.)

Stop Cribl process

Untar/unzip the new version on top of the old one

Restart

Standalone Package Upgrade Steps

Splunk App Package Upgrade Steps

See special note below if upgrading to v1.7.

Stop Splunk

Untar/unzip the new app version on top of the old one

Restart

Contrary to prior versions, in v1.7 the Splunk App package defaults to Search Head Mode. If you have Cribl

deployed as a Heavy Forwarder app then follow these steps to upgrade.

Stop Splunk

Untar/unzip the new app version on top of the old one

Convert to HF mode by running: $SPLUNK_HOME/etc/apps/cribl/bin/cribld mode-hwf

Restart

Special Note: Upgrading Splunk App Package to v1.7

Page 37 of 209

Diagnosing

Cribl system configuration as well as recent log output is accessible from the UI through Settings (top right) |

Diag.

System Info:
Running system information including but not limited to:

Cribl Build Versions

System: Uptime | Memory | CPU | Network

Pipelines:
Full, running configuration of all Pipelines.

Route Configuration:
Full running configuration of all Routes.

Inputs:
Input configurations.

Outputs :
Outputs configurations.

cribl.log Logs:
Most recent log messages emitted by Cribl.

To create a diag bundle, click on Export Diag Bundle and all the relevant configuration and recent logs will be

archived and downloaded to your local machine. Share this bundle with Cribl team when trying to troubleshoot a

problem. Please make sure that all sensitive configuration data (such as API keys, secrets etc) are
scrubbed before sharing.

Diag Bundle

Page 38 of 209

Uninstalling

Stop Cribl (stopping main process)

Backup necessary configurations/data

Remove the directory where Cribl is installed

Stop Splunk

Backup necessary configurations/data

Remove the Cribl App in $SPLUNK_HOME/etc/apps

Remove the Cribl module in $SPLUNK_HOME/etc/modules/cribl (some versions)

Uninstalling the Standalone version

Uninstalling the Splunk App version

Page 39 of 209

WORKING WITH CRIBL

Routes

Before incoming events are transformed by a processing pipeline, Cribl uses a set of filters to first select a

subset to deliver to the correct pipeline. This process is done via routes.

Routes apply filter expressions on incoming events to send matching results to the appropriate pipeline . Filters

are JS-syntax compatible expressions, e.g., source=='foo.log' && fieldA=='bar' , true , etc. that are

configured with each route. There can be multiple routes in the system but a route can only be associated with

one pipeline.

What are Routes

How do Routes Work

Routes are evaluated in order, top down.

In this example, incoming events will be evaluated against the route named Route first, then Sensitive Data,

then Logs to Metrics and so on. At the end, the Main route serves as a catch-all for any event that does not

Page 40 of 209

match any of the other routes. If a route needs to be applied before another, simply drag it on top of it. In

addition, you can turn routes On/Off inline as necessary.

Routes can be configured with an output destination which denotes where to send events after they're processed

by the pipeline. This destination overrides the one set at the pipeline level.

An event that enters the system and matches a route-pipeline pair in most cases it will either be dropped by a

function or optionally transformed and exit the system. This is ensured by the final toggle in route settings. It

defaults to Yes and means that matched events will be consumed by that route and not evaluated against any

other routes that sit below it.

Output Destination

The Final Toggle

If the toggle is set to No , clone(s) of the matching events are processed by the configured pipeline and the

original events are allowed to continue their trip downstream to be evaluated and/or processed by other route-

pipeline pairs.

Page 41 of 209

This is very useful in cases where the same set of events needs to be processed differently and delivered to

different destinations. Each clone can be decorated with KV pairs as necessary.

Depending on your cloning needs you may want to follow a most specific first or most general first
processing strategy. The general goal is to minimize the number of filters/routes an event gets evaluated against.

For example:

If cloning is not needed at all (i.e. all final toggles at default), then it makes sense to start with the broadest

expression at the top so as to consume as many events as early as possible.

If cloning is needed on a narrow set of events, then it may make sense to do that upfront and follow it with a

route that consumes those clones immediately after.

A Route group is a collection of consecutive routes that can be moved up and down the route stack together.

Groups help with managing long list of routes and they are a UI artifact only - i.e. while in a group routes maintain

their global position order.

Final Flag and Cloning Considerations

Route Groups

Page 42 of 209

Pipelines

After the data has been matched by a route it gets delivered to a pipeline. A pipeline is set of functions that work

on the data and that are composed in a very specific list. Similar to routes, the order in which the functions are

listed matters.

What are Pipelines

Functions in a pipeline are evaluated in order, top down.

Events are always delivered at the beginning of a pipeline via a route . They are processed by each function, in

order. A pipeline of chained functions will always move events in the direction that points outside of the system.

This is on purpose so as to keep the design simple and avoid potential loops.

How do Pipelines Work

Types of Pipelines

Page 43 of 209

These are pipelines that are attached to a Source (or Input) for the purposes of conditioning the events before
they're delivered to a Processing Pipeline. They are optional and typical use cases are event formatting or when

applying functions to all events of that input . E.g. extract the message field from all Elastic Sources before

pushing events to various processing pipelines.

These are the classic event processing pipelines.

These pipelines that are attached to a Destination (or Output) for the purposes of conditioning the events before
they're sent out. Typical use cases are applying functions that transform or shape events per receiver

requirements. E.g., ensure that a _time field exists for all events bound to a Splunk receiver.

Pipelines can be configured with an output destination but it is considered a best practice to define the

destination at the route level instead. This makes the pipeline independent and reusable. (Note that destinations

defined at route level overrides those at the pipeline level).

Functions in a pipeline are equipped with their own filters. Even though they're not required, it advised that

they're used as often as possible. Similar to routes, the general goal is to minimize extra work that a function will

do; the fewer events a function has to operate on the better the overall performance. For example, if a pipeline

Input Pipelines

Processing Pipelines

Output Pipelines

Destination Selection in Processing Pipelines

Other Considerations

Page 44 of 209

has two functions, f1--f2 and if f1 operates on source 'foo' and f2 that operates on source 'bar' it may

make sense to apply source=='foo' and source=='bar' filters on each one respectively.

Page 45 of 209

Functions

When events enter a pipeline they're processed by a series of functions therein. At its core, a function is code

that executes on an event and it encapsulates the smallest amount of processing that can happen to that event.

We using the term "processing" here to mean a variety of possible options; from string replacement, to

obfuscation, encryption, event to metrics conversions etc. For example, a pipeline can be composed of several

functions, one that replaces the term foo with bar , another one that hashes bar and a last one that adds a

field, say, dc=jfk-42 to any event that matches source=='*us-nyc-application.log' .

Functions are atomic pieces of JS code that are invoked on each event that passes thru them. To help improve

performance, functions can be configured with filters to further scope their invocation on matching events only.

You can add as many functions in a pipeline as necessary, though the more you have the longer it will take each

event to pass thru. In addition, you can turn functions On/Off inline as necessary.

What are Functions

How do they work

The Final Toggle

Page 46 of 209

Similar to the Final toggle in routes, the Final toggle here controls the flow of events at the function level.

Off (default): means that matching events processed by this function will be passed down to the next function

in the pipeline.

On : means that this function is the last one that the matching events will be applied to. All others coming down

the pipeline will be skipped.

Cribl ships with several functions out of the box and you can chain them together to meet your requirements.

Expand the list of Functions on the left and the Use Cases section for more details.

At the time of this custom functions are not yet supported.

Out of the Box Functions

Custom Functions

Page 47 of 209

Auto Timestamp

The Auto Timestamp function extracts time to a destination field given a source field in the event.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Source Field: Field to search for a timestamp. Defaults to _raw .

Destination Field: Field to place extracted timestamp in. Defaults to _time . Nested addressing supported.

Default Timezone: Timezone to parse timestamps lacking timezone info. Defaults to Local .

Time Expression: Expression to use to format extracted time. Current time, as a Javascript Date object, is in

global time . Defaults to time.getTime() / 1000 .

Max Timestamp Scan Depth: Maximum string length where to look for a timestamp.

Additional Timestamps: Add Regex/Strptime pairs to extract additional timestamp formats.

Regex: Regex with first capturing group matching the timestamp.

Strptime Format: Timestamp in strptime format.

Description

Usage

Advanced Settings

Page 48 of 209

Aggregations

The Aggreations function performs aggregate statistics on event data.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Time Window: The time span of the tumbling window for aggregating events. Must be a valid time string (e.g.,

10s). Must match pattern \d+[sm]$.

Aggregate(s): Aggregate function(s) to perform on events. E.g.,

sum(bytes).where(action=='REJECT').as(TotalBytes) . Expression format:

aggFunction(<FieldExpression>).where(<FilterExpression>).as(<outputField>) . See more examples below.

Note: when used without as() the aggregate's output will be placed in a field labelled

<aggFunction>_<fieldName> . If there are conflicts, the last one wins. For example, given two aggregates;

sum(bytes).where(action=='REJECT') and sum(bytes) , the latter one, i.e. sum_bytes is the winner.

Group by Fields: Fields to group aggregates by.

Evaluate Fields: Set of key-value pairs to evaluate and add/set. Fields are added in context of an aggregated

event, before they’re sent out. Does not apply to passthru events.

Cumulative Aggregations: Determines if the aggregations should be reset to 0 or retained for cumulative

aggregations when flushing out an aggregation table event. Defaults to No .

Lag Tolerance: The lag tolerance represents the tumbling window tolerance to late events. Must be a valid time

string (e.g., 10s). Must match pattern \d+[sm]$.

Idle Bucket Time Limit: The amount of time to wait before flushing a bucket that has not received events. Must

be a valid time string (e.g., 10s). Must match pattern \d+[sm]$.

Description

Usage

Time Window Settings

Output Settings

Page 49 of 209

Passthrough Mode : Determines whether or not to passthrough the original events along with the aggregation

events. Defaults to No .

Sufficient Statistics Mode: Determines whether or not to output only the sufficient statistics for the supplied

aggregations. Defaults to No .

Metrics Mode: Determines whether or not to output aggregates as metrics or events. Defaults to No .

Aggregation Event Limit: The maximum number events to include in any given aggregation event. Defaults to

unlimited.

Aggregation Memory Limit: The memory usage limit to impose upon aggregations. Defaults to unlimited (i.e.

amount of memory in system).

avg(expr:FieldExpression) : Returns the average of the values of the parameter.

count(expr:FieldExpression) : Returns the number of occurrences of the values of the parameter.

dc(expr: FieldExpression, errorRate: number = 0.01) : Returns the estimated number of distinct values of the

<expr> parameter within a relative error rate.

distinct_count(expr: FieldExpression, errorRate: number = 0.01) : Returns the estimated number of distinct

values of the <expr> parameter within a relative error rate.

earliest(expr:FieldExpression) : Returns the earliest (based on _time) observed value of the parameter.

first(expr:FieldExpression) : Returns the first observed value of the parameter.

last(expr:FieldExpression) : Returns the last observed value of the parameter.

latest(expr:FieldExpression) : Returns the latest (based on _time) observed value of the parameter.

max(expr:FieldExpression) : Returns the maximum value of the parameter.

min(expr:FieldExpression) : Returns the minimum value of the parameter.

per_second(expr:FieldExpression) : Returns the per second rate (based on _time) observed value of the

parameter.

perc(level: number, expr: FieldExpression) : Returns <level> percentile value of the numeric values of the

<expr> parameter.

rate(expr:FieldExpression, timeString: string = '1s') : Returns the rate (based on _time) observed value of

the parameter.

stddev(expr:FieldExpression) : Returns the sample standard deviation of the values of the parameter.

stddevp(expr:FieldExpression) : Returns the population standard deviation of the values of the parameter.

sum(expr:FieldExpression) : Returns the sum of the values of the parameter.

sumsq(expr:FieldExpression) : Returns the sum of squares of the values of the parameter.

variance(expr:FieldExpression) : Returns the sample variance of the values of the parameter.

variancep(expr:FieldExpression) : Returns the population variance of the values of the parameter.

Advanced Settings

List of Aggregate Functions

Page 50 of 209

Lag Tolerance
As events are aggregated into windows there is a good chance that most will arrive later than their event time.

For instance, given a 10s window 10:42:00 - 10:42:10 an event with timestamp 10:42:03 may come in 2

seconds later at 10:42:05 . In several cases there will also be late, or lagging, events that will arrive after the

latest time window boundary. For example, an event with timestamp 10:42:04 may arrive at 10:42:12 . Lag

Tolerance is the setting that governs how long to wait, after the latest window boundary and still accept late

events.

How do time window settings work?

The "bucket" of events is said to be in Stage 1 where it's still accepting new events but it's not yet finalized.

Notice how in the third case an event with event time 10:42:09 arrives 1 second past the window boundary at

10:42:11 but it's still accepted because it happens before the lag time expires.

After Lag time expires, bucket moves to Stage 2.

Page 51 of 209

If the bucket is created from a historic stream then bucket is initiated in Stage 2. Lag time is not considered. A

"historic" stream is one where the latest time of a bucket is before now() . E.g., if window size is 10s and

now()=10:42:42 an event with event_time=10 will be placed in a Stage 2 bucket with range 10:42:10 -

10:42:20 .

Idle Bucket Time Limit
While Lag Tolerance works with event time, Idle Bucket Time Limit works on arrival time (i.e. real timme). It is

defined as the amount of time to wait before flushing a bucket that has not received events.

After the Idle Time limit is reached, the bucket is "flushed" and send out of the system.

Assume we're working with VPC Flowlog events that have the following structure:

version account_id interface_id srcaddr dstaddr srcport dstport protocol packets bytes start end action

log_status

Examples

Page 52 of 209

For example:

2 99999XXXXX eni-02f03c2880e4aaa3 10.0.1.70 10.0.1.11 9999 63030 6 6556 262256 1554562460 1554562475

ACCEPT OK

2 496698360409 eni-08e66c4525538d10b 37.23.15.38 10.0.2.232 4373 8108 6 1 52 1554562456 1554562466

REJECT OK

Scenario A: Every 10s, compute sum of bytes and output it in a field called TotalBytes .

Time Window: 10s

Aggregations: sum(bytes).as(TotalBytes)

Scenario B: Every 10s, compute sum of bytes , output it in a field called TotalBytes , group by srcaddr .

Time Window: 10s

Aggregations: sum(bytes).as(TotalBytes)

Group by Fields: srcaddr

Scenario C: Every 10s, compute sum of bytes but only where action is REJECT , output it in a field called

TotalBytes , group by srcaddr .

Time Window: 10s

Aggregations: sum(bytes).where(action=='REJECT').as(TotalBytes)

Group by Fields: srcaddr

Scenario D: Every 10s, compute sum of bytes but only where action is REJECT , output it in a field called

TotalBytes . Also, compute distinct count of srcaddr

Time Window: 10s

Aggregations:

sum(bytes).where(action=='REJECT').as(TotalBytes)

distinct_count(srcaddr).where(action=='REJECT')

Page 53 of 209

CEF Serializer

The CEF Serializer takes a list of fields and/or values and formats them in Common Event Format (CEF)

standard.

Format:
CEF:Version|Device Vendor|Device Product|Device Version|Device Event Class ID|Name|Severity|

[Extension]

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Output Field: The field to which the CEF formatted event will be output. Nested addressing supported. Defaults

to _raw .

CEF Header field definitions. Field values below will be written pipe (|) delimited in the Output Field. Names

cannot be changed. Values can be computed with JS expression or can be constants.

cef_version: Defaults to CEF:0 .

device_vendor: Defaults to Cribl .

device_product: Defaults to Cribl .

device_version: Defaults to C.version .

device_event_class_id: Defaults to 420 .

name: Defaults to Cribl Event .

severity: Defaults to 6 .

Description

Usage

Header Fields:

Extension Fields:

Page 54 of 209

CEF Extension field definitions. Fields names and values will be written in key=value format. Names are

selected from dropdown and values can be computed with JS expression or can be constants.

Page 55 of 209

Clone

The Clone function clones events with optional added fields.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Clones: Create clones with the following fields set

Fields: Set of key-value pairs to add. Nested addressing supported.

Description

Usage

Examples (coming soon)

Page 56 of 209

Comment

The Comment function adds a text comment in the pipeline

Comment: Text input field to add comment.

Description

Usage

Page 57 of 209

Eval

The Eval function adds or removes fields from events. (In Splunk these are index-time fields).

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Evaluate Fields: Set of key-value pairs to add. Left-hand side input is the key name, right-hand side is a JS

expression to compute the value (can be constant). Nested addressing supported.

Keep Fields: List of fields to keep. Wildcards (*) and nested addressing supported. Takes precedence over

Remove Fields (below).

Remove Fields: List of fields to remove. Wildcards (*) and nested addressing supported. supported. Cribl

internal fields that start with __ (double underscore) cannot be remove via wildcard. Instead they need to be

specified individually. For example, __myField cannot be removed by specifying __myF* . A field matching an

entry in Keep (wildcard or not) and Remove will not be removed. This is useful for implementing “remove all but”

functionality. For example, to only keep _time, _raw, source, sourcetype, host we can specify them all in

Keep while specifying * in Remove.

Note: Negated terms are supported in both Keep Fields and Remove Fields. List is order sensitive when

negated terms are used. E.g., !foobar, foo* means "All fields that start with 'foo' except foobar". !foo*, *

means "All fields except for those that start with 'foo'".

Scenario A: Create field myField with static value of value1 :

Name: myField

Value Expression: value1

Scenario B: Set field action to blocked if login==error

Description

Usage

Examples

Page 58 of 209

Name: action

Value Expression: login=='fail' ? 'blocked' : action

Scenario C: Create a multivalued field called myTags . (i.e. array)

Name: myTags

Value Expression: ['failed', 'blocked']

Scenario D: Add value error to a multivalued field myTags

Name: myTags

Value Expression: login=='error' ? [...myTags, 'error'] : myTags

See Ingest-time Fields for more examples.

The Eval function has the ability to execute expressions without assigning their value to the field of an event.

This can be done by simply leaving the left-hand side input empty and having the right hand side do the

assignment.

Simple Example: Object.assign(foo, JSON.parse(bar), JSON.parse(baz)) on the right-hand side (and left-

hand side empty) will json parse the strings in bar and baz , merge them and assign their value to foo , an

already existing field.

Another Example: To parse JSON enter Object.assign(__e, JSON.parse(_raw)) on the right-hand side (and

left-hand side empty). __e is a special variable that refers to the (context) event within a JS Expression. In

this case, content parsed from _raw is added at the top level of the event.

The Eval function can also be used to set and unset control fields (e.g., _TCP_ROUTING in Splunk) via this syntax:

_ctrl.<name> . They can only be referenced on the left hand side of Add i.e. they cannot be read or used on the

right hand side, and cannot be referenced in Remove. To unset/delete, set the value to undefined . These fields

are normally not needed for event computations and modifying them is suggested to be done only by experts.

Please reach out to Cribl team if you need help with this topic.

Advanced Usage Notes

Note 1:

Note 2:

Page 59 of 209

Drop

The Drop function will drop/delete any events that meet the Filter expression.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Description

Usage

Examples (coming soon)

Page 60 of 209

Dynamic Sampling

The Dynamic Sampling function filters out events based on an expression, a sample mode and volume.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Sample Mode: Defines how sample rate will be derived. Supported methods:

Square Root: sqrt(previousPeriodCount)

Logarithmic: log(previousPeriodCount). Defaults to Logarithmic.

Sample Group Key: Expression used to derive sample group key. For example: ${domain}:${httpCode} . Each

sample group will have its own derived sampling rate based on volume. Defaults to `${host}` . (All events

without a host field passing through the function will be associated with the same group and sampled the same.)

Sample Period Sec: How often (in seconds) sample rates will be adjusted. Defaults to 30 .

Minimum Events: Minimum number of events that must be received in previous sample period for sampling

mode to be applied to current period. If the num events received for a sample group is less than min a sample

rate of 1:1 is used. Defaults to 30 .

Max Sampling Rate. Maximum Sampling rate. If computed sampling rate is above this value it will be

clamped down to it.

Compared to static sampling where users must select a sample rate apriori, Dynamic Sampling allows for

automatically adjusting sampling rates based on incoming data volume per sample group. The function allows

users to only set the aggressiveness/coarseness of this adjustment. Square Root is more aggressive than

Logarithmic setting.

Description

Usage

Advanced Settings:

How does dynamic sampling work

Page 61 of 209

As an event passes through the function, it's evaluated against the Sample Group Key expression to determine

the sample group it will be associated with. For example, given an event with these fields ...ip=1.2.3.42,

port=1234... and a Sample Group Key of `${ip}:${port}` it will be associated with 1.2.3.42:1234 sample

group.

Note: If Sample Group Key is left at default `${host}` all events without a host will be associated with the

same group and sampled the same.

When a sample group is new, it will initially have a sample rate of 1:1 for Sample Period seconds (this defaults to

30 seconds). Once Sample Period seconds have elapsed, a sample rate will be derived based on the configured

Sample Mode using sample group's event volume during the previous sample period.

For example, assume a Logarithmic Sample Mode:

Period 0 (first 30s): Number of events in sample group: 1000 , Sample Rate: 1:1 , Events allowed: ALL

Sample Rate calculation for next period: Math.ceil(Math.log(1000)) = 7

Period 1 (next 30s) -- Number of events in sample group: 4000 , Sample Rate: 7:1 : Events allowed: 572

Sample Rate calculation for next period: Math.ceil(Math.log(4000)) = 9

Period 2 (next 30s) -- Number of events in sample group: 12000 , Sample Rate: 9:1 : Events allowed: 1334

Sample Rate calculation for next period: Math.ceil(Math.log(12000)) = 10

Period 3 (next 30s) -- Number of events in sample group: 2000 , Sample Rate: 10:1 : Events allowed: 200

Sample Rate calculation for next period: Math.ceil(Math.log(2000)) = 8

...

Sample Modes:

1. Logarithmic - The sample rate is derived for each sample group using

Math.ceil(Math.log(lastPeriodVolume)) (natural log). This mode is less aggressive and drops fewer

events.

2. Square Root - The sample rate is derived for each sample group using

Math.ceil(Math.sqrt(lastPeriodVolume)) . This mode is more aggressive and drops more events.

Page 62 of 209

JSON Unroll

sample.json

{ "date":"9/25/18 9:10:13.000 PM",
 "name":"Amrit",
 "age":42,
 "allCars": [
 { "name":"Ford", "models":["Fiesta", "Focus", "Mustang"] },
 { "name":"GM", "models":["Trans AM", "Oldsmobile", "Cadillac"] },
 { "name":"Fiat", "models":["500", "Panda"] },
 { "name":"Blackberry", "models":["KEY2", "Bold Touch 9900"] }
]
 }

The JSON Unroll function accepts a proper JSON event with an array of elements and converts them into

individual events.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Path: Path to array to unroll, e.g. foo.0.bar

New Name: The name of each element in the new event. Leave empty to expand the array element.

Assume you have an incoming event as below:

Description

Usage

Final: If true, stops data from being fed to the downstream functions. Defaults to No.

Examples

Settings:

Path: allCars

New Name: cars

Page 63 of 209

Resulting Events

Event 1
{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"car":{"name":"Blackberry","models"

Event 2
{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"car":{"name":"Fiat","models":["500

Event 3
{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"car":{"name":"GM","models":["Trans

Event 4
{"date":"9/25/18 9:10:13.000 PM","name":"Amrit","age":42,"car":{"name":"Ford","models":["Fie

Output Events:

Page 64 of 209

Lookup

The Lookup function enriches events with external kv pairs. CSV lookup table files are supported as of this

version.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Lookup file path (.csv, .csv.gz): Path to the location of the lookup file. Environment variables can be referenced

via $, e.g. $HOME/file.csv.

Match Mode: Defines the format of the lookup file an indicates the matching logic that will be performed.

Defaults to Exact .

Match Type: For CIDR and Wildcard Match Mode, this attribute further refines how to resolve multiple matches.

First Match will return the first matching entry, Most Specific will scan all entries finding the most specific

match, and All will return all matches in output as arrays. Defaults to First Match .

Reload Period (sec): Periodically check the underlying file for modtime changes and reload if necessary. Use -1

to disable. Defaults to 60 .

Add to raw event: Whether to append the looked up values to _raw field as key=value pairs. Defaults to No .

Lookup Fields (.csv): Field(s) which should be used to key into the lookup table.

Lookup Field Name in Event: Exact field name as it appears in events. Nested addressing supported.

Corresponding Field Name in Lookup: The field name as it appears in the lookup file, defaults to event field

name. This input is optional.

Output field(s): Field(s) to add to events after matching the lookup table. Defaults to all if not specified.

Output Field Name from Lookup: Field name as it appears in the lookup file.

Lookup Field Name in Event: Field name to add to event, defaults to lookup field name. This input is

optional. Nested addressing supported.

Description

Usage

Page 65 of 209

See Ingest-time Lookups for examples.

Examples

Page 66 of 209

Mask

The Mask function masks, or replaces patterns in events.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Match Regex and Replace Expression pairs. Default to empty.

Match Regex: Pattern to replace. Use /g to replace all matches e.g. /(bar)/g

Replace Expression: A JS expression or literal to replace the matching content.

Apply To Fields: Fields where to apply the masking rules. Defaults to _raw . Wildcards (*) and nested

addressing supported.

Note: Negated terms are also supported. List is order sensitive when negated terms are used. E.g., !foobar,

foo* means "All fields that start with 'foo' except foobar". !foo*, * means "All fields except for those that

start with 'foo'".

See Masking and Obfuscation for examples.

Description

Usage

Masking Rules:

Examples

Page 67 of 209

Numerify

The Numerify function converts fields of an event that are numbers to type of number .

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Ignore Fields: Fields to NOT numerify. By default numerify will apply to all fields. Wildcards (*) and nested

addressing supported.

Note: Negated terms are also supported. List is order sensitive when negated terms are used. E.g., !foobar,

foo* means "All fields that start with 'foo' except foobar". !foo*, * means "All fields except for those that

start with 'foo'".

Description

Usage

Page 68 of 209

Parser

The Parser function can be used to extract fields out of events or reserialize (re-write) events with a subset of

fields. Reserialization will maintain the format of the event. For example, if an event contains comma delimited

fields and fieldA and fieldB are filtered out, their positions will be set to null and not deleted completely.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Parser Mode: Operating mode. Extract creates new fields. Reserialize will extract, filter fields and then

reserialize. Serialize will put fields in a certain format. Defaults to Extract .

Source Field: Field which contains text to be parsed. Not usually needed in Serialize Mode.

Destination Field: Field name where to add extracted and serialized fields to. Extract and Serialize Mode only.

Type: Parser/Formatter type to use. Options: CSV, JSON, K=V Pairs, Extended Log File Format (ELFF),

Common Log Format (CLF)

Library: Browse Parser/Formatter library.

List of Fields: Fields expected to be extracted, in order. If not specified parser will auto-generate.

Fields to Keep: List of fields to keep, supports wildcards (*). Takes precedence over Fields to Remove. Nested

addressing supported.

Fields to Remove: List of fields to remove, supports wildcards (*). Cannot remove fields matching Fields to
Keep. Nested addressing supported.

Note: Negated terms are supported in both Fields to Remove and Fields to Keep. List is order sensitive

when negated terms are used. E.g., !foobar, foo* means "All fields that start with 'foo' except foobar".

!foo*, * means "All fields except for those that start with 'foo'".

Fields Filter Expression: Expression evaluated against {index, name, value} context of each field. Return truthy

to keep, falsy to remove field. Index is zero based.

Destination Field: Field where to add extracted fields to (Extract mode only).

Description

Usage

How do Fields to Keep, Fields to Remove and Fields Filter Expression
interact

Page 69 of 209

Order or priority: Fields to Keep > Fields to Remove > Fields Filter Expression

If a field is in Fields to Keep and Fields to Remove, Fields to Keep takes precedence.

If a field is in Fields to Remove and in Fields Filter Expression, Fields to Remove takes precedence.

Assume we have an event with KV pairs as below:

<timestamp> a=000,b=001,c=002,d=003,e=004,f=005,g1=006,g2=007,g3=008, ...

To extract all fields we can select K=V Pairs from Parser Type.

Scenario A: Keep fields a , b , c . Drop the rest.

Expected result: a , b , c

Fields to Keep: a , b , c

Fields to Remove: *

Fields Filter Expression: <empty>

Scenario B: Keep fields a , b , those that start with g . Drop the rest.

Expected result: a , b , g1 , g2 , g3

Fields to Keep: a , b

Fields to Remove: <empty>

Fields Filter Expression: name.startsWith('g')

Scenario C: Keep fields a , b , those that start with g but only if value is 007 . Drop the rest.

Expected result: a , b , g2

Fields to Keep: a , b

Fields to Remove: <empty>

Fields Filter Expression: name.startsWith('g') && value=='007'

Scenario D: Keep fields a , b , c , those that start with g , unless it's g1 . Drop the rest.

Expected result: a , b , c , g2 , g3

Fields to Keep: a , b , c

Fields to Remove: g1

Fields Filter Expression: name.startsWith('g')

Example 1

Page 70 of 209

Scenario E: Keep fields a , b , c , those that start with g but only if index is greater than 6 . Drop the rest.

Expected result: a , b , c , g2 , g3

Fields to Keep: a , b , c

Fields to Remove: <empty>

Fields Filter Expression: name.startsWith('g') && index>6

Note: index refers to the location of a field in the array of all fields extracted by this parser. It is zero-based. In

the case above, g2 and g3 have an index of 7 and 8 respectively.

Assume we have a JSON event that needs to be reserialized given these requirements:

1. Remove the level field only if it's set to info

2. Remove the startTime field and all those that end in Cxn in the values.total. path

Parser Function Configuration:

Example 2

Page 71 of 209

JSON event after processed by the function:

Assume we have an event with KV pairs as below:

<timestamp> a=000,b=001,c=002,d=003,e=004,f=005,g1=006,g2=007,g3=008, ...

For all scenarios below, first create a Parser function to extract all fields by selecting K=V Pairs from Parser

Type. Then proceed with another Parser function right below it.

Scenario A: Serialize fields a , b , c , d in CSV format

Expected result: _raw field will have this value 000,001,002,003

Parser 2

Operation Mode: Serialize

Source Field: <empty>

Destination Field: <empty>

Type: CSV

List of Fields: a , b , c , d (needed for positional formats)

Example 3

Page 72 of 209

Scenario B: Serialize fields a , b , c in JSON format, under a field called bar

Expected result: bar field will be set to: {"a":"000","b":"001","c":"002","d":"003"}

Parser 2

Operation Mode: Serialize

Source Field: <empty>

Destination Field: bar

Type: JSON

List of Fields: <empty>

Fields to Keep: a , b , c , d

Page 73 of 209

Publish Metrics

The Publish Metrics function extracts, formats and outputs metrics from events.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Metrics: List of metrics from event to extract and format. Formatted metrics can be used by a destination to pass

metrics to a metrics aggreation platform.

Event Field Name: The name of the field in event containing the metric value.

Metric Name Expression: JavaScript expression to evaluate metric field name. Defaults to Event Field

Name.

Metric Type: Type of metric.

Dimensions: Optional list of dimensions to associate with every extracted metric value. Leave blank if this

function is used to process output from the Aggregation function as dimensions will be automatically discovered.

Defaults to !_* * .

Note: Dimensions supports wildcards and negated terms. List is order sensitive when negated terms are

used. E.g., !foobar, foo* means "Keep all dimensions that start with 'foo' except foobar". !foo*, * means

"Keep all dimenstions except for those that start with 'foo'".

Overwrite: If true overwrite previous metric specs, otherwise append. Defaults to No .

Assume we're working with VPC Flowlog events that have the following structure:

version account_id interface_id srcaddr dstaddr srcport dstport protocol packets bytes start end action

log_status

For example:

Description

Usage

Examples

Page 74 of 209

Event Field Name Metric Name Expression Metric Type

bytes `metric_name.bytes` Gauge

packets `metric_name.packets` Gauge

Dimensions

action interface_id dstaddr

OUTPUT

{
 "action": "REJECT",
 "interface_id": "eni-02f03c2880e4aaa3",
 "dstaddr": "10.0.1.11",
 "metric_name.bytes": 262256,
 "metric_name.packets": 6556,
}

2 99999XXXXX eni-02f03c2880e4aaa3 10.0.1.70 10.0.1.11 9999 63030 6 6556 262256 1554562460 1554562475

ACCEPT OK

... and we want to use values of bytes and packets as metrics across these dimensions: action ,

interface_id and dstaddr .

Metrics:

Dimensions:

Page 75 of 209

Regex Extract

The Regex Extract function extract fields with regex named groups. (In Splunk these will be index-time fields).

Fields that start with __ (double underscore) are special fields in Cribl. They are ephemeral and can be used by

any function downstream but will not be added to events and will not exit the pipeline.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Regex: Regex literal with named capturing groups, e.g. (?<foo>bar) or special _NAME_N and _VALUE_N

capturing groups which extract both name and value of a field e.g., (?<_NAME_0>[^\s=]+)=(?<_VALUE_0>

[^\s]+) . Defaults to empty. See Examples below.

Source Field: Field where to perform regex field extraction. Nested addressing supported. Defaults to _raw .

Max Exec: The maximum number of times to apply the Regex to source field, used by _NAME_N and

_VALUE_N capturing groups. Named capturing groups will always use a value of 1. Defaults to 100.

Field Name Format Expression: Expression to format field names when NAME capturing groups are used.

The original field name is in global name . E.g., to append XX to all field names: `${name}_XX` . If not

specified names will be sanitized using regex: /^[_0-9]+|[^a-zA-Z0-9_]+/g .

Assume a simple event that looks like this: metric1=23 metric2=42 dc=23 abc=xyz

1. Extract only the metric1 field:

Regex: metric1=(?<metric1>\d+)

Result: metric1:"23"

Description

Usage

Advanced Settings:

Examples

Page 76 of 209

2. Extract all k=v pairs:

Regex: (?<_NAME_0>[^\s]+)=(?<_VALUE_0>[^\s]+)

Result: metric1:"23" , metric2:"42" , dc"23" , abc:"xyz"

Page 77 of 209

Regex Filter

The Regex Filter function will filter out events based on regex match.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Regex: Regex to text against. Defaults to empty.

Field: Name of the field to apply the regex on (defaults to _raw). Nested addressing supported.

See Regex Filtering for examples.

Description

Usage

Examples

Page 78 of 209

Sampling

The Sampling function filters out events based on an expression and a sampling rate.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Sampling Rules: Events matching these rules will be sampled at the given rate

Filter: Filter expression matching events to be sampled. Use true to match all.

Sampling Rate: Integer, picks one out of N matching events.

See Sampling for examples.

Description

Usage

Examples

Page 79 of 209

Serialize

The Serialize function can be used to serialize the content of an event into a pre-defined format.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Type: Data output format. Defaults to CSV .

Library: Browse Parser/Formatter library.

Fields To Serialize: Required for CSV, ELFF and CLF. All other formats support wildcard field lists.

Source Field: Field containing object to serialize. Leave blank to serialize top level event fields.

Destination Field: Field to serialize data to. Defaults to _raw .

Assume a simple event that looks like this: {"time":"2019-08-

25T14:19:10.240Z","channel":"input","level":"info","message":"initializing input","type":"kafka"}

1. Serialize these fields: _time, channel, level, type in CSV format into a new destination field called test

Type: CSV

Fields to Serialize: _time channel level type

Destination Field: test

Result: _raw: 1566742750.24,input,info,kafka

Description

Usage

Examples

Page 80 of 209

Suppress

The Suppress function suppresses events over a period of time based on a key expression evaluation.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Key Expression: Suppression key expression used to uniquely identify events to suppress. For example,

`${ip}:${port}` will use fields ip and port from each event to generate the key.

Number to Allow: The number of events to allow per time period. Defaults to 1 .

Suppression Period (seconds): The number of seconds to suppress events after 'Number to Allow' events are

received. Defaults to 300 .

Drop Suppressed Events: Specifies if suppressed events should be dropped or just tagged with suppress=1 .

Defaults to yes .

Maximum Cache Size : The maximum number of keys that can be cached before idle entries are removed.

Leave at default unless you understand the implications of changing. Defaults to 50000

Suppression Period Timeout: The number of suppression periods 'Suppression Period' of inactivity before a

cache entry is considered idle. Leave at default unless you understand the implications of changing. Defaults to

2 .

Num Events to Trigger Cache Clean-Up: Check cache for idle sessions every N e**vents when cache size is >

'Maximum Cache Size'. Leave at default unless you understand the implications of changing. Defaults to 10000 .

In the examples below, Filter is the function-level Filter expression:

1. Suppress by the value of the host field:

Filter: true

Description

Usage

Advanced Settings

Examples

Page 81 of 209

Key Expression: host

Number to Allow: 1

Suppression Period (sec): 300

Result: One event per unique host value will be allowed in every 300s. Events without a host field will not be

suppressed.

2. Suppress by the value of the host and port tuple :

Filter: true

Key Expression: `${host}:${port}`

Number to Allow: 1

Suppression Period (sec): 300

Result: One event per unique host : port tuple value will be allowed in every 300s.

READ THIS!

Suppression will ALSO apply to events without a host or a port field. The reason is that `${field}`

results in the literal undefined if field is not present.

To guarantee that suppression only applies to events with host and port check for their presence using

Filter:

Filter: host!=undefined && port!=undefined

Key Expression: `${host}:${port}`

Number to Allow: 1

Suppression Period (sec): 300

3. Decorate events that qualify for suppression

Filter: true

Key Expression: `${host}:${port}`

Number to Allow: 1

Suppression Period (sec): 300

Drop Suppressed Events: No

Result: No events will be suppressed but all those that qualify will be added a field suppress=1 which can be

used downstream to further transform them.

Page 82 of 209

Tee

The Tee tees events out to a command of choice, via stdin, one JSON formatted event per line.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Command: Command to execute and feed events to.

Args: Command arguments.

Environment variables: Environment variables to set or overwrite.

Data is passed to the command through its stdin using this protocol:

First Line: Metadata serialized in JSON containing the following fields:

format: serialization format for event. Defaults to JSON.

conf: full function configuration

Remaining: Payload

Description

Usage

Communication Protocol:

Examples (coming soon)

Page 83 of 209

XML Unroll

sample.xml

<?xml version="1.0" encoding="UTF-8"?>
<Parent>
 <myID>123456</myID>
 <branchLocation>US</branchLocation>
 <Child>
 <state>NY</state>
 <city>New York</city>
 </Child>
 <Child>
 <state>NJ</state>
 <city>Edgewater</city>
 </Child>

The XML Unroll function accepts a proper XML event with a set of elements and converts them into individual

events.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Unroll Elements Regex: Path to array to unroll, e.g. ^root\.child\.ElementToUnroll$

Copy Elements Regex: Regex matching elements to copy into each unrolled event, e.g. ^root\.

(childA|childB|childC)$

Unroll Index Field: Add a field with this name, containing the index at which the item was located, starting from

0. In Splunk this will be an index-time field. Nested addressing supported. Defaults to: unroll_idx

Pretty Print: Whether to pretty print the output XML.

Assume you have an incoming event as below and we want to break all the Child elements and inherit myID ,

and branchLocation .

Description

Usage

Examples

Page 84 of 209

 <Child>
 <state>CA</state>
 <city>Oakland</city>
 </Child>
 <Child>
 <state>CA</state>
 <city>San Francisco</city>
 </Child>
</Parent>

Resulting Events

Event 1
<?xml version="1.0"?>
<Child>
 <myID>123456</myID>
 <branchLocation>US</branchLocation>
 <state>NY</state>
 <city>New York</city>
</Child>

Event 2
<?xml version="1.0"?>
<Child>
 <myID>123456</myID>
 <branchLocation>US</branchLocation>
 <state>NJ</state>
 <city>Edgewater</city>
</Child>

Event 3
<?xml version="1.0"?>
<Child>
 <myID>123456</myID>
 <branchLocation>US</branchLocation>
 <state>CA</state>
 <city>Oakland</city>
</Child>

Event 4
<?xml version="1.0"?>
<Child>
 <myID>123456</myID>

Settings:

Unroll Elements Regex: ^Parent\.Child$

Copy Elements Regex: ^Parent\.(myID|branchLocation)$

Output 4 Events:

Page 85 of 209

 <branchLocation>US</branchLocation>
 <state>CA</state>
 <city>San Francisco</city>
</Child>

Page 86 of 209

Prometheus Publisher (beta)

The Prometheus Publisher function allows for metrics to be published to a Prometheus compatible metrics

endpoint.

In current implementation endpoint is: <cribl-host>:<api-port>/metrics

The function should follow Publish Metrics or Aggregations functions.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Fields To Publish: Wildcard list of fields to pubish to the prometheus endpoint.

Batch Write Interval: How often, in milliseconds, the contents should be published. Defaults to 5000 .

Passthrough Mode: Determines whether or not the event should be consumed once published. Defaults to No .

Update Mode: Determines whether or not the publisher overwrites or update the published output. Defaults to

Yes .

Description

Usage

Advanced Settings

Page 87 of 209

Reverse DNS (beta)

The Reverse DNS function resolve hostnames using an IP address.

Filter: Filter expression (JS) that selects data to be fed through the function. Defaults to empty - all events will be

evaluated.

Description: Simple description about this function. Defaults to empty.

Final: If true, stops data from being fed to the downstream functions. Defaults to No .

Lookup Field Name: The name of the field containing the IP address to lookup. If the field value is not in ipv4 or

ipv6 format, the lookup is skipped.

Output Field Name: Name of field to add resolved the hostname as, leave blank to overwrite the lookup field.

Reload Period (minutes): How often (in minutes) to refresh DNS cache. Use 0 to disable. Defaults to 60 .

Description

Usage

Lookup Fields

Page 88 of 209

Sources

You can send data to Cribl from various sources, including Splunk, HTTP, Elastic Beats, Kinesis, Kafka and TCP

JSON.

The following source types are supported.

Splunk

TCP JSON

HTTP

Kafka

Kinesis Streams

Azure Event Hubs

Cribl Internal

Sources

Configuring and Managing Sources

Page 89 of 209

For each source type users can create multiple definitions depending on your requirements.

To configure sources, click on Sources, select the desired type from the left vertical menu then click Add New.

Page 90 of 209

Splunk

Cribl supports receiving of Splunk parsed data from heavy forwarders (or indexers/search heads configured to

forward).

While on Sources screen, select Splunk from the vertical menu, then click Add New:

Input Id: Enter a unique name to identify this Splunk source definition.

Disabled : Enable/disable toggle for this input. Defaults to No . I.e. Input is enabled.

Address: Enter hostname/IP to listen for Splunk parsed data. E.g. localhost or 0.0.0.0 .

Port: Enter port number.

IP Whitelist Regex: Regex matching IP addresses that are allowed to establish a connection. Defaults to .*

i.e. all IPs.

TLS Settings (server side)

Disabled defaults to Yes . When toggled to No :

Private Key Path: Path on server where to find the private key to use in PEM format. Path can

reference $ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

Certificate Path : Path on server where to find certificates to use in PEM format. Path can

reference $ENV_VARS.

CA Certificate Path : Path on server where to find CA certificates to use in PEM format. Path

can reference $ENV_VARS.

Authenticate Client (mutual auth): Require clients to present their certificates. Used to perform

mutual authentication using SSL certs. Defaults to No .

Validate Client Certs: Require server to reject any connection which is not authorized with the

list of supplied CAs. Defaults to No .

Configuring Cribl to receive Splunk parsed data.

Page 91 of 209

Event Breaker Settings

Event Breaker Rulesets: A list of event breaking rulesets that will be applied to the input data stream before

being sent through the routes. Defaults to System Default Rule .

Event Breaker Buffer Timeout: The amount of time in milliseconds the event breaker will wait for new data

to be sent to a specific channel before flushing the data stream out as-is to the routes. Defaults to 10000 .

Advanced Settings

Conditioning Pipeline: Pipeline to process data from this input before being sent through the routes.

Cribl uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an event but are

accessible and can be used to make processing decisions by functions.

Field(s) for this source:

__inputId

Internal Fields

Page 92 of 209

Syslog

Cribl supports receiving of data over syslog data.

While on Sources screen, select Syslog from the vertical menu, then click Add New:

Input Id: Enter a unique name to identify this Syslog source definition.

Disabled : Enable/disable toggle for this input. Defaults to No . I.e. Input is enabled.

Address: Enter hostname/IP to listen for Splunk parsed data. E.g. localhost or 0.0.0.0 .

UDP Port: Enter UDP port number to listen on. Not required if listening on TCP.

TCP Port: Enter TCP port number to listen on. Not required if listening on UDP.

Advanced Settings

Conditioning Pipeline: Pipeline to process data from this input before being sent through the routes.

Max Buffer Size (events) : Maximum number of events to buffer when downstream is blocking.

IP Whitelist Regex: Regex matching IP addresses that are allowed to send data. Defaults to .* i.e. all IPs.

Default Timezone: Timezone to assign to timestamps without timezone info. Defaults to local .

TLS Settings (TCP ONLY)

Disabled defaults to Yes . When toggled to No :

Private Key Path: Path on server where to find the private key to use in PEM format. Path can

reference $ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

Certificate Path : Path on server where to find certificates to use in PEM format. Path can

reference $ENV_VARS.

Configuring Cribl to receive data over syslog.

Page 93 of 209

CA Certificate Path : Path on server where to find CA certificates to use in PEM format. Path

can reference $ENV_VARS.

Authenticate Client (mutual auth): Require clients to present their certificates. Used to perform

mutual authentication using SSL certs. Defaults to No .

Validate Client Certs: Require server to reject any connection which is not authorized with the

list of supplied CAs. Defaults to No .

Cribl uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an event but are

accessible and can be used to make processing decisions by functions.

Field(s) for this source:

__srcIpPort

Internal Fields

Page 94 of 209

TCP JSON

Cribl supports receiving of data over TCP in JSON format.

While on Sources screen, select TCP JSON from the vertical menu, then click Add New:

Input Id: Enter a unique name to identify this TCP JSON source definition.

Disabled : Enable/disable toggle for this input. Defaults to No . I.e. Input is enabled.

Address: Enter hostname/IP to listen for TCP JSON data. E.g. localhost or 0.0.0.0 .

Port: Enter port number.

IP Whitelist Regex: Regex matching IP addresses that are allowed to establish a connection. Defaults to .*

i.e. all IPs.

Shared secret (authToken): Shared secret to be provided by any client (in authToken header field). If empty,

unauthenticated access will be permitted.

TLS Settings (server side)

Disabled defaults to Yes . When toggled to No :

Private Key Path: Path on server where to find the private key to use in PEM format. Path can

reference $ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

Certificate Path : Path on server where to find certificates to use in PEM format. Path can

reference $ENV_VARS.

CA Certificate Path : Path on server where to find CA certificates to use in PEM format. Path

can reference $ENV_VARS.

Authenticate Client (mutual auth): Require clients to present their certificates. Used to perform

mutual authentication using SSL certs. Defaults to No .

Validate Client Certs: Require server to reject any connection which is not authorized with the

list of supplied CAs. Defaults to No .

Configuring Cribl to receive TCP JSON data.

Page 95 of 209

Sample TCP JSON Events

{"authToken":"myToken42", "fields": {"region": "us-east-1", "AZ":"az1"}}

{"_raw":"this is a sample event ", "host":"myHost", "source":"mySource", "fieldA":"valueA",
{"host":"myOtherHost", "source":"myOtherSource", "_raw": "{\"message\":\"Something informati

Advanced Settings

Conditioning Pipeline: Pipeline to process data from this input before being sent through the routes.

Cribl uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an event but are

accessible and can be used to make processing decisions by functions.

Field(s) for this source:

__inputId

At the time of this writing, TCP JSON events are expected in new line delimited JSON format:

1. A header line. Can be empty. E.g. {} . If authToken is enabled (see above) it should be included here as a

field called authToken . Header line is optional when authToken is not set. In this case, the first line will be

treated as an event if does not look like a header record.

In addition, if events need to contain common fields they can be included here under fields . In the example

below region and AZ will be automatically added to all events.

2. A JSON event/record per line.

Internal Fields

Format

Note: if a TCP JSON source is routed to a Splunk destination, fields within the JSON payload are mapped to

Splunk fields. Fields that do not have corresponding (native) Splunk fields become index-time fields. For

example, let's assume we have a TCP JSON event as below:

{"_time":1541280341, "host":"myHost", "source":"mySource", "_raw":"this is a sample event ",

"fieldA":"valueA"}

Page 96 of 209

_time , host and source become their corresponding fields in Splunk. The value of _raw becomes the actual

body of the event and fieldA becomes an index-time field. (fieldA::valueA)

1. Configure Cribl to listen on port 10001 for TCP JSON. Set authToken to myToken42 .

2. Create a file called test.json with the payload above.

3. Send it over to your Cribl host: cat test.json | nc <myCriblHost> 10001

Example

Page 97 of 209

HTTP(S)

Cribl supports receiving of data over HTTP/S using the Elastic Bulk API or Cribl Bulk API.

While on Sources screen, select HTTP from the vertical menu, then click Add New:

Input Id: Enter a unique name to identify this HTTP(S) source definition.

Disabled : Enable/disable toggle for this input. Defaults to No . I.e. Input is enabled.

Address: Enter hostname/IP to listen for HTTP(S) data. E.g. localhost or 0.0.0.0 .

Port: Enter port number.

Shared secret (authToken): Shared secret to be provided by HTTP client in header (as Authorization:

<authToken>). If empty, unauthenticated access will be permitted.

Elastic API Endpoint (Bulk API): Absolute path where to listen for the Elastic API requests. At the moment

only _bulk is available. Others are faked as success. Use empty string to disable. Default to /elastic .

Cribl HTTP Event API: Absolute path where to listen for Cribl HTTP API requests. Use empty string to

disable. Defaults to /cribl .

Splunk HTTP Event Collector API: Absolute path where to listen for the Splunk HTTP Event Collector API

requests. Use empty string to disable. Defaults to /services/collector .

Note, this implementation is an event, and not raw endpoint. More here. To send data to it from a HEC client

use /services/collector/event .

TLS Settings (server side)

Disabled defaults to Yes . When toggled to No :

Private Key Path: Path on server where to find the private key to use in PEM format. Path can

reference $ENV_VARS.

Passphrase: Passphrase to use to decrypt private key.

Certificate Path : Path on server where to find certificates to use in PEM format. Path can

reference $ENV_VARS.

Configuring Cribl to receive data over HTTP(S)

Page 98 of 209

Sample Event Format

{"_time":1541280341, "_raw":"this is a sample event ", "host":"myHost", "source":"mySource",
{"_time":1541280341, "host":"myOtherHost", "source":"myOtherSource", "_raw": "{\"message\":\

CA Certificate Path : Path on server where to find CA certificates to use in PEM format. Path

can reference $ENV_VARS.

Authenticate Client (mutual auth): Require clients to present their certificates. Used to perform

mutual authentication using SSL certs. Defaults to No .

Validate Client Certs: Require server to reject any connection which is not authorized with the

list of supplied CAs. Defaults to No .

Advanced Settings

Conditioning Pipeline: Pipeline to process data from this input before being sent through the routes.

Cribl uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an event but are

accessible and be used to make processing decisions by functions.

Field(s) for this source:

__inputId

__id (Elastic In)

__type (Elastic In)

__index (Elastic In)

At the time of this writing, HTTP(S) events are expected to use the following format:

1. A JSON record per event.

Internal Fields

Format & Endpoint

Note 1: Events can be sent as separate POSTs but it is highly recommended that multiple of them are newline

delimited, grouped and POSTed together.

Note 2: if a HTTP(S) source is routed to a Splunk destination, fields within the JSON payload are mapped to

Splunk fields. Fields that do not have corresponding (native) Splunk fields become index-time fields. For

Page 99 of 209

Cribl Single Event Example: Cribl Multiple Events Example: Splunk HEC Event Endpoint

Cribl Endpoint:

curl -k http://<myCriblHost>:10080/cribl/_bulk -H 'Authorization: myToken42' -d '{"_raw":"th

example, let's assume we have a HTTP(S) event as below:

{"_time":1541280341, "host":"myHost", "source":"mySource", "_raw":"this is a sample event ",

"fieldA":"valueA"}

_time , host and source become their corresponding fields in Splunk. The value of _raw becomes the actual

body of the event and fieldA becomes an index-time field. (fieldA::valueA)

1. Configure Cribl to listen on port 10080 for HTTP (default). Set authToken to myToken42 .

2. Send a payload to your Cribl host.

Example

Page 100 of 209

Kafka

Cribl supports receiving of data records from a Kafka cluster.

While on Sources screen, select Kafka from the vertical menu, then click Add New:

Input Id: Enter a unique name to identify this source definition.

Disabled : Enable/disable toggle for this input. Defaults to No . I.e. Input is enabled.

Brokers: List of Kafka brokers to use to, eg. localhost:9092.

Topics: List of topics to subscribe to.

Group ID: The name of the consumer group this Cribl instance belongs to.

From Beginning: Whether to start reading from earliest available data, relevant only during initial

subscription. Defaults to Yes .

TLS Settings (client side)

Disabled defaults to Yes . When toggled to No :

Validate Server Certs: Require client to reject connections to servers whose certs are not signed

by one of the supplied CAs. Defaults to No .

Server Name (SNI): Server Name Indication.

CA Certificate Path : Path on client where to find CA certificates to use to verify the server's cert

in PEM format. Path can reference $ENV_VARS.

Private Key Path (mutual auth): Path on client where to find the private key to use in PEM

format. Path can reference $ENV_VARS. Use only if mutual auth is required.

Certificate Path (mutual auth) : Path on client where to find certificates to use in PEM format.

Path can reference $ENV_VARS. Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Configuring Cribl to receive data from Kafka topics.

Page 101 of 209

Schema Registry (For AVRO encoded data with schema stored in Confluent Schema Registry)

Kafka Schema Registry Authentication

Disabled defaults to Yes . When toggled to No :

Schema Registry URL: URL for access to the Confluent Schema Registry. e.g.,

http://<hostname>:8081

TLS Settings (client side)

Disabled defaults to Yes . When toggled to No :

Validate Server Certs: Require client to reject connections to servers whose certs are not signed

by one of the supplied CAs. Defaults to No .

Server Name (SNI): Server Name Indication.

CA Certificate Path : Path on client where to find CA certificates to use to verify the server's cert

in PEM format. Path can reference $ENV_VARS.

Private Key Path (mutual auth): Path on client where to find the private key to use in PEM

format. Path can reference $ENV_VARS. Use only if mutual auth is required.

Certificate Path (mutual auth) : Path on client where to find certificates to use in PEM format.

Path can reference $ENV_VARS. Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Authentication Settings

Disabled defaults to Yes . When toggled to No :

SASL Mechanism: SASL authentication mechanism to use. Select one.

Username: Username.

Password: Password.

Advanced Settings

Conditioning Pipeline: Pipeline to process data from this input before being sent through the routes.

Internal Fields

Page 102 of 209

Cribl uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an event but are

accessible and can be used to make processing decisions by functions.

Field(s) for this source:

__inputId

__topicIn (indicates Kafka topic that event came from. See __topicOut in Kafka Destination)

__schemaId (when using Schema Registry)

Page 103 of 209

Kinesis Streams

Cribl supports receiving of data records from Amazon Kinesis Streams.

While on Sources screen, select Kinesis from the vertical menu, then click Add New:

Input Id: Enter a unique name to identify this Kinesis Stream source definition.

Disabled : Enable/disable toggle for this input. Defaults to No . I.e. Input is enabled.

Stream Name: Kinesis stream name (not ARN) to read data from.

Shard Selection Expression: A JS expression to be called with each shardId for the stream. The shard will

be processed if the expression evaluates to a truthy value. Defaults to true .

Shard Iterator Start: Location where to start reading a shard for the first time. Defaults to Earliest Record .

Record Data Format: Format of data inside the Kinesis Stream records. Gzip compression is automatically

detected. Options include Cribl , CloudWatch Logs, Event Per Line, and New Line JSON). Defaults to Cribl .

API Key: API key, if not present will fallback on env.AWS_ACCESS_KEY_ID, or the meta-data endpoint for

IAM credentials.

Secret Key: Secret key, if not present will fallback on env.AWS_SECRET_ACCESS_KEY, or the meta-data

endpoint for IAM credentials.

Region: Region where the Kinesis Stream is located.

Advanced Settings

Conditioning Pipeline: Pipeline to process data from this input before being sent through the routes.

Endpoint: Kinesis Stream service endpoint. If empty the endpoint will be automatically constructed from the

region.

Signature Version: Signature version to use for signing Kinesis Stream requests. Defaults to v4

Configuring Cribl to receive data from Kinesis Streams

Internal Fields

Page 104 of 209

Cribl uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an event but are

accessible and can be used to make processing decisions by functions.

Field(s) for this source:

__inputId

Page 105 of 209

Azure Event Hubs

Cribl supports receiving of data records from Azure Event Hubs.

While on Sources screen, select Azure Event Hubs from the vertical menu, then click Add New:

Input Id: Enter a unique name to identify this source definition.

Disabled : Enable/disable toggle for this input. Defaults to No . I.e. Input is enabled.

Brokers: List of Event Hub Kafka brokers to connect to, e.g., yourdomain.servicebus.windows.net:9093 . The

hostname can be found in the host portion of the primary or secondary connection string in Shared Access

Policies.

Event Hub Name: The name of the Event Hub (a.k.a. Kafka Topic) to subscribe to.

Group ID: Specifies the name of the consumer group this Cribl instance belongs to, should always be

$Default for Event Hub.

From Beginning: Whether to start reading from earliest available data, relevant only during initial

subscription. Defaults to Yes .

Authentication Settings

Disabled defaults to Yes . When toggled to No :

SASL Mechanism: SASL authentication mechanism to use, PLAIN is the only mechanism

currently supported for Event Hub Kafka brokers.

Username: The username for authentication, for Event Hub this should always be

$ConnectionString .

Password: Connection String Primary or Secondary key from Event Hub workspace.

TLS Settings (client side)

Disabled Defaults to No .

Configuring Cribl to receive data from Azure Event Hubs.

Page 106 of 209

Validate Server Certs: For Event Hub, this should always be false. Defaults to No .

Advanced Settings

Conditioning Pipeline: Pipeline to process data from this input before being sent through the routes.

Page 107 of 209

Metrics

Cribl supports receiving of metrics in these wire formats/protocols: StatsD, StatsD Extended, Graphite. Automatic

protocol detection will happen on the first line received over a TCP connection or a UDP packet. Lines not

matching the detected protocol will be dropped.

While on Sources screen, select Metrics from the vertical menu, then click Add New:

Input Id: Enter a unique name to identify this Syslog source definition.

Disabled : Enable/disable toggle for this input. Defaults to No . I.e. Input is enabled.

Address: Enter hostname/IP to listen to. Defaults to 0.0.0.0 .

UDP Port: Enter UDP port number to listen on. Not required if listening on TCP.

TCP Port: Enter TCP port number to listen on. Not required if listening on UDP.

Advanced Settings

Conditioning Pipeline: Pipeline to process data from this input before being sent through the routes.

Max Buffer Size (events) : Maximum number of events to buffer when downstream is blocking. Defaults to

1000 .

IP Whitelist Regex: Regex matching IP addresses that are allowed to send data. Defaults to .* i.e. all IPs.

Cribl uses a set of internal fields to assist in handling of data. These "meta" fields are not part of an event but are

accessible and can be used to make processing decisions by functions.

Field(s) for this source:

__srcIpPort

__metricsInType

Configuring Cribl to receive metrics.

Internal Fields

Metric Event Schema

Page 108 of 209

Text

_metric - the metric name
_metric_type - the type of the metric (gauge, counter, timer)
_value - the value of the metric
_time - metric_time or Date.now()/1000
dim1 - value of dimension1
dim3 - value of dimension2
....

Metric data is read into the following event schema:

Sufficient information will be placed into a field called __criblMetric such that these events can be properly

serialized out to any metric outputs (independent of the input type).

Page 109 of 209

Cribl Internal

Cribl allows for capturing and sending its own internal logs through routes and pipelines.

While on Sources screen, select Cribl Internal from the vertical menu, then toggle Enable or Disable:

Advanced Settings

Conditioning Pipeline: Pipeline to process data from this input before being sent through the routes.

Fields below will be added to this source:

source , set to cribl

host , set to value of hostname of the Cribl instance

Note: use these fields to guide these events through Routes.

Configuring Cribl Internal logs to behave as a data source.

Cribl Internal Log Fields

Page 110 of 209

Destinations

You can send data processed through Cribl to other various destinations.

In Cribl, each pipeline can be independently configured with a destination definition. See the "Destinations" block

on right below for a list of destination types.

When non-streaming destination definitions are associated with a pipeline, Cribl will use a staging directory in the

local filesystem to format and write outputted events. After a set of conditions (below) is met, typically file size

and number of files, data is then compressed and then moved or copied to the final destination. An inventory of

open, or in-progress files is kept in the root of staging directory in order to avoid having to walk that directory at

startup. This can get expensive if staging is the final directory. At startup, Cribl will check for any left over files in

progress from prior sessions and ensure they're moved/copied to final destination. The process of moving to final

destination is delayed after startup (default 30 sec) and (b) processing of these files is paced at one per service

period (default 1 second).

There are a number of conditions that govern when files are closed and rolled out:

1. File reaches its configured max size

How does it work

Page 111 of 209

2. File reaches its configured max open time

3. File reaches its configured max idle time

If a new file needs to be open, Cribl will enforce the number of max open files, by closing them in the order in

which they were opened.

There is a always at least one destination configured in Cribl. This is referred to as the default destination. In this

version of Cribl, while each pipeline can be associated with any destination definition, in the event that that

destination is unreachable, Cribl will send data to default. In the event that default is unavailable, the data will

be dropped.

Destinations that accept events in real-time and support back-pressure are referred to as streaming destinations.

Supported destinations:

Splunk

Splunk Load Balanced

Splunk HEC

AWS Kinesis Streams

AWS CloudWatch Logs

Elasticsearch

Honeycomb

Kafka

Syslog

TCP JSON

Azure Blob Storage

Azure Event Hubs

Azure Monitor Logs

StatsD

StatsD Extended

Graphite

Destinations that accept events in groups or batches are referred to as non-streaming destinations. Supported

destinations:

Delivery Policies

Destination Types

Streaming

Non-Streaming

Page 112 of 209

S3 Compatible Stores

Filesystem/NFS

For each destination type users can create multiple definitions depending on their requirements.

To configure destinations, click on Destinations, select the desired type from the left vertical menu then click

Add New.

Configuring Destinations

Page 113 of 209

Splunk

Splunk Enterprise is a streaming destination type. In a typical deployment, Cribl will be installed/co-located in a

Splunk heavy forwarder or indexer.

While on Destinations screen, select Splunk from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this Splunk destination definition.

Host: Hostname of the Splunk receiver.

Port: Port number.

Backpressure Behavior: Whether to block, drop, or queue events when all receivers in this group are

exerting backpressure. Defaults to Block.

Nested Field Serialization: Specifies how to serialize nested fields into index-time fields. Defaults to None.

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

TLS Settings (client side)

Disabled defaults to Yes . When toggled to No :

Validate Server Certs: Require client to reject connections to servers whose certs are not signed

by one of the supplied CAs. Defaults to No .

Server Name (SNI): Server Name Indication.

CA Certificate Path : Path on client where to find CA certificates to use to verify the server's cert

in PEM format. Path can reference $ENV_VARS.

Private Key Path (mutual auth): Path on client where to find the private key to use in PEM

format. Path can reference $ENV_VARS. Use only if mutual auth is required.

Certificate Path (mutual auth) : Path on client where to find certificates to use in PEM format.

Path can reference $ENV_VARS. Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Configuring Cribl to output to Splunk destinations

Page 114 of 209

Note: If you have a single .pem file with cacert, key and cert sections therein, enter it in all these inputs above:

CA Certificate Path, Private Key Path (mutual auth), Certificate Path (mutual auth).

If events have a Cribl internal field called __criblMetrics they'll be forwarded to Splunk as metric events.

If events do not have a _raw field, they'll be serialized to JSON prior to sending to Splunk.

Notes about forwarding to Splunk

Page 115 of 209

Splunk Load Balanced

Interval Time Range Events to be dispensed

1 time=0s ---> time=300s 200

Interval Time Range Events to be dispensed

2 time=300s ---> time=600s 200

Splunk is a streaming destination type. When Cribl is installed/co-located in a Splunk heavy forwarder, with

Splunk Load Balanced output you can load balance data out to multiple Splunk receivers.

Cribl will attempt to load balance outbound data as fairly as possibly across all receivers. Data is sent to all

receivers simultaneously and the amount sent to each depends on these parameters:

1. Respective destination weight

2. Respective destination historical data

By default, historical data is tracked for 300s and it is used to influence the traffic sent to each destination so as

to ensure that differences decay over time and total ratios converge towards configured weights.

Example:

Suppose we have two receivers, A and B each with weight of 1 i.e. they are configured to receive equal amount

of data. Suppose further that the load balance stats period is set at default 300s and, to make things easy, for

each period there are 200 events of equal size (Bytes) that need to be balanced.

How does load balancing work

Both A and B start this interval with 0 historical stats each

Let's assume that due to various circumstances 200 events are "balanced" as follows:

A = 120 events and B = 80 events a difference of 40 events and a ratio of 1.5:1

At the beginning of interval 2, the load balancing algorithm will look back to the previous interval stats and carry

half of the receiving stats forward. I.e. A will start the interval with 60 and B with 40. To determine how many

events A and B receive during this interval, Cribl will use their weights and their stats as follows:

Page 116 of 209

Total number events: events to be dispensed + stats carried forward = 200 + 60 + 40 = 300

Number of events per each destination (weighed): 300/2 = 150 (they're equal due to equal weight)

Number of events to send to each destination A: 150 - 60 = 90 and B: 150 - 40 = 110

End of interval 2 totals: A=120+90=210 , B=80+110=190 , a difference of 20 events and a ratio of 1.1:1.

Over the subsequent intervals, the difference becomes exponentially less pronounced and insignificant and thus

the load gets balanced fairly.

While on Destinations screen, select Splunk Load Balanced from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this Splunk LB destination definition.

Destinations: Set of Splunk receivers where to load balance data to.

Host: Hostname of the Splunk receiver.

Port: Port number to send data to.

TLS: Whether to inherit TLS configs from group setting or disable TLS. Defaults Inherit.

TLS Servername: Servername to use if establishing a TLS connection. If not specified defaults

to connection host (iff not an IP), otherwise the global TLS settings.

Weight: The weight to use for load balancing purposes.

Backpressure Behavior: Whether to block, drop, or queue events when all receivers in this group are

exerting backpressure. Defaults to Block.

DNS Resolution Period (s): Re-resolve any hostnames every this many seconds and pick up destinations

from A records. Defaults to 60s.

Exclude Current Host IPs: Exclude all IPs of the current host from the list of any resolved hostnames.

Defaults to Yes.

Load Balance Stats Period (s): Lookback traffic history period. Defaults to 300s.

Note on DNS A Records: If multiple receivers are behind a hostname (i.e. multiple A records) all resolved IPs

will inherit the weight the host, unless each IP is specified separately. In Cribl load balancing, IP settings take

priority over those from hostnames.

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

TLS Settings (client side)

Configuring Cribl to output to load balance to multiple Splunk destinations

Page 117 of 209

Disabled defaults to Yes . When toggled to No :

Validate Server Certs: Require client to reject connections to servers whose certs are not signed

by one of the supplied CAs. Defaults to No .

Server Name (SNI): Server Name Indication.

CA Certificate Path: Path on client where to find CA certificates to use to verify the server's cert

in PEM format. Path can reference $ENV_VARS.

Private Key Path (mutual auth): Path on client where to find the private key to use in PEM

format. Path can reference $ENV_VARS. Use only if mutual auth is required.

Certificate Path (mutual auth): Path on client where to find certificates to use in PEM format.

Path can reference $ENV_VARS. Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Note: If you have a single .pem file with cacert, key and cert sections therein, enter it in all these inputs above:

CA Certificate Path, Private Key Path (mutual auth), Certificate Path (mutual auth).

To connect to Splunk Cloud you may need to extract the private and public key from the Splunk provided Splunk

Cloud Certificate (typically bundled in an app)

Step 1: Test connectivity to Splunk Cloud using the Root CA certificate

openssl s_client -CApath path_to_ca.pem -connect hostnameToSplunkCloud:9997

Step 2: Extract the Private key from Splunk Cloud Certificate. At the prompt you will need the sslPassword value

in outputs.conf bundled with the Splunk Cloud app.

openssl ec -in path_to_server_cert.pem -out private.pem

Step 3: Extract the Public Key for Server Certificate

openssl x509 -in path_to_server_cert.pem -out server.pem

Step 4: In Cribl, in the destination TLS section enter the following:

CA Certificate Path: Path to CA Certificate

Private Key Path (mutual auth): Path to private.pem (above)

Certificate Path (mutual auth): Path to server.pem (above)**

If events have a Cribl internal field called __criblMetrics they'll be forwarded to Splunk as metric events.

SSL Configuration for Splunk Cloud - Special Note

Notes about forwarding to Splunk

Page 118 of 209

If events do not have a _raw field, they'll be serialized to JSON prior to sending to Splunk.

Page 119 of 209

Splunk HEC

Splunk HEC is a streaming destination type. In a typical deployment, Cribl will be installed/co-located in a

Splunk heavy forwarder and if this output is enabled it can send data out to a Splunk HEC destination thru the

event endpoint.

While on Destinations screen, select Splunk HEC from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this Splunk HEC destination definition.

Splunk HEC Endpoint: URL to an Splunk HEC endpoint where to send events, e.g.

http://myhost.example.com:8088/services/collector/event

HEC Auth Token: Splunk HEC authentication token.

Next Processing Queue: Specify the next Splunk processing queue to send the events after HEC

processing. Defaults to indexQueue.

Default _TCP_ROUTING: Specify the value of _TCP_ROUTING field for events that do not have

_ctrl._TCP_ROUTING set. Defaults to nowhere . Note: this is useful only when this data is expected to be

further routed to another destination by the HEC receiver.

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

Request Concurrency: Maximum number of ongoing requests before blocking. Defaults to 5.

Max Body Size (KB): Maximum size, in KB, of the request body. Defaults to 4096.

Flush Period (s): Maximum time between requests. This could cause the payload size to be smaller than

max. Defaults to 1.

Extra HTTP Headers: Name/Value pairs to pass as additional HTTP headers.

Cribl will attempt to use keepalives to reuse a connection for multiple requests. After 2 minutes of the first

use, the connection will be thrown away and a new one will be reattempted. This is to prevent sticking to a

Configuring Cribl to output to Splunk HEC destinations

Notes on HTTP based outputs

Page 120 of 209

particular destination when there is a constant flow of events.

If keepalives are not supported by the server (or if the server closes a pooled connection while idle) a new

connection will be established for next request.

When resolving destination's hostname Cribl will pick the first IP in the list for use in the next connection.

Round-robin DNS would help with event balancing.

Page 121 of 209

S3 Compatible Stores

S3 is a non-streaming destination type. Cribl does not have to run on AWS in order to deliver data to S3. Stores

that are S3-compatible will work with this destination type.

While on Destinations screen, select S3 from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this S3 destination definition.

S3 Bucket: Enter an S3 Bucket where to upload the data.

Key Prefix: Prefix to append to files before uploading.

Staging Location: Local filesystem location where to buffer files before compressing and moving to final

destination. It is advisable that this location stable and high performance.

API Key: Enter your AWS API Key. If left blank, Cribl will fallback on env.AWS_ACCESS_KEY_ID, or the

meta-data endpoint for IAM credentials.

Secret Key: Enter your AWS Secret Key. If left blank, Cribl will fallback on

env.AWS_SECRET_ACCESS_KEY, or the meta-data endpoint for IAM credentials.

Region: Region where the S3 bucket is located.

Endpoint: S3 service endpoint. If empty the endpoint will be automatically constructed from the region.

Signature Version: Signature version to use for signing S3 requests.

Partitioning Expression: JS expression to define how files are partitioned and organized. If left blank, Cribl

will fallback on event.__partition . Defaults to `${host}/${sourcetype}` . Partitioning by time is also

possible. E.g., `${host}/${C.Time.strftime(_time, '%Y-%m-%d')}/${sourcetype}`

Data Format: Format of the output data. Defaults to json .

File Name Prefix: The output filename prefix. Defaults to CriblOut

Compress: Data compression format used before moving to final destination. Default none . It is

recommended that gzip is used.

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

Configuring Cribl to output to S3 destinations.

Page 122 of 209

Max File Size (MB): Maximum uncompressed output file size. Files of this size will be closed and moved to

final output location. Defaults to 32 .

Max File Open Time (Sec): Maximum amount of time to write to a file. Files open for longer than this will be

closed and moved to final output location. Defaults to 300 .

Note

Cribl will close files when either of Max File Size (MB) or Max File Open Time (Sec) conditions are met.

Max File Idle Time (Sec): Maximum amount of time to keep inactive files open. Files open for longer than this

will be closed and moved to final output location. Default: 30 .

Max Open Files: Maximum number of files to keep open concurrently. When over, the oldest open files will

be closed and moved to final output location. Default: 100 .

Cribl uses a set of internal fields to assist in forwarding data to a destination.

Field(s) for this destination:

__partition

Internal Fields

Page 123 of 209

Kinesis Streams

Cribl can PUT events into Amazon Kinesis Data Streams records of up to 1MB uncompressed. Cribl does not
have to run on AWS in order to deliver data to a Kinesis Data Stream.

While on Destinations screen, select Kinesis from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this S3 destination definition.

Stream Name: Kinesis Data Stream name where to send events.

API Key: Enter your AWS API Key. If left blank, Cribl will fallback on env.AWS_ACCESS_KEY_ID, or the

meta-data endpoint for IAM credentials.

Secret Key: Enter your AWS Secret Key. If left blank, Cribl will fallback on

env.AWS_SECRET_ACCESS_KEY, or the meta-data endpoint for IAM credentials.

Region: AWS Region where the Kinesis Data Stream is located.

Signature Version: Signature version to use for signing Kinesis stream requests.

Put Request Concurrency: Maximum number of ongoing put requests before blocking.

Maximum Record Size: Maximum size (KB) of each individual record before compression. For non

compressible data 1MB is the max recommended size.

Flush Period (sec): Maximum time between requests. This could cause the payload size to be smaller than

max.

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

At the time of this writing, the outputted events use the following record format:

Header line containing information about the payload (currently one type as follows)

New Line Delimited JSON (that is, each Kinesis record will contain multiple events in ndjson format)

Configuring Cribl to output to Amazon Kinesis Data Streams

Format

Page 124 of 209

Sample Kinesis Record

{"format":"ndjson","count":8,"size":3960}
{"_raw":"07-03-2018 18:33:51.136 -0700 ERROR TcpOutputFd - Read error. Connection reset by p
{"_raw":"07-03-2018 18:33:51.136 -0700 INFO TcpOutputProc - Connection to 127.0.0.1:10000 c
...

Record payloads (including header and body) will be gzip compressed and then Kinesis will base64 encode

them.

Page 125 of 209

CloudWatch Logs

Cribl supports sending of data over to Amazon CloudWatch Logs. This is a streaming destination type. Cribl does

not have to run on AWS in order to deliver data to a CloudWatch Logs.

While on Destinations screen, select Kinesis from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this S3 destination definition.

Log Group Name: CloudWatch log group to associate events with.

Log Stream Prefix: Prefix for CloudWatch log stream name. This prefix will be used to generate a unique log

stream name per Cribl instance. E.g., myStream_myHost_myOutputId .

API Key: Enter your AWS API Key. If left blank, Cribl will fallback on env.AWS_ACCESS_KEY_ID, or the

meta-data endpoint for IAM credentials.

Secret Key: Enter your AWS Secret Key. If left blank, Cribl will fallback on

env.AWS_SECRET_ACCESS_KEY, or the meta-data endpoint for IAM credentials.

Region: Region where the CloudWatchLogs is located.

Signature Version: Signature version to use for signing CloudWatchLogs requests. Defaults to v4 .

Max Queue Size: Maximum number of queued batches before blocking. Defaults to 5 .

Maximum Record Size: Maximum size (KB) of each individual record before compression. For non

compressible data 1MB is the max recommended size. Defaults to 1024 .

Flush Period (sec): Maximum time between requests. This could cause the payload size to be smaller than

max. Defaults to 1 .

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

Configuring Cribl to output to Amazon CloudWatch Logs

Page 126 of 209

Filesystem/NFS

Filesystem is a non-streaming destination type that Cribl can use to output files to a local or a network attached

filesystem (NFS).

While on Destinations screen, select Filesystem from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this Filesytem destination definition.

Output Location: Final destination for the output files.

Staging Location: Local filesystem location where to buffer files before compressing and moving to final

destination. It is advisable that this location stable and high performance.

Partitioning Expression: JS expression to define how files are partitioned and organized. If left blank, Cribl

will fallback on event.__partition . Defaults to `${host}/${sourcetype}` . Partitioning by time is also

possible. E.g., `${host}/${C.Time.strftime(_time, '%Y-%m-%d')}/${sourcetype}`

Data Format: Format of the output data. Defaults to json .

File Name Prefix: The output filename prefix. Defaults to CriblOut

Compress: Data compression format used before moving to final destination. Default none . It is

recommended that gzip is used.

Max File Size (MB): Maximum uncompressed output file size. Files of this size will be closed and moved to

final output location. Defaults to 32 .

Max File Open Time (Sec): Maximum amount of time to write to a file. Files open for longer than this will be

closed and moved to final output location. Defaults to 300 .

Configuring Cribl to output to Filesystem destinations.

Note

Cribl will close files when either of Max File Size (MB) or Max File Open Time (Sec) conditions are met.

Max File Idle Time (Sec): Maximum amount of time to keep inactive files open. Files open for longer than this

will be closed and moved to final output location. Defaults to 30 .

Page 127 of 209

Max Open Files: Maximum number of files to keep open concurrently. When over, the oldest open files will

be closed and moved to final output location. Defaults to 100 .

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

Cribl uses a set of internal fields to assist in forwarding data to a destination.

Field(s) for this destination:

__partition

Internal Fields

Page 128 of 209

Elasticsearch

Cribl can send events to an Elasticsearch cluster using the Bulk API.

While on Destinations screen, select Elasticsearch from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this Elasticsearch destination definition.

Bulk API URL: Specify a URL to an Elasticsearch cluster where to send events, e.g.

http://myElasticCluster.example.com:9200/_bulk

Index: Elasticsearch Index where to send events. Note that this value can be overwritten by event's __index

field

Type: Specify document type to use for events. Note that this value can be overwritten by an event's __type

field

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

Request Concurrency: Maximum number of ongoing requests before blocking. Defaults to 5.

Max Body Size (KB): Maximum size, in KB, of the request body. Defaults to 4096.

Flush Period (s): Maximum time between requests. This could cause the payload size to be smaller than

max. Defaults to 1.

Extra HTTP Headers: Name/Value pairs to pass as additional HTTP headers.

Cribl uses a set of internal fields to assist in forwarding data to a destination.

Field(s) for this destination:

__id

__type

__index

Configuring Cribl to output to Elasticsearch

Internal Fields

Page 129 of 209

Cribl will attempt to use keepalives to reuse a connection for multiple requests. After 2 minutes of the first

use, the connection will be thrown away and a new one will be reattempted. This is to prevent sticking to a

particular destination when there is a constant flow of events.

If keepalives are not supported by the server (or if the server closes a pooled connection while idle) a new

connection will be established for next request.

When resolving destination's hostname Cribl will pick the first IP in the list for use in the next connection.

Round-robin DNS would help with event balancing.

Notes on HTTP based outputs

Page 130 of 209

Honeycomb

Cribl supports sending of events to a Honeycomb dataset.

While on Destinations screen, select Honeycomb from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this Honeycomb destination definition.

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

Dataset Name: Name of the dataset where to send events. E.g. iLoveObservabilityDataset

Team: Team id where the dataset belongs. E.g. teamWilde

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

Request Concurrency: Maximum number of ongoing requests before blocking. Defaults to 5.

Max Body Size (KB): Maximum size, in KB, of the request body. Defaults to 4096.

Flush Period (s): Maximum time between requests. This could cause the payload size to be smaller than

max. Defaults to 1.

Extra HTTP Headers: Name/Value pairs to pass as additional HTTP headers.

Then, click Save.

Cribl will attempt to use keepalives to reuse a connection for multiple requests. After 2 minutes of the first

use, the connection will be thrown away and a new one will be reattempted. This is to prevent sticking to a

particular destination when there is a constant flow of events.

If keepalives are not supported by the server (or if the server closes a pooled connection while idle) a new

connection will be established for next request.

When resolving destination's hostname Cribl will pick the first IP in the list for use in the next connection.

Round-robin DNS would help with event balancing.

Configuring Cribl to output to Honeycomb

Notes on HTTP based outputs

Page 131 of 209

Page 132 of 209

TCP JSON

Cribl supports sending of data over TCP in JSON format. TCP JSON is a streaming destination type.

While on Destinations screen, select TCP JSON from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this destination definition.

Host: Hostname of the receiver.

Port: Port number.

Auth Token: Optional authentication token to include as part of the connection header. Defaults to empty.

Backpressure Behavior: Whether to block, drop, or queue events when all receivers in this group are

exerting backpressure. Defaults to Block .

Compression: Codec to use to compress the data before sending. Defaults to None .

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

TLS Settings (client side)

Disabled defaults to Yes . When toggled to No :

Validate Server Certs: Require client to reject connections to servers whose certs are not signed

by one of the supplied CAs. Defaults to No .

Server Name (SNI): Server Name Indication.

CA Certificate Path : Path on client where to find CA certificates to use to verify the server's cert

in PEM format. Path can reference $ENV_VARS.

Private Key Path (mutual auth): Path on client where to find the private key to use in PEM

format. Path can reference $ENV_VARS. Use only if mutual auth is required.

Certificate Path (mutual auth) : Path on client where to find certificates to use in PEM format.

Path can reference $ENV_VARS. Use only if mutual auth is required.

Configuring Cribl to output in TCP JSON format

Format

Page 133 of 209

At the time of this writing, TCP JSON events are sent in new line delimited JSON format:

1. A header line. Can be empty. E.g. {} . If Auth Token is enabled it will be included here as a field called

authToken . In addition, if events contain common fields they will be included here under fields .

2. A JSON event/record per line.

See an example here.

Page 134 of 209

Syslog

Cribl supports sending of data over syslog via TCP. Syslog is a streaming destination type.

While on Destinations screen, select Syslog from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this destination definition.

Host: Hostname of the receiver.

Port: Port number.

Facility: Message facility, can be overwritten by event.__facility . Defaults to user-level .

Severity: Message severity, can be overwritten by event.__severity . Defaults to notice .

App Name: Application name to add to syslog messages, can be overwritten by event.__appname . Defaults

to Cribl .

Message Format: The syslog message format supported by the receiver. Defaults to RFC3164 .

Backpressure Behavior: Whether to block, drop, or queue events when all receivers in this group are

exerting backpressure. Defaults to Block .

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

TLS Settings (client side)

Disabled defaults to Yes . When toggled to No :

Validate Server Certs: Require client to reject connections to servers whose certs are not signed

by one of the supplied CAs. Defaults to No .

Server Name (SNI): Server Name Indication.

CA Certificate Path : Path on client where to find CA certificates to use to verify the server's cert

in PEM format. Path can reference $ENV_VARS.

Private Key Path (mutual auth): Path on client where to find the private key to use in PEM

format. Path can reference $ENV_VARS. Use only if mutual auth is required.

Configuring Cribl to output in Syslog format

Page 135 of 209

Certificate Path (mutual auth) : Path on client where to find certificates to use in PEM format.

Path can reference $ENV_VARS. Use only if mutual auth is required.

Cribl uses a set of internal fields to assist in forwarding data to a destination.

Field(s) for this destination:

__priority

__facility

__severity

__procid

__appname

__msgid

__syslogout

Internal Fields

Page 136 of 209

Kafka

Cribl supports sending of data over to a Kafka topic. Kafka is a streaming destination type.

While on Destinations screen, select Kafka from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this destination definition.

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

Brokers: List of Kafka brokers to connect to, eg. localhost:9092.

Topic: The topic where to publish events. Can be overwritten using field __topic in event.

Acknowledgments: Control the number of required acknowledgments.

Record Data Format: Format to use to serialize events before writing to Kafka. Defaults to JSON

Compression: Codec to use to compress the data before sending to Kafka. Defaults to gzip .

TLS Settings (client side)

Disabled defaults to Yes . When toggled to No :

Validate Server Certs: Require client to reject connections to servers whose certs are not signed

by one of the supplied CAs. Defaults to No .

Server Name (SNI): Server Name Indication.

CA Certificate Path : Path on client where to find CA certificates to use to verify the server's cert

in PEM format. Path can reference $ENV_VARS.

Private Key Path (mutual auth): Path on client where to find the private key to use in PEM

format. Path can reference $ENV_VARS. Use only if mutual auth is required.

Certificate Path (mutual auth) : Path on client where to find certificates to use in PEM format.

Path can reference $ENV_VARS. Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Configuring Cribl to output to Kafka

Page 137 of 209

Schema Registry (For AVRO encoded data with schema stored in Confluent Schema Registry)

Kafka Schema Registry Authentication

Disabled defaults to Yes . When toggled to No :

Schema Registry URL: URL for access to the Confluent Schema Registry. e.g.,

http://<hostname>:8081

Default Key Schema ID: Used when __keySchemaIdOut is not present to transform key values.

Leave blank if key transformation is not required by default.

Default Value Schema ID: Used when __valueSchemaIdOut not present to transform _raw .

Leave blank if value transformation is not required by default.

TLS Settings (client side)

Disabled defaults to Yes . When toggled to No :

Validate Server Certs: Require client to reject connections to servers whose certs are not signed

by one of the supplied CAs. Defaults to No .

Server Name (SNI): Server Name Indication.

CA Certificate Path : Path on client where to find CA certificates to use to verify the server's cert

in PEM format. Path can reference $ENV_VARS.

Private Key Path (mutual auth): Path on client where to find the private key to use in PEM

format. Path can reference $ENV_VARS. Use only if mutual auth is required.

Certificate Path (mutual auth) : Path on client where to find certificates to use in PEM format.

Path can reference $ENV_VARS. Use only if mutual auth is required.

Passphrase: Passphrase to use to decrypt private key.

Authentication Settings
Authentication parameters to use when connecting to brokers. Using TLS is highly recommended.

Disabled defaults to Yes . When toggled to No :

SASL Mechanism: SASL authentication mechanism to use. Select one.

Username: Username.

Password: Password.

Advanced Settings

Page 138 of 209

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

Max record size (KB, uncompressed): Maximum size (KB) of each record batch before compression.

Setting should be < message.max.bytes settings in Kafka brokers. Defaults to 768

Max Events Per Batch: Maximum number of events in a batch before forcing a flush. Defaults to 1000 .

Flush Period (s): Maximum time between requests. This could cause the payload size to be smaller than

max. Defaults to 1 .

Cribl uses a set of internal fields to assist in forwarding data to a destination.

Field(s) for this destination:

__topicOut

__key

__headers

__keySchemaIdOut

__valueSchemaIdOut

Internal Fields

Page 139 of 209

Azure Blob Storage

Azure Blob Storage is a non-streaming destination type. Cribl does not have to run on Azure in order to deliver

data to it.

While on Destinations screen, select Azure > Azure Blob Storage from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this S3 destination definition.

Account Name: Enter your Azure Storage Account Name. If left blank, Cribl will fallback on

env.AZURE_STORAGE_ACCOUNT.

Account Key: Enter your Azure Storage Key. If left blank, Cribl will fallback on env.AZURE_STORAGE_KEY.

Container Name: A container organizes a set of blobs, similar to a directory in a file system.

Create Container: Toggle to create the configured container in Azure Blob Storage if it does not already

exist.

Blob Prefix: Prefix to append to files before uploading.

Staging Location: Local filesystem location where to buffer files before compressing and moving to final

destination. It is advisable that this location stable and high performance.

Partitioning Expression: JS expression to define how files are partitioned and organized. If left blank, Cribl

will fallback on event.__partition . Defaults to `${host}/${sourcetype}`

Data Format: Format of the output data. Defaults to json .

File Name Prefix: The output filename prefix. Defaults to CriblOut

Compress: Data compression format used before moving to final destination. Default none . It is

recommended that gzip is used.

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

Max File Size (MB): Maximum uncompressed output file size. Files of this size will be closed and moved to

final output location. Defaults to 32 .

Configuring Cribl to output to Azure Blob Storage.

Page 140 of 209

Max File Open Time (Sec): Maximum amount of time to write to a file. Files open for longer than this will be

closed and moved to final output location. Defaults to 300 .

Note

Cribl will close files when either of Max File Size (MB) or Max File Open Time (Sec) conditions are met.

Max File Idle Time (Sec): Maximum amount of time to keep inactive files open. Files open for longer than this

will be closed and moved to final output location. Default: 30 .

Max Open Files: Maximum number of files to keep open concurrently. When over, the oldest open files will

be closed and moved to final output location. Default: 100 .

Cribl uses a set of internal fields to assist in forwarding data to a destination.

Field(s) for this destination:

__partition

Internal Fields

Page 141 of 209

Azure Event Hubs

Cribl supports sending of data over to Azure Event Hubs. This is a streaming destination type.

While on Destinations screen, select Azure | Event Hubs from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this destination definition.

Brokers: List of Event Hub Kafka brokers to connect to, e.g., yourdomain.servicebus.windows.net:9093 . The

hostname can be found in the host portion of the primary or secondary connection string in Shared Access

Policies.

Event Hub Name: The name of the Event Hub (a.k.a. Kafka Topic) to publish events. Can be overwritten

using field __topicOut .

Acknowledgments: Control the number of required acknowledgments. Defaults to Leader .

Record Data Format: Format to use to serialize events before writing to the Event Hub Kafka brokers.

Defaults to JSON

Compression: Codec to use to compress the data before sending to Event Hub Kafka brokers. Defaults to

gzip .

Authentication Settings
Authentication parameters to use when connecting to brokers. Using TLS is highly recommended.

Disabled defaults to Yes . When toggled to No :

SASL Mechanism: SASL authentication mechanism to use, PLAIN is the only mechanism

currently supported for Event Hub Kafka brokers.

Username: The username for authentication, for Event Hub this should always be

$ConnectionString .

Password: Connection String Primary or Secondary key from Event Hub workspace.

TLS Settings (client side)

Configuring Cribl to output to Azure Event Hubs

Page 142 of 209

Disabled Defaults to No .

Validate Server Certs: For Event Hub, this should always be false. Defaults to No .

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

Max record size (KB, uncompressed): Maximum size (KB) of each record batch before compression.

Setting should be < message.max.bytes settings in Kafka brokers. Defaults to 768

Max Events Per Batch: Maximum number of events in a batch before forcing a flush. Defaults to 1000 .

Flush Period (s): Maximum time between requests. This could cause the payload size to be smaller than

max. Defaults to 1 .

Cribl uses a set of internal fields to assist in forwarding data to a destination.

Field(s) for this destination:

__topicOut

__key

__headers

__keySchemaIdOut

__valueSchemaIdOut

Internal Fields

Page 143 of 209

Azure Monitor Logs

Cribl supports sending of data over to Azure Monitor Logs. This is a streaming destination type.

While on Destinations screen, select Azure | Monitor Logs from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this destination definition.

Workspace Id: Azure Log Analytics Workspace ID, see Azure Dashboard Workspace->Advanced settings.

Workspace Key: Azure Log Analytics Workspace Primary or Secondary Shared Key, see Azure Dashboard

Workspace->Advanced settings.

Log Type: The Record Type of events sent to this LogAnalytics workspace. Defaults to Cribl .

Resource ID: Optional Resource ID of the Azure resource the data should be associated with. This populates

the _ResourceId property and allows the data to be included in resource-centric queries. If this field isn't

specified, the data will not be included in resource-centric queries.

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

Request Concurrency: Maximum number of ongoing requests before blocking. Defaults to 5 .

Max Body Size: Maximum size, in KB, of the request body. Defaults to 4096 .

Flush Period (s): Maximum time between requests. This could cause the payload size to be smaller than

max. Defaults to 1 .

Extra HTTP Headers: Name/Value pairs to pass as additional HTTP headers.

Cribl will attempt to use keepalives to reuse a connection for multiple requests. After 2 minutes of the first

use, the connection will be thrown away and a new one will be reattempted. This is to prevent sticking to a

Configuring Cribl to output to Azure Monitor Logs

Notes on HTTP based outputs

Page 144 of 209

particular destination when there is a constant flow of events.

If keepalives are not supported by the server (or if the server closes a pooled connection while idle) a new

connection will be established for next request.

When resolving destination's hostname Cribl will pick the first IP in the list for use in the next connection.

Round-robin DNS would help with event balancing.

Page 145 of 209

StatsD

Cribl supports sending of data over to a StatsD destination. This is a streaming destination type.

While on Destinations screen, select Metrics | StatsD from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this destination definition.

Destination Protocol: Protocol to use when communicating with the destination. Defaults to UDP

Host: The hostname of the destination.

Port: Destination port. Defaults to 8125 .

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

Max record Size (Bytes): Used when Protocol is UDP, specifies the maximum size (Bytes) of packets sent to

the destination. Also known as the MTU for the network path to the destination system. Defaults to 512 .

Flush period (sec): Used when Protocol is TCP to specify how often buffers should be flushed resulting in

records sent to the destination. Defaults to 1 .

Configuring Cribl to output via StatsD.

Page 146 of 209

StatsD Extended

Cribl supports sending of data over to a StatsD destination. This is a streaming destination type.

While on Destinations screen, select Metrics | StatsD Extended from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this destination definition.

Destination Protocol: Protocol to use when communicating with the destination. Defaults to UDP

Host: The hostname of the destination.

Port: Destination port. Defaults to 8125 .

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

Max record Size (Bytes): Used when Protocol is UDP, specifies the maximum size (Bytes) of packets sent to

the destination. Also known as the MTU for the network path to the destination system. Defaults to 512 .

Flush period (sec): Used when Protocol is TCP to specify how often buffers should be flushed resulting in

records sent to the destination. Defaults to 1 .

Configuring Cribl to output via StatsD Extended.

Page 147 of 209

Graphite

Cribl supports sending of data over to a Graphite backend destination. This is a streaming destination type.

While on Destinations screen, select Metrics | Graphite from the vertical menu, then click Add New:

Output Id: Enter a unique name to identify this destination definition.

Destination Protocol: Protocol to use when communicating with the destination. Defaults to UDP

Host: The hostname of the destination.

Port: Destination port. Defaults to 8125 .

Advanced Settings

Conditioning Pipeline: Pipeline to process data before sending it out using this output.

Max record Size (Bytes): Used when Protocol is UDP, specifies the maximum size (Bytes) of packets sent to

the destination. Also known as the MTU for the network path to the destination system. Defaults to 512 .

Flush period (sec): Used when Protocol is TCP to specify how often buffers should be flushed resulting in

records sent to the destination. Defaults to 1 .

Configuring Cribl to output to a Graphite backend.

Page 148 of 209

Output Router

Output Routers are meta-destinations that allow for output selection based on rules. Rules are evaluated in

order, top->down, with first match being the winner.

While on Destinations screen, select Output Router from the vertical menu, then click Add New:

Router Name: Enter a unique name to identify this router definition.

Rules: A list of event routing rules.

Filter Expression: JavaScript expression to select events to send to output.

Output: Output where to send matching events.

Final: Flag to control whether to stop the event from being checked against other rules. Defaults

to Yes .

An Output Router cannot reference another. This is by design so as to avoid cycles.

Events that do not match any of the rules are dropped. Use a catchall rule to change this behavior.

No conditioning can be done here. Use Conditioning Pipelines at Source tier..

Data can be cloned by turning the Final flag to No (set to Yes default, i.e. no cloning).

Configuring Cribl to output to an Output Router

Notes

Page 149 of 209

Data Preview

Data Preview is a feature that allows for visual inspection of events as they make their trip into a pipeline. It helps

users shape and control events before they're delivered to a destination as well as assists with troubleshooting

functions. It works by taking a set of Sample events, passing them thru the pipeline and displaying the result on a

different pane. Anytime a function is modified, added or removed, the pipeline changes and so does its output.

While in a pipeline, samples can be added through one of the supported options: Upload, Paste or Capture. The

Upload and Paste options work with content that needs to be broken into events, while the Capture option works

with events only.

When you click on the corresponding option you'll be presented with a screen similar to below. The Capture

screen is slightly different in that there is no need for event breaking.

Adding Sample Data (using Paste as an example)

Page 150 of 209

Paste Area
This is where the content of the paste (or uploaded file) is displayed.

Event Breaker Settings
An event breaker is a regular expression that tells Cribl how to break the file or paste content into events.

Breaking will occur at the start of the match. Cribl ships with several common breaker patterns out of box but

custom breakers can be configured. The UI here is interactive and you can iterate until you find the exact pattern.

Fields
The Fields section allows users to add or overwrite key-value pairs on the sample.

There are three display options for the event: Text, JSON, and Table and each can be useful depending on the

type of data being previewed. As you add more samples to your system you can easily access them via the

dropdown on the top right: All Samples > Sample Name

In Tab: Displaying samples on the way IN to the pipeline

Page 151 of 209

As data traverses functions in the pipeline, events may be modified and some may be dropped altogether. When

they're dropped, they are displayed as grayed-out with strikethrough text in the OUT tab. You can control their

display with the Show Dropped toggle. When new fields are added, as shown above, they're highlighted green.

Fields to be displayed are controlled with the Selected Fields dropdown.

Out Tab: Displaying samples on the way OUT of the pipeline

Page 152 of 209

Page 153 of 209

Securing Data

Cribl can be used to encrypt sensitive data in real-time and route it to an end system. Decrypted retrieval can be

implemented on a per-system basis. At the time of this writing decryption is supported only when Splunk is the

end system.

Data Encryption

Data Decryption

Page 154 of 209

Encryption

With Cribl you can encrypt fields or patterns within events in real-time using C.Crypto.encrypt() in a Mask

function. The Mask function accepts multiple replacement rules and multiple fields to apply them to. A Match
Regex defines the pattern that describes the content to be replaced. The Replace Expression is a JS

expression or literal to replace matched content. C.Crypto.encrypt() method can be used here to generate an

encrypted string from a value passed to it.

Encryption of data in motion

C.Crypto.encrypt() Syntax

(method) Crypto.encrypt(value: any, keyclass: number, keyId?: string, defaultVal?: string):

string

Encrypt the given value with the keyId or a keyId picked up automatically based on keyclass

@param {string | Buffer} value - what to encrypt

@param - keyclass - if keyId isn't specified, pick one at the given key class

@param - keyId - encryption keyId, takes precedence over keyclass

@param - defaultVal - what to return if encryptions fails for any reason, if unspecified the original value is

returned

@returns - - if encryption succeeds the encrypted value, otherwise defaultVal if specified, otherwise value.

Symmetric key encryption keys can be configured through the CLI or UI. Users are free to define as many keys

as required. Each key is characterized by the following:

keyId : ID of the key.

algorithm : Algorithm used with the key

keyclass : Cribl Key Class (below) that the key belongs to.

kms : Key management system for the key. Defaults to local .

created : Time (epoch) when key was generated.

expires : Time (epoch) after which the key is invalid. Useful for key rotation.

useIV : Flag that indicates whether or not an initialization vector was used.

Encryption Keys

Key Classes

Page 155 of 209

Key Class Dataset

keyclass: 0

Keys: keyId: 0, keyId: 1

Users: U0, U1

datasetA

Users: U0, U1, U2

Key Class Dataset

keyclass: 1

Keys: keyId: 11, keyId: 22

Users: U1

datasetA

Users: U0, U1, U2

Sample Command Output

keyId algorithm keyclass kms created expires useIV

Key Classes in Cribl are collection of keys that can be used to implement multiple levels of access control. Users

or groups of users with access to data with encrypted patterns can be associated with key classes for even more

granular, pattern-level compartmentalized access.

Example
Users U0, U1 have been given access to keyclass 0 which contains key id 0 and 1 . These keys are used to

encrypt certain patterns in datasetA . Even though users U0, U1, U2 have access to read this dataset, only U0

and U1 can decrypt its encrypted patterns.

User U1 has been given access to an additional keyclass, 1 which contains key id 11 and 22 . These keys

are used to encrypt certain other patterns in datasetA . Even though users U0, U1, U2 have access to read

this dataset - same to above - only U1 can decrypt the additional encrypted patterns.

When using the local key management system, encryption keys in Cribl are encrypted with

$CRIBL_HOME/local/cribl/auth/cribl.secret and stored in $CRIBL_HOME/local/cribl/auth/keys.json . Cribl

monitors keys.json file for changes every 60 seconds.

Note: when installed as a Splunk app, $CRIBL_HOME is $SPLUNK_HOME/etc/apps/cribl .

Keys are added and listed using the keys command.

Listing keys
$CRIBL_HOME/bin/cribld keys list

Configuring Keys with CLI

Page 156 of 209

1 aes-256-cbc 0 local 1544906269.316 0 false
2 aes-256-cbc 1 local 1544906272.452 0 false
3 aes-256-cbc 2 local 1544906275.948 1545906275 true
4 aes-256-cbc 3 local 1544906278.026 0 false

Sample Command Output

Add encryption keys
Usage: [options] [args]

Options:
-c <keyclass> - key class to set for the key
-k <kms> - KMS to use, must be configured, see cribl.yml
-e <expires> - expiration time, epoch time
-i - use an initialization vector

Sample Command Output

Adding key: success. Key count=1

Sample Command Output

keyId algorithm keyclass kms created expires useIV

1 aes-256-cbc 1 local 1545243364.342 0 true

Adding keys:
Displaying --help

$CRIBL_HOME/bin/cribld keys add --help

Adding a key to keyclass 1 with no expiration date.

$CRIBL_HOME/bin/cribld keys add -c 1 -i

Listing keys to verify key generation

$CRIBL_HOME/bin/cribld keys list

The key management interface can be accessed through Settings | Encryption Keys . Here you can list and

add new keys. To protect against accidental changes, once saved a key's parameters can only be edited through

Configuring Keys with UI

Page 157 of 209

configuration files.

To successfully decrypt data, the decrypt command will need access to the same keys that were used to

encrypt. cribl.secret and keys.json in $CRIBL_HOME/local/cribl/auth in the Cribl instance where

encryption happened should be synced/copied over to the one on the Search Head/decrypting side. When

using the UI, these files can be downloaded through the Get Key Bundle button.

Sync auth/(cribl.secret|keys.json)

Page 158 of 209

Decryption

Capability Name Corresponding Cribl Key Class

cribl_keyclass_1

cribl_keyclass_2

...

cribl_keyclass_N

1

2

...

N

At the time of this writing, decryption is supported only when Splunk is the end system. Decryption in Splunk can

be done by users of any role with permissions to the decrypt command. Further restrictions can be applied

when capabilities are used. See below for more.

Decryption in Splunk is implemented via a custom command called decrypt . To use the command, users must

belong to a Splunk Role that has permissions to execute it. Capabilities, which are aligned to Cribl Key Classes,

can be associated with a particular role to further control the scope of decrypt .

Decryption of data

Decrypting in Splunk

Decrypt command is Search Head ONLY

To ensure that keys don't get distributed to all search peers, including ones that your search head can

search but you don't have full control over, decrypt is scoped to run locally on the installed search head.

In Splunk, Capability names should follow the format cribl_keyclass_N where N is the Cribl Key Class. For

example, a role with capability cribl_keyclass_1 has access to all key ids associated with key class 1 .

Restricting Access with Splunk Capabilities

Configuring Splunk Search Head to Decrypt Data

Page 159 of 209

Install Cribl App for Splunk on your Search Head. As of v1.7, the app will run on search head mode by

default. If previously installed and later modified, you can convert to search head mode with:

$CRIBL_HOME/bin/cribld mode-searchhead . When installed as a Splunk app $CRIBL_HOME is

$SPLUNK_HOME/etc/apps/cribl .

Assign permissions to the decrypt command per your requirements.

Assign capabilities to your Roles per your requirements. If you'd like to create more capabilities ensure that

they follow the naming convention defined above.

Sync auth/(cribl.secret|keys.json) . To successfully decrypt data, the decrypt command will need

access to the same keys that were used to encrypt. cribl.secret and keys.json in

$CRIBL_HOME/local/cribl/auth in the Cribl instance where encryption happened should be

synced/copied over to the one on the Search Head/decrypting side. When using the UI, these files can be

downloaded through the Get Key Bundle button.

Page 160 of 209

Scripts

Admins can run scripts (e.g., shell scripts) from within Cribl by configuring and executing them thru Settings >

Scripts. They are typically used to call custom automation jobs or in general trigger tasks on demand. For

example, you can use Scripts to run an Ansible job, or place a call to another automation system, when Cribl

configs are updated.

Command: Command to execute for this script.

Arguments: Arguments to pass when executing this script

Env Variables: Extra environment variables to set when executing script

With great power comes great responsibility!

Scripts will allow you to execute almost anything on the system where Cribl is running. Make sure you

understand the impact of what you're executing before you do so!

Page 161 of 209

EXPRESSION REFERENCE

Introduction

Assigning a value Evaluating to a value

x = 42

newFoo = foo.slice(30)

(Math.random() * 42)

3 + 4

'foobar'

'42'

Truthy Falsy

true

42

-42

false

null

undefined

As data travels a Cribl pipeline, it is operated on by a series of functions. Functions are fundamentally Javascript

code.

Functions that ship with Cribl are configurable via a set of inputs. Some of these configuration options are literals,

such as field names, and others can be Javascript expressions.

Expressions are valid units of code that resolve to a value. Every syntactically valid expression resolves to

some value but conceptually, there are two types of expressions: those that assign value to a variable (a.k.a with

side effects) and those that evaluate to a value.

Filters are used in Routes to select a stream of the data flow, and in Functions to scope or narrow down the

applicability of a function. They are expressions that must evaluate to either true (or truthy) or false (or

falsy). Keep this in mind when creating routes or functions. For example:

sourcetype=='access_combined' && host.startsWith('web')

source.endsWith('.log') || sourcetype=='aws:cloudwatchlogs:vpcflow'

Filters and Value Expressions

Filters

Page 162 of 209

3.14

"foo"

Infinity

-Infinity

0

NaN

''

""

Values expressions are typically used in Functions to assign a value, for example, to a new field. For example:

Math.floor(_time/3600)

source.replace(/.{3}/, 'XXX')

In a value expression ensure that the source variable is not null, undefined or empty. For example, if you

want to have a field called len to be assigned the length of a field called employeeID but you're not sure if

employeeID exists, instead of employeeID.length you can use a safer shorthand as such: (employeeID ||

'').length .

If a field does not exist (undefined) and you're doing a comparison with its properties the boolean expression

will always evaluate to false. For example, if employeeID is undefined, then both of these expressions

employeeID.length > 10 , and employeeID.length < 10 will evaluate to false.

== means equal to, while === means equal value and equal type.. For example, 5 == 5 evaluates to true,

while 5 === "5" evaluates to false.

Ternary operator is a very powerful way to create conditional values. For example, if you wanted to assign

either minor or adult to a field groupAge based on the value of age you can do: (age >= 18) ? 'adult'

: 'minor'

Wilcards Lists are used throughout the product especially in various Functions such as Eval, Mask, Publish

Metrics, Parser etc.

Wilcard Lists, as their name implies, accept strings with asterisks (*) to represent one or more term. They also

accept strings that start with exclamation mark (!) to negate one or more terms.

Wildcard Lists are order sensitive only when negated terms are used. This allows for implementing any

combination of whitelists and blacklists.

For Example:

Value Expressions

Considerations and best practices for creating predictable expressions

Wildcard Lists

Page 163 of 209

Wildcard List Value Meaning

List 1 !foobar, foo* All terms that start with foo except foobar.

List 2 !foo*, * All terms except for those that start with foo.

Page 164 of 209

Cribl Expressions

Name Value Expression

myNewField C.Mask.sha1(myOtherField)

Native Cribl function methods can be found under C.* and can be invoked from any function that allows for

expression evaluations. For example, to create a field that is the SHA1 of a another field's value you can use the

Eval function:

C.Crypto.decrypt

method Crypto.decrypt(value: string): string

Decrypt all occurrences of ciphers in the given value. Instances that cannot be decrypted (for any reason) are left

intact.

@param - value - string where to look for ciphers

@returns - - value with ciphers decrypted

C.Crypto.encrypt

(method) Crypto.encrypt(value: any, keyclass: number, keyId?: string, defaultVal?: string): string

Encrypt the given value with the keyId or a keyId picked up automatically based on keyclass

@param {string | Buffer} value - what to encrypt

@param - keyclass - if keyId isn't specified, pick one at the given keyclass.

@param - keyId - encryption keyId, takes precedence over keyclass

@param - defaultVal - what to return if encryptions fails for any reason, if unspecified the original value is

returned

@returns - - if encryption succeeds the encrypted value, otherwise defaultVal if specifier, otherwise value.

C.Decode.base64

(method) Decode.base64(val: string, resultEnc?: string): any

Performs base64 decoding of the given string and returns a string or Buffer depending on resultEnc value, which

defaults to 'utf8'

@param - val value to base64 decode

C.Crypto - Data encryption and decryption functions

C.Decode - Data decoding functions

Page 165 of 209

@param - resultEnc encoding to use to convert the binary data to a string. defaults to 'utf8' , use 'utf8-

valid' to validate result is valid UTF8, use 'buffer' if you need the binary data in a Buffer.

C.Decode.gzip

(method) Decode.gzip(value: any, encoding?: string): string

Gunzip the supplied value.

@param - value The value to gunzip.

@param - encoding Encoding of value, for example: 'base64' , 'hex' , 'utf-8' , 'binary' ; default is

'base64' . If data received as Buffer (from gzip with encoding: 'none') decoding is skipped.

C.Decode.hex

(method) Decode.hex(val: string): number

Performs hex to number conversion. Returns NaN if value cannot be converted to a number

@param - val hex string to parse to a number (eg. 0xcafe)

C.Decode.uri

(method) Decode.uri(val: string): string

Performs uri decoding of the given string

@param - val value to uri decode

C.Encode.base64

(method) Encode.base64(val: any, trimTrailEq?: boolean): string

Returns a base64 representation of the given string or Buffer

@param - val value to base64 encode

@param - trimTrailEq whether to trim any trailing =

C.Encode.gzip

(method) Encode.gzip(value: string, encoding?: string): any

Gzip and optionally base64 encode the supplied value.

@param - value The value to gzip.

@param - encoding Encoding of value, for example: 'base64' , 'hex' , 'utf-8' , 'binary' , 'none' ; default

is 'base64' . If 'none' is specified data will be returned as a Buffer.

C.Encode.hex

(method) Encode.hex(val: string | number): string

Rounds the number to an integer and returns it's hex representation (lower case). If a string is provided it will be

parsed into a number or NaN.

@param - val value to convert to hex

C.Encode - Data encoding functions

Page 166 of 209

C.Encode.uri

(method) Encode.uri(val: string): string

Returns the uri encoded representation of the given string

@param - val value to uri encode

C.Mask.CC

(method) Mask.CC(value: string, unmasked?: number, maskChar?: string): string

Check that value could be a valid credit card number and mask a subset of the value. By default all digits except

the last 4 will be replaced with X.

@param - value - a string whose digits to mask iff it could be a valid credit card number

@param - unmasked - number of unmasked digits, positive for left, negative for right, 0 for none

@param - maskChar - a string/char to replace a digit with

C.Mask.IMEI

(method) Mask.IMEI(value: string, unmasked?: number, maskChar?: string): string

Check that value could be a vlaid IMEI number and mask a subset of the value. By default all digits except the

last 4 will be replaced with X.

@param - value - a string whose digits to mask iff it could be a valid IMEI number

@param - unmasked - number of unmasked digits, positive for left, negative for right, 0 for none

@param - maskChar - a string/char to replace a digit with

C.Mask.isCC

(method) Mask.isCC(value: string): boolean

Checks that the given value could be a valid credit card number, by computing the string's Lunh's checksum

modulo 10 == 0

@param - value - a string to check for being a valid credit card number

C.Mask.isIMEI

(method) Mask.isIMEI(value: string): boolean

Checks that the given value could be a valid IMEI number, by computing the string's Lunh's checksum modulo 10

== 0

@param - value - a string to check for being a valid IMEI number

C.Mask.luhn

(method) Mask.luhn(value: string, unmasked?: number, maskChar?: string): string

Check that value Lunh's checksum moad 10 is 0 and mask a subset of the value. By default all digits except the

last 4 will be replaced with X. If the value's Lunh's checksum mod 10 is not 0, then the value is returned

unmodified.

@param - value - a string whose digits to mask iff the value's Lunh's checksum mod 10 is 0

C.Mask - Data Masking Functions

Page 167 of 209

@param - unmasked - number of unmasked digits, positive for left, negative for right, 0 for none

@param - maskChar - a string/char to replace a digit with

C.Mask.LUHN_SUB

(property) Mask.LUHN_SUB: any

C.Mask.luhnChecksum

(method) Mask.luhnChecksum(value: string, mod?: number): number

Generates the Luhn checksum (used to validate certain credit card numbers, imei etc) By default the mod 10 of

the checksum is returned, pass mod = 0 to get actual checksum

@param - value a string whose digits you want to perform the Lunh checksum on

@param - mod return checksum module this number, if 0 skip modulo, default is 10

C.Mask.md5

(method) Mask.md5(value: string, len?: string | number): string

Generate MD5 hash of given value

@param - value compute hash of this

@param - len length of hash to return: 0 for full hash, a +number for left or a -number for right substring. If a

string is passed it's length will be used

C.Mask.random

(method) Mask.random(len?: string | number): string

Generates a random alphanumeric string

@param - len a number indicating the length or the result, or if a string use it's length

C.Mask.REDACTED

(property) Mask.REDACTED: string

The literal 'REDACTED'

C.Mask.repeat

(method) Mask.repeat(len?: string | number, char?: string): string

Generates a repeating char/string pattern, e.g XXXX

@param - len a number indicating the length or the result, or if a string use it's length

@param - char pattern which to repeat len times

C.Mask.sha1

(method) Mask.sha1(value: string, len?: string | number): string

Generate SHA1 hash of given value

@param - value - compute hash of this

@param - len - length of hash to return: 0 for full hash, a +number for left or a -number for right substring. If a

string is passed it's length will be used

C.Net - Network Functions

Page 168 of 209

C.Net.cidrMatch()

(method) Net.cidrMatch(cidrIpRange: string, ipAddress: string): boolean

Determines if the supplied IPv4 ipAddress is inside the range of addresses identified by cidrIpRange. For

example: C.Net.cidrMatch ('10.0.0.0/24', '10.0.0.100') returns true

@param - cidrIpRange - IPv4 address range in cidr format. E.g., 10.0.0.0/24

@param - ipAddress - The IPv4 IP address to test for inclusion in cidrIpRange

C.Net.ipv6Normalize()

(method) Net.ipv6Normalize(address: string): string

Normalize an IPV6 address based on RFC draft-ietf-6man-text-addr-representation-04

@param - address - the IPV6 address to normalize

C.Net.isPrivate()

(method) Net.isPrivate(address: string): string

Determine if the supplied IPv4 address is in the range of private addresses per RFC1819.

@param - address - address to test

C.os.hostname()

Returns hostname of system running this Cribl instance.

C.Text.entropy()

(method) Text.entropy(bytes: any): number

Computes the Shannon entropy of the given buffer or string.

@param - bytes - value to compute Shanon entropy of.

@returns - the entropy value or -1 in case of an error.

C.Text.hashCode()

(method) Text.hashCode(val: string | Buffer | number): number

Computes hashcode (djb2) of the given value.

@param - val - value to compute the hash of

@returns - hashcode value

C.Text.isASCII()

(method) Text.isASCII(bytes: any): boolean

Checks whether all bytes or chars are in the ASCII printable range.

@param - bytes - value to check for character range.

@returns - true if all chars/bytes are within ASCII printable range, false otherwise.

C.os - System Functions

C.Text - Text Functions

Page 169 of 209

C.Text.isUTF8()

(method) Text.isUTF8(bytes: any): boolean

Checks whether the given Buffer contains valid UTF8

@param - bytes - bytes to check.

@returns - true if bytes are UTF8, false otherwise.

C.Text.relativeEntropy()

(method) Text.relativeEntropy(bytes: any, modelName?: string): number

Computes the relative entropy of the given buffer or string

@param - bytes - value to compute relative entropy of

@param - string modelName - The name of the model to test string with.

@returns - the relative entropy value or -1 in case of an error

C.Time.strftime()

(method) Time.strftime(date: number | Date, format: string, utc?: boolean): string

Format a [Date][1] or number as a time string using [strftime specifier][2] [1]: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Date [2]: https://github.com/d3/d3-time-format#api-reference

@param - date - Date object or number (seconds since epoc) to format

@param - format - specifier to use to format the date

@param - utc - whether to output the time in UTC rather than local timezone

@returns - representation of the given date

C.Time.strptime()

(method) Time.strptime(str: string, format: string, utc?: boolean, strict?: boolean): Date

Extract time from a string using [strptime specifier][2] - if successful a [Date][1] object is returned otherwise null.

[1]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date [2]:

https://github.com/d3/d3-time-format#locale_format

@param - str - string to parse to a timestamp (see strict flag)

@param - format - strptime specifier

@param - utc - whether to interpret times as UTC rather than local time

@param - strict - whether to return null if there are any extra characters after timestamp

@returns - the parsed date or null if the specifier did not match

C.Time.timestampFinder()

(method) Time.timestampFinder(utc?: boolean): AutoTimeParser

C.Time - Time Functions

Page 170 of 209

KNOWLEDGE

Regex Library

As of v1.1 Cribl LogStream ships with a Regex Library that contains a set of pre-built common regex patterns.

The goal of the library is to serve as an easily accessible repository of regular expressions. The library is

searchable and each pattern can be tagged if further organization or categorization is needed. The library can be

found under Knowledge | Regex Library .

What is the Regex Library

As of this this version, the Library contains 25 patterns shipped by Cribl. A pattern can be used as-is in a

Function or can be modified as necessary and new, custom patterns can be added by users.

How does it work

Page 171 of 209

Cribl vs. Custom and Priority
Patterns shipped by Cribl will be listed under the Cribl tab while those built by users will be found under Custom.

Over time Cribl will ship more patterns and this distinction allows for both sets to grow independently. In the case

of an ID/Name conflict, the Custom pattern takes priority in listings and search. For example, if a Cribl provided

pattern and a Custom one are both named ipv4 the one from Cribl will not be displayed or delivered as a

search result.

Page 172 of 209

Event Breakers

Event breakers are regex patterns and timestamp definitions that assist in breaking incoming streams of data

into events. The Event Breakers management interface can be found under Knowledge | Event Breakers .
Event Breaker rules and ruleset can be edited, added, deleted, searched and tagged as necessary.

What are Event Breakers

Rules define configurations needed to break down a stream of data into discrete events.

Filter Condition: As a stream of data moves into the engine, a rule's filter expression is applied. If it evaluates to

true , the rule configurations are engaged for the entire duration of that stream. Else, the next rule down the line

is evaluated.

Event Breaker: After a breaker regex pattern has been selected it will apply on the stream continuously.

Breaking will occur at the beginning of the match and the matched content will be consumed/thrown away. If

necessary, a positive lookahead regex can be used e.g., (?=pattern) to keep the content. Capturing groups are

not allowed to be used anywhere in the event breaker pattern as they will further break the stream. This is often

How do Event Breakers work

Event Breaker Rules

Page 173 of 209

undesirable.

Breaking will also occur if Max Event Bytes has been reached. (See below for default value).

Timestamping: After events are synthesized out streams, timestamping will be attempted. First, a timestamp

anchor will be located inside the event. Next, starting there, the engine will: try to scan up to a configurable depth

into the event and autotimestamp, OR, timestamp using a manually supplied strptime format OR timestamp

the event with current time.

The closer an anchor is to the timestamp pattern the better the performance and accuracy, especially if multiple

timestamps exist within an event. For the manual option, the anchor needs to lead the engine right before the

timestamp pattern begins.

Fields: After events have been timestamped one or more fields can be added. Their values can be fully

evaluated using JS expressions.

Rule Defaults:

Filter Condition defaults to true

Event Breaker to [\n\r]+

Timestamp anchor to ^

Timestamp format to Auto and a scan depth of 150 bytes,

Max Event Bytes to 51200

Default Timezone to Local

Rule Example: Break on newlines and use Manual timestamping after the sixth comma, as indicated by this

pattern: ^(?:[^,]*,){6} .

Page 174 of 209

Rulesets and Rules - Ordered

Ruleset A
 Rule 1
 Rule 2
 ...
 Rule n

...

Ruleset B
 Rule Foo
 Rule Bar
 ...
 Rule FooBarn

Rulesets are collections of rules that are associated with Sources. Rules within a ruleset are ordered and

evaluated top->down. One ore more rulesets can be associated with a source and they too, are evaluated top-

>down. First rule that matches goes into effect for a stream from a source.

Event Breaker Rulesets

Here's an example of 5 rulesets associated with a Source:

Page 175 of 209

Default Rule: there is a system default rule that sits at the bottom of the Ruleset/Rule hierarchy that goes into

effect if there are no matching rules. See Defaults above.

Cribl vs. Custom
Event Breaker Ruleset shipped by Cribl will be listed under the Cribl tab while those built by users will be found

under Custom. Over time Cribl will ship more patterns and this distinction allows for both sets to grow

independently. In the case of an ID/Name conflict, the Custom pattern takes priority in listings and search.

Page 176 of 209

Lookups Library

Lookups are data tables that can be used in Cribl to enrich events as they're processed by the Lookup Function.

The Lookups library can be found under Knowledge | Lookups and its goal is to provide a management

interface for all lookups. The library is searchable and each lookup can be tagged as necessary.

What are Lookups

The management interface allows for lookups to be added, deleted and edited. All files handled by the interface

are stored in $CRIBL_HOME/data/lookups .

How does it work

Page 177 of 209

Page 178 of 209

Parsers Library

Parsers are definitions and configurations for the Parser Function. The library can be found under Knowledge |

Parsers and its goal is to provide an interface for creating and editing Parsers. The library is searchable and

each parsers can be tagged as necessary.

What are Parsers

Page 179 of 209

USE CASES

Ingest-time Fields

To add new fields to any event we use the out-of-the-box Eval function. We can either apply a Filter to select the

events or we can leave it empty and apply it to all incoming events.

Let's see how we add dc::nyc-42 to all events with sourcetype=='access_combined' :

First make sure you have a route & pipeline configured to match desired events.

Next, let's add a Eval function to it:

Adding Fields to data in motion

Adding Fields Example

Next, let's click on Add Field, add our dc field and Save.

Page 180 of 209

To confirm, verify that this search returns results: sourcetype="access_combined" dc::nyc-42

You can add more conditions to the filter, if you'd like. For example, to limit the field to only events from hosts

that start with web-01 , we can change the filter input as below:

This is a very powerful method to change incoming events in real-time. In addition to providing the right context

at the right time, users can further benefit substantially by using tstats for faster analytics.

Removing fields can be done by either listing or wildcarding of field names. Let's see how we can remove all

fields that start with date_ .:

Removing Fields

Page 181 of 209

First make sure you have a route & pipeline configured to match desired events.

Next, let's add a Eval function to it (similar to above)

Next, in the Remove Fields section add date_* and hit Save.

To confirm, verify that this search: sourcetype="access_combined" date_minute=* will soon stop returning

results. Enjoy a more efficient Splunk!

Page 182 of 209

Ingest-time Lookups

bro_conn_state.csv

action,"conn_state","conn_state_meaning"
dropped,S0,"Connection attempt seen, no reply."
allowed,S1,"Connection established, not terminated."
allowed,SF,"Normal establishment and termination."
blocked,REJ,"Connection attempt rejected."
allowed,S2,"Connection established and close attempt by originator seen (but no reply from r
allowed,S3,"Connection established and close attempt by responder seen (but no reply from or
allowed,RSTO,"Connection established, originator aborted (sent a RST)."
allowed,RSTR,"Established, responder aborted."
dropped,RSTOS0,"Originator sent a SYN followed by a RST, we never saw a SYN-ACK from the res
dropped,RSTRH,"Responder sent a SYN ACK followed by a RST, we never saw a SYN from the (purp
dropped,SH,"Originator sent a SYN followed by a FIN, we never saw a SYN ACK from the respond
dropped,SHR,"Responder sent a SYN ACK followed by a FIN, we never saw a SYN from the origina
allowed,OTH,"No SYN seen, just midstream traffic (a 'partial connection' that was not later

To enrich events with new fields from external sources, say .csv files we use the out-of-the-box Lookup

Function. Ingestion time lookups are not only great for normalizing field names and values but also ideal for use

cases where:

Fast access via the looked-up value is required. For example, when you don't have a datacenter field in

your events but you do have a host-to-datacenter map, and you need to search by datacenter

Temporally correct looked-up information is required. For example, when you have a highly dynamic

infrastructure and you need to resolve a resource (e.g. a container) name to its address you can't afford to do

it at search/run-time as the resource and its records may no longer exist. External (non .csv) lookups are

coming soon.

Let's assume we have the following lookup file and given the field conn_state in an event we would like to add a

corresponding ingestion-time field called action

Enriching Data in motion

Working with lookups - Example 1

First make sure you have a route & pipeline configured to match desired events.

Next, let's add a Lookup function to it with these settings:

Page 183 of 209

cisco_sourcefire_severity.csv

impact,priority,severity
1,high,critical
2,high,critical
3,high,high
4,high,high
0,high,high

Lookup file path: $SPLUNK_HOME/etc/apps/Splunk_TA_bro/lookups/bro_conn_state.csv

Note that Environment variables are allowed in path

Lookup Field Name in Event set to conn_state

Corresponding Field Name in Lookup set to conn_state

Output Field Name from Lookup set to action

Lookup Field Name in Event set to action

To confirm, verify that this search returns expected results: sourcetype="bro" action::allowed . Change

action value as necessary.

Let's assume we have the following lookup file and given both fields impact and priority in an event we

would like to add a corresponding ingestion-time field called severity

Working with lookups - Example 2

Page 184 of 209

"*",high,high
.....
"*",medium,medium
1,low,medium
2,low,medium
3,low,low
4,low,low
0,low,low
"*",low,low
1,none,low
2,none,low
3,none,informational
4,none,informational
0,none,informational
"*",none,informational

First make sure you have a route & pipeline configured to match desired events.

Next, let's add a Lookup function to it with these settings:

Lookup file path: $SPLUNK_HOME/etc/apps/Splunk_TA_sourcefire/lookups/cisco_sourcefire_severity.csv

Note that Environment variables are allowed in path

Lookup Field Name(s) in Event set to impact and priority

Corresponding Field Name(s) in Lookup set to impact and priority

Output Field Name from Lookup set to severity

Lookup Field Name in Event set to severity

Page 185 of 209

To confirm, verify that this search returns expected results: sourcetype="cisco:sourcefire" severity::medium .

Change severity value as necessary.

Page 186 of 209

Sampling

Let's say that you wanted troubleshoot with and analyze highly verbose/voluminous data, for example, CDN

logs, ELB Access Log or VPC Flows but you were concerned about storage requirements and search

performance. With Sampling you can bring in enough samples so that your analysis remains statistically

significant but you can also do all the troubleshooting necessary.

See the example below or more details: Access Logs and Firewall Logs

Let's use the out-of-the-box Sampling function to sample all events from sourcetype=='access_combined'

where status is '200'` 5:1 (and all others 1:1). This should lower the volume of all verbose successes (200s) but

still bring in ALL potentially erroneous events (400s, 500s etc) that can be used for troubleshooting.

First make sure you have a route & pipeline configured to match desired events.

Next, let's add a Regex Extract function and extract the status field form _raw and let's call it __status .

Remember, fields that start with __ are special fields in Cribl and can be used anywhere in a pipeline.

Sampling at ingest-time

Sampling Example

Next, let's add a Sampling function, scope it to all events where sourcetype=='access_combined' . Let's apply a

filter condition of __status == 200 and a Sample Rate of 5

Page 187 of 209

To confirm that sampling works, compare the event count of all 200 s before and after. In addition, each time an

event goes thru the Sampling function an index-time field is added to it sampled::<rate> . You can use that to in

your statistical functions as necessary.

Page 188 of 209

Access Logs: Apache, ELB, CDN, S3 etc.

Access logs are extremely common. They're often emitted by web servers or similar/related technologies

(proxies, loadbalancers etc.) and tend to be highly voluminous. Typical examples include Apache access logs,

CDN logs, such as those from Amazon Cloudfront, Amazon S3 Server Access Logs, AWS ELB Access Logs etc.

For large installations, oftentimes bringing in everything to an analytics tool is so cost prohibitive (storage,

resources, license etc.) that most users don't even bother. However, some of the logs contain relevant

information when looked at individually (e.g., errors), and the other much larger majority, contains information

when looked at in aggregate (e.g., successes to determine traffic patterns etc.). It would be great if we could find

a middle ground. With Cribl Sampling you can.

Ingest enough sample events from the majority category so that your aggregate analysis remains statistically

significant

Ingest all events from the minority categories and perform troubleshooting and introspection with full fidelity

data

Most of the access logs (including the ones mentioned above) have very similar formats. One quick way to

sample is to look at the value of the status field. 2XX s indicate success and tend to be, by far, the most

common ones, with 200 being the top. 200 is the perfect candidate for sampling. All other statuses occur

much less frequently, indicate conditions that often need to be looked at, and can be brought in with full fidelity.

1. Add a Regex Extract function that looks at these sourcetypes: sourcetype=='access_combined' ||

sourcetype=='aws:s3:accesslogs'

2. Configure that function to extract a field called __status with this regex: /HTTP\/\d\.\d"\s(?<__status>\d+)/

Recipe for Sampling Access Logs

Using "status" as the Sampling Condition

Sample status 200 at 5:1

Page 189 of 209

Amazon Cloudfront Access Logs sourcetype=='aws:cloudfront:accesslogs'

Amazon ELB Access Logs sourcetype=='aws:elb:accesslogs'

3. Add a Sampling function to sample 5:1 when __status==200

4. Save.

Each time an event goes thru the Sampling function an index-time field is added to it: sampled::<rate> . It's

advisable that you use that in your statistical functions as necessary.

Other sourcetypes that will benefit from sampling but may need a different __status extraction regex:

Note About Sampling

Other Sourcetypes

Page 190 of 209

Page 191 of 209

Firewall Logs: VPC Flow Logs, Cisco ASA etc.

Flow Log Records for Accepted and Rejected Traffic

2 123456789010 eni-abc123de 172.31.16.139 172.31.16.21 20641 22 6 20 4249 1418530010 1418530
2 123456789010 eni-abc123de 172.31.9.69 172.31.9.12 49761 3389 6 20 4249 1418530010 14185300

Firewall logs are another source of important operational (and security) data. Typical examples include Amazon

VPC Flow Logs, [Cisco ASA Logs] (https://www.cisco.com/c/en/us/td/docs/security/asa/syslog/b_syslog.html),

and other technologies such as Juniper, Checkpoint, pfSense etc.

Similar to Access Logs, bringing in everything for operational analysis may be cost-prohibitive and Sampling

with Cribl can help.

Ingest enough sample events from the majority category so that your aggregate analysis remains statistically

significant. E.g., sample all ACCEPT s at 5:1

Ingest all events from the minority categories and perform troubleshooting and introspection with full fidelity

data. E.g., bring in all REJECT s.

VPC Flow Logs is a feature that enables you to capture information about the IP traffic going to and from network

interfaces in your VPC. Flow log data can be published to Amazon CloudWatch Logs and Amazon S3.

Typical VPC Flow Logs look like this:

Recipe for Sampling Firewall Logs

Sampling VPC Flow Logs

Let's use a very simple filter condition and only look for ACCEPT s.

1. Add a Regex Extract function that looks at: sourcetype=='aws:cloudwatchlogs:vpcflow'

2. Configure that function to extract a field called __action with this regex: /(?<__action>ACCEPT)/

Page 192 of 209

Cisco ASA Logs sourcetype=='cisco:asa'

Related sourcetypes to consider sampling:

3. Add a Sampling function to sample 5:1 when __action=="ACCEPT"

4. Save.

Each time an event goes thru the Sampling function an index-time field is added to it: sampled::<rate> . It's

advisable that you use that in your statistical functions as necessary.

Other sourcetypes that will benefit from sampling but may need a different __action extraction regex:

Note About Sampling

Other Sourcetypes

Page 193 of 209

sourcetype=='cisco:fwsm'

sourcetype=='cisco:pix'

Page 194 of 209

Masking and Obfuscation

To mask patterns in real-time we use the out-of-the-box Mask function. This is similar to sed but with much

powerful functionality.

The Masking function accepts multiple replacement rules and multiple fields to apply them to.

Match Regex is a JS regex pattern that describes the content to be replaced. It can optionally contain matching

groups. By default it will stop after the first match but using /g will make the function replace all matches.

Replace Expression is a JS expression or literal to replace matched content.

Matching groups can be referenced in the Replace Expression as g1 , g2 ... gN and the entire match as

g0 .

There are several masking methods that are available under C.Mask. :

C.Mask.random : Generates a random alphanumeric string

C.Mask.repeat : Generates a repeating char/string pattern, e.g XXXX.

C.Mask.REDACTED : The literal 'REDACTED'

C.Mask.md5 : Generates a MD5 hash of given value

C.Mask.sha1 : Generates a SHA1 hash of given value

C.Mask.sha256 : Generates a SHA256 hash of given value

Almost all methods have an optional len parameter which can be used to control the length of the replacement.

len can be either a number or string. If it's a string its length will be used. For example:

Masking and anonymization of data in motion.

Masking Capabilities

Page 195 of 209

Let's look at the various ways that we can mask a string like this: cardNumber=214992458870391 . The Regex

Match we'll use is: /(cardNumber=)(\d+)/g . In this example:

g0 = cardNumber=214992458870391

g1 = cardNumber=

g2 = 214992458870391

Masking Examples

Replace Expression Evaluation

Replace Expression accepts a full JS expression that evaluates to a value so you're not necessarily limited

to what's under C.Mask . For example, you can do conditional replacement: g1%2==1 ? `fieldA="odd"` :

`fieldA="even"`

Replace Expression can reference other event fields as event.<fieldName> . For example,

`${g1}${event.source}` . Note that this is slightly different from other expression inputs where where

event fields are referenced without event. for the following reasons:

We don't expect this to be a common case
Expanding the event in the replace context would have a high performance hit on the
common path
There is a slight chance that there might be a gN field in the event

Random Masking with default character length (4):

Page 196 of 209

Replace Expression: `${g1}${C.Mask.random()}`

Result: cardNumber=HRhc

Replace Expression: `${g1}${C.Mask.random(7)}`

Result: cardNumber=neNSm8r

Replace Expression: `${g1}${C.Mask.random(g2)}`

Result: cardNumber=DroJ73qmyaro51u3

Replace Expression: `${g1}${C.Mask.repeat()}`

Result: Result: cardNumber=XXXX

Replace Expression: `${g1}${C.Mask.repeat(6, 'Y')}`

Result: cardNumber=YYYYYY

Replace Expression: `${g1}${C.Mask.repeat(g2)}`

Result: cardNumber=XXXXXXXXXXXXXXX

Replace Expression: `${g1}${C.Mask.REDACTED}`

Result: cardNumber=REDACTED

Replace Expression: `${g1}${C.Mask.md5(g2)}`

Result: cardNumber=f5952ec7e6da54579e6d76feb7b0d01f

Random Masking with defined character length:

Random Masking with length preserving replacement:

Repeat Masking with default character length (4):

Repeat Masking with defined character choice and length:

Repeat Masking with length preserving replacement:

Literal REDACTED masking:

Hash Masking (applies to: md5, sha1 and sha256):

Hash Masking with left N-length* substring (applies to: md5, sha1 and sha256):

Page 197 of 209

Replace Expression: `${g1}${C.Mask.md5(g2, 12)}`

Result: cardNumber=d65a3ddb2749

*Replacement length will not exceed that of the hash algorithm output; MD5: 32 chars, SHA1: 40 chars,

SHA256: 64 chars.

Replace Expression: `${g1}${C.Mask.md5(g2, -12)}`

Result: cardNumber= 933bfcebf992

*Replacement length will not exceed that of the hash algorithm output; MD5: 32 chars, SHA1: 40 chars,

SHA256: 64 chars.

Replace Expression: `${g1}${C.Mask.md5(g2, g2)}`

Result: cardNumber= d65a3ddb27493f5

*Replacement length will not exceed that of the hash algorithm output; MD5: 32 chars, SHA1: 40 chars,

SHA256: 64 chars.

Hash Masking with right N-length* substring (applies to: md5, sha1 and sha256):

Hash Masking with length* preserving replacement (applies to: md5, sha1 and sha256):

Page 198 of 209

Regex Filtering

To filter events in real-time we use the out-of-the-box Regex Filter function. This is similar to nullqueueing with

TRANSFORMS in Splunk but the matching condition is way more flexible.

Let's see how we can filter out any sourcetype=='access_combined' events that contain the pattern Opera in

_raw :

First make sure you have a route & pipeline configured to match desired events.

Next, let's add a Regex Filter function to it:

Regex Filtering of data in motion

Regex Filtering Example

To confirm, verify that this search does not return any results: sourcetype="access_combined" Opera

You can add more conditions to the Filter input field. For example, to further limit the filtering to only events

from hosts with domain bar.com , change the filter input as below:

Page 199 of 209

This is a very flexible method for filtering incoming events in real-time on almost any arbitrary conditions.

Page 200 of 209

Encrypting Sensitive Data

With Cribl you can encrypt your sensitive data in real-time before it's forwarded to and stored at a destination.

Using the out-of-the-box Mask function you can define patterns to encrypt with specific key IDs or key classes.

Symmetric key encryption keys can be configured through the CLI or UI. They're used to encrypt the patterns

and users are free to define as many keys as required. Key Classes are collection of keys that can be used to

implement multiple levels of access control. Users or groups of users with access to data with encrypted patterns

can be associated with key classes for even more granular, pattern-level compartmentalized access.

1. Define one or more Keys and Key Classes on Cribl.

2. Sync auth with decryption side (Splunk Search Head)

3. Apply the Mask function with C.Crypto.encrypt() to patterns of interest

4. Decrypt on Splunk Search Head using Role Based Access Control on decrypt command.

Encryption at ingest-time

Keys and Key Classes

Encrypting in Cribl and decrypting in Splunk

Page 201 of 209

Generate one or more keys through via the CLI as such:

$CRIBL_HOME/bin/cribld keys add -c 1 -i

...

$CRIBL_HOME/bin/cribld keys add -c <N> -i

Add -e <epoch> if you'd like to set expiration for your keys.

Or via UI in Settings | Encryption Keys:

Example

Encryption Side

Page 202 of 209

Sync auth/(cribl.secret|keys.json) . To decrypt data the decrypt command will need access to these

keys. cribl.secret and keys.json in $CRIBL_HOME/local/cribl/auth should be synced/copied over to the

Search Head (decryption side).

Install Cribl App for Splunk on your Search Head. It will default in mode-searchhead .

Assign permissions to the decrypt command per your requirements.

Assign capabilities to your Roles per your requirements. Capability names should follow the format

cribl_keyclass_N where N is the Cribl Key Class. For example, a role with capability cribl_keyclass_1

has access to all key ids associated with key class 1 . You can use more capabilities as long as they follow

this naming convention.

Decryption Side

Page 203 of 209

Before Encryption: sample un-encrypted events. Notice values of fieldA and fieldB

Usage

Encrypting fieldA values with key class 1 and fieldB with key class 2

Page 204 of 209

After Encryption: again, notice values of fieldA and fieldB

Decrypting fieldB but not fieldA . Logged in user has been assigned capability cribl_keyclass_2

Page 205 of 209

Page 206 of 209

KNOWN ISSUES

Known Issues

Problem: Using in-product upgrade feature in v1.6 (or easier) fails to upgrade to v1.7 due to package name

convention change.

Workaround/Fix: Download the new package and upgrade per steps laid out here.

Problem: When upgrading from v1.2 with a S3 output configured stagePath was allowed to be undefined. In

v1.4+ it is a required field and may causing schema violations on older configs when upgrading.

Workaround/Fix: Re-configure the output with a valid stagePath filesystem path.

In-product upgrade issue on v1.7. (2019-08-27)

S3 stagePath issue on upgrade. (2019-03-21)

Page 207 of 209

THIRD PARTY SOFTWARE

Current List

azure/storage-blob: 10.3.0

ag-grid-community: 19.1.2

ag-grid-react: 19.1.2

ajv: 6.9.2

ajv-errors: 1.0.1

antd: 3.13.0

as-table: 1.0.36

avsc: 5.4.9

aws-sdk: 2.323.0

cidr-matcher: 1.0.5

classnames: 2.2.6

color-hash: 1.0.3

cookie-parser: 1.4.3

d3-time-format: 2.1.3

date-fns: 1.29.0

diff: 3.5.0

escodegen: 1.11.1

esprima: 4.0.1

express: 4.16.3

fast-bitset: 1.3.2

file-saver: 1.3.8

jwt-simple: 0.5.6

kafkajs: 1.4.5

lodash: 4.17.15

lz4js: 0.2.0

node-cache: 4.2.0

node-uuid: 1.4.8

numeral: 2.0.6

pako: 1.0.10

papaparse: 5.0.0-beta.0

query-string: 6.1.0

Page 208 of 209

react: 16.7.0

react-dom: 16.7.0

react-jsonschema-form: 1.0.3

react-router-dom: 4.3.1

react-sortable-hoc: 0.8.3

react-split-pane: 0.1.82

regexpp: 2.0.0

requirejs: 2.3.6

resize-observer-polyfill: 1.5.0

rxjs: 6.2.2

saxen: 8.1.0

streamcount: 1.0.1

tar-stream: 1.6.1

url: 0.11.0

winston: 3.0.0

xmlbuilder: 10.0.0

yaml: 1.3.2

Page 209 of 209

